MOCVD法により作製したYBa$_2$Cu$_3$O$_{7-y}$薄膜に関する研究

吉田 隆
目次

第一章 序論
1.1 酸化物系超伝導体の現状 ・・・・・・・・・・・・・・・・・・・・・・・・・・ 4
1.2 酸化物系超伝導薄膜作製プロセスの現状 ・・・・・・・・・・・・・・・・ 5
 1.2.1 薄膜作製プロセスの概観 ・・・・・・・・・・・・・・・・・・・・・・・・ 5
 1.2.2 CVD 法の分類と特徴 ・・・・・・・・・・・・・・・・・・・・・・・・ 8
1.3 YBa$_2$Cu$_3$O$_{7-y}$系超伝導体の特徴 ・・・・・・・・・・・・・・・・・・・・ 9
1.4 本研究の目的と背景 ・・・・・・・・・・・・・・・・・・・・・・・・・・・ 10
1.5 本研究の構成 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 12
参考文献 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 15

第二章 実験方法
2.1 MO 原料 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 17
 2.1.1 固体原料と液体原料 ・・・・・・・・・・・・・・・・・・・・・・・・ 18
 2.1.2 液体原料の特徴 ・・・・・・・・・・・・・・・・・・・・・・・・・・・ 20
2.2 基板 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 27
2.3 MOCVD 装置 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 30
2.4 成膜方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 34
2.5 試料評価方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 35
 2.5.1 結晶構造解析(X 線回折) ・・・・・・・・・・・・・・・・・・・・・・・ 35
 2.5.2 組成分析(EDX 分析と ICP 分析) ・・・・・・・・・・・・・・・・ 38
 2.5.3 組織観察(SEM 観察と AFM 観察) ・・・・・・・・・・・・・・・・ 38
 2.5.4 TEM 観察 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 39
 2.5.5 SIMS 分析 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 40
 2.5.6 RBS 測定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 41
 2.5.7 直流四端子法による抵抗 - 温度測定 ・・・・・・・・・・・・・・ 41
 2.5.8 臨界電流密度の測定 ・・・・・・・・・・・・・・・・・・・・・・・ 41
参考文献 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 43
第三章 フッ素原子を含むMO原料を用いたYBa₃Cu₃O₇₋ₓ薄膜の作製及び再現性評価

3.1 はじめに ... 44
3.2 c軸配向したYBCO薄膜の作製 44
 3.2.1 成膜条件 .. 44
 3.2.2 c軸配向したYBCO薄膜 45
 3.2.3 YBCO薄膜の組成変動 49
 3.2.4 膜中のフッ素量 .. 54
3.3 臨界温度Tc ... 56
 3.3.1 基板依存性 .. 56
 3.3.2 再現性評価 .. 58
3.4 まとめ ... 59
参考文献 ... 60

第四章 フッ素原子を含まないMO原料を用いたYBa₃Cu₃O₇₋ₓ薄膜の作製及び再現性評価

4.1 はじめに ... 61
4.2 c軸配向したYBCO薄膜の作製 62
 4.2.1 成膜条件 .. 62
 4.2.2 YBCO薄膜の組成変動 62
4.3 臨界温度Tc ... 66
4.4 YBCO薄膜のMO原料依存性 69
4.5 まとめ ... 70
参考文献 ... 71

第五章 YBa₃Cu₃O₇₋ₓ薄膜の表面観察

5.1 はじめに ... 72
5.2 フッ素原子を含んだMO原料を用いたYBCO薄膜 .. 72
5.3 異なるMO原料を用いたYBCO薄膜の表面の違い .. 86
5.4 まとめ ... 96
参考文献 ... 99
第六章 YBa$_2$Cu$_3$O$_{7-y}$ 薄膜の配向制御

6.1 はじめに ... 101
6.2 a 軸配向した YBCO 薄膜の作製 ... 102
 6.2.1 成膜条件 ... 102
 6.2.2 MO 原料の違いにおける配向性の相違 ... 103
6.3 各種基板における配向制御 ... 109
6.4 MOCVD 法における配向制御 ... 113
6.5 まとめ ... 120
参考文献 ... 121

第七章 Block by block 法により作製した YBa$_2$Cu$_3$O$_{7-y}$ 薄膜の成長メカニズム

7.1 はじめに ... 122
7.2 c 軸配向した YBCO 薄膜の作製条件 ... 123
7.3 in-situ モニタリング ... 125
7.4 各種基板における YBCO 薄膜 ... 129
 7.4.1 面内配向性 ... 130
 7.4.2 表面形態 ... 134
7.5 成長メカニズムに関する考察 ... 136
7.6 in-situ モニタリングによる相転移の観察 ... 142
7.7 まとめ ... 145
参考文献 ... 147

第八章 結論

8.1 研究成果のまとめ ... 149
8.2 本論文の工学的意義及び今後の展望 ... 153
参考文献 ... 158

謝辞 ... 159
本研究に関する発表論文 ... 161
本研究に関する国際学会発表 ... 163
1.1 酸化物系超伝導体の現状

一連の酸化物系高温超伝導体の発見は、1986年のJ. G. BednorzとK. A. Mullerにより30K級超伝導体と報告されたLa-Ba-Cu-O系より始まる。この報告は電気抵抗の温度依存性において、35K付近での電気抵抗の急激な減少が見られることを報告したものであった。その後、田中らのグループにおいてLa-Ba-Cu-O系のマイスナー効果の確認がなされ、さらに笛木らのグループではBaサイトをSrで置換したLa-Sr-Cu-O系のTc=40Kが報告され、酸化物系超伝導材料としての第一歩が始まった。図1-1に超伝導材料の発見年代とその臨界温度Tcについて示す。1986年からの数年間でC. W. ChuらによるY-Ba-Cu-O系(以下YBCO系)やH. MaedaらによるBi-Sr-Ca-Cu-O系、さらにA. M. HermannらによるTl-Ba-Ca-Cu-O系など臨界温度の飛躍的に向上した超伝導材料が発見された。最近ではS. N. PutilinらやA. ShillingらによりHg-Ba-Ca-Cu-O系においてTc=138Kであることが確認された。このような酸化物系超伝導体のTcの飛躍的な向上の中でも、YBCO系超伝導体の発見は実用面においても非常に価値のあるものであった。それ以前の超伝導体においては、超伝導状態になるためには液体ヘリウム(沸点4.2K)を用いなければならなかった。YBCO系超伝導体のTcは90K程度であり、コスト面などの点では液体ヘリウムに比べ安価である液体窒素(沸点77K)を用いても超伝導状態にすることができたのである。そのため、液体窒素温度作動のエレクトロニクス機器やエネルギー分野への応用が期待されるようになった。

しかし実用化のためにはTcの向上だけでなく、臨界電流密度Jcや臨界磁場Hcの向上も必要不可欠な要因である。Tcは上記のような飛躍的な新材料探索の結果、液体窒素温度を超える138Kの高い値を記録している。また、Hcは材料依存性が高いのに対し、プロセス依存性の高いJcの向上が重要な研究課題として認識されるようになってきた。なかでもBi系超伝導材料は、Nb3SnやNb3Alなどの金属系超伝導材料で実績のあった線引き-圧延法などを利用した高Jc線材が作製できることが報告され、最近では4.2～20Kなどの低温で作動する高磁場発生マグネットなどに用いる線材なども開発されている。またYBCO系やTl系においては、単結晶、バルク及び薄膜の面から液体窒素温度作動のエレクトロニクス応用やエネルギー応用の研究が多く行われている。

特に、YBCO系の薄膜研究は単結晶薄膜の作製、薄膜作製の低温化、その場成長膜(アズ
図1-1 超伝導材料の発見年代と臨界温度

デバイスの作製といった *in-situ* プロセス技術の開発や原子層制御、超格子構造の作製などの高品質膜の検討と、他の新規材料では見られない発展を遂げてきた。そして超伝導デバイス、とくにジョセフソン接合の基礎技術の検討と展開している。さらに高*Jc*を有する酸化物系超伝導薄膜を積層して線材化する検討も成されるようになってきている。

しかし、このような進展の中においても幾つかの大きな課題も生まれてきた。デバイス応用の面では、超伝導体の効率が高い短い時間で膜表面を原子層レベルで制御しなければならないことが挙げられる。また線材応用では、積層膜を作製する際の超伝導膜と基板の界面や超伝導膜同士の界面の制御が重要である。そのようななか、最近の薄膜の研究開発は高品質化を目指し、薄膜成長過程の制御、そして原子レベルで見た成長過程の議論を通して、超伝導材料の開発とともに多くの研究開発が行われている。

1.2 酸化物系超伝導薄膜作製プロセスの現状

1.2.1 薄膜作製プロセスの概観

酸化物系超伝導薄膜の検討は、主に物理気相蒸着法（Physical Vapor Deposition）と化学気相

5
表1-1 各種酸化物系超伝導薄膜作製プロセス

<table>
<thead>
<tr>
<th></th>
<th>成膜方法</th>
<th>原料輸送方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>●PVD</td>
<td>レーザ蒸着法</td>
<td>エキシマレーザ光クラスター蒸着</td>
</tr>
<tr>
<td>(物理気相蒸着法)</td>
<td>スパッタ法</td>
<td>プラズマ</td>
</tr>
<tr>
<td></td>
<td>MBE法</td>
<td>熱蒸着</td>
</tr>
<tr>
<td></td>
<td>(分子線エピタキシー)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>反応性蒸着法</td>
<td>電子ビーム蒸着 抵抗加熱</td>
</tr>
<tr>
<td>●CVD</td>
<td>プラズマCVD法</td>
<td>原料加熱キャリアガス</td>
</tr>
<tr>
<td>(化学気相蒸着法)</td>
<td>光CVD法</td>
<td></td>
</tr>
<tr>
<td></td>
<td>熱CVD法</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MOCVD法</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(有機金属化学気相蒸着法)</td>
<td></td>
</tr>
</tbody>
</table>

蒸着法（Chemical Vapor Deposition）との二種類に分類される。表1-1に今まで研究が為されてきた主なPVD及びCVDプロセスについてまとめる。一般に、PVDは原料固体と生成物である膜が化学的に等しいのに対し、CVDは高エネルギーを有する揮発性原料を用いている点で基本的に異なる。以下にPVD、CVDプロセスの特徴、課題点などを中心に述べる。

(i) 物理蒸着法(PVD)

酸化物系超伝導体の発見以来、その装置構成の簡便さや組成制御が容易な点で超伝導膜をスパッタ法を用い作製する報告が多く為された。スパッタ法はイオンがターゲットに照射されると、ターゲット表面の構成原子、分子と弾性、非弾性衝突する。その結果、ターゲット表面の原子、分子が蒸発して基板上に沈着し膜を形成する。ターゲットは焼結法で得られるバルク材を用いることができ、またそのバルク材の組成と膜組成が最適条件下ではほぼ同じになり組成制御が容易である長所がある。しかし原理的に膜形成時に高速粒子による膜のダメージはさけられないものであり、デバイス応用などの高品質膜への適用は、更なるスパッタ法の改良が必要であった。
また、PVDはスパッタ法とともに真空蒸着法（熱蒸着法）が研究されている。真空蒸着法は1x10^{-6}Torr以下の高真空中で材料を加熱蒸発させ、この蒸着粒子を基板上に沈着させて膜を形成させるプロセスである。酸化物系超伝導薄膜においては、その一種である分子線エピタキシー法（Molecular Beam Epitaxy）をもちいてT. TerashimaらがYBCO膜の超平坦膜を作製した。（12）この膜は、作製する際に1unitごとに成長をRHEED（反射高速電子線回折、Reflection High Energy Electron Diffraction）振動を観察しながら成長させたものである。MBE法以外にも電子ビーム蒸着法などにおいても平坦膜作製プロセスとしての検討がなされている。

さらに最近の超伝導薄膜の研究の主体となっているレーザ蒸着法がある。レーザ蒸着法は、真空漕の外から短波長のエキシマレーザを、パルス的にターゲットに照射して、ターゲットを間接的に蒸発させるため、多成分の化合物における組成すれが少ないという長所がある。ターゲットの回りには、レーザによりブルームが生成して、このブルーム中をクラスター状態で蒸発物は飛行して基板上に沈着する。酸化物系超伝導膜の場合、YBCO系でも3成分の元素を有するため、組成すれは大きな課題である。レーザ蒸着法は組成制御、組成再現性においては良好であったため、薄膜研究の中心となってきている。

しかし、デバイス応用の面では更なる高品質膜を得るための完全結晶の生成や表面に生成するパテクル制御などの課題がある。また線材応用の面ではレーザ装置の大型化などによる大面積、連続成膜への技術的な課題もある。

(ii) 化学蒸着法（CVD）

超伝導薄膜の研究は、上記のようなレーザ蒸着法などのPVDプロセスが現在においても多く報告されている。一方、GaAsなどの半導体などで工業的にも実績のあるCVDプロセスによる超伝導薄膜の研究は、A. D. Berryらによる報告（13）をはじめ、酸化物系超伝導体発見からの数年間に多く報告された。CVDプロセスは、薄膜材料のハロゲン化物、硫化物、水素化合物などを高温で熱分解、酸化、還元、重合あるいは気相化学反応などをさせたのち、金属分子を基板上に沈着させて膜を形成させる。（14）また作製する雰囲気から大気圧CVDと減圧CVDとの大別される。従来、半導体プロセスにおいては大気圧CVDが用いられてきたが、酸化物系超伝導薄膜においては減圧CVDが用いられてきた。さらに、より低温化させるために減圧CVDにプラズマ励起を併用させるプラズマCVDが開発された。また成長材料、または基板にレーザ光をあて、材料を分解させたり基板を加熱したりする光CVD法です。
も開発された。これら的方法はMBEなどとともに半導体の分野で実績を作り、超薄膜などの原子層レベルで膜形成することを可能にした。

1.2.2 CVD法の分類と特徴

上記のような薄膜材料を高温中で反応させて基板上に成膜するCVDプロセスのうち、特にその材料を有機金属を用いる方法を有機金属化学気相蒸着法（Metal Organic Chemical Vapor Deposition）と言われる。MOCVD法を用いた酸化物系超伝導薄膜の報告の中でも、YBCO系においてH. Yamaneらの$T_c=89K, J_c=2.2\times10^6 A/cm^2 (77K, 0T)$の高$J_c$膜の報告は、磁場中での$J_c$の低下が、従来のPVD膜に比べ小さくなったことを明らかにし、酸化物系超伝導体におけるビン止め点について新たな知見を得るにいたった。また、座間らは酸化剤としてN_2ガスを供給し成膜温度の低下を図る方法や、牛田らのエキシマレーザをアシストして成膜する方法などが報告された。CVD法は、半導体の研究を継承するように酸化物系超伝導体にも適用されてきている。

![CVDプロセスにおける成長の素過程の図](image)

図1-2 CVDプロセスにおける成長の素過程
PVDは主に真空容器内で金属原子を蒸発させて基板上に成膜するのに対し、CVDは分子状のブリカーサーを用い成膜する。そのため原料は成膜容器外部から供給ガスなどで運ばれ、基板上で分解して膜を構成する。原子状態で成膜されるPVDの場合、基板上に堆積する原子の付着係数は100%であり、堆積する原子は全て膜に結晶として取り込まれる。そのため膜の組成を化学量論組成に合わせるためには、ターゲットの組成や成膜条件を精密に制御する必要がある。一方、分子状態で堆積し、基板上で化学反応により成膜されるCVDの場合、基板表面の付着係数は基板状態などにより変化する。図1-2にCVDにおける成長の素過程を示す。[1-19]成長ステップに取り込まれない余剰組成の分子、または原子は再蒸発の過程を経て境界層へ吐き出される。すなわち結晶成長ステップにおいて、化学組成の制御機構があることを示す。この特徴を用いた方法に原子層エピタキシー(Atomic Layer Epitaxy)がある。[1-20-22]この方法によれば、原料供給の回数のみで成長膜厚を1 unit cell単位で制御することが可能であり、特に化合物半導体GaAsなどの分野で研究が進められた。さらに最近は酸化物系超伝導膜においてもALE法が適用できることが報告されている。[1-23-24]

1.3 YBa$_2$Cu$_3$O$_{7-y}$系超伝導体の特徴

1.1「酸化物系超伝導体の現状」で述べた酸化物系超伝導体の中で、本研究で検討するYBCO系超伝導体について結晶構造を中心に、その材料の特徴について述べる。図1-3に示すようにYBCO系超伝導体は、CaTiO$_3$などで代表されるベロブスカイト構造を有している。YBCOの結晶構造は、ベロブスカイト構造におけるAサイトにBaとYが入るが、Y:Ba=1:2の比になっているため、規則配列が生じ、Y面とBa面はBa-Y-Ba-Yのように積層される。Bサイトは全てCuが占めている。さらにYBCOの場合、酸素の欠損により結晶構造が正方晶(テトラ構造)と斜方晶(オルソ構造)に変化する。Cu-O鎖の酸素が全て抜ける場合はYBa$_2$Cu$_3$O$_6$となり正方晶となる。またCu-O鎖の酸素が一部抜ける場合、酸素の抜け方は規則的でa軸上に一列に並び、a軸とb軸の長さが異なり斜方晶となる。正方晶から斜方晶に相転移する酸素量はO$_{7-y}$におけるyが0.3付近であり、それより酸素含有量が大きい場合に斜方晶になる。

YBCOにおいてはY:Ba:Cu=1:2:3で固定されるので、Cuの平均原子価は酸素含有量で決まる。H. TakagiらやR. J. CavaらによりCuの平均原子価とTcの関係が報告されている。[1-25-26]その結果によれば、酸素欠損量の少ない材料でTcが90Kに至ることが明らかにされた。
成膜プロセスにおいては一般的に基板温度は500℃以上であり、YBCOは成膜中はテトラ構造を形成する。その後、室温に冷却する際に、酸素を導入することにより、膜に酸素が導入されオルソ構造に変態する。すなわち超伝導膜をin-situで作製する場合は降温時の酸素制御が高Tc化への重要性を要因になる。

1.4 本研究の目的と背景

CVD法を用いた酸化物系超伝導膜のin-situ作製は、焼結法などのバルク材と同程度のTc=90Kの特性を得るまでには、他のPVDと同様に時間を要した。CVDの場合は、有機金属(MO)原料の研究開発と成膜条件の検討などのハードルを越える必要がある。特にMO原料の開発は、新規原料であることや原料安定性などからCVD膜の作製における重要課題となった。A.d. Berryら(113)やH. Yamaneら(119)によるCVD法における高Tc膜の報告がきっかけとなり、世界中の研究者によるCVD膜の作製が試みられた。CVDにおける最適条件の適正化などの試みの結果、ある程度安定した原料供給が可能となった。その結果、高Tc化の点では他のPVDプロセスとほぼ同程度に至った。

その後の研究はデバイス応用と線材応用で若干の相違点はあるものの、以下の項目を中心に
に研究は進められた。

(i) *in-situ* におけるその場観察方法\(^{1,27,28}\)
(ii) デバイス応用のための Layer by Layer 成長の可能性\(^{1,29,30}\)
(iii) 線材応用のための高速成膜技術の確立\(^{1,31}\)
(iv) 結晶配向方向の制御\(^{1,18}\)
(v) MO 原料の開発\(^{1,32}\)

CVD 法は、その成膜原理から考え PVD 法に比べ大面積化や長尺化に適しているプロセスである。しかし、酸化物系超伝導成膜に用いられてきた DPM（dipivaloylmethane）系原料のように固体状態の原料においては、保温時の熱によって MO 原料が変化して、蒸気圧の低下などの問題を引き起こしてしまう。そこで MO 原料の開発などの課題の解決に力注がれ、PVD 法に比べ成長メカニズム、応用を念頭にいれた研究が遅れていた。

本研究においては、従来から用いられてきた DPM 系原料のように固体状態の原料の昇華による成膜プロセスに代わり、新たに液体状態で原料を用い蒸発による成膜を行う液体原料\(^{1,33}\)を用い、原料安定性を向上することを第一の目的とする。

さらに MOCVD 法における YBCO 系超伝導膜に関する研究の一環として、各種液体 MO 原料を用いた超伝導膜の作製及び再現性の評価を詳細に検討し、組成再現性を向上させることにより従来報告例の少なかった薄膜成長メカニズムを明らかにすることを目的とする。本論文で検討する具体的な研究課題に関して以下に示す。

(i) CVD 膜作製の点からの固体原料と液体原料

(ii) 各種液体 MO 原料を用いた超伝導膜の特性及び再現性の評価

(iii) 表面形態における薄膜成長メカニズム

(iv) 液体 MO 原料における結晶配向制御

(v) 薄膜成長初期状態における表面形態
1.5 本研究の構成

本論文は図1-4で示すように八章から構成される。基礎論として第一章「序論」、第二章「実験方法」では本研究を検討するための背景及び課題を述べ、さらに実験評価方法についてまとめる。

第一章「序論」では、本研究の背景、目的及び本論文の構成について述べている。将来の酸化物系超伝導膜による応用製品のための研究課題について検討し、さらに超伝導薄膜プロセスにおけるCVDの位置付けをPVDと比較検討する。
第二章「実験方法」では主にMOCVD法による酸化物系超伝導膜作製の際に用いるMO原料の種類や超伝導膜の成膜方法、及び膜の評価方法などの一連の実験方法について詳説する。特に、今までの酸化物系超伝導成膜に用いられてきたDPM(dipivaloylmethane)系原料のように固体状態の原料の昇華による成膜プロセスに代わり、新たに液体状態で原料を用い蒸発による成膜を行う液体原料についての安定性、及び蒸発量を中心にMO原料を考察する。その結果、Y、Ba及びCuの各MO原料を選択し、具体的な成膜条件、供給方法などについて言及する。さらに、得られた膜の評価方法などについて詳細を述べる。

方法論の第三章「フッ素原子を含むMO原料を用いたYBCO薄膜の作製及び再現性評価」と第四章「フッ素原子を含まないMO原料を用いたYBCO薄膜の作製及び再現性評価」では、YBCO薄膜の超伝導特性、膜組成の観点から、液体MO原料と再現性について述べている。

第三章「フッ素原子を含むMO原料を用いたYBCO薄膜の作製及び再現性評価」では、第二章で考察した液体原料のうちフッ素原子を含むMO原料を用いたYBCO膜の作製方法について述べている。フッ素原子はMO原料の融点の低下に寄与する反面、超伝導膜に残存し超伝導特性の劣下を引き起こす問題点がある。その点について成膜方法で克服し、さらに膜組成や超伝導特性の再現性について従来のDPM系固体原料と比較検討する。

第四章「フッ素原子を含まないMO原料を用いたYBCO薄膜の作製及び再現性評価」では、第三章で考察するフッ素原子を含むMO原料に比較して、フッ素原子を含まないMO原料を用いたYBCO膜の作製方法及び再現性について考察する。

応用論の第五章から第七章までは、第三章及び第四章で得られたYBCO膜の成長メカニズムについて表面成長、配向制御及び初期成長の観点から考察する。

第五章「YBCO薄膜の表面観察」では、原子間力顕微鏡(AFM)を用いて、得られた薄膜の表面を観察し、用いたMO原料と表面形態の関係などについて述べている。その結果、YBCO膜の表面に、スパイラル構造を有した結晶が成長していることが確認される。スパ
イラル成長と基板温度との関係、用いた MO 原料による違いなどを考察した結果として、
CVD プロセスにおける疑似液体層の存在などの成長メカニズムについて言及する。

第六章「YBCO 膜の配向制御」では、YBCO 膜の結晶方向を一軸に制御する配向制御に
ついて述べている。YBCO 膜では基板との整合性などにより、一般的に c 軸配向膜につい
て研究が成されている。しかし、超伝導物性面において結晶構造に起因した異方性が存在
し、例えばコヒーレント長は、c 軸方向に対し a,b 面方向の約 8 倍の長さを有している。そ
のため、超伝導デバイスなどの応用を検討するための超伝導薄膜においては a 軸配向膜が
必要不可欠である。しかし MOCVD 法では、DPM 系の固体原料ではエキシマレーザなどの
レーザ光のアシストを行わなければ a 軸配向膜を得ることができない。本章において
は、MO 原料と a 軸配向膜の成長メカニズムについて述べるとともに、各種基板を用いて
b 軸配向膜などの配向制御を行うことを試みている。

第七章「Block by block 法により作製した YBCO 膜の成長メカニズム」では、YBCO 膜を
1unit 単位で成長させる Block by block 法を用いて成膜し、得られた膜の配向性及び表面形
態から YBCO 膜の初期成長について考察し述べている。はじめに Block by block 法による
膜厚の異なる c 軸配向 YBCO 膜の作製条件を把握する。さらに、得られた膜の AFM 観察
によるスパイラル形態及び極点図形測定法による面内配向性より基板種類により初期成長
が異なることを確認する。

第八章「結論」には本論文で得られた成果をまとめて示す。主要な成果として、(1)液体原
料を用いた YBCO 膜の成膜技術の確立及び実証、及び(2)CVD プロセスにおける酸化物系
超伝導膜の成長機構の把握などが挙げられる。さらに本論文の工学的意義を述べるととも
に、今後の展開として、光学測定による CVD プロセスと疑似液体層の存在、液体原料を
用いることにより可能となる高速成膜による線材応用、両面成膜による高周波応用などの
可能性などについて述べている。
参考文献

(1.8) A. Schilling et al. : Nature 363 (1993)p56
(1.14) 和佐清孝、早川茂共著「薄膜化技術」共立出版

15
(1.19)化学工学編集「CVD ハンドブック」朝倉書店

(1.32)例えば小田俊美: 日本結晶学会誌 22 (1995) p39

第二章 実験方法

2.1 MO原料

前章で述べたように、MOCVD法における酸化物系超伝導膜の研究において、MO原料の安定性の検討は重要な検討課題である。ここではMO原料の安定性を示差熱天秤(DTA-TG)TAS200を用い評価検討する。

図2-1にDTA-TGの装置の原理図(2)を示す。DTA-TGとは試料ホルダーにのせた試料が電気炉中で加熱され、分解、酸化反応などのような化学反応によって変化する重量変化(TG)や熱変化(DTA)を同時に測定する方法である。TGは、試料の化学反応で生じた重量変化を試料系を支えている天秤ビームの傾きなどから間接的に測定するものである。またDTAは、試料が化学反応により起こす熱変化を、試料と基準物質との温度差の形で検出する。図2-1のように試料と基準物質を熱的に均一な電気炉の中に置き、一定の速度で加熱、冷却する。試料と基準物質との温度差は熱電対で検出され、図2-1(a)のような昇温曲線を作製し、さらに温度差から(b)示差熱曲線が求められる。この図から比熱や潜熱の変化(B-C-D,E-F)や燃焼による発熱(G-H-I)が観察される。

本研究においてはMO原料を融点、蒸発量の点から評価する。基準物質としてAl₂O₃
(10mg)、試料物質は各MO原料(10mg)を用い、昇温、降温速度は5℃/min.で測定した。またCVDと同じ雰囲気にするため、全ての測定をAr気流中で行った。蒸発量の測定においては、それぞれの温度において1時間保持し、試料の重量変化からMO原料の蒸発量を求めた。

2.1.1 固体原料と液体原料

従来、半導体、特にII-VI、III-V族化合物半導体では、常温において液体である有機金属(Ga(CH₃)₃、As(CH₃)₃、Bi(CH₃)₃など)が用いられていた。しかし、Y, Ba及びCuでは、アルキル化合物が重合などの反応を起こし、十分な蒸発量を得ることができない。Y, Ba及びCuの金属において様々なリガンドが合成された結果、図2-2のようなDPM系、THA系、HFA系のリガンドをもった有機金属の合成が行われるようになった。図2-2において、MはY、

\[
\begin{align*}
& M= Y, \text{Ba, Cuなど} \\
& R, R'= -\text{CH}_3 : \text{Dipivaloylmethane} \\
& R= -\text{F} : \text{Tifluoroacetylacetone} \\
& R'= -\text{H} : \text{TFA系} \\
& R, R'= -\text{F} : \text{Hexafluoroacetylacetone} \\
& \Rightarrow \text{HFA系}
\end{align*}
\]

図2-2 MO原料の構造式の一例
表2-1 MO原料の経緯

<table>
<thead>
<tr>
<th>世代</th>
<th>主な原料</th>
<th>特徴</th>
</tr>
</thead>
<tbody>
<tr>
<td>第一世代</td>
<td>(DPM)系 (HFA)系</td>
<td>隣接するブリカーサ同士が重合して分子量の大きいオリゴマーを形成する 蒸気圧の低下、原料輸送不可能</td>
</tr>
<tr>
<td>第二世代</td>
<td>(DPM)フェナントリオン(HFA)テトラグライム 高純度(DPM)</td>
<td>アダクツを配位させて立体障害により オリゴマー形成の抑制 使用中に結晶粒成長により原料表面積 が低下により供給量の変化</td>
</tr>
<tr>
<td>第三世代</td>
<td>液体原料</td>
<td>液体状態</td>
</tr>
</tbody>
</table>

Ba及びCuなどの金属、R及びR'はCH₃、Fなどのアルキル残基を示す。R、R'がCH₃の場合はジピロロイルメタン(Dipivaloylmethane)、またFの場合はヘキサフルオロアセチルアセトント(Hexafluoroacetylacetone)、さらに、RがCH₃、R'はFの場合はトリフルオロアセチルアセトント(Trifluoroacetylacetone)と呼ばれている。一般的に錯体の気化性の高さはHFA>THA>DPMの順である。しかし、YやCuに比べBaなどのアルカリ土類元素の金属錯体の研究はあまり多くなかった。BaのMO原料の開発は遅れ、さらに、できた金属錯体も融点以下の中温で分解してしまっていた。その後のMO原料の開発経過について、表2-1に示す。第一世代の原料は図2-2で示したDPM、TFA、HFA系の金属錯体であったが、隣接するブリカーサ同士が重合反応して、分子量の大きなオリゴマーを形成してしまった。そのため、原料を蒸気圧の確保できる100℃以上に保持すると、経過時間に伴い蒸気圧が低下してしまい、最後には原料輸送が困難となってしまっていた。そこで第二世代では、第一世代で検討されたDPMやHFAのリガンドを合成した金属錯体に、弱い結合力でアダクツを配位させた原料の合成や、MO原料の高純度化が検討された。第一世代の原料に比べれば、原料輸送が不可能になるような問題は解決した。しかし、固体状態で保存されている原料の結晶粒成長により、キャリアガスに接している原料表面積の低下による供給量の低下が課題として持ち上がった。そのため、固体状態の原料では成膜条件、特に原料温度、キャリアガス流量を時間に伴い増加させて膜組成を制御していた。例えばK. HigashiyamaらはDPM系の固体原料を用いた時の組成の再現性を報告している。この際のBa量の組成変動が大きいため、再現性実験では毎回の組成を確認して、Ba原料のキャリア流量を最適値に修正してい
固気相成膜の手段としてのモルホロプロセス（MOCVD）と、一方でガス相成膜の手段としての化学気相成長（CVD）が考えられる。前者では、ガスを熱分解させた物質を基材に直接成膜する手法が主である。これに対して、後者では、基材に直接ガスを供給することで成膜を図る。通常、MOCVDとCVDは、それぞれの優位性を活かした組み合わせで使用されるが、本稿では、実験的に得られた結果と考察に基づき、MOCVDとCVDの比較を試みる。

図 2-3 固体原料と液体原料のDTA-TGの違い

図 2-3 固体原料と液体原料のDTA-TGの違い

（i）液体原料の定義

上記のような経緯で、液体MO原料を用いた酸化物系超伝導膜の研究のための、液体原料の探索を始めた。図2-3に固体原料の液体原料のDTA-TGを示し、液体原料の探索のための指針を検討する。横軸は温度であり、重量(TG)の変化は右軸、示差熱(DTA)は左軸で示されている。なお、図2-3では固体原料として、Y(DPM)$_3$を一例として示している。固体原料では昇温時に175℃付近でDTAで吸熱側に鋭いピークが観察され、それに伴い重量は急激に減少してゼロになる。150～200℃における各温度で保持して、その後室温まで急冷する実験
表2-2 本研究で検討した各種MO原料

<table>
<thead>
<tr>
<th>原料</th>
<th>例</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y原料</td>
<td>Y(DPM)</td>
</tr>
<tr>
<td></td>
<td>Y(DPM)3 4tBuPyNO${2.8}$</td>
</tr>
<tr>
<td></td>
<td>Y(TMOD)</td>
</tr>
<tr>
<td>Ba原料</td>
<td>Ba(DPM)$_2$</td>
</tr>
<tr>
<td></td>
<td>Ba(DPM)$_2$(phen)$_2$</td>
</tr>
<tr>
<td></td>
<td>Ba(TDFND)tetraglyme$_{2.8}$</td>
</tr>
<tr>
<td></td>
<td>Ba(TMOD)</td>
</tr>
<tr>
<td></td>
<td>Ba(DPM)2tetraen${2.9}$</td>
</tr>
<tr>
<td>Cu原料</td>
<td>Cu(DPM)$_2$</td>
</tr>
<tr>
<td></td>
<td>Cu(TDFND)$_2$(2.8)</td>
</tr>
<tr>
<td></td>
<td>Cu(TMHPD)$_2$</td>
</tr>
<tr>
<td></td>
<td>Cu(EDMOD)$_2$</td>
</tr>
<tr>
<td></td>
<td>Cu(DPM)$_2$2tetraen</td>
</tr>
</tbody>
</table>

などから、この原料は175℃が融点で、それ以上の温度では液体状態で存在することが確認される。しかし、数週間以上恒温槽内で液体状態で原料を保持するCVD法においては、この固体原料の場合重量変化が急激に緩やかため、安定して液体原料として保持できる温度は融点以上数℃程度しかないことが推察される。このため、従来固体原料として用いていたMO原料の保持温度を高くして液体原料として使用することが困難である。

一方、図2-3の液体原料で示したような液体状態で使用可能なMO原料を探索した。このような液体原料の探索する際に、その液体MO原料の満たすべき条件として以下のように項目を仮定した。

(ア) 融点は従来の固体原料と同程度、またはそれより低い。

(イ) 融点より高い温度領域での重量の減少が急激でないこと。液体状態での重量変化が数％程度であること。

液体状態になる温度が固体原料のそれに比べ高いと、MOCVD装置のパルプなどの耐熱温度を越えてしまう。例えば固体原料の中で原料保持温度が比較的高いBa(DPM)$_3$の場合、通常保持される温度は250℃程度である。装置のパルプなどの耐熱温度は約200℃のものと約250℃のものを採用することを検討している。
℃のものがあるが、低いほど装置上のトラブル、コストの面で優位である。そのため、(ア)の融点の低温化が必要である。さらに、液体状態での重量減少が前述した固体原料のような急激なものでないことが要求される。MOCVD装置においては、液体状態でのMO原料の蒸発量は原料保持温度、キャリアガス流量などで制御する。そのためには、原料保持温度で液体状態であり、またその蒸発量が制御可能、即ち(イ)のような液体状態での重量減少の変化が数％程度の原料を液体原料とし各種MO原料から選択した。

表2-2に本研究でDTA-TGを用い検討した各種MO原料を明記する。上記の(ア),(イ)で示した条件をみたし、図2-3で定義した液体原料のようなDTA-TG曲線を示したものは太字で示してある。これらより液体状態で用いることのできるMO原料は大きく以下の二つの種類に大別することができる。

(A)フッ素原子を含むMO原料

Ba(TDFND)tetraglyme、Cu(TDFND)$_2$

図2-4 フッ素原子を含むMO原料の構造式
図 2-5 フッ素原子を含む MO 原料の DTA-TG 測定結果

図 2-6 DTA-TG 測定より求めた温度変化における各 MO 原料の蒸発量

23
(B)フッ素原子を含まない MO 原料

\[Y(DPM)_34tBuPyNO, \ Ba(DPM)_22\text{tetaen}, \ Cu(TMHPD)_2, \ Cu(DPM)_22\text{tetaen} \]

これらの原料のなかでフッ素原子を含むY-MO原料が無いため、\(Y(DPM)_34tBuPyNO \)を用いた。本論文におけるのフッ素原子を含むMO原料とフッ素原子を含まないMO原料を原料のコスト、原料の生産性及び原料の親水性などから、それぞれ下記の3種類のMO原料を用いることとした。

(a)フッ素原子を含む MO 原料

\[Y(DPM)_34tBuPyNO, \ Ba(TDFND)\text{tetraglyme}, \ Cu(TDFND)_2 \]

(b)フッ素原子を含まない MO 原料

\[Y(DPM)_34tBuPyNO, \ Ba(DPM)_22\text{tetaen}, \ Cu(TMHPD)_2 \]

(ii)フッ素原子を含む MO 原料

図2-4に、「フッ素原子を含む MO 原料」の検討で用いる \(Y(DPM)_34tBuPyNO(\text{yttrium-tris-(2,2,6,6-tetramethylheptane-3,5-dione)} \) 4-t-butylpyridine-N-oxide adduct), \(\text{Ba(TDFND)tetraglyme (barium-bis-(1,1,2,2,3,3,7,7,8,8,9,9,9-tetradecafluorononane-4,6-dione) tetraglyme adduct)}) \), \(\text{Cu (TDFND)_2 (copper-bis-(1,1,2,2,3,3,7,7,8,8,9,9,9-tetradecafluorononane-4,6-dione))} \)の3種類のMO原料を示す。Y、Ba及びCuの金属に弱い結合力で(DPM)と(TDFND)のリガンドが配位されており、さらにYとBaにはそれぞれアダクツを配位させている。またBaとCuの原料には構造式内にフッ素(F)が存在していることが分かる。

この3種類の原料の成膜条件の予備検討として融点及び蒸発量を把握しておく必要がある。そこで図2-5にDTA-TGを用い各原料の昇温時の重量変化、吸熱発熱変化を測定した結果を示す。横軸に試料温度、縦軸左側は吸熱発熱変化及び右側は重量変化を示している。Y-
図 2-7 フッ素原子を含まない MO 原料の構造式

図 2-8 フッ素原子を含まない MO 原料の蒸発量
MO原料は融点94.5℃と確認され、さらに重量は94.5℃から170℃付近まで徐々に減少し、170℃以上の温度では急激に変化することが分かる。Ba-MO原料は融点は72.5℃で、重量はY-MO原料と同じように、融点直後から170℃付近まで徐々に減少して、その後急激に減少する。一方、Cu-MO原料は融点は70.3℃とY-やBa-MO原料に比べ一番低い。また重量は融点直後から変化して、130℃付近までの減少とそれ以上の温度での減少と二段階になる。以上のDTA-TGの測定から、フッ素原子を含むMO原料は融点が、従来のDPM系などの固体原料に比べ低く、100℃以下で液体状態になることが確認された。従来の固体原料で用いていたCVD装置の原料槽、配管などでは、耐熱温度は原料保持温度の250℃程度に設計されている。本研究で用いるフッ素原子を含むMO原料を液体状態として用いる場合には装置上の耐熱温度をさらに低くすることができ、装置コストの低減が計れることが推察される。

図2-5で得られたDTA-TGより、求められた融点より高い温度におけるMO原料の蒸発量の変化を検討する。図2-5で求めた融点より高い温度における温度で1時間保持した時の、各MO原料の蒸発量の変化を図2-6に示す。Y-MO原料及びBa-MO原料は融点以上の広い温度で蒸発量が温度に対して直線的に増加し、さらに温度が高くなるに従い急激に増加することが確認される。一方、Cu-MO原料は融点よりも高い温度では急激に蒸発量が増加していることが分かる。以上の結果より、Y(DPM)_4tBuPyNO及びフッ素原子を含むBa(TDFND)_2tetraglymeとCu(TDFND)_2は融点も従来の固体原料に比べ低く、しかも十分な蒸発量が得られることから液体状態でのMO原料として用いることができることが分かった。またCu-MO原料は蒸発量の観点から他のY-MO原料、Ba-MO原料に比べ液体状態で用いる温度制御可能な領域が狭いことが分かった。YHCO膜を作製する際の組成制御に対して、Cu-MO原料の原料温度及びキャリア流量の制御が重要であることが分かった。

(iii)フッ素原子を含まないMO原料

図2-7にY(DPM)_4tBuPyNO(yttrium-tris-(2,2,6,6-tetramethylheptane-3,5-dione) 4-t-butylpyridine-N-oxide adduct)、Ba(DPM)_2tetraen(bis-dipivaloylmethanato(barium)tetraetyl(diphenylamine)adduct)及びCu(TMHPD)_2(copper-bis(2,2,6-trimethylheptane-3,5-dionate))を示す。これらのMO原料は図2-4に示したMO原料と異なり、フッ素原子が全てのMO原料に構成原子として存在していない。Y(DPM)_4tBuPyNOとCu(TMHPD)_2は常温では固体状態で存在しているが、Ba(DPM)_2tetraenは液体状態で存在している。
図2-8では、(ii)フッ素を含むMO原料で検討した方法同様の蒸発量の検討を行った。各原料の試料温度における蒸発量は、蒸発量が直線的に増加する温度領域と、急激に増加する領域の二段階をすることが確認される。Cu(TMHPD)₂の蒸発量も、前節で述べたCu(TDFND)₄ほどの急激な挙動を示していない。これらよりフッ素を含むMO原料、特にCu(TDFND)₄に比べ、フッ素を含まないMO原料においては原料温度、流量の調整範囲が広く、そのため容易に膜組成が制御可能であることが推察される。

2.2 基板

エピタキシャル成長する酸化物系超伝導膜においては、目的にあたる基板材料の選択が重要である。基板材料の物性値、例えば格子定数、融点及び比誘電率などともとも、基板と超伝導膜との反応性、格子定数のマッチングが超伝導膜の超伝導特性などに大きく関与する。さらに基板表面状態などは超伝導膜の表面形態やデバイス特性などに影響を与える。そこで基板を以下の二点の観点で選択した。

図2-9 各種基板の温度における格子定数の変化(2.10)
(i) 格子定数、比誘電率、超伝導膜との反応性などの基板の材料特性

(ii) 基板表面のラフネス

(i) 基板の材料特性

酸化物系超伝導膜の発見以来、様々な基板材料が検討されてきた。特にSiやAl₂O₃はコスト的に有利であるため、発現当時は多くの報告例が示された。しかし、超伝導膜の成膜温度が半導体ほどよりも高温であるため、基板と超伝導膜との化学的拡散反応が起こり超伝導特性の低下をまねく結果となった。その結果、超伝導膜との反応の観点や格子定数の整合性からMgOやSrTiO₃などの単結晶基板が主流となってきた。図2-9にJorgensenらが報告した各種基板の温度における格子定数の変化を示す。(2-10)横軸に温度、縦軸には各種単結晶基板の格子定数を示す。YBCO膜は約600℃以下では正方晶から斜方晶に相転移する。単結晶基板の格子定数は温度に対し直線的に増加するため、全温度領域で超伝導膜との整合性が得られる基板はないことが分かる。NdGaO₃などは格子定数の整合性の点からは良好な基板であることが分かる。しかし、実際にはYBCO膜は、成長過程における基板との引っ張り、圧縮応力がかかるため、しばしばクラックが発生する。これらの問題は膜厚依存性などとともに現在研究が行われている。

表2-3には超伝導膜で検討されている各種基板の特性についてまとめる。格子定数は室温での値、相互拡散では基板温度700℃程度のYBCOと基板の反応性について示す。さらにYBCOとの格子ミスフィットではNearly Coincident Site Lattice Model (NCSL)(2-11)を用いて求めた格子整合性を示している。比誘電率は超伝導膜をマイクロ波応答する際に重要な値である。

格子整合性は基板結晶と結晶相との界面エネルギーを最小にするように結晶の優先方位を決めることにより定義される。このような結晶間の界面エネルギーによる結晶の優先方位のモデルとして、R. W. BalluffiらによりCoincident Site Lattice Model (CSL)(2-12)が提案された。このモデルは二つの立方晶の結晶における界面エネルギーについて考察したものであった。その後、D. W. HwangらによりYBCO膜とMgO基板との界面エネルギーについてNearly Coincident Site Lattice Model (NCSL)が提案され、斜方晶の超伝導膜と基板との格子整合性を検討できるようになった。

MgO基板は格子定数における超伝導膜とのマッチングは良好ではないが、コスト面やマ
イクロポ連応の際に重要な要因である比誘電率が低いなどの点から多く用いられる。格子整合性の点からは、SrTiO₃基板とNdGaO₃基板が良好であることが分かる。しかし、SrTiO₃基板は比誘電率が高く、マイクロ波応用には不向きな基板である。イットリア安定化ジルコニア(YSZ)は基板温度700℃以上のYBCO膜成膜時には、超伝導膜へのZrが拡散して超伝導膜の特性低下を引き起こすことが報告されている。(2,13)また、LaAlO₃基板は比較的比誘電率が低いという理由で、マイクロ波応用に多く用いられる。しかし数インチの大きな単結晶基板作製時に双晶面(ツイント)が混在してしまう。このツインの上に成長した超伝導膜は、結晶粒界を形成し、超伝導特性が低下する問題を引き起こす。以上のように述べてきた単結晶基板は、超伝導膜との反応性、格子整合性の点から一長一短であった。S. Hontsuらは超伝導膜との整合性、特にa軸またはb軸とc軸との整合性に良好な基板を検討した。(2,14)その結果、YBCO膜と同様のc軸長がa軸またはb軸長の約3倍のLaSrGaO₄(LSGO)の作製を行い、その上にa軸が基板面に垂直に立ったa軸配向の作製に成功した。MOCVD法を用いたa軸配向膜の検討については、以下の第六章の「YBCO薄膜の配向制御」において詳細に述べる。

本研究においては、上記の考察を踏まえ、目的にあった基板を使い分けて検討することとした。

表2-3 酸化物系超伝導薄膜に用いられる各種基板の特性

<table>
<thead>
<tr>
<th>基板</th>
<th>格子定数(Å)</th>
<th>YBCOとの格子ミスフィット(2.11):σ</th>
<th>比誘電率</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a軸</td>
<td>b軸</td>
<td>c軸</td>
</tr>
<tr>
<td>MgO</td>
<td>4.21</td>
<td>4.21</td>
<td>4.21</td>
</tr>
<tr>
<td>SrTiO₃</td>
<td>3.91</td>
<td>3.91</td>
<td>3.91</td>
</tr>
<tr>
<td>LaAlO₃</td>
<td>3.80</td>
<td>3.80</td>
<td>4.28</td>
</tr>
<tr>
<td>NdGaO₃</td>
<td>3.84</td>
<td>3.89</td>
<td>3.86</td>
</tr>
<tr>
<td>YSZ</td>
<td>5.14</td>
<td>5.14</td>
<td>5.14</td>
</tr>
<tr>
<td>LaSrGaO₄</td>
<td>3.84</td>
<td>3.84</td>
<td>12.68</td>
</tr>
<tr>
<td>YBa₂Cu₃O₇-y</td>
<td>3.82</td>
<td>3.88</td>
<td>11.68</td>
</tr>
</tbody>
</table>
(ii)基板表面のラフネス

表面形態やデバイス応用などを目的にした超伝導薄膜の研究においては、成長初期の状態、すなわち基板表面のラフネスが大きな要因となってくる。単結晶基板作製時に機械研磨や化学研磨などを繰り返すことにより、ラフネスは10Å程度以下の凹凸まで抑制することができる。M. Kawasakiらは原子レベルまでの平坦性を追求して、SrTiO₃基板のHF/NH₄緩衝溶液中でのウェットエッチングを検討した。(23)表面は原子レベルで平坦化され、化学的な酸アルカリ特性を用いて基表面原子層がTiO₂層に規定することができた。しかし、フッ酸処理は安全性、また廃水処理など特別の施設を必要とする。佐藤らはMgO基板の1000℃以上高温中で基板処理を行うことにより、原子レベルではないものの表面の異物や水分、さらには数Å程度以下の凹凸まで抑制することができる報告した。(23)本研究においては、成膜後の超伝導膜の表面形態などを観察する目的があるため、基板表面のラフネスの平均化を行う必要がある。そこで全ての基板で、100cc/minの酸素気流中で1000℃で一時間の熱処理を行い、基板表面のラフネスを平坦化することとした。

2.3 MOCVD装置

本研究で用いるMOCVD装置の概要を図2-10に示す。本装置は(i)ガス供給部、(ii)原料加熱部、(iii)成膜部及び(iv)排気部から構成されており、さらにそれぞれが(v)配管部によって接続され、さらに(vi)制御部によって制御されている。以下に各部分について述べる。

(i)ガス供給部

供給ガスとしては、原料を輸送する原料キャリア用及びバージ用のArガス、成膜時の酸素圧を制御する酸化用及び基板降溫時の低温酸化用のO₂ガス、さらに成膜時の全圧を制御するパラスト用及び各配管部の開閉を行うバルブのバルブ作動用のN₂ガスの3種類を用いる。

Arガスは、Y、Ba及びCu-MO原料を基板表面まで輸送する原料キャリア用と成膜開始前のバージガス用に用いられており、それぞれマスフローコントローラー(流量コントロー
図2-10 MOCVD装置の概要
ラー）で流量制御している。原料キャリア用のArガスは、ポンベから圧力制御され装置内部、原料槽に輸送され、さらに原料槽で蒸発してきたMO原料を基板表面まで運ぶ役目をする。
MO原料を均一良く膜に成膜するため、バルブ開閉による原料槽の圧力変化の抑制が必要である。成膜開始前、及び成膜終了後には、原料キャリア用のArガスはバルブ開閉により、ベントラインを通ってポンプへと分岐され、成膜開始時の原料槽の圧力を一定にしている。また、バージガス用のArガスは成膜開始前、基板温度昇温時の基板表面の洗浄用として用いている。

O₂ガスは、成膜時における酸化用と成膜終了後の降温時における酸化用の二系列の配管によって供給される。超伝導体の場合、結晶相の生成と成膜時の酸素分圧（P₀₂）に相関関係があり、成膜時のP₀₂の制御が重要である。酸素圧力制御の酸化用O₂ガスよりP₀₂を制御して、目的相を得ることとする。また、成膜終了後の基板温度昇温時における超伝導相の正方晶から斜方晶への相転移も超伝導特性に大きく関与する。そこで成膜終了後の降温酸化用O₂ガスを用いて、膜中に酸素を目的量導入することにより、超伝導特性を得ることとする。

N₂ガスには、成膜時の圧力制御のためのバラスト用とバルブ開閉のためのエアー作動バルブ用とがある。バラスト用はロータリーポンプに導入され、成膜時のリアクター内部の圧力を目的圧力に制御するために用いる。また、エアー作動バルブ用はArガスやO₂ガスの各分岐点に設けられた作動バルブに接続され、バルブの開閉を行うものである。

(ii)原料加熱部

原料加熱部は、各MO原料を封入した原料槽とマントルヒータの二重構造になっている。原料槽の温度は原料槽内部と外壁に設けた熱電対により常時測定され、内部に挿入した熱電対とプログラムコントローラにより温度制御している。また原料槽の内部の圧力を、圧力モニターで測定している。

(iii)成膜部

MOCVD装置はコールドウォール(Cold-wall)型CVD装置とホットウォール(Hot-wall)型CVD装置に大別される。本研究で用いた装置は、Cold-wall型と呼ばれるもので、その内部にセラミックヒータを用いた基板加熱機能を有している。Hot-wall型CVD装置は成膜部が

32
電気炉型になっており、両面基板や複雑形状の基板、長尺線材に成膜が可能という特徴がある。（13）本研究で用いたCold-wall型CVD装置は、セラミックヒータ上に置いた基板に一度に片面成膜しかできないが、成膜時の温度制御などが容易にできる利点がある。温度はセラミックヒータに接着して設けた熱電対によりプログラムコントローラを用いて制御されている。

(iv) 排気部

排気部は、ロータリーポンプを用いて成膜部、配管部、原料槽を数 Torr の減圧室圧気を排気している。ロータリーポンプから排気された排ガスは、室内用洗浄塔を介して外気を排気にされている。

(v) 配管部

上記(i)〜(iv)を接続しているのが配管部(sus材)であり、配管部同士はシュヴロックコネ

```plaintext
10 "DOUJI KYOUKYUU"
20 I
30 REMOTE 709
40 Clear 709
50 OUTPUT 709:"RST"
60 INTEGER I
70 REAL Temp(20), T(20)
80 I O2 purge
90 OUTPUT 709;"CLOSE 401,403,405,107,406"
100 WAIT 1200
110 BEEP 2600,3
120 PRINTER IS 1
130 OUTPUT 709;"CONFMEAS TEMPK, 300-318, USE 700"
140 FOR X=0 TO 18
150 ENTER 709; Temp(X)
160 T(X)=INT(Temp(X)*10)/10
170 NEXT X
180 PRINT T(0),T(1),T(2),T(3),T(4),T(5),T(6),T(7),T(8),T(9),
T(10),T(11),T(12),T(13),T(14),T(15),T(16),T(17),T(18)
190 PRINTER IS 701
200 PRINT T(0),T(1),T(2),T(3),T(4),T(18),T(17),T(16)
210 I Y, Ba, Cu KYOUKYUU KAISHI
220 OUTPUT 709;"OPEN 401,403, 405, 406"
230 OUTPUT 709;"CLOSE 400,402, 404, 407"
240 WAIT 3600
250 I Y, Ba, Cu KYOUKYUU OWARI
260 OUTPUT 709;"OPEN 400,402 404, 407"
270 OUTPUT 709;"CLOSE 401,403, 405, 406"
280 WAIT 1
290 BEEP 2600,10
300 PRINTER IS 1
310 PRINT "--------END--------"
320 END
```

図2-11 MOCVD装置を使う際の制御プログラムの一例
クタで接続されている。MO原料を輸送しているキャリアガスの配管は、原料槽から成膜部までの間常時200℃以上になるように恒温槽内に設置され、輸送中のMO原料の凝縮固化を抑制している。

(vi)制御部

MOCVD装置のバルブ開閉は、HP3852（ヒュレッタ製）を用いパソコン制御でコントロールされている。図2-11にその制御プログラムの一例を示す。プログラムはHP-BASICを用い作製されている。プログラムはエアー作動バルブの開閉及びタイマーを中心に構成されるため、各原子層ごとに成膜するLayer by layer成長やBlock by block成長を可能にする。本研究では、様々なプログラムを作製することにより、全ての原料を同時に成膜する同時供給法と各原子ブロックごとに成長させるBlock by block法の2種類を用いて検討を進める。

2.4 成膜方法

MOCVD装置を用いCVD膜を成膜する方法は、大きく分けて(i)基板昇温(ii)成膜(iii)基板降温の三行程に分けられる。

(i)基板昇温時は、セラミックヒータに接着した基板を目的温度に昇温する以外に、キャリアガスをベントラインに流し、原料槽内の圧力の安定化を行っている。さらにはバージガスを基板に吹き付け、基板表面の洗浄を行う。

(ii)成膜時には、目的温度になった基板上に流量制御されたMO原料を成膜する。成膜開始時、キャリアガスの行い先はベントラインからリアクターに変わり、同時にバージガスはリアクターからベントラインに変わる。原料の安定供給のためには、その際の原料槽内の圧力に変化がないことが重要である。

(iii)基板降温時は、基板温度を目的降温速度で室温まで降温するとともに、膜中への酸素導入を行う。酸素をリアクターに導入する際には、一時的な基板温度の急激な低下を抑制する必要がある。その基板温度の低下を最小限に抑えるため、酸素導入開始と降温開始の間に時間差を設ける。
以上述べてきた成膜方法は代表的な方法であり、目的によってその詳細は異なり、特殊な方法は以下の各章で述べられている。

2.5 試料評価方法

MOCVD装置を用いて作製した膜には、結晶構造解析、組成分析、組織観察さらに超伝導特性などの評価を行う。結晶構造解析としては、X線回折を用いたθ-2θ法やポールフィギア（極点図形）法により測定する。膜組成分析は走査型電子顕微鏡(Scanning Electron Microscopy, SEM)に付随したエネルギー分散型X線分析法(Energy Dispersive X-ray analysis, EDX)や試料を溶液に溶かし測定する誘導結合プラズマ発光分析法(Inductively Coupled Plasma, ICP)などを用いる。結晶組織や表面形状の観察では、1万倍以下の低倍率ではSEMや原子間力顕微鏡(Atomic Force Microscopy, AFM)を用い、それ以上の高倍率の視野では透過型電子顕微鏡(Transmission Electron Microscopy, TEM)で観察した。膜内部の組成分布は、二次イオン質量分析法(Secondary Ion Mass Spectrometry, SIMS)及びラザフォードバックスキャッティング測定法(Rutherford Backscattering Spectrometry, RBS)を用いて測定解析される。さらに超伝導特性、特に臨界温度(Critical Temperature, Tc)と臨界電流密度(Critical Temperature, Jc)の測定には、直流四端子法を用いた。以下にその評価方法の詳細について述べる。

2.5.1 結晶構造解析(X線回折)\(^{(2,18)}\)

X線回折を用いた結晶構造解析のうち、本研究では通常θ-2θ法と呼ばれる集中法と面内配向性を評価する極点図形測定法の二種類の測定法を用いた。

X線回折測定法では、超伝導膜は微細な結晶粒子が集合した多結晶体として扱われる。多結晶体を試料として取り扱うX線回折を粉末法と呼ぶ。集中法、極点図形測定ともに粉末法の原理を用いている。

粉末法の原理はプラッグの式

\[
2d \sin \theta = n \lambda \quad \text{.........(1)}
\]

を満足しなければ、X線は回折しないことを用いている。試料中のある結晶粒子で面間隔\(d\)の格子面\((h, k, l)\)が、入射X線に対して(1)式を満足する角\(\theta\)だけ傾いていたとすると、入射X線はこの格子面によって回折される。この時回折線の方向は、格子面と角\(\theta\)、入射X線の
図2-12 X線回折装置（ゴニオメータ）の概要

延長方向と角2θ傾いていることとなる。

さらに粉末法の一種である集中法（θ-2θ法）の原理を、X線回折装置のゴニオメータの概要を用いて述べる。図2-12にゴニオメータの動作原理を示す。X線の光路を太線で示し、外円は試料からの回折X線が集中する集中円を示している。この円周上にX線源及び受光スリットを介した検知器を置く。測定開始に伴い、ゴニオメータのX線源がθ回転すると、検
図 2-14 極点図形測定法の原理

知器は2θ回転のように動作する。その際、任意の2θで集中条件を満足するように考慮される。ゴニオメータの動きから集中法はθ-2θ法とも言われている。集中法を用いて作製した超伝導膜の結晶相(YBCO相、異相など)、基板垂直方向の結晶の配向性(c軸配向、a軸配向など)、格子定数などを評価する。

基板面内の結晶の配向性を検討するために、極点図形測定法が用いられる。結晶を中心とする格子面の法線の交点を極(pole)という。極点図形は特定の格子面の極の分布をステレオ投影したものである。図2-13に立方晶{001}極とステレオ投影の関係を示す。極点図形測定法は、ステレオ投影した図形をゴニオメータを用いて測定して、極の分布を解析するものである。図2-14に極点図形測定法の装置概要を示す。極点図形測定法には、X線を透過させて測定する透過法と反射してきたX線を検出する反射法があるが、超伝導膜の場合は反射法を用いる。本研究では反射法の一種のShulz反射法に測定する。Shulz反射法では、試料は試料面の法線(B-B')を軸として回転し、また水平軸(A-A')の回りに回転する。その際、水平軸A-A'は試料面にあり、ディフラクトメーターーヾ
2.5.2 組成分析(EDX分析とICP分析)

作製したCVD膜の組成分析として、SEM装置に付随したEDX分析とICP分析の二通り
の方法で行った。

EDXは、電子の入射による試料内の元素の内殻電子が励起状態になり、さらに基底状態
に戻る時に放出する特性X線を検出して元素の定性分析を行うものである。原理的には特性
X線の強度比を補正することにより、膜中の元素の定量分析を行うことができる。しかし、
超伝導薄膜の場合は、膜厚が1000 Å程度と薄く基板の影響を多く受けるため、正確な定量
分析が困難である。そこでEDXを定性的な分析方法として用いる。

本研究で検討している超伝導薄膜の組成の定量分析には、ICP分析を用いる。ICPは誘導
方式により形成された安定なアルゴンプラズマであり、この中に試料溶液を露状にして導入
する。プラズマ中で励起された原子、イオンからの発光は元素に特有であり、発光線の波長
より原子種を同定し、強度より定量を行う。

試料を溶かす溶液には、1規定(N)の希硝酸溶液を用いる。また、検量線作製用の標準溶液
は、蒸留水とY:Ba:Cu=1ppm:2ppm:2ppmの混合硝酸溶液を用いた。本研究ではICPを用いて
薄膜の組成比を求めるとともに、溶液に溶けている全元素量から膜厚の測定も行った。

2.5.3 組織観察(SEM観察とAFM観察)

作製した膜の表面組織観察においては、一万倍以下の一観察には走査型電子顕微鏡(SEM).
1万倍以上の観察または表面の高低差の測定には原子間力顕微鏡(AFM)を用いる。SEMは
「2.5.4 TEM観察」で述べる透過型電子顕微鏡(TEM)と同じ電子線を用いた分析装置である。
図2-15にSEMの原理図を示す。電子銃、集束レンズ、走査コイル、対物レンズ、検出器さ
らに試料を入れる試料室から構成される。TEMと異なる点は結像レンズがないこと、試料
室が大きい点である。SEMの原理は、電子銃で発生した電子ビームが、集束レンズと対物
レンズによって縮小されて試料面上に電子プローブを形成する。走査コイルの動きにより、
電子プローブは試料面上を2次元的に移動する。その際検出器を用いて、試料から放出され
る2次電子や反射電子を検出する。検出データは映像増幅器を介してCRT上に像として映

38
し出される。本研究で作製したMOCVD膜は、全て一万倍の写真をとるとともに、必要に応じて一万倍以下の低倍率の写真もとり、基板上の膜、異相、突起物などの表面観察を行った。

一方、AFMは、近接する二つの物体間に関存するファンデルワールス力、静電気力などの原子間力を検出するために探針を表面からわずかな距離まで近づけ、さらに試料表面を走査することにより、表面形状を観察するものである。図2-16にAFMの原理図を示す。AFM装置では表面力を検出するために先端に探針を付けたカンチレバーが用いられる。カンチレバーは試料表面から探針に働く力に応じて曲がる。カンチレバーからの反射光の方向が変化し、この変化が光検出素子を介し、像として観察される。最近では、AFMは装置が簡便であることなどから、薄膜表面観察装置として多く用いられるようになってきている。さらに200℃ほどまでの高温中での観察、100Kほどまでの低温中での観察、各種気囲気中での観察などの研究開発が進んでいる。

2.5.4 TEM観察

TEMは、電子銃、集束レンズ、試料室、結像レンズ、さらに像観察室から構成されている。図2-15で示したSEMの構成図に、さらに下部に結像レンズと観察室を設けた装置である。試料室に入れる試料は薄片であるため、電子は試料を透過し結像レンズを介して観察室

図2-15 走査型電子顕微鏡の原理
内に設けられた蛍光板上に拡大結像される。また、TEMは像の焦点合わせを変化させるこ
tうことによりTEM像と電子線回折を同視野で瞬時に変化させることが容易である。電子線回
折像是数十万倍以上でしか観察できない微細な粒子、原子の配列などを観測することができ
き、結晶構造の同定などに役立つ情報を得ることができる。

2.5.5 SIMS 測定(2,23)

二次イオン質量分析法(SIMS)は、数keVのエネルギーを持つイオンビームを試料表面に照
射し、試料から二次的に放出される試料原子または分子による二次イオンを質量分析計にか
けて組成分析を行う方法である。さらに、本測定では膜の深さ方向の組成分析を行うため、
膜の深さ方向に一次イオンビーム走査によるエッチングを行った。その結果、一次イオン
ビームによりエッチングされて放出した最表面相の元素を測定し、同時にビームは深さ方向
に進行することが可能となる。本研究では深さ方向の組成を測定する装置として、SIMSと
ともにオージェ電子分光法(Auger Electron Spectroscopy, AES)(2,23)を検討した。AES では感
度、定量性の点では非常に優れており、高い分解能を有している。しかし、膜断面厚さ方向
(約 2000 Å深さ)の組成分布にはその分析速度の点で不適当と考え、SIMS を用いて検討し
た。

図 2-16 AFM 装置原理図の概要(2,22)
2.5.6 RBS 測定(22)

表面原子の質量を間接的に測定する方法としてイオン散乱分光がある。RBS測定は、MeV程度の高エネルギーイオンを用いる方法である。原理は、あるエネルギーのイオンを表面に入射して、ある方向に散乱してくるイオンのエネルギーを測定して、その間に散乱に寄与した表面原子の質量に対応したある値だけエネルギー損失を起こしているということを用いている。すなわち、RBS測定は入射粒子を試料に照射し、試料原子との弾性散乱衝突で後方に散乱してくる入射粒子のエネルギーを測定することにより、試料中の原子の分布を測定する方法である。本論文でのRBS測定における入射粒子としては、1.8MeVのヘリウムを用いた。

2.5.7 直流四端子法による抵抗-温度測定

超伝導特性を評価するために直流四端子法で抵抗の温度依存性を測定する。直流四端子法とは直流電源を試料の両端の端子に接続して、試料に一定電流を流し、両端端子の電圧に設けた二端子の抵抗を測定する方法である。四端子法は二端子法と比較して、電極での接触抵抗の影響を受けにくいなどの利点がある。

試料は2mmX5mm程度の大きさに切り出し、マスクにより端子部(2mmX0.5mm)だけにスパッタ法でAuを成膜して、超伝導膜とリード線の接触抵抗低減、密着性の向上を行う。さらにAu蒸着膜にリード線をAgペーストで固定して、測定試料を準備する。測定試料は治具に取り付け、周りを液体窒素、真空、液体ヘリウムで低温(4.2K)となっている試料室(ヘリウム雰囲気中)に挿入する。液体ヘリウムの自然蒸発に伴い、内部の試料室は徐々に温度が上昇し、その際の試料の抵抗を測定することにより、抵抗の温度依存性を測定した。測定時の電流値は10^{-4} ～ 10^{-6}A程度で、臨界電流よりも低い値に設定した。臨界温度 Tc の定義は、室温から直線的な遷移から急激な抵抗減少の起きる温度を Tconset、抵抗がゼロとなる温度を Tc とする。

2.5.8 臨界電流密度の測定

臨界電流密度 Jc の測定には、「2.5.6 直流四端子法による抵抗の温度依存性」で述べた直流四端子法を用いる。本研究では、77K、ゼロ磁場中での測定のみ行ったので、液体窒素
中に直接挿入して測定した。電流を0.05Aステップでパルス的に印加して、その際の電圧値を計測する。電圧値の電位差が単位面積(1cm²)、単位端子間距離(1cm)当たり10μV生ずる際の電流値を臨界電流値Jcとした。Jcは電圧端子間距離、ICPより求めた膜厚などから計算して求められる。
参考文献

(2.1) 理学電気（株）: 他 差熱天秤TG-DTA 取り扱い説明書
(2.4) 笠木和雄、北沢宏一編:「酸化物系超伝導体の化学」p83(講談社)
(2.7) 例えば: 小田俊理: 日本結晶学会誌 22(1995)p39
(2.15) M. Kawasaki et al:Science 266(1994)p1540
(2.16) 佐藤元伸、高井吉明: 応用物理学会東海支部第八回高温超伝導研究発表会発表概要集
(2.17) 理学電気（株）: 「X 線回折の手引き」 改訂第四版
(2.18) カリティ: 「X 線回折要論」(アグネ出版)
(2.19) L. G. Shulz: J. Appl. Phys. 20(1949)p1030
(2.20) 不破敬一郎 他:ICP 発光分析(南江堂)
(2.21) 長谷川哲也: 酸化物系超伝導体の化学 p200(講談社)
(2.22) 樋田俊一、多賀康訓、塚田俊久、平野孝:薄膜作製応用ハンドブック(NTS)
(2.23) 小間篤、八木克道、塚田 、青野正和:表面物性工学ハンドブック(丸善)
(2.24) 坂部知年、高須新一郎、小川智哉: 結晶評価技術ハンドブック(朝倉書店)
第三章 フッ素原子を含むMO原料を用いたYBa₂Cu₃O₇₋ₓ薄膜の作製及び再現性評価

3.1 はじめに

本章では、フッ素を含むMO原料を液体状態にして用い（以下液体原料と記す）、基板上にYBa₂Cu₃O₇₋ₓ（YBCO）薄膜を作製する成膜条件の最適化、固体原料と液体原料を用いた時の組成変動の違い、さらに超伝導特性の再現性の検討結果について述べる。

3.2 c軸配向したYBCO薄膜の作製

3.2.1 成膜条件

固体原料においてフッ素を含むMO原料を用いて作製したYBCO膜においては、YBCO相とともにBaF相が異相として生成してしまうことが報告されている。I.W. Watsonら(3,4)やF.H. Garzonら(5,6)は雰囲気中に水蒸気などを混入してBaF相の生成を抑制している。これは、

図3-1 H₂Oパブリング装置を接続したMOCVD装置の概要
表3-1 本章で用いた成膜条件

○基板温度 : 600-850[℃]
○全圧 : 2.5-20[Torr]
○キャリアガス: Arガス
○O₂ガス流量 : 10-30[sccm] with H₂O or without H₂O
○成膜時間 : 60,180[分]
○基板 : MgO(100)、SrTiO₃(100)基板(900℃-1h アニール処理)
○原料流量[sccm]及び温度[℃]

<table>
<thead>
<tr>
<th></th>
<th>Y(DPM)₃・4tBuPyNO</th>
<th>Ba(TDFND)₂ Tetraglyme</th>
<th>Cu(TDFND)₂・H₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4.5-9</td>
<td>15-30</td>
<td>1-1.5</td>
</tr>
<tr>
<td></td>
<td>118-130</td>
<td>95-100</td>
<td>71.5-75</td>
</tr>
</tbody>
</table>

2BaF+H₂O → 2BaO+2HF

の化学反応により、BaFの生成が抑制されるためと推察される。

本研究においてもMO原料中にフッ素を含んでいるため、上記のようなBaFの生成が起きることが十分予想される。そこで、成膜装置としては、図3-1に示すようなMOCVD装置にH₂Oパブリングを接続した場合と接続しない場合について検討した。H₂Oパブリング装置は酸素ガス配管途中に接続され、装置及び配管を常時60℃に保温して、成膜を行う。

表3-1に本章で用いた成膜条件を示す。上記に述べたパブリングにより導入されたH₂OはO₂ガス中に混入する。そのO₂ガスを10〜30sccmの流量で基板に吹き付ける。基板には(100)方位に配向したMgO単結晶基板、SrTiO₃単結晶基板を用いた。また原料温度はそれぞれのMO原料の融点温度よりも高い温度に設定し、液体状態で用いた。

3.2.2 c軸配向したYBCO薄膜

化学量論組成でYBCO結晶構造を有するYBCO薄膜の作製条件を得ることで、MO原料中に混在するフッ素による生成相及びH₂Oパブリングの効果について検討する。図3-2はMgO基板、基板温度800℃における、H₂Oパブリングを用いない場合の膜の組成比と得られた結晶相の関係を示す。また図3-3はH₂Oパブリングを用いた場合の膜の組成比と得られた結晶相の関係を示す。膜の組成比はICP分析、また結晶相はX線回折により同定した。図中、下側の軸はBa、左の軸はY、右の軸はCuの組成の割合を示す。例えばYBa₂Cu₃O₇₋ₓの際は、Y:Ba:Cu=17%:33%:50%となるため、図3-2、図3-3の矢印の箇所となる。白丸はYBa₂Cu₃O₇₋ₓの
図3-2 H_2O 導入を行わない時の膜組成と生成相の関係
図 3-3
H₂O 導入を行った時の膜組成と生成相の関係
図3-4 液体原料を用いて作製したYBCO膜の表面XRD回折パターン

単一相(単相、Y-123相)、黒丸はY-123相とBaFなどの異相の混在した結晶相さらに×印はY-123相が無く異相のみの場合を示す。

H₂Oブローニングを用いない場合は、全体的にY-123相のみの膜は得られず、組成比が化学量論組成付近でもBaFなどの異相を含んでいることが確認される。これはフッ素を含んだ液

図3-5 酸素分圧による(002)ピークの反応幅の変化
体原料においても、フッ素を含んだ固体原料と同様に、BaFの生成がY-123相の生成よりも優先的に成長することになる。一方、H₂Oバブリングを用いた場合は、組成比が化学量論組成付近でY-123相のみの膜を得ることができることが分かる。これは

\[2\text{BaF} + \text{H}_2\text{O} \rightarrow 2\text{BaO} + 2\text{HF} \]

の化学反応により、BaFの生成が抑制されるためと推察される。

図3-4にH₂Oバブリングを用いて得られる、基板温度800℃のYBCO膜のX線回折パター
ンを示す。MgO(200)のピークとともに、Y-123相の(00n)のピークの強いパターンが得られ
る。これよりMgO単結晶基板上に基板温度800℃で成膜したYBCO膜はc軸配向している
ことが確認される。c軸配向とは、図1-3で示したベロブスカイト構造が基板垂直方向に対
して延びた構造を有しているものであり、Cu-O鍵やCu-O₂面が基板面に平行に生成したもの
である。酸化物系超伝導体は、結晶構造から由来する大きな異方性があり、c軸方向と\(a\)/\(b\)軸方向の超伝導特性、熱膨張係数などの物性値が大きく異なる。本章では、Cu-O₃面やCu-
O鎖が基板面に平行に生成するc軸配向膜を目的とする。

さらに図3-4のパターンにおいては、各ピークの半価幅から結晶性を比較することができ
る。半価幅が狭いと膜の結晶性は高く、広いと膜の結晶性が低いことになる。図3-5に基板
温度800℃のときの異なる酸素分圧下で成膜した時の膜の半価幅を示す。酸素分圧が5torr以
下になると、急激に半価幅は低くなり、3torr以下で最小値になる。低酸素分圧で成膜した膜
のほうが結晶性が高くなることが分かる。本章の以下の成膜実験では、より結晶性の高い膜
を得るために酸素分圧1torrで実験を行うことにする。

3.2.3 YBCO薄膜の組成変動

本節では液体原料を用いる最大の長所である実験回数における組成のばらつきについて検
討する。図3-6にK. Higashiyamaらが(DPM)系固体原料で報告したY、Ba及びCuの実験回
数における組成の変動の結果を示す(3)。Ba元素とY元素の比(Ba/Y)及びCu元素とBa元素
の比(Cu/Ba)はEDX分析の結果を示している。また実験回数におけるBa元素のばらつきが
大きすぎるため、図3-6の実験では、各回の実験の膜のEDX結果を検討して、毎回Ba-MO
原料の流量を調整している。図3-7はフッ素元素を含んだMO原料を液体状態にして成膜条
件を一定にして行った、液体原料によるYBCO膜の組成変動を示す。図中の(Ba/Y)及び(Cu/
Y)の組成比はICP分析の結果を示している。図3-6及び3-7において、相対的に固体原料を
図 3-6 固体原料を用いて成膜した YBCO 薄膜の組成変化
図 3-7 液体原料を用いて成膜した YBCO 薄膜の組成変化
図3-8 成膜条件を一定にして液体原料を用いて成膜したYBCO薄膜の組成三角図
図 3-9 SIMS により測定したフッ素量の測定結果
用いた膜の組成比がばらついており、組成変動が大きいことが分かる。固体原料と液体原料を用いた時の膜の組成変動を以下の標準偏差の式(1)で比較する。

標準偏差 \(\sigma = \sqrt{\frac{n \sum x^2 - (\sum x)^2}{n^2}} \) 。（1）

この(1)式において、\(n \) は実験回数、\(x \) は(Ba/Y)及び(Cu/Ba)の値を代入する。

標準偏差の結果は、固体原料を用いた場合は(Ba/Y)は0.25、(Cu/Ba)は0.21であるのに対し、液体原料を用いた場合は(Ba/Y)は0.15、(Cu/Ba)は0.09である。

図3-8は液体MO原料を用いて、成膜条件を一定にして23回繰り返して成膜した膜の組成三角図を示す。右の軸はCu、左の軸はY、下の軸はBaの組成比の関係を求めたものである。化学量論組成の交点に全ての膜組成比が集中していることが確認される。

以上より液体原料を用いることにより、従来の固体原料に比べ、組成の変動が小さくなることが実証された。

3.2.4 膜中のフッ素量

3.2.2でフッ素原子を含んだMO原料を用いて成膜しているため、\(H_2O \)バプリングによる水蒸気の導入により、BaF相の生成を抑制してY-123構造を得ることができる事を述べた。YBCO系超伝導体発見当初、各元素の置換と\(T_c \)の関係の検討が行われた。その中で酸素サイトにイオン半径の近いフッ素原子の置換なども検討された。超伝導膜においてはフッ素の置換はBaFの生成を起こし、超伝導堆積層の低下、電流パスの遮断などの問題が起きる。そこで、\(H_2O \)バプリングによる水蒸気の導入を行い、フッ素原子を含んだMO原料を用いて成膜した膜の中の残存フッ素量の把握を行う必要がある。

図3-9に二次イオン質量分析計(SIMS)を用いて測定した、\(H_2O \)バプリングによる水蒸気の導入を行って作製した膜と、水蒸気導入を行わず酸素ガスのみで作製した膜の、深さ方向におけるフッ素量と酸素量の比の関係を示す。図中、白抜きは\(H_2O \)バプリングを行わず酸素のみで成膜した膜、黒印は\(H_2O \)バプリングを行って成膜した膜の残存量を示す。また横軸の深さは基板表面からの深さを示す。SIMS測定に用いた膜の膜厚はICPの結果から1200Å程度と分析される。酸素のみで成膜した膜は(フッ素量/酸素量)が超伝導層部は10at%程度である。一方、\(H_2O \)バプリングを行って成膜した膜は(フッ素量/酸素量)は0.1at%程度と、酸素
図3-10 各種基板におけるYBCO薄膜のT_cの変化
のみの膜に比べ約1/100までフッ素量が低減されていることが分かる。以上のようにフッ素原子を含むMO原料を用いて成膜を行っても、フッ素量はH₂Oバプリングを併用することにより0.1at%程度まで低減することができることが分かった。

3.3 臨界温度 T_c

本項では各種基板に成膜した膜厚1000Å程度のYBCO膜の超伝導特性 T_c を評価する。さらに成膜条件を一定にしてMgO及びSrTiO₃基板上に成膜した時の膜の T_c の再現性について検討する。

3.3.1 基板依存性

図3-10にMgO(100)基板、SrTiO₃(100)基板及びNdGaO₃(110)基板上に成膜した膜の直流四端子法による抵抗率の温度依存性を示す。全ての基板上の膜が温度が低下するに従い、金属的な抵抗-温度曲線で遷移し、92K付近で急激な抵抗率の変化がある。その結果、抵抗率がゼロとなる T_c は、MgO基板上では83K、SrTiO₃基板上とNdGaO₃基板上の膜では90Kであることが確認される。

YBCO系超伝導体のバルク材や物理蒸着法(PVD)の T_c は90Kであるが、固体原料を用いたYBCO系MOCVD膜はMgO基板上では最高値でも85Kと低いことが報告されている。本研究においても、MgO基板上の膜の最高値は他のSrTiO₃基板上やNdGaO₃基板上の膜に比べ83Kと低い。その理由について、

(1) MgO基板の潮解性

(2) 基板とYBCO膜の格子整合性

(3) MO原料依存性

などが推察される。

(1)MgO基板は、SrTiO₃基板やNdGaO₃基板に比べ、基板表面が水分に対して潮解性があ
図 3-11 各種基板における T_c の再現性評価の結果
することが知られている。フッ素原子を含むMO原料の場合、H₂Oパブリングを用い基板表面
に水蒸気を吹き付けていく。AFM観察から膜圏開始前のO₂導入におけるMgO基板の潮解は確認されない。しかし、MO原料、特にフッ素原子と水蒸気の反応過程における基板への
影響の点では、本研究からは推察できない。固体原料を用いた時の膜のTcなどから推察する
と、必ずしも水蒸気などにおけるMgO基板の潮解性がMgO基板上の膜のTcの低い原因
とは考えられない。

(2)図2-9で示したYBCO膜と基板の格子整合性の点から考察すると、MgO基板は格子ミ
スフィットが大きく、SrTiO₃とNdGaO₃は格子ミスフィットが小さい。膜と基板のミス
フィットが大きい場合、膜は格子歪みを蓄積しながらエピタキシャル成長し、膜厚増加に伴
い内部緩和、結晶粒界生成、無配向(a/b軸配向)などにより緩和する。しかし、膜厚300Å
以下の薄膜においてTcと格子歪みの関係は報告されている(3.4)が、PVDにより作製した膜厚
1000Å程度の膜においては88K(3.5)と、基板依存性によるTcの低下の報告例は少ない。本章
においてのこれ以上の言及はできないので、第七章「Block by block法により作製したYBCO
薄膜の成長メカニズム」において、CVD法における膜と基板の格子整合性を、成長速度や
膜厚の観点から述べて考察する。

(3)MO原料においては、液体原料と固体原料ともMgO基板上の膜ではTc90Kが得られて
いない。少なくとも現在検討中のMO原料においては、原料依存性はほとんど無いと推察さ
れる。

その他に、(4)基板表面での付着性やマイグレーションのような基板依存性などが考えられ
るが本研究からは推察の域を脱しない。現在、さらなる各種基板、成長条件などの研究デー
タの蓄積により解明を試みている。

3.3.2 再現性評価

3.2.3「YBCO薄膜の組成変動」において、フッ素原子を含む液体原料を用いることによ
り、従来の固体原料に比べ組成変動を少なくするようにできることを確認した。本節では、
液体原料を用いたYBCO膜の超伝導特性の再現性を評価する。

図3-11に、MgO基板及びSrTiO₃基板上に同一条件で23回連続で成膜したYBCO膜の、直流
四端子で測定したTc₀の結果を示す。横軸に実験回数を縦軸にTc₀を示す。MgO基板上の
膜はT_c約70Kで均一に、またSrTiO$_3$基板上は約90Kの特性を再現良く得ることができている。一般的に超伝導膜は水蒸気にさらしておくと、T_cの低下を引き起こす。しかし、本研究においてMO原料中のフッ素原子を除去するために行っている水蒸気の導入は、SrTiO$_3$基板上の膜においてのT_c低下のような問題は引き起こしていないことが確認される。

3.4 まとめ

フッ素原子を含むMO原料を液体状態にして用いて膜厚1000Å程度のYBCO薄膜を作製して、その最適条件を検討し、さらに組成及び超伝導特性の再現性を評価した。

フッ素原子を膜中に拡散することを抑制するため、MOCVD装置のO$_2$ガス配管にH$_2$Oパプリング装置を設置して、反応部に水蒸気が導入した。H$_2$Oパプリング装置を用いない場合、膜中の(フッ素量/酸素量)が約10at%存在し、組成が化学量論組成であるにも関わらずY-123相単一相を得ることができない。H$_2$Oパプリング装置を用いることにより2BaF+H$_2$O→2BaO+2HFの反応により、フッ素を蒸気圧の高いHFとして膜中から除去することができ、(フッ素量/酸素量)は約0.1at%まで低減することを確認した。さらに組成の最適化によりc軸配向Y-123相単一膜相を得ることができた。得られた膜の超伝導特性は最高値でMgO(100)基板、SrTiO$_3$(100)基板及びNdGaO$_3$(110)基板上においてT_cがそれぞれ83K、92K及び92Kに達した。

さらに同一条件で再現性を評価した結果、従来報告されている固体原料で作製した膜に比べ、液体原料を用いることにより組成変動を小さくすることができた。その変動を標準偏差で求めた結果、固体原料の値よりも一桁小さくなることが分かった。また、得られた膜の超伝導特性T_cの再現性はMgO基板上では約70Kで、SrTiO$_3$基板上では約90Kと、それぞれ均一な良い膜が得られることが確認された。

SrTiO$_3$やNdGaO$_3$基板のYBCO膜と異なり、MgO基板上ではT_c90Kの膜を得るに至らなかった。基板依存性、原料依存性などの面から考察してみたが、最終的な結論を導くことができなかった。今後の大きな課題と考えている。
参考文献

(3.4) 例えば座間秀明: 東京工業大学 平成五年度 学位論文

第四章 フッ素原子を含まないMO原料を用いたYBa$_2$Cu$_3$O$_{7-y}$薄膜の作製及び再現性評価

4.1 はじめに

前章ではフッ素原子を含むMO原料を用いたYBa$_2$Cu$_3$O$_{7-y}$(YBCO)薄膜の作製及び再現性評価について述べた。成膜中に水蒸気を混入することにより、異相であるBaF相の生成を抑制し、さらにフッ素量を1/100まで低減することができた。しかし、H$_2$O添加効果による超伝導体の組織や超伝導特性に与える効果については、超伝導体発見以来多くの報告が行われた。M. F. YanらはYBCOとH$_2$Oを接触させた時に、試料の加水分解で異相であるY$_2$BaCuO相の生成を確認している。(4)組織的に分解反応が確認されていない場合でも、超伝導結合性の劣化による結晶粒界の超伝導特性の低下などが起こることが報告されている。(4,2)

前章の結果からは、X線回折からは異相のピークは確認されず、また超伝導特性はSrTiO$_3$基板やNdGaO$_3$基板上のYBCO膜でTc92Kと高い特性を示しており、H$_2$O添加効果による超伝導性の劣化は確認されない。しかし、MgO基板上の膜においては再現性評価におけるTcは約70Kと低く、その原因の一つにMO原料の違いが挙げられる。さらにMOCVD膜におけるマイクロ波応用などのデバイス応用を含めていれると、H$_2$Oによる膜の最表面相の劣化、高い表面抵抗などはCVD法による大きな課題になると考えられる。

そこで本章ではBa-MO原料及びCu-MO原料において、フッ素原子を含まないMO原料を用いて、YBa$_2$Cu$_3$O$_{7-y}$薄膜の作製及び再現性評価について検討する。

表4-1 本章で用いた成膜条件

<table>
<thead>
<tr>
<th>基板温度</th>
<th>600-850[°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>全圧</td>
<td>2.5-20[Torr]</td>
</tr>
<tr>
<td>キャリガス</td>
<td>Arガス</td>
</tr>
<tr>
<td>O$_2$ガス流量</td>
<td>10-30[sccm]</td>
</tr>
<tr>
<td>成膜時間</td>
<td>60[分]</td>
</tr>
<tr>
<td>原料流量[sccm]及び温度[°C]</td>
<td></td>
</tr>
<tr>
<td>Y(DPM)$_3$・4tBuPyNO</td>
<td>4.5-9.0</td>
</tr>
<tr>
<td>Ba(DPM)$_2$・2tetraene</td>
<td>10-50</td>
</tr>
<tr>
<td>Cu(TMHPD)$_2$</td>
<td>0.5-3.0</td>
</tr>
</tbody>
</table>
4.2 c軸配向したYBCO薄膜の作製

4.2.1 成膜条件

表4-1にフッ素を含まないMO原料を用いて、c軸配向YBCO膜を作製する条件を示す。MO原料の原料流量及び原料温度以外は、前章で述べたフッ素原子を含むMO原料によるc軸配向膜の作製条件を継承する。Ba-MO原料及びCu-MO原料の原料温度は、第二章で述べたDTA-TGによる温度と蒸発量の関係より設定した。この成膜条件を用いることにより、組成が化学量論組成付近において、X線回折パターンの(00l)ピークが強く回析されるc軸単一相を得ることができた。

4.2.2 YBCO薄膜の組成変動

フッ素を含まないMO原料を用いて、c軸配向膜を得る条件を得た。そこで成膜条件を一定にして、15回連続でYBCO膜の作製して組成変動を検討する。図4-1にフッ素原子を含まないMO原料を用いて成膜したYBCO膜の組成変化を示す。横軸に実験回数、縦軸には組成比を示す。化学量論組成比は(Ba/Y)では2.0、(Cu/Ba)では1.5である。実験回数に伴い、(Ba/Y)は2.0から1.8の間を変動しており、(Cu/Ba)は1.5から1.2に徐々に減少していることが確認される。

固体原料、フッ素原子を含む液体原料及びフッ素原子を含まないMO原料を用いて成膜したYBCO膜の組成変化とその標準偏差について検討する。図4-2に(Ba/Y)の各種MO原料による組成変動を示す。(Ba/Y)の組成変動においては、固体原料を用いた膜では、毎回組成分析を行い化学量論組成を目的に流量調整をしたにも関わらず、組成変動が大きいことが分かれる。フッ素原子を含むMO原料を用いた膜に比べ、フッ素を含まないMO原料を用いた膜は、実験回数における組成変動は小さいが、実験を繰り返すに従い(Ba/Y)量が低減していることが確認される。図4-3に(Cu/Y)の組成変動を示す。(Cu/Y)の組成変動においては、(Ba/Y)の組成変動の場合と同様、固体原料を用いた膜の組成変動が他の液体原料に比べ大きくなっている。また、フッ素原子を含むMO原料と含まないMO原料を比較すると、組成変動は余り大差がないが、後者は実験回数に従い(Cu/Y)量が減少していく傾向にある。

以上述べてきた(Ba/Y)及び(Cu/Y)の組成変動について、実験回数における組成変動を標準
図 4-1 フッ素原子を含まない MO 原料を用いて成膜した YBCO 薄膜の組成変化
図 4-2 各種 MO 原料を用いて成膜した YBCO 薄膜の (Ba/Y) 組成比の変化
図 4-3 各種 MO 原料を用いて成膜した YBCO 薄膜の
(Cu/Y)組成比の変化
偏差で比較する。(Ba/Y)量における、固体原料、フッ素原子を含む原料及びフッ素を含まない原料の標準偏差はそれぞれ 0.25、0.15、0.12 となる。また(Cu/Y)量における各原料における標準偏差はそれぞれ 0.21、0.09、0.12 となる。以上のことから、実験回数における組成変動の面からは、フッ素を含まない MO 原料を用いた膜は、フッ素を含む MO 原料を用いた場合同様、良好な再現性を得ることができることが確認される。しかし、フッ素を含まない MO 原料を用いた膜は、実験回数に伴い相対的に Ba 及び Cu が Y に比べ成膜されにくくなっていることが推察される。

4.3 臨界温度 T_c

本項では、フッ素を含まない MO 原料を用いた膜の臨界温度 T_c を検討するとともに、フッ素を含む MO 原料との相違点を考察する。

図 4-4 にフッ素を含まない MO 原料を用いて基板温度 800℃で MgO(100) 基板及び SrTiO$_3$(100) 基板上に成膜した膜厚約 1000 Å程度の YBCO 膜の抵抗の温度依存性を示す。どちらも温度の低下に伴い抵抗は低くなり、MgO 基板上では 80K、SrTiO$_3$ 基板では 91K で抵抗がゼロとなる。どちらの基板においても、図 3-10 で示したフッ素を含む MO 原料を用いた膜の抵抗温度依存性及び T_c^o とほぼ同じ特性を示している。これらよりフッ素を含む、含まないに関わらず、MgO 基板に比べ SrTiO$_3$ 基板上の膜は高い超伝導特性を示し、90K 級の超伝導膜を作製することができる。

さらに 3.3.1「基板依存性」で考察した MgO 基板上の YBCO 膜の超伝導特性に関する課題について、フッ素を含まない MO 原料を用いた膜も含めて考察する。前章では MO 原料中のフッ素原子、バブリングで発生した水蒸気などが MgO 基板上の膜に超伝導特性の面で影響を与えているのは無いかと推察した。しかし、本章におけるフッ素原子を含まない MO 原料を用いた MgO 基板上の膜の T_c は含めて検討すると、MgO 基板上の YBCO 膜は今回検討した三種類の各種 MO 原料においては大差ない。すなわち、MO 原料中のフッ素原子、バブリングで発生した水蒸気などは MgO 基板上の膜の T_c と相関関係がないこととなる。以上の考察から、格子ミスフィット、基板表面での付着性やマイグレーションなどによる基板依存性が MgO 基板上の膜の T_c に影響を与えていると推察させる。

フッ素原子を含む MO 原料とフッ素原子を含まない MO 原料を用いた膜における組成再現性、超伝導特性の面ではほぼ同様の特性を得ることが分かった。そこで断面の組成分析、特
図 4-4 フッ素原子を含む MO 原料を用いて成膜した YBCO 膜の抵抗の温度依存性
図4-5 MO原料の異なる膜のRBS測定結果
に基板との界面拡散の面で検討する。図4-5にRutherford Back Scattering (RBS)測定で分析したMgO 基板上に基板温度 750℃で成膜し膜厚 1200 Åの YBCO 膜の断面分析結果を示す。図4-5(a)にフッ素原子を含むMO原料を用いた膜、(b)にフッ素原子を含まないMO原料を用いた膜の結果を示す。横軸に散乱He原子のエネルギー、縦軸に回折強度を示し、高エネルギー側が膜表面、低エネルギー側は界面方向である。RBS測定においては、膜中で元素によって散乱されたHeエネルギーからその元素を確認することができる。すなわち1.3〜1.4MeVの領域はCu、1.4〜1.5MeVはY、1.5〜1.6MeVはBaの存在領域である。両方の膜において、Y元素、Ba元素、Cu元素が化学量論組成程度存在していることが分かる。また、(a)図のみで1.1〜1.3MeVの領域の回折が確認される。これらY元素、Ba元素、Cu元素のエネルギー領域からMg元素エネルギー領域に拡散が進行していることを示している。図3-9で検討したフッ素を含むMO原料を用いた膜において、MgO基板にフッ素が拡散していることは確認されていない。上記で確認した拡散反応は、成膜中に導入しているH2OがBa元素に与える影響で進行していると推察される。以上よりフッ素原子を含むMO原料を用いた膜に比べ、フッ素原子を含まないMO原料を用いた膜では拡散反応が抑制されることが分かった。

4.4 YBCO薄膜のMO原料依存性

固体MO原料、フッ素原子を含むMO原料及びフッ素原子を含まないMO原料の各種MO原料の構造式、融点及び蒸発量などは第二章「2.1 MO原料」で既に述べた。本節では、それらのMO原料を用いた時の得られるYBCO薄膜の違いを再現性や基板との拡散層などの観点から考察する。

(DPM)系の固体原料を用いたYBCO膜については、組成の再現性などの点で問題点があることが分かる。一方、液体MO原料は組成再現性などの点からは、固体原料に比べ良好な結果を与えることが確認できた。二種類の液体MO原料の中でも、フッ素原子を含むMO原料を用いた膜は、(Ba/Y)組成比や(Cu/Y)組成比の経時変化などが少なく、より再現性に優れている。しかし、フッ素原子を含むMO原料を用いた場合の、フッ素原子を基板中から除去するための水蒸気の導入は基板と超伝導膜との界面に拡散層を形成することが確認される。一方、フッ素原子を含まないMO原料を用いた場合は、拡散層の形成は確認されないが、Ba原料の蒸発量が時間の経過に伴い低下してくる。後述するYBCO薄膜の表面観察や配向制御においては二種類の液体MO原料を用いて考察する。しかし、Block by block 法により作製す
るYBCO薄膜の成長メカニズムの検討においては、初期成長について検討を行うため、拡散層の生成が確認されなかったフッ素原子を含まないMO原料のみを用いて考察を行うこととする。

4.5 まとめ

フッ素原子を含まないMO原料を用いたYBCO膜の作製および組成の再現性評価、さらにRBS測定によりフッ素原子を含むMO原料を用いた膜との比較を検討した。

作製条件の最適化を行うことにより、c軸配向単相膜を得る条件を把握した。さらに成膜条件を一定にして組成の再現性評価を行った結果、(Ba/Y)比及び(Cu/Y)比ともに実験回数に伴い減少の傾向にあるが、各実験毎における組成変動は小さいことが確認された。

組成変動の標準偏差を求めて、固体原料、フッ素原子を含むMO原料及びフッ素原子を含まないMO原料を比較した。フッ素原子を含むMO原料、フッ素原子を含まない原料は固体原料に比べ標準偏差が小さく、組成変動の面からは液体原料の優位性を確認した。

また、超伝導特性T_cを測定した結果、MgO基板上に成膜した膜はT_c80K、SrTiO₃基板上に成膜した膜はT_c90Kの特性を示した。超伝導特性的基板依存性の面から、MO原料の違いによる影響はない。さらに、RBS測定でフッ素を含むMO原料を用いた膜とフッ素を含まないMO原料を用いた膜の違いについて比較した。フッ素原子を含むMO原料を用いた膜には、基板と膜の間に拡散層があることが確認された。SIMS測定の結果を含めて考察すると、拡散層は成膜中に導入しているH_2Oにより生成した層と推察された。
参考文献

第五章 YBa$_2$Cu$_3$O$_{7-y}$薄膜の表面観察

5.1 はじめに

デバイス応用などのone unit cell(一単位格子)の制御を可能にするためにも、さらに成膜途中の成長過程を考察するためにも表面成長を理解することは重要な課題である。しかしPVDプロセスに比べ、CVDプロセスにおいては、今まで用いられていた固体原料の供給量の変化や組成制御の面で課題があった。そのためCVDでは、PVDで多く報告されている表面成長過程の報告例が少なかった。

MOCVD法において、液体MO原料を用いたYBa$_2$Cu$_3$O$_{7-y}$薄膜は組成の再現性の面で、固体原料に比べ組成変動が小さくなることを述べてきた。その結果、表面形態を検討するために十分な、化学量論組成の膜を再現良く得る最適条件を把握することができるようになっ

本章では原子間力顕微鏡(AFM)を用いて、フッ素原子を含むMO原料を用いた膜及びフッ素原子を含まないMO原料を用いた膜の表面成長過程を検討し、MO原料の違いによる表面形態について述べる。

5.2 フッ素原子を含むMO原料を用いたYBCO薄膜

本項では、第三章で述べたフッ素原子を含むMO原料を用いたYBCO薄膜の(i)異なる基板温度における表面AFM観察像と(ii)CVDプロセスにおける結晶表面過程について考察する。

(i) 異なる基板温度における表面観察像

図5-1に、MgO基板上に基板温度(Ts)800℃で膜厚約1500Å成膜した膜表面のAFM観察像を示す。EDX分析から同定されるCuOの析出物が存在しているが、表面は平坦な板状の結晶が成長していることが観察される。(DPM)系の固体原料を用いた膜の表面観察結果においても、表面にCuOが多く析出することが報告されており(5-12)、表面の析出物の点では液体原料と固体原料の違いは無い。

図5-2に、図5-1で観察されたような板上のYBCO結晶の高倍率の表面観察像を示す。図5-2(a)にはTs 720℃で成膜した膜表面像、(b)にはTs 800℃で成膜した膜表面像を示す。図(a)、(b)ともに、表面の結晶はスパイラル模様が観察され、そのスパイラルが結晶表面にいくつ
図5-1 フッ素原子を含むMO原料を用いて作製したYBCO膜のAFM観察像
図5-2 異なる基板温度で成膜したYBCO膜の表面AFM像

(a) Ts 720°C

(b) Ts 800°C
も存在していることが確認される。スパイラル模様は金属結晶はもちろんのこと、イオン結晶、有機分子結晶、さらに高分子単結晶において観察されている。酸化物系超伝導体では、M. Hawleyら(6)やC. Gerberら(7)によりPVDプロセスを用いたYBCO系薄膜のスパイラル模様の報告例がある。図5-3においてスパイラル模様の起源について述べる。スパイラル模様は、その模様を構成する一つ一つのステップの前進によって成長していくものである。現在、ステップの成長は図5-3(a)二次元核生成と(b)らせん転位が供給元と考えられている(8)。二次元核生成の場合は、表面上を二次元気体のように拡散している吸着分子集団の中で形成される二次元核のふちがステップになるものである。さらにらせん転移の場合は、結晶に含まれるらせん転位と呼ばれる線状の欠陥が結晶表面と交差した結果、幾何学にステップが生成されるものである。酸化物系超伝導膜においては、液相エピタキシャル(Liquid Phase Epitaxy; LPE)法のような数μm厚さの厚膜においては光学顕微鏡での観察が可能であるが(5,9)、酸化物系超伝導薄膜でのステップやスパイラル模様は走査トンネル顕微鏡(STM)やAFMでの観察例が多く報告されている。

スパイラル模様を構成するステップの階段の高さや、その一段のステップの広さ(テラス幅)を検討することは、MOCVD膜の結晶成長を考察する上で重要である。図5-4に、図5-2(b)のAFM観察像(7800°C)における実線部の表面高さの測定結果を示す。階段状に形成されたステップの高さは約12Åであり、そのテラス幅が約900Åの広さのスパイラルが形成されていることが確認される。ステップ高さはYBCO結晶構造の1unit cell(11.68Å)とほぼ同等の高さで成長していることが分かる。この膜の成長メカニズムは、何層ものステップが成長するパンチング(5,10,11)ではなく、1unit cellごとに成長が進行するモノステップであることが確認される。

液体原料を用いることによる膜組成の安定化制御の利点を生かし、MOCVD膜の各基板温度における成長メカニズムを検討する。図5-5にAFM観察から求めた各基板温度におけるテラス幅の変化を示す。テラス幅は前述の図5-4のようなスパイラル模様の断面プロファイルにおける階段状に形成された1unit cellの高さのステップの幅から求めた。図中、テラス幅は作製した数枚の膜から観察されたスパイラル模様から求め、実線ではろつきの範囲を、またその平均値を丸で示す。基板温度が650°Cから750°Cの温度範囲ではテラス幅は約300Åで、ほぼ温度に対し一定の広さである。一方、750°Cから850°Cの温度の範囲では、テラス幅は約300Åから1200Åへと基板温度の上昇とともに急激に広くなる傾向にある。PVDプロセスでは基板温度が650°Cから750°Cの温度範囲のテラス幅の報告は多い。特にMgO基板
図5-3 スパイラル成長の成長プロセス
図5-4 $Ts_{800\degree C}$で成膜したYBCO膜のAFM観察像より求めた表面高さ
図 5-5 AFM 観察像より求めた基板温度とテラス幅の関係
及びSrTiO₃ 基板上にレーザ蒸着法で成膜された YBCO 膜については、多くの報告でテラス幅が議論され100～500 Åの範囲に収束している。[(5, 6, 12-14) 本結果においても基板温度が750℃以下の温度範囲ではほぼ300 Åと一定値を示しており、PVDプロセスのテラス幅との違いはない。

しかし基板温度が750℃以上の温度においては、1000℃以上の成膜温度で作製するLPE法（10 μm厚さ）のYBCO膜について5000 Å以上の広さを有するテラス幅が成長することが報告されている[(5, 15, 16) のみで、気相成長においての報告例は少ない。そこで、成膜条件などから750℃付近の温度での成長メカニズムの違いについてさらに考察する。

(ii) CVDプロセスにおける表面成長過程

図5-6に膜組成比が化学量論組成比に近いものを得るために必要な Y(◯)、Ba(△) 及び Cu (●)の MO原料の各流量比を基板温度の関数として示す。Ts 700℃の時の、各原料流量を1としてそれぞれの原料流量を規格化したものである。なお、その際の原料温度は一定にしており、成膜実験を連続的に行った。得られた膜の組成は、図3-9に示した組成再現性の範囲内にあり、化学量論組成比に近いものが得られている。Tsの上昇に伴う原料流量比は、Ba 及びCuの流量比は温度に対し一定である。しかし、Y-MO原料について言えば、750℃以下 の温度では原料流量比は一定であるが、750℃以上では温度上昇に伴いY原料流量比が上昇していることが分かる。

基板温度の上昇に伴うY原料流量比変化について、CVDプロセスの素反応をもとに考察する。図5-7に半導体プロセスなどで確認されてきた、CVDプロセスにおける成長の素反応の概念図を示す。供給ガスによって運ばれてきた分子は気相拡散、気相反応を経て、基板上に吸着反応によって降り積もり、テラス上の吸着分子となる。気相中の分子がテラス上の吸着分子になるまでに吸着反応の最短で結晶表面と弾性衝突して気相に反射される可能性がある。しかし、実際は結晶表面と衝突している時間内に、その運動エネルギーの大部分は熱の形で表面へ与えてしまい、入射分子はいったんは表面に吸着分子として捕まえられる。その後、表面拡散反応を経て、結晶成長ステップの端部のキンクに取り込まれ拡散する。しかし、このキンクでの成長の際に、反応生成物の脱離反応とともに、飽和分子の脱離反応も起こる。このようなCVDの素反応の一過程であるキンクでの成長においては、YBCO系超伝導膜はAFMのステップ高さなどからone unit cellでの成長が起きていると考えられる。すな
図5-6 異なる基板温度における各原料の流量比
(700℃における各原料流量比で規格化)
図 5-7 CVD プロセスにおける成長の素反応
わち、Ts750℃以下の成長では、ステップの前進にともなうY、Ba及びCuの分子の供給量間の差は無し。しかし、Ts750℃以上においては、ステップの前進に伴いY分子だけを過剰に供給しなければならないことが分かる。

この現象はTs 750℃において表面、特に成長に寄与する最表面ステップにおける反応の素過程が変化するために生じると推察できる。そこで図5-8にTs 750℃前後でのYBCO膜の表面成長の概念図を示す。Ts750℃以下においては基板上に成長したYBCO膜の最表面ステップにY、Ba及びCuの各分子が定常状態で堆積してキニックに取り込まれ、ステップが基板面に平行に前進して表面成長する。この成長は通常のPVDやCVD成長で考えられている気相成長である。一方 Ts750℃以上になると、図5-6に示すように化学量論組成の膜を得るためには、YBCO膜の最表面ステップにY分子だけ過剰量必要となることが実験的に明らかになった。すなわち、最表面層にYに比べてBaとCuが過剰量存在していることが考えられる。状態図などから、Yを含むY-Ba-Cuに比べ、BaとCuのみではBa-Cuの低融点材料の生成が起きやすいことが分かる。

図5-9に粉末法で焼結（空気中800℃、10h）したBa-Cu-O(○)とBa-Cu-(O/F)（●）のDTA-TGより求めた融点を示す。測定雰囲気は、一気圧下のArとO₂の混合ガスを用い、O₂分圧を変化させて行う。横軸に酸素分圧、縦軸は融点を示す。Ba-Cu-Oについて言えばPaオ2=720Torrで920℃ほどの融点を示すが、酸素分圧の低下に伴い融点が下がり、Paオ2=0.01Torrでは800℃になっていることが分かる。一方フッ素を混合させたBa-Cu-(O/F)はBa-Cu-O同様の挙動を示すが、さらに融点は低下してPaオ2=770Torrにおいて800℃以下までに低下することが分かった。本研究における成膜条件Paオ2=6.0Torrである。このようにCVD成膜実験では減圧雰囲気で実験を行っているが、DTA-TG測定は還元雰囲気であるが、常圧雰囲気である。このような雰囲気圧力の違いはあり、低融点材料のBa-Cu-Oやフッ素を含んだBa-Cu-(O/F)が900℃以上の温度ではなく、800℃以下の温度において生成している可能性があるのでないと推察される。

上記のBa-Cu-Oが800℃以下の温度で生成する事実、YBCO成膜実験においてTs 750℃以上では過剰量のY量が必要になること、さらにTs 750℃以上でテラス幅の急激な広がりが見られることなどから、Ts750℃以上においては膜最表面層に極薄い液体層（疑似液体層）が存在していることが推察される。疑似液体層の概念はT. KurodaやY. Furukawaにより、氷の結晶成長でその存在が確認された。517-18疑似液体層を、結晶方向の異方向性のない単純立方格子を用い、模式的に図5-10に示す。（a）には結晶の（001）格子面に沿って、結晶を切断して
Normal Vapor Growth Mode

$Ts < 750^\circ C$

YBCO

Substrate

Vapor-Liquid-Solid (V-L-S) Mode

$Ts > 750^\circ C$

YBCO

Substrate

図 5-8 表面観察から考察した疑似液体層モデル
図5-9 DTA-TGより求めたBa-Cu-O及びBa-Cu-(O/F)の融点
作った表面を示す。この結晶の温度を上げていくと、転位温度を境にして、原子のスケールで平らな低指数の表面が、(b) のように急激に凹凸になるラフニング転移が起こる。一方、融点に近い高温で起こる表面の構造相転移の何層かの原子が格子点を離れて(c)のような表面融解が起きる。この融解層が疑似液体層 (Quasi-Liquidlayer) と言われるものである。ラフニング転移では、表面が荒れると、低指数面と高指数面との構造の差が目立たなくなって、表面自由エネルギー密度や成長速度の異方性が無くなる。一方、疑似液体層では、層と結晶の界面が荒れない限り、それらの異方性は維持される。超伝導膜は Ts 750℃以上での結晶成長過程で膜の異方性を維持している点などからも疑似液体層の概念に一致する。

以上述べてきたことから推察して、YBCO 膜の成長は、Ts 750℃以上では基板上の固相 (Solid) の YBCO と気相 (Vapor) の各分子とともに Ba-Cu-O と推察される液相 (Liquid) の三相が混在した成長が進行している Vapor-Liquid-Solid (VLS) 成長 とと考えられる。
5.3 異なるMO原料を用いたYBCO薄膜の表面の違い

本節では、フッ素原子を含むMO原料とフッ素原子を含まないMO原料の二種類のMO原料を用いて作製したYBCO膜の表面形態の違い、さらにCVD膜の成長過程について検討する。

図5-11に異なるMO原料によって作製したYBCO膜のAFM観察像を示す。(a)はフッ素原子を含むMO原料を用いた膜、(b)はフッ素原子を含まないMO原料を用いた膜であり、両者ともにTs800℃で膜厚1500Å程度成膜したものである。どちらの膜表面形態もスパイラルステップが観察されることが確認されている。また、そのスパイラルステップの高さは、断面プロファイルから、YBCO膜のone unit cellと同じ高さの12 Å程度であることが確認されている。表面形態は、フッ素原子を含むMO原料を用いた膜は円弧を描くような等方的な結晶形態をしている。一方、フッ素原子を含まないMO原料を用いた膜では正方形の角を取ったような異方的なステップが成長していることが観察される。

図5-12に結晶表面に形成されたテラス上の様子を示す。テラスとテラスの間にはステップがあり、さらにステップには結晶相に分子を取り込むキクが存在している。スパイラル成長が等方的な形になるか、異方的な形になるかは、結晶学的にはステップのキク密度で決まることが知られている。キクだけでなくできているようなステップでは、ラフな固液界面での成長と同じように、ステップが、結晶面内の異方性に支配されずに、あらゆる方向に等しい速度で前進するので、等方性のある円形のスパイラル模様となる。一方、ステップのキク密度が低い場合は、結晶学的異方性に支配されて、方向によって異なるステップの前進速度で進み、スパイラル模様は異方性を持った形状を有する。ラフな界面の場合、気相で運ばれた成長単元(one unit cell)は、図5-12のA部のような結晶のキクで六面中三面で結合して強い結合力で結晶に組み込まれる。しかし、スムーズな界面の場合、成長単元は図5-12のB部のような、結晶と一面でしか結びつけないため、再び気相中に帰るか、テラス上をさまようか、などの動きをして、成長には寄与しない。MO原料の違いによるスパイラル模様、YBCO膜の成長過程の違いを考察する上で、界面の状態を把握していくことは重要である。

表面成長に大きく関与する界面の状態は、同じYBCO膜においても、成長温度や過飽和度によって大きく変化する。過飽和度とは結晶成長における駆動力のことである。図5-13において、融液成長の場合の過飽和度と自由エネルギー(free energy)、結晶相の関係を示す。横軸に成長温度、縦軸にGibbs free energy をとり、融液化エネルギー＝ポテンシャル(melt)と結
図5-11 異なるMO原料を用いて成膜した膜のAFM観察像
図5-12 テラス上のキンク及びステップの様子
図5-13 成長温度と結晶相の関係

晶化エネルギーポテンシャル(crystal)の曲線を示す。成長温度が高い場合は、crystal曲線の方が、melt曲線よりもエネルギーが低く安定に存在する。一方、成長温度の上昇と共にmelt曲線の自由エネルギーは低下して、融点(T_m)でmelt曲線とcrystal曲線は一致する。その後、melt曲線の方がエネルギーが低いため、材料は液体状態で安定化する。自由エネルギーは相の体積、構成粒子数に比例する。粒子が相転移を起こして、液体相から結晶相へ、あるいは逆に結晶相から液体相への変化する場合、その変化は化学ポテンシャルμで論じることができる。結晶相及び液体相の化学ポテンシャルは、それぞれμ^*及びμ^tで表わされ、それらの大小関係が融液と結晶の間の相転移の向きを決める。それらの差$\Delta \mu$が相転移を起こさせる駆動力の大きさを表す。

融液成長では、上述したような化学ポテンシャルの差$\Delta \mu$は過冷却度ΔTとともに大きくなり、

$$\Delta \mu = L \Delta T / T_m$$

の値が有限の値のもとで成長が進行する。但しΔTは

$$\Delta T = T_m - T$$

で表され、T_mは融点、Lは融解の潜熱である。また、この場合結晶を取り巻く環境相が結晶と同程度の密度を持った濃厚環境相である。一方、氷の蒸発などのように蒸気相から結晶化する気相成長では、$\Delta \mu$の定義が異なる。すなわち、蒸気と結晶の化学ポテンシャルの差

\[\Delta \mu = \text{蒸気圧で変化して、} \]
\[\sigma = \frac{P - P_e}{P_e} \]

で表わされる過飽和度 \(\sigma \) と次式のような比例関係にあり

\[\Delta \mu = k T \log(1 + \sigma) \cong k T \sigma \quad (\sigma \ll 1) \]

駆動力は過飽和度の値に伴い変化する。ただし \(P \) は実際の蒸気圧、\(P_e \) は平衡蒸気圧である。

また、融液成長と異なり、結晶をとりまく環境は稀薄環境相である。

表面成長を考察する中で、成長温度を、基板温度として相対的に比較することができる。

しかし、これまでの実験データから、キネク付近での成長が気相成長、または融液成長であるかは、定義することが難しい。さらに前項で述べた述べた VLS 成長を考察に加味すれば、さらにその成長過程は複雑になる。そこで本章ではこれまでのデータから、主に過飽和度の定義を本研究で作製した膜の相対的評価において考察する。

表面形状は、等方的や異方的な形状となるが、それは基板温度や過飽和度に大きく依存する。図 5-11 においても、MO 原料の異なる膜表面形状を、等方的、異方的といった二種類の表現方法しか、言い表せなかった。

Jackson は表面形状の表現を \(\alpha \) 値という新しい概念で表現した。\(\alpha \) 値は、

\[\alpha = \frac{5}{kT_m} \]

で規定された。この式で、\(\xi \) は界面の方位の係数で、1 よりも小さな値、\(L \) は物質の潜熱、\(k \) はボルツマン定数、\(T_m \) は物質の融点である。この \(\alpha \) 値に応じてどのように変化がみられるかを示したのが "Jackson の \(\alpha \) " である。その結果、\(\alpha \) 値によってラフな界面(\(\alpha \leq 2 \))と、スムーズな界面(\(\alpha \geq 3 \))の二種類に判別する事ができることを明らかにした。

しかし、Jackson の \(\alpha \) のような融点 \(T_m \) で成長する結晶はなく、また融液成長以外の成長では環境相との相互作用エネルギーが無視できない、などの問題点が指摘された。そこで Bennema らによって \(\alpha \) 値の定義が一般化された。\(\alpha \) 値、固相と液相との相互作用を考慮にいれない、単純な気相成長の場合は、

\[\alpha = - \frac{2 \Phi_s}{kT_G} \]

で、表すことができる。ただし \(\Phi_s \) は結晶中の隣接単位相互の間の結合エネルギーを示し、\(T_G \) は成長時の温度を表す。また、固相、液相間の相互作用エネルギー \(\Phi_s \) と液相の \(\Phi_f \) 相互の相互作用エネルギー \(\Phi_s \) なども取り込んで \(\alpha \) 値を定義すると、

\[\alpha = - \frac{4\{\Phi_f - (\Phi_s + \Phi_f)/2\}}{kT_G} \]

で表せられ、"Jackson の \(\alpha \) " に比べ一般化された \(\alpha \) 値が定義された。ここで用いた相互作用
エネルギー \(\Phi \)は、結晶相、界面及び環境相の間における一個の分子の付着、脱離に伴うエネルギーの利得、損失を記述したものである。\(\Phi_{\text{int}} \)は物質によって異なり、\(\alpha \)は物質によって違う。結合力の強い物質ほど、\(\alpha \)が大きくなる。一般的には、気相成長と融液成長を比較すると、融液成長では\(\Phi_{\text{int}} \)、\(\Phi_{\text{f}} \)の項からの寄与が大きくなり、\(\alpha \)値は小さくなる。同じ成長温度では、融液成長の方が\(\alpha \)が小さく、ラフな界面をとりやすいこととなる。そこで、温度の項と\(\Phi_{\text{int}} \)、\(\Phi_{\text{f}} \)の項からの寄与が、実際の成長時の\(\alpha \)値をきめることになる。

このような\(\alpha \)値の定義により、結晶成長の研究がコンピューター・シュミレーションを用いて盛んに報告された。\(^{23-24}\)基本的には、シュミレーション結果とJacksonの\(\alpha \)の結果は同様な傾向を示し、\(\alpha \)値の増加に伴うラフな界面からスムーズな界面へと変化して、ステップは結晶学的異方性に影響されずにスパイラル模様は円形になることが示された。\(^{25}\)H. Muller-Krumhaarらより報告された\(\alpha \)値とスパイラル模様のシュミレーション結果においては、\(\alpha < 6 \)では円形に、\(\alpha \)が大きくなるにつれて外側の円から角張ってきて、\(\alpha > 25 \)では四角形の模様になることが示された。\(^{26}\)この\(\alpha \)値を図5-11に示した(a)フッ素原子を含んだMO原料を用いた膜と(b)フッ素原子を含まない膜の表面形態にフィッティングさせると、(a)は\(\alpha \sim 6 \)と(b)は\(\alpha \sim 15 \)といった\(\alpha \)値を求めることができる。

さらに基板温度、MO原料の違いによる表面形態の違いを検討する。図5-14では、フッ素原子を含んだMO原料を用いた膜について、(a)AFM観察像から求めたテラス幅の基板温度依存性、(b)\(\alpha \)値の基板温度依存性を示す。また、図5-15にフッ素原子を含まないMO原料を用いた膜について、(a)AFM観察像から求めたテラス幅の基板温度依存性、(b)\(\alpha \)値の基板温度依存性を示す。どちらの結果においてもテラス幅の基板温度依存性の結果は、\(T_{\text{S}} \)が750℃以下の時はテラス幅は約300 Åと一定であるが、基板温度が750℃以上になると急激なテラス幅の増加が確認される。MO原料の違いにおける基板温度の違いによるテラス幅の変化からは大きな違いは確認されない。一方、MO原料の違いにおける\(\alpha \)値の基板温度依存性の点では、フッ素原子を含むMO原料を用いた膜では、基板温度が720℃以下の温度領域では\(\alpha \)は20前後の大きな値を示すが、基板温度の上昇に伴い\(\alpha \)は小さくなり、750℃以上では6前後の値で一定となる。フッ素原子を含まないMO原料を用いた膜では、基板温度が700℃時の時の\(\alpha \)は30から850℃の時の\(\alpha \)を6まで徐々に\(\alpha \)が小さくなる傾向を示すことが分かる。以上のよう

図5-14 フッ素原子を含むMO原料を用い成膜した膜の基板温度におけるテラス幅(a)と表面形態より求めたα値(b)
図5-15 フッ素原子を含まないMO原料を用い成膜した膜の基板温度におけるテラス幅(a)と表面形態より求めたα値(b)
図5-16 Temkin modelの概念図
図 5-17 フッ素原子の有無による過飽和度の関係

ような、固相液相間の化学ポテンシャルの差$\Delta \mu / kT$が含まれていない。Temkinらは図5-16のような表面のラフニング転移と過飽和度、α値の関係を示した。（5,29）横軸にα値、縦軸にβ（$= \Delta \mu / kT$）を示し、ラフな界面(rough interface)とスムーズな界面(smooth interface)をとる境界線(ラフニング転移)を示したものである。この境界線は、βが大きくなるにつれて、高いα値側に動くことが分かる。つまり、αが小さいほど、またβが大きくなるにつれ、固相液相の界面がラフな状態になることを示す。また、βの増加によりサマルラフニングからカイネティックラフニングへと成長が変わる。サマルラフニングは、幾何学的に平らである特異面も、高温になると熱的に揺らぎをおこして起きる"荒れ"である。カイネティックラフニングは、サマルラフニングを起こすほど高温でないとともかな、過飽和度の上昇による二次元核の生成の増加にともない起きる"荒れ"である。（5,26）

YBCO膜の表面成長過程を考察するため、AFM観察などで得られた知見と、このTemkinのモデルとを相対的に比較していく。α値については、図5-14及び図5-15で得られた値を用いて検討することができる。しかし、β（$= \Delta \mu / kT$）については、前述で述べたように絶対的な評価は難しい。そこで本研究で検討したフッ素原子を含むMO原料を用いた膜とフッ素原子を含まないMO原料を用いた膜のβに関する比較に限定した。基板温度の増加に伴い、それぞれの膜はβ値の小さくなる傾向になることが推察される。次に、成長温度が同じ時
の、それぞれの異なる MO 原料を用いた時の、\(\beta \) の相対的評価について考察する。図 5-17 に、図 5-13 で示した成長温度と Gibbs の自由エネルギーの関係から推察した、フッ素原子を含む MO 原料を用いた膜と含まない MO 原料を用いた膜の成長温度と Gibbs の自由エネルギーの関係を示す。図中、添字の無い実線や文字はフッ素原子を含まない MO 原料を用いた薄膜を示す。添字に F を付けた実線や文字はフッ素原子を含む MO 原料を用いた薄膜を示す。Y. Yamada らは YBCO 超伝導体に比べフッ素の添加により、YBCO 超伝導体の成長温度が低下することを報告している。（5, 9）それよりフッ素の有無による成長温度と Gibbs の自由エネルギーの関係は、フッ素添加により \(T_M \) の低下、さらには融液曲線の低温側への移動が推察される。これより、成長温度が同じ温度の膜においては、表面成長にフッ素の関与がある膜の方が \(\Delta \mu \) が小さくなることが分かる。従って MO 原料にフッ素原子を含む膜は、含まない膜に比べ、同じ成長温度において \(\beta \) が小さい側に移行することが推察される。

以上の考察を、前述の Temkin モデルに適用して、MOCVD 膜の表面形態の変化を図 5-18 に示す。図中、○はフッ素原子を含んだ MO 原料を用いて作製した膜表面観察結果、□はフッ素原子を含まない MO 原料を用いて作製した結果である。また、空印は \(T_0 \) 750℃、パッチ印は \(T_0 \) 800℃、黒印は \(T_0 \) 850℃の結果を示す。Temkin モデルにおけるラフニングの境界線と MO 原料における \(\beta \) 値に関する考察から、同じ成長温度 \(T_0 \) においても図 5-14, 15 の用に MO 原料の違いによって \(\alpha \) 値が異なる。この図を参照することにより、成長温度の上昇とともにフッ素原子を含んだ MO 原料を用いた膜は、フッ素原子を含まない MO 原料を用いた膜に比べ、サーマルラフニングの影響がより大きくなることが判明する。従って、前者的 MO 原料を用いた膜は、後者の MO 原料を用いた膜に比べ、より低い成長温度で、成長形態が変化することが理解できる。

5.4 まとめ

液体 MO 原料を用いて MgO 基板上に約 1000 Å程度成膜した YBCO 膜の表面を AFM 観察を基に考察し、結晶成長について考察した。特に基板温度の変化における表面の変化、フッ素原子の含む、含まない MO 原料の種類の違いによる表面の変化を検討した。

フッ素原子を含む MO 原料を用いて MgO 基板上に、700℃～850℃の範囲の異なる基板温度で成膜した膜の AFM 観察をした。表面にはスパイラル状の結晶が成長しており、そのスパイラルのテラス高さは、YBCO の結晶の 1 unit cell の高さに一致し、約 12 Å であり、さ
図5-18 MOCVD膜の表面形態の変化
らにそのテラス幅は約300~1500 Åの広さにあることが確認された。そのテラス幅と基板温度の相関関係を整理すると、Ts 750℃以下においてはテラス幅は約300Åとほぼ一定である。さらに、Ts 750℃以上になると基板温度に伴いテラス幅は飛躍的に広くなる。一方、化学量論組成になるための、基板温度に伴うMO原料の供給量の変化は、CuとBa-MO原料は基板温度によらず一定である。しかしY-MO原料はTs 750℃を境界に供給量が変化し、Ts 750℃以上においては急激に供給量を必要とする。すなわち、基板温度によりYの付着量が変化することが推察される。基板温度とテラス幅及び原料供給量の関係から、YBCO超伝導膜の生成には、氷の最表面に存在する水などの考察で知られているVapor-Liquid-Solid相の存在が関与していると考えた。

フッ素原子を含むMO原料を用いた場合とフッ素原子を含まないMO原料を用いた場合の表面観察を行なった結果、基板温度とテラス高さ及びテラス幅の変化における有意差は無い。しかし、基板温度の違いにおいてスパイラル模様の形状に変化がある。その形状をJacksonにより定義されたα値を用い規格化し、基板温度との相関関係で検討した。基板温度の上昇に伴い、前者がα値の小さい等方性をもって円状に成長しているのに対し、後者はα値の大きい異方性をもって成長している。Temkinらの提唱した過飽和度とα値の関係における表面成長の概念を基に考察した。その結果、フッ素原子を含んだMO原料を用いた膜は、フッ素原子を含まないMO原料を用いた膜に比べ、サーマルラフニングの影響がより大きくなくなることが判明し、このことにより異なるMO原料を用いた膜におけるスパイラル模様の形状の変化する成長温度の違いを理解することができた。
文献

(5.3)W. Dekeyser and S. Amelinckx : Les Dislocations et la croissance des chistanx (masson, 1955)
(5.4)A. R. Verma : Crystal Growth and Dislocations (Butterworth. 1953)
(5.5)B. Honigmann : Gleichgewichts und Wachstumformen von Kristallen (Steinlepf Verlag, 1958)
(5.6)M. Hawley, I. D. Raistrick, J. G. Berry, R. J. Honlton : Science 251 (1991)p1587
(5.8)黒田登志雄「結晶は生きている」サイエンス社
(5.18)古川義純:応用物理 61(1992)p776
(5.20)R. S. Wagner and W. C. Ellis : Transactions of the metallurgical society of AIME 233(1965) p299

99

(5.23) G. H. Gilmer and K. A. Jackson; Current Topics in Materials Science 2 (1977)

(5.26) 川村正英、上羽牧夫; 日本結晶成長学会 24 (1997) p147
第六章 YBa2Cu3O7薄膜の配向制御

6.1 はじめに

ジョセフソン接合などのデバイスの設計や、その際の超伝導材料の選択において、コヒーレント長\(\xi\)は重要なパラメータの一つである。従来、コヒーレント長\(\xi\)は、磁場中での抵抗を測定して、上部臨界磁場\(H_c\)の温度依存性より求めていた。しかし酸化物系超伝導体においては、磁場の印加に伴い転移幅が広がり、\(T_c\)の明確な決定が困難となり、問題となっていた。(6.1)U. Welpら(6.2)は直流磁化測定を用いて\(YBa_2Cu_3O_{7-y}\)(YBCO)単結晶の層状構造に起因する強い異方性を明確にした。その結果、\(CuO_2\)面に平行な方向のコヒーレント長\(\xi_{ab}\)はYBCO系では約13 Åであるのに対し、\(CuO_2\)面に垂直な方向のコヒーレント長\(\xi_c\)は約3 Åと見積もられた。この\(\xi_c\)の値は格子定数よりも短いことになる。H. Akohら(6.3)はNb/Au/YBCO接合を作製して、コヒーレント長の異方性に基づくジョセフソン効果の変化について検討した。その結果、c軸配向のYBCOではNb/Au/YBCOのジョセフソン電流は確認できなかったが、(110)配向したYBCO膜の接合ではジョセフソン電流が確認された。このような報告から、酸化物系超伝導体を用いたトンネル型ジョセフソン接合素子の作製のためには、酸化物系超伝導体のコヒーレント長の異方性の観点から(100)配向(a軸配向)、(010)配向(b軸配向)または(110)配向(a-b面配向)のエピタキシャル膜の作製技術の確立が必要となる。

配向制御した膜の作製技術は、スパッタ法やレーザ蒸着法などのPVDプロセスで多く報告されている。その結果から、結晶方向の制御は基板温度、基板方位、酸素分圧の最適化に

図6-1 スパッタ法で作製されたYBCO膜における基板温度と配向性の関係(6.4)
より行うことができる。図6-1にスパッタ法で得られた基板温度と配向性の関係(6,4)の概念図を示す。基板温度の上昇に伴いa-b面配向からa軸配向またはb軸配向、さらにc軸配向へとできやすさは変化する。a軸配向膜では、a(b)軸方向の成長速度がc軸方向の成長速度に比べ大きいためと考えられている。一方、c軸配向膜では、a-b面が作るテラス上の分子のマイグレーションが成長を律速し、基板温度の上昇に伴いその運動が活発化し、c軸方向の成長が優先的になると考えられている。(5)

また、A. Inamら(6,9)やS. Mahajamら(6,7,9)は新たにセルフテンプレート法を用いて、結晶性も高く、高Tcの膜を得ている。このセルフテンプレート法は、a軸配向した下地膜の上に、本来c軸配向する高い温度で成膜し、結晶性の高いa軸配向膜を得る方法である。さらにL. Luoら(6,9)やL. Trogerら(6,10)は基板と超伝導膜の間にCeO₂などのパッファ層を用い、高Tc a軸配向膜を得る条件を報告している。しかし、これらのa軸配向膜はX線回折からは(100)ピークの強いa軸配向した膜であるが、断面TEMなどから観察して基板界面にc軸配向、またはY、Baが不規則に配列したcubic相が生成していることが報告されている。(11)

一方、CVDプロセスでは、(DPM)系の固体MO原料を用いて基板温度の低下、さらに酸素分圧の最適化により、(001)面が配向したc軸配向と(100)面が配向したa軸配向の混合相を得ることができることが報告されている。(12,14)しかし、CVDプロセスでは膜表面のX線回折パターンの結果においても、a軸配向の単一相を得ることはできていない。そこで新たに検討されたのが、レーザ光などの光を成膜中のMO原料に照射しながら成膜するレーザアシストCVD(15)やフォトアシストCVD(16,10)である。これらの場合により、X線回折の結果から单一相のa軸配向膜を得ることができることが報告されている。しかし、(DPM)系の固体MO原料を用いたレーザアシストやフォトアシストによるa軸配向メカニズムの詳細は、未だ検討中でその解明が急がれている。

本章においては、前章まで検討してきた液体MO原料による基板温度と配向性、特に格子定数の異なるSrTiO₃、NdGaO₃及びLaAlO₃基板上での配向性、さらに液体MO原料の経時変化と配向性について検討し、CVDプロセスにおけるa軸配向メカニズムについて考察した。

6.2 a軸配向したYBCO薄膜の作製

6.2.1 作製条件

表6-1に本章でa軸配向膜及びb軸配向膜の作製に用いた成膜条件を示す。MO原料の温
表6-1 本章で用いた成膜条件

○基板温度：500-700[℃]
○基板圧力：1.0-6.0[Torr]
○キャリアガス：Arガス
○O₂ガス流量：10-30[sccm] with H₂O or without H₂O
○基板：MgO(100), SrTiO₃(100),
NdGaO₃(110), LaAlO₃(100)基板
○成膜時間：60[分]
○原料流量[sccm]及び温度[℃]
フッ素原子を含むMO原料
- Y(DPM)₃・4tBuPyNO 4.5-9.0 118-130
- Ba(TDFND)₂ Tetraglyme 15-30 95-100
- Cu(TDFND)₂ 1-1.5 71.5-75
フッ素原子を含まないMO原料
- Y(DPM)₃・4tBuPyNO 4.5-9.0 118-130
- Ba(DPM)₂・2tetaene 10-50 150-180
- Cu(TMHPD)₂ 0.5-3.0 115-127

度及び流量は第三章、第四章で作製したc軸配向膜の成膜条件を継承する。また、基板温度は、PVDプロセス同様に、c軸配向膜の得られる条件Ts 700〜850℃に比べ低いTs 500〜700℃の範囲で成膜を行う。また、成膜にはYBCOのa軸長、b軸長に比べ格子定数の大きいMgO基板、SrTiO₃基板、a軸長、b軸長の中間に位置するNdGaO₃基板、さらにa軸長、b軸長に比べ短いLaAlO₃基板の三種類の単結晶基板を用いた。

6.2.2 MO原料の違いによる配向性の相違

フッ素原子を含むMO原料及びフッ素原子を含まないMO原料の異なるMO原料を用いて、c軸配向膜の成膜可能な温度領域以下の成膜温度における、膜の配向性について検討した。図6-2にMgO基板上にフッ素原子を含むMO原料を用いて成膜した、Ts 650℃とTs 800℃の表面X線回折結果を示す。Ts 800℃においては、(001)ピークの強くc軸配向膜が得られることが分かる。一方、成膜温度が低くなるに従い、(001)ピーク強度は弱まり、Ts 650℃においてはY₂O₃、BaO及びCuOの酸化物相のピークのみが観察される。このような、c軸配
図 6-2 フッ素を含んだ MO 原料を用いて成膜した YBCO 膜の X 線回折パターン
向膜から基板温度の低下に伴い酸化物相のみが観察される傾向は、(DPM)系の固体原料を用いた場合においても同様に確認されていた。

また、図6-3にフッ素原子を含まないMO原料を用いてSrTiO₃基板上にTs 700℃で成膜した膜のX線回折結果を示す。(a)図はターゲットにCuを用いたX線パターンを、(b)図はターゲットにCrを用いたX線パターンを示す。(a)図より、(005)及び(007)などの若干の(001)ピークが存在するものの、(100)及び(200)で示される(α00)ピークが強く確認される。しかし、この(100)及び(200)ピークは、基板のSrTiO₃(100)及び(200)ピークと2θの角度が近いため、それらのピークの分離が必要である。そこで、(b)図ではCrターゲットを用いた2θが68°～78°の範囲のX線回折パターンを示す。CuKα線の波長が1.542Åであるのに比べ、CrKα線の場合には2.291Åと広くなることから、2θ角度の近いピークの分離に有利と考えた。その結果、2θ=71.8°に確認されるSrTiO₃(200)ピークと2θ=73.5°に確認されるYBCOの(200)ピークが分離される。これより、格子定数がYBCOのa轴長及びb軸長よりも長いSrTiO₃基板上の膜はa軸配向膜であることが確認される。

さらに、基板温度におけるa軸配向膜の生成割合の変化について検討する。生成相の割合の評価方法として、一般的にはSEMなどの表面観察から計算して求める方法が用いられる。しかし、a軸配向膜ではSEMなどの表面観察からはc軸配向膜との区別がつかない。そこで、相対的な変化の度合いとしてX線回折結果から、(200)ピークの回折強度と(005)ピークの回折強度の比を求めた。例えば、図6-3で示されるTs 700℃においては、この回折強度比の値は20程度である。図6-4に各基板温度における(200)と(005)の回折強度比の変化を示す。図中、得られた膜の測定点の範囲を棒線で、平均値を丸印で示す。この結果、Ts 750℃以上においては0.1程度と低い値を示しており、(005)ピークを含むc軸配向成分が支配因子であるためと考えられる。一方、Ts 750℃以下では基板温度の低下とともに回折強度比は増加し、c軸配向からa軸配向が支配的になってくることが確認される。以上のようにPVDプロセス同様に、MOCVD法においても原料の違いにより、基板温度の低下に伴い酸化物相のみが観察されるのではなく、主相がc軸配向からa軸配向に配向性が変化する成膜条件、MO原料があることが分かった。

図6-5にはM. Mukaidaらが報告したレーザ蒸着法でSrTiO₃基板上に成膜したYBCO膜の各基板温度及び成膜酸素分圧下における配向性、及び本章で検討したCVD膜の配向性を示す。さらにR. H. Hammondらにより報告された状態図における正方晶(tetragonal)と斜方晶(orth.-1)の相転移の境界線を示す。図中、レーザ膜のc軸配向膜は○、a軸配向膜は●で示

105
図 6-3 フッ素を含まない MO 原料を用いて SrTiO₃ 基板上に成膜した YBCO 膜の X 線回折パターン
図 6-4 SrTiO$_3$基板上に成膜した膜の基板温度と配向性
図 6-5 異なる基板温度及び成膜酸素分圧における配向性の違い

(6.17-18)
し、CVD膜のc軸配向膜は△、a軸配向膜は▲で示す。低酸素分圧下におけるレーザ膜に比べ、成膜酸素分圧が高い領域で成膜するCVD膜においては、a軸配向膜とc軸配向膜のできる境界線も高い温度領域に移動していること確認される。成膜方法は異なるものの、a軸配向膜とc軸配向膜のできる境界線は、Hammond状態図の相転移境界線とほぼ平行している。基板温度と酸素分圧の制御により、a軸配向とc軸配向の配向制御が可能であることが分かる。

図6-6に、Ts 700℃でSrTiO$_3$(100)基板上に成膜したYBCO薄膜の断面TEM写真を示し、さらに図6-7にA部の拡大写真を示す。図6-6より、SrTiO$_3$基板上の膜は図中のA部、B部の二種類の相から構成されていることが分かる。主結晶相であるA部は、図6-7の拡大図からもCuが基板面に対して垂直に成長しており、その格子間距離よりa軸またはb軸が基板面に対して垂直に成長したa軸配向またはb軸配向部である。前述の図6-3のX線結果などからA部はa軸配向部と同定できる。また、B部はCuが基板面に対して平行に成長しており、c軸が基板面に垂直に成長したc軸配向膜が存在することが確認される。B部は、基板とA部の間に300Å程度成長しており、初期成長時に基板から成長したものであると推察される。

以上のように、MOCVD法においてSrTiO$_3$(100)基板上に、主結晶相がa軸配向である膜を得ることができた。しかし、断面TEM観察の結果、基板界面から300Å程度のc軸配向部とその上に成長しているa軸配向部の二相が存在することが確認できた。PVDプロセスにおいては、セルフテンプレート法(6.3-9)やパッファー層(6.3-10)を設ける方法を用いる場合には、基板界面またはパッファー層界面から直接a軸が成長する。しかし、SrTiO$_3$(100)基板などに直接成長する場合は、基板界面とa軸配向部の境界にc軸配向部やcubic層が介在されることが報告されている。(6.3-11)これらの比較から、CVDプロセスにおけるa軸配向は、PVDプロセスのおけるものと同じように、c軸成長部上にa軸が成長進行しているものであると推察できる。

6.3 各種基板における配向制御

SrTiO$_3$(100)基板上のCVD膜においては、酸素分圧、基板温度の制御によりc軸配向とa軸配向の配向制御が可能であることが分かった。そこで、格子定数の観点から配向制御を検討するため、NdGaO$_3$基板やLaAlO$_3$基板上の膜の配向性について検討する。

図6-8にJorgensenらにより報告された各種基板及びYBCO体の格子定数の温度依存性に
図6-6 SrTiO₃(100)基板上に成膜したYBCO膜の断面TEM写真
図 6-7 SrTiO₃(100)基板上に成膜した YBCO 膜の断面 TEM 写真
図6-8 各種基板における温度と格子定数の変化(6,19)
ついて示す。（6.19）格子定数がYBCO体のa軸長よりもb軸長に近いSrTiO₃基板においては、a軸配向膜が生成する。

図6-9にNdGaO₃(110)基板上にTs 700℃で成膜した膜のX線回折結果を示す。(a)図はターゲットにCuを用いたX線パターンを、(b)図はターゲットにCrを用いたX線回折パターンを示す。(a)図においては強く観察される基板の(110)ピーク及び(220)ピークに隠れて、超伝導膜のピークが確認しづらい。しかし、(b)図では2θ = 72.8° に確認されるNdGaO₃(220)ピークと2θ = 73.5° に確認されるYBCOの(200)ピーク及び2θ = 72.2° に確認される(020)ピークが分離される。なお、2θ = 71.5° に確認されるピークは試料固定治具から確認されるノイズのピークである。これより、格子定数がYBCOのa軸長及びb軸長の間であるNdGaO₃基板上の膜は、a軸及びb軸配向の混相膜であることが確認される。

図6-10にLaAlO₃(100)基板上にTs 700℃で成膜した膜のCuターゲットを用いたX線回折結果を示す。強い回折強度で確認できる(010)ピークと(020)ピークが確認され、b軸配向膜が優先的に成長している。

SrTiO₃、NdGaO₃及びLaAlO₃基板上にTs 700℃で成膜した膜は、それぞれa軸配向、a/b軸配向及びb軸配向が主結晶相として成長していることが分かった。図6-8で示した基板とYBCO体の格子定数の関係から考察すると、基板の格子定数と近い軸方向が基板面に沿って成長として、格子定数の離れた軸方向が基板面に垂直に成長している。図6-6で示したTEM観察像においては、基板とa軸配向層の間にはc軸配向層が存在している。しかし、これらの配向性と基板の依存性から、主結晶相であるa軸配向部、a/b軸混相配向部及びb軸配向部などの配向制御においては基板の格子定数が寄与している。すなわちc軸配向部が基板依存性の影響を受けつつ、約300 Åの厚さまで成長することになる。一般的に、結晶の配向性において、どのくらいの厚さまで基板依存性が影響するかについては成長速度、基板表面状態などの影響を受けやすい。配向性と基板依存性においては、成長速度の観点からは、第七章「Block by block法により作製したYBa₂Cu₃O₇₋ₓ薄膜の成長メカニズム」で検討し、さらなる考察を行う。

6.4 MOCVD法における配向制御

(DPM)系の固体MO原料、フッ素原子を含む液体MO原料においては、レーザアシストCVD法などにおいてのみa/b軸配向制御が可能であり、光アシストがなければc軸配向膜以
図 6-9 NdGaO₃(110)基板上に成膜した YBCO 膜の X 線回折パターン
図 6-10 LaAlO$_3$(100)基板上に成膜した YBCO 膜の X 線回折パターン
外の配向制御是不可能であった。しかし、フッ素原子を含まないMO原料においては、光アシストなどを用いなくても基板温度、酸素分圧の制御によりa軸配向、b軸配向及びc軸配向の配向制御が可能であることが分かった。MOCVD法においては、PVDプロセスと同じような配向制御や微細組織が観察されているが、MO原料の違いによって配向性が大きく異なる。そこでフッ素原子を含まないMO原料を用いた膜において、そのMO原料と配向性の観点から、MOCVD法における配向制御メカニズムについて考察する。

各MO原料として、Y-MO原料はフッ素原子を含まないY(DPM)$_2$・4tBuNO、Ba-MO原料としてフッ素原子を含むBa(TDFN)、さらにCu-MO原料としてCu(TMHPD)$_3$を用いてTs650℃で成膜した場合にも、図6-3と同様の酸化物相ののみのX線回折パターンが確認され、a軸配向膜を得ることはできない。すなわち、配向制御を行うためには、MO原料の面からBa-MO原料がBa(DPM)$_2$・2tetraeneにおいてのみ可能であることが分かる。Ba(DPM)$_2$・2tetraeneの成膜時の構造を理解することが、MOCVD法における配向制御性を高めることと考えた。

Ba(DPM)$_2$・2tetraene は、Ba分子に比較的強い結合力で DPM がリガンドとして、さらに弱い結合力で tetraene がアダクトとして繋がっている。Ba(DPM)$_2$・2tetraene は原料槽から配管を経由して反応部、さらに基板表面到達した後、表面をマイブレーションして结晶の端部（キ音）で結晶に取り込まれる。その間に、弱い結合力のアダクトからリガンドの順で離れ、最終的にBa分子として結晶に取り込まれる。リガンドの結合したBa(DPM)$_2$は(DPM)系固体MO原料として従来から検討されてきているものであり、このMO原料の状態では配向制御は難しい。以上より、Ba(DPM)$_2$・2tetraeneにおけるtetraeneとの結合状態が配向性を支配していると考えられる。Ba(DPM)$_2$・2tetraenの構造のうち、NはBa(DPM)$_2$の構造に含まれておらずtetraeneのみに含まれるものである。図6-11にNの重量から計算で求めたBa(DPM)$_2$・XtetraenのXの関係を示す。この関係を用い、軽元素分析からNを求めることによりBa(DPM)$_2$・Xtetraenにおけるtetraenの結合状態を推察することができる。図6-12に、CVD装置のBa原料槽にBa(DPM)$_2$・Xtetraenを入れて原料温度150℃に保温してからの保温時間に伴う、Ba(DPM)$_2$・XtetraenのXの変化を示す。Ba(DPM)$_2$・XtetraenのXの変化は軽元素分析法により求めたN量を図6-11の関係図から求めたものである。昇温前はX=2でBa(DPM)$_2$・2tetraeneの状態で存在している。Ba-MO原料を150℃まで昇温し、10時間保持した結果、アダクトとして結合しているtetraeneは、X=1.5まで低下している。その後、保溫時間によってXの値は$t^{1/2}$の関係で減少する。すなわちBa(DPM)$_2$・2tetraeneは、実際には一部tetraeneが構造から外れたBa(DPM)$_2$・(2-Y)tetraeneの形で原料槽内に存在して
図6-11 Ba(DPM)$_2$・xtetraene における N 含有量と x の関係

図6-12 Ba(DPM)$_2$・xtetraene の x 値の時間変化
あると考えられる。

以上の結果から、MOCVD法における配向制御にMO原料、特にBa(DPM)$_2$・(2-Y)tetraeneの分解反応が大きく関与することが分かった。そこでMOCVD法における配向制御のメカニズムについて検討する。図6-13にCVDプロセスにおけるMO原料の変化と配向メカニズムに関するモデルを示す。(a)図はフッ素原子を含まないMO原料の保温時における分解過程を示し、さらに(b)図はT. Ushidaらにより提案された(DPM)系固体原料を用いたレーザアシストCVD法によるa軸配向メカニズム(6,15)とフッ素原子を含まないMO原料によるa軸配向メカニズムの比較を示す。Y(DPM)$_2$・4tBuNOにおいて、リガンドよりもアダクトが外れやすい点や前述のBa(DPM)$_2$・(2-Y)tetraenの分解過程から、保温過程に(a)図のような状態でMO原料は存在している可能性がある。(b) 図で示した(DPM)系固体原料を用いたレーザアシストCVD法によるa軸配向メカニズムにおいては、紫外レーザによるBa原料の励起によりBa原料の分解過程でBa同士がクラスタを形成する。クラスタ形成により、表面でのマイグレーションが遅くなり、YBCOの結晶構造との成長速度の関係より、a軸薄膜の結晶核になると推察している。一方、フッ素原子を含まないMO原料を用いた場合のa軸配向メカニズムは、MO原料の分解反応から以下のように考察する。

(1) 図6-13(a)のようにY及びBa-MO原料は、一部アダクトが外れた状態で基板あるいはYBCO膜上に堆積する。特にBa-MO原料はBa(DPM)$_2$・(2-Y)tetraenといった不安定状態で存在するため、不安定状態にあるY及び他のBa-MO原料と安定なクラスタを形成する。

(2) YとBaの複合クラスタやBa同士の複合クラスタは、通常の単分子に比べ基板あるいはYBCO膜上ではマイグレーションしづくくなる。そのため、分子の運動と配向性については、同時にY、Ba及びCuの六原子が飛来して、c軸長約12Åの複雑な構造を構成するc軸配向膜に対し、a軸配向膜においてはa軸長約3.8Åの範囲で、比較的原子が格子位置を見つけるやすいことが考えられる。すなわち、クラスタ化により動きが鈍くなり、c軸配向膜よりもa軸配向膜の結晶核ができやすくなる。

(3) a軸配向膜の結晶核が形成された後、c軸方向よりもa、b軸方向の成長が早いため(6,20)、次第にa軸配向膜が成長していく。

Ba-MO原料の経時変化に伴い、MOCVD法においても配向制御が可能になった。その配
図 6-13 CVD プロセスにおける MO 原料の変化と配向メカニズム
向メカニズムの解釈に、レーザアシストCVD法におけるa軸配向メカニズムと比較検討して、上記のようなMO原料の変化と配向メカニズムについて考察した。しかし、未だ基板上でMO原料のリガンドの分解過程、各分子がYBCO結晶構造を組む過程とは理解されていない。今後、in-situモニタなどの直観的測定、MO原料の違いなどの間接的測定により検討を深めることにより、詳細が解明されると考えられる。

6.5 まとめ

フッ素原子を含む液体MO原料及びフッ素を含まない液体MO原料を用いて、YBCO膜の配向制御について検討を行い、(DPM)系固体原料を用いた場合と比較検討し、MO原料と配向制御の関係についてモデルを提案した。

フッ素原子を含む液体MO原料を用いて、c軸配向膜の生成可能温度領域よりも低い基板温度で成膜を行うと、X線回折パターンからは酸化物相のピークのみが観察される。(DPM)系固体原料を用いて成膜を行った結果同様、a軸またはb軸配向膜の生成は確認されなかった。一方、フッ素を含まない液体MO原料を用いた場合は、SrTiO₃基板上に約300 Åのc軸配向膜を介してa軸配位膜が生成することを確認した。さらに基板の格子定数の違いにより、NdGaO₃基板上にはa/b軸混相配向膜、LaAlO₃基板上にはb軸配向膜を得ることができる。また、PVDプロセス同様に、CVDプロセスにおいても基板温度及び成膜酸素分圧により、c軸配向とa(b)軸配向を制御することを確認した。

(DPM)系固体原料を用いた場合にレーザアシストCVD法を用いることによりa軸配向膜を得られることとフッ素原子を含まないMO原料を用いた場合と比較した。Y、Ba及びCuの各MO原料において、フッ素原子を含まないBa-MO原料(Ba(DPM)₂・2tetraene)を用いた場合のみ配向制御ができる。Ba(DPM)₂・2tetraeneの保温時の経時変化などから、原料間での重合反応などによるクラスターを構成すると考えられる。クラスタ化により、基板及びYBCO膜上での分子を含むクラスターのマイグレーションが遅くなり、a軸成長核ができやすくなり、成長速度の面よりc轴配向膜よりもa軸配向膜が生成しやすくなると考えられる。すなわち、CVD法における配向制御の要点は、クラスター状態などのMO原料の状態が軸方向の成長速度と絡み合って決めているというモデルを提案した。
参考文献

(6.1) 岸尾光二、長谷川哲也、北沢宏一: 応用物理 59 (1990)p554

(6.5) 鯨沼秀臣、吉本隆: 応用物理 60 (1991) p433

121
第七章 Block by block 法により作製した YBa$_2$Cu$_3$O$_{7-y}$ 薄膜の成長メカニズム

7.1 はじめに

YBa$_2$Cu$_3$O$_{7-y}$(YBCO) 超伝導膜においてレーザ蒸着法$^{(7.1)}$、MOCVD法$^{(7.2)}$などの各種成膜プロセスを用いて、T_c 90K、J_c 10^6A/cm2 (77K)の特性が得られることが報告された。しかし、薄膜プロセスの応用の一つの超伝導エレクトロニクス、特に膜層型ジョセフソントンネル接合素子に用いるためには、未だ課題が残る。この素子は超伝導層-絶縁層-超伝導層の膜層構造を有し、絶縁層は欠陥の無い、しかも膜厚は超伝導電子がトンネルできる距離である必要がある。第六章で述べたように超伝導体のコヒーレント長は短く、絶縁層を含めた超伝導膜層膜の成膜プロセスには、原子レベルで制御する技術が求められる。

このような応用からの要求に伴い、成膜プロセス、特にスパッタ法においてLayer by layer法の研究$^{(7.3-5)}$や Block by block 法の研究$^{(7.6)}$が多く行われる。このLayer by layer法は蒸発源やスパッタターゲットを多元化して、各層の膜を成膜速度から求めて所定時間ごとに交互にLayer by layerに堆積し、超伝導体の結晶構造に従いながら、元素を積み上げていく方法である。熱力学的には非平衡状態のLayer by layer法に対し、Block by block法は完全熱力学的に平衡なプロセスである。この方法は、2BaO、Y、3CuO の順番に one unit cell ごとに元素を供給し、表面に BaCuO$_2$ や CuO の析出物を抑制する方法である。Bi系超伝導体において、一格子内の原子層配列や層間距離を人工的に設計した原子層エピタキシーの技術が向上し、面間距離を広げることによる T_c の向上などが報告されている$^{(7.7)}$。

原子層エピタキシー（Atomic Layer Epitaxy）は、有機金属気相成長法 （MOVPE法）を用いた GaAs などで代表される化合物半導体で、ALE法の成長の自己停止機能により実現のあるプロセスである$^{(7.8)}$従来の成長法が各成長パラメータを精密に制御し、最終的には成長時間により成長膜厚を制御するのに対し、ALE法では原料供給の回数のみで成長膜厚が一原子層を単位として保証されることである$^{(7.9)}$酸化物系超伝導体の自己停止機能においては、反射高速電子線回折（RHEED）などのin situ 観察が可能な高真空プロセス、特にレーザ分子線エピタキシー法（レーザ MBE法）などで検討が進んでいる$^{(7.10-11)}$。

MOCVD法を用いた酸化物系超伝導膜においては、Layer by layer成長や Block by block 成長を行うための問題点は、超高真空雰囲気でないために、電子線を用いるRHEEDによるその場観察が困難である、ことである。K. Higashiyama ら$^{(7.12)}$と H. Zama ら$^{(7.13-14)}$は、MOCVD
におけるYBCO膜の成長過程を光学反射測定を用いることにより、in-situモニタすることが可能であることを報告した。これにより、MOCVD法においてもLayer by layer成長やBlock by block成長を行う際のその場観察ができ、PVDプロセス同様の原子、分子レベルの平坦膜の作製が技術上可能と考えられた。その後、K. Fujiiら(7,15)やM. Matsubaraら(7,16)により、それぞれin-situモニタによりその場観察しながら作製したLayer by layer成長法及びBlock by block成長法によるYBCO膜の報告がなされた。

この二つのLayer by layer成長法とBlock by block成長法の大きな違いは、前者が単元素を結晶構造の各layerに合わせてBa/Cu/Y/Cu/Ba/Cu/……の順に成膜するのに対し、後者はBa/Cu,Y,Cu/Ba/Cu/……と一部Blockで成長させるパターンで成膜する点である。この違いは基板温度、酸素分圧などの成膜条件に理由があると考えられ、特に前者はTs560℃、後者はTs700℃で行うため、後者は単元素で成膜した場合、反応速度が早くBa-layerとCu-layerが拡散反応してしまうと推察される。

このような研究報告を踏まえ、本章では再現性の点で問題のあった(DPM)系固体原料に代わり、再現性で良好な結果が得られたフッ素原子を含まない液体MO原料を用いてBlock by block成長法によりYBCO膜を作製し、成長速度が同時供給法に比べ遅いBlock by block法においての表面成長過程、面内でのa/b軸方向すなわち面内配向性について検討し、膜の成長初期過程について考察する。

7.2 c軸配向したYBCO膜の作製条件

Block by block法によるc軸配向YBCO膜を作製する際に、まず単元素ごとの作製条件を検討する必要がある。前節で述べたようにYBCOの結晶構造のone unit cellをBa/Cu,Y,Cu/Ba/Cuに分割して、Ba-layer、Cu-Y-Cu Block、Cu-layerをそれぞれ約2Å、6Å及び2Åになるように条件を求めた。図7-1に、ガス全圧6.0Torrの際の、Baのみ(○)、CuとY(Δ)及びCuのみ(□)をMgO基板上に20回成膜した時の成膜一回の時間とICP分析より求めた膜厚の関係を示す。Baのみ、Cu-Y-Cu及びCuのみではそれぞれ約40Å、120Å及び40Åになる時間が一回の最適時間になり、この図より約3秒、18秒、12秒が好適時間となる。しかし、実際は各layerの上に異なる元素のlayerが堆積されることになり、付着計数などの違いから単一元素の結果と積層の場合は異なり、7.3で述べるin-situモニタなどにより補正した時間を用いて実験を行う。
図7-1 単一元素における成膜条件と膜厚
表 7-1 本章で用いた Block by block 法による YBCO 膜の成膜条件

○ 基板温度 : 600-850[℃]
○ ガス全圧 : 6.0[Torr]
○ 供給ガス : Ar gas
○ O₂ ガス流量 : 30[sccm]
○ 基板 : MgO, SrTiO₃ 3 single crystal
 (pre-anneal 900℃-1h.)
○ 原料温度[℃] 及び流量[sccm]

<table>
<thead>
<tr>
<th></th>
<th>Y(DPM) 3·4tBuPyNO</th>
<th>Ba(DPM) 2·2tetraene</th>
<th>Cu(TMHPD) 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>排気</td>
<td>125</td>
<td>145-160</td>
<td>118-122</td>
</tr>
<tr>
<td>原料ガス</td>
<td>6.0</td>
<td>10.0-20.0</td>
<td>1.0-2.0</td>
</tr>
</tbody>
</table>

○ 成膜サイクル

図 7-1 の結果を参考に、Block by block 法により c 軸配向 YBCO 膜を作製する。表 7-1 にその際に用いた成膜条件を示す。基板温度などの主な成膜条件は第四章で用いた成膜条件を継承する。Block by block 法の成膜サイクルは各元素の成膜前に Ar ガスのみを基板に吹き付けるバージを 10 秒間行い、1 unit(1 サイクル)ごとに 20 秒間のバージを行った。成膜に用いた基板は MgO(100)及び SrTiO₃(100)基板である。

図 7-2 に、Ts 800℃において MgO 基板上に Block by block 法で得られた YBCO 膜の X 線回折パターンを示す。成膜サイクルは 20 回で、膜厚は ICP 分析の結果約 240 Åである。目的相である(00l)のピーク強度の強い c 軸配向膜のみが得られていることが分かる。

7.3 in-situ モニタリング

レーザ蒸着法や電子ビーム蒸着法などの薄膜成膜プロセスの in situ 光学モニタには、前述の RHEED が用いられる。RHEED による in-situ 計測は、種々の膜形成方法において極めて有効で、析出した膜の結晶方位や原子層オーダでの平滑性の観察が可能である。しかし、RHEED は電子ビームをプローブとして使用するため、高真空下で測定する必要がある。一般に CVD プロセスの成膜圧力は 0.1 ～ 10Torr と PVD プロセスに比べ高く、RHEED が使用
図7-2 Block by block法により作製したYBCO膜のX線回折パターン

できる圧力ではない。

D. E. Aspnesら(7,17)やN. Kobayashiら(7,18)はMOCVD法を用いたGaAs膜の成長過程をin-situモニタするように、光学反射率を用いる方法が有効であることを報告している。この方法は、成膜中のGaAs膜に可視レーザのP偏光波を、GaAsのブリュースター角で入射し、その反射率をモニターするものである。図7-3に光学反射率を用いたin-situモニタリングの原理図を示す。図中にP偏光波とS偏光波の違いを概念図を用いて示す。(7,19)光は、電気ベクトルが入射面に平行な成分で構成されるP成分と、入射面に垂直な成分で構成されるS成分に分けられる。MOCVD法によるGaAs膜のin-situモニタリングで用いられたのは、そのうちの前の成分を用いたものである。また、図7-3において通常のレーザ光が基板上に照射された時の光路図とブリュースター角で照射された時の光路図を示す。通常の場合は、基板上に堆積した膜に波長λ₁のレーザ光を入射すると、膜の上面で反射した反射光と膜と基板の界面で反射した反射光の間で、

$$
\delta = \frac{2\pi}{\lambda_1 \cdot 2\pi d \cdot \cos \chi \pm \pi}
$$

で表せる位相差δが生じる。但し n は膜の屈折率、d は膜厚、X は膜内でのレーザの入射角である。一方、図7-3右側に

$$
\theta_1 = \tan \frac{n_2}{n_1}
$$

126
P波とS波の違い

通常のレーザ光の光路図 基板のブリュスター角度でのP波の光路図

図7-3 MOCVD法におけるin-situモニタリングの原理図
図7-4 MOCVD法におけるin-situモニタリング装置の概要図

で表されるブリュースター角θ₁で膜に光を照射した場合の光路を示す。式中n₁は基板の、n₂は膜の屈折率を示す。この場合には、膜と基板との界面からの反射は無く、検出される反射光は膜上面からの情報のみとなる。このような、GaAs膜において光のP偏光波を用いて、膜にブリュースター角で照射することにより、膜の表面状態を観測することができる。酸化物系超伝導膜においても、上記の光学測定を用いて、MOCVD法におけるMgO基板上のYBCO膜のin-situモニタができることが報告されている。(7,12-13,20) その結果、MgO基板のブリュースター角は計算上約60°であり、その角度においてはMgO基板からの反射によるバックグラウンド成分を最小限にして、薄膜からの反射を精度良く観測することができた。また、YBCO膜の結晶性、超伝導特性とin-situモニタリングにおける反射信号強度を比較した結果、階段状に現れる1ステップと原料供給の1サイクルの膜堆積時間が一致することより、1ステップ当たりの堆積量はYBCOのほぼone unit cellに相当することが確認されている。膜質の良好な膜においてのみ、膜厚の増加に伴い階段状のステップが確認される。しかし、30サイクル以上においては表面の凹凸(ラフ)が大きくなるため、反射信号の強度の変化が弱まり、階段構造がぼやけてしまうことが報告されている(7,20)。
図 7-5 in-situ モニタリングにより得られた光学特性

図 7-4 に本章で用いた MOCVD 装置と in-situ モニタリング装置の概要図を示す。MOCVD 装置は簡略して、反応部のみを示している。反応部には、基板表面に対して MgO 及び SrTiO₃ のブリュースターの角度を含む角度に設置された入射窓、反射窓の二つの光学窓を有している。入射窓側には波長 632.8nm の He-Ne レーザ源(出力 15mW、レーザビーム経 2mm φ)、1/2 波長板及びチョッパーを設ける。さらに反射窓側には絞りと受光素子を設け、反射光を検出する。反射光検出器により得られた情報は、ロックインアンプとパソコンにより解析される。

図 7-5 に MOCVD 法における in-situ モニタリングにより得られた光学特性の一例を示す。成膜時間は基板加熱開始からの経過時間で示しており、20 分の基板温度昇温時間も含んでいる。そのため図 7-5 は成膜開始からの光学特性パターンのみを示している。反射率の立ち上がりは成長開始時間から約 10 分ほど遅れて始まっている。この間に計算上の成膜される膜厚は約 50 Å である。MgO 基板表面を YBCO の構成原子が 100% 覆いつくすまでの間、原料付着確率は低いか、一端 YBCO 膜ができた後はその堆積速度は一定になっていくことが推察される。このような成膜過程の滞在時間は、他のヘテロエピタキシャル成長においても存在することが報告されている。

7.4 各種基板における YBCO 薄膜
本節では、上記で述べたin situモニタを用いながら、MgO基板及びSrTiO₃基板上にBlock by block法においてYBCO膜を作製して、その面内配向性や表面形態を観察する。

7.4.1 面内配向性

図7-6にMgO基板上にBlock by block法で、(a)膜厚230Å、(b)膜厚750Å成膜したYBCO膜のポールフィギア測定結果を示す。それぞれin situモニタを併用して20サイクル、60サイクル成膜したもので、膜厚はICP測定から求めたものである。MgO(100)基板に対して、主面は(100)面、測定面は(204)面を用いて測定した結果、β方向に対して0°, 90°, 180°, 270°及び360°の90°ごとに強いピークが確認され、MgOの基板は面内で揃っていることが確認される。さらに、その状態でYBCO膜の主面(001)面、測定面(103)面で測定した結果、膜厚230Åの場合は、MgO基板の場合と同様な0°から90°ごとに強いピークが確認され、MgO基板のa軸及びb軸に沿ってYBCOのa軸及びb軸が成長しているcube on cubeであることが分かる。一方、膜厚が750Åにおいては、0°から90°ごとの強いピークとともに、45°、135°、225°、315°とMgO基板のa軸、b軸と45°ずれた結晶が面内に存在していることが確認される。すなわち、cube on cubeのグレインとともに45°ずれたグレインの2種類があることになる。また、SrTiO₃基板上のYBCO膜は60サイクル、膜厚が約760Åまでの実験範囲においては、全て基板に対しa軸、b軸が揃ったcube on cubeの状態で成長している。cube on cubeの結晶成長から45°ずれた結晶が成長してくる膜厚は、成膜条件、特に成膜速度、酸素分圧に影響され、さらに基板と超伝導膜の格子ミスフィットにも依存してくる。格子ミスフィットの面からは、YBCO膜とMgO基板においては、第二章「2.2基板」で述べたNCSL理論で計算すると、SrTiO₃基板に比べcube on cubeとともに45°ずれたグレインが成長しやすいことが考えられる。

MgO基板上にBlock by block法により作製したYBCO膜は、膜厚によって面内での結晶方向が、cube on cube成長から、cube on cube成長と45°ずれた成長の二相混在に変化する。この変化からYBCO膜は以下の二点の成長を考えられる。

(i) cube on cube成長のグレイン上に45°ずれたグレインが成長する。
(ii) cube on cube成長のグレインと45°ずれたグレインの成長速度が異なり、成長初期はcube on cube成長、その後45°ずれたグレイン成長と混在する。
このような推察を基に、図7-7に示す断面TEM観察、及び図7-8に示す電子線回折像で考察
図 7-6 Blockby block 法により MgO 基板上に成膜した YBCO 膜の
膜厚の違いによる面内配向性
図 7-7 Block by block 法により MgO 基板上に成膜した YBCO 膜の断面 TEM 観察像
図 7-8 MgO 基板上に成膜した YBCO 膜の電子線回折像
する。図7-7に、Block by block法で60サイクルの成膜を行った、MgO基板上のYBCO膜の断面TEM観察像を示す。基板上に成長したYBCO膜は、a部及びb部で示した二つのグレインが存在し、その境界には数μmの粒界がある。その粒界により、Cu-O面がa部、b部とは連続的に断絶されていることが観察される。さらにそのa部、b部の面内でのグレインの方向をMgO基板と比較するため、図7-8に基板と膜の界面での電子線回折像を示す。強く回折しているスポットは、MgO(200)の回折スポットで、一方、弱い回折スポットはYBCO膜の回折スポットである。MgO(200)の回折スポットから、強いスポット間が結晶単位格子二個分の距離約8.4Åである。a部においてはYBCOのスポットは約6Å程度であるのに対し、b部においてはMgO(002)の回折スポットの半分程度、すなわち約4Å程度に回折していることが分かる。以上のことから、a部とMgO基板は

\[(001)_{YBCO(a)} // (001)_{MgO(a)}\]

\[(110)_{YBCO(a)} // (100)_{MgO(a)}\]

\[[110]_{YBCO(a)} // [010]_{MgO(a)}\]

の関係が成り立ち、一方b部とMgO基板は、

\[(001)_{YBCO(b)} // (001)_{MgO(b)}\]

\[(100)_{YBCO(b)} // (010)_{MgO(b)}\]

\[(010)_{YBCO(b)} // (010)_{MgO(b)}\]

の関係があることが分かる。

Block by block法でMgO基板上に成膜したYBCO膜は、ポールフィギア測定結果及びTEM観察結果などから、膜厚約700Å程度においてcube on cube成長するグレインと45°ずれたグレインが混在して、その成長はどちらも基板直上から成長していることが確認される。

7.4.2 表面形態

本節では、Block by block法によるMgO基板及びSrTiO₃基板上に作製したYBCO膜の表面形態を検討し、第五章及び第六章で検討した同時供給法で得られた膜厚1000μm程度の膜の初期成長過程を考察する。

図7-9に基板温度800℃でMgO基板上及びSrTiO₃基板上に膜厚約240Å成膜したYBCO膜のAFM観察像を示す。MgO基板上の膜は、フラットな形状をした2μm程の大きさのグレインがコラム状に成長しており、そのグレインは100Å程度の高さを有している。一方、
図 7-9 各種基板上に Block by block 法で成膜した YBCO 膜の AFM 観察像; 10 μm x 10 μm x 200nm
((a):MgO 基板、(b)SrTiO₃ 基板)
SrTiO₃ 基板状の膜は、ドロップ状に成長した凹凸はあるものの、MgO に比べればフラットな膜表面を形成していることが観察される。また、MgO 基板上の膜における一箇のグレイン表面のフラットな面では、スパイラル上の結晶が成長している。一方、SrTiO₃ 基板上の膜は全体的にもフラットであり、表面においてはスパイラル成長は観察されなかった。図 7-10 に Block by block で MgO 基板上に膜厚 240 Å 及び 750 Å 成膜した YBCO 膜の表面 AFM 像を示す。どちらの膜においてもテラス高さ 12 Å のスパイラル模様が確認される。またそのテラス幅はそれぞれ平均 1050 Å と 1250 Å である。同様供給法で MgO 基板上に約 1000 Å 成膜した場合のスパイラル模様は、テラス高さは 12 Å、テラス幅が約 1200 Å である。これらの結果から、CVD 法による YBCO 膜のスパイラル成長、特にテラス高さやテラス幅は、成膜速度や膜厚などに大きく影響されず、一定の基板温度で決まっていることが分かる。

一方、SrTiO₃ 基板上の膜における表面形態について、Block by block 法で膜厚の異なる YBCO 膜を成膜して検討する。図 7-11 に、Block by block 法で SrTiO₃ 基板に、膜厚 120 Å(a)、240 Å(b) 及び 380 Å(c) ほど成膜した YBCO 膜の AFM 像を示す。膜厚 120 Å の時は芯状の突起物とともに、空隙が表面に残存する表面形態をしている。その後、膜厚 240 Å において、空隙はほとんど埋まり、表面が一様にカパーリングされたことが観察される。膜厚 380 Å において、非常にフラットな表面形態をしていることが分かる。また、芯状の突起物は、膜厚増加に伴い、密度は減少するものの、大きくなってくる。MgO 基板上の YBCO 膜の表面形態と異なり、SrTiO₃ 基板上の膜においては、全面がカパーリングされてもスパイラル模様などが観察されず、二次元的に結晶が成長しつつ置かれていることが観察される。以上のように、異なる基板上に成膜した YBCO 膜は、面内配向性のみならず、表面形態における初期成長も大きく異なることが確認された。

7.5 成長メカニズムに関する考察

前節までに検討してきた、Block by block 法による MgO 基板及び SrTiO₃ 基板を用いた YBCO 膜の面内配向性及び表面形態の違いから、本節では YBCO 膜の初期成長に関して考察し、成長モデルを提案する。

図 7-12 に MgO 基板上での膜の初期成長過程におけるモデルを示す。基板上に堆積された Y、Ba 及び Cu 分子は YBCO 結晶構造を組み、幾何学的に配置される(図 7-12(1))。その後、基板の a/b 面に沿って結晶は cube on cube で成長する。MgO 基板の全面が YBCO で覆われる
図7-10 MgO基板上に成膜した膜厚の異なるYBCO膜のAFM観察像
；1000nm x 1000nm
((a)膜厚 240 Å, (b)膜厚 750 Å)
図 7-11 SrTiO₃ 基板上に成膜した膜厚の異なる YBCO 膜の AFM 観察像
前にスパイラル成長となり、図7-12(2)のように空隙を残したままスパイラル形態でYBCO結晶はc軸方向へと成長は進行する(図7-9, 10)。スパイラル成長でなおかつcube on cubeの
方位で成長する結晶とともに、基板のa/b面と45°方位がずれた結晶が、初期成長で空いて
た基板面から徐々に成長する(図7-7, 8)。その後、cube on cube成長の結晶と45°方位がず
れた結晶は、テラス幅、テラス高さを維持しながらスパイラル成長でc軸方向に成長しつつ
する。このモデルにおいて、cube on cube成長の結晶と45°方位がずれた結晶の成長速度が
異なることが推察される。K. Hiramatsuら(7.21)は、MOVPE法においてAlN上のGaNの成長
メカニズムについて考察しており、GaNにおいて初期時に成長するコラム状の結晶を、遅れ
て成長する台形状の結晶があり、膜厚2000Åにおいては台形状の結晶が支配的に存在する
ことを報告している。酸化物系超伝導体における面内方向の異なる結晶の成長速度において
結論を下すためには、更なる検討を有する必要がある。
また、SrTiO₃基板上のYBCO膜の初期成長過程におけるモデルを図7-13に示す。基板上
でYBCO結晶構造を組み、幾何学的に配置されるまでの過程は、MgO基板と同様である。
その後、SrTiO₃基板の全面がYBCO膜で覆われるまで結晶は二次元的に成長する。また、
SrTiO₃基板上の膜においてはcube on cube成長の結晶が支配的で、45°方位がずれた結晶は
膜約2000Å以下の膜では確認されない。さらにMOCVD法の同時供給法において膜厚約
5000Åでcube on cube成長の結晶が支配的であるとの報告もある。(7.22)全面がYBCO膜で覆
われると、表面は一時的にフラットな表面形態をする。しかし、さらに成長が進行するに従
い、図7-13(3)のように膜厚増加に伴う結晶格子の歪みから、スパイラル成長が開始し、成
長は島状成長からスパイラル成長へと移行していくと考えられる(図7-11)。
PVDプロセスを用いたYBCO膜の初期成長過程に関する検討については、いくつかの報
告がされている。(7.23-27)MgO基板上のYBCO膜について、RHEEDとSTMを用いて初期成
長過程について考察するとともに(7.23-25)、X. Y. Zhengら(7.26)やS. J. Pennyckら(7.27)はMgO基
板上とSrTiO₃基板上の膜における初期成長過程を考察している。その結果、ミスフィットの
大きなMgO基板を用いる膜の方が、三次元的に結晶が成長し、一方SrTiO₃基板を用いた膜
は二次元的に結晶が成長しており、格子定数のミスフィットと表面での分子のクラスターの
マイグレーションに原因があると推察している。さらに、最近、MOCVD法をもちいてMgO基
板とLaAlO₃基板上のYBCO膜の表面成長について考察した結果、基板とYBCOの格子定
数のミスフィットとテラス幅に相関関係があることなども明らかになってきている。基板依
存性における初期成長過程が、PVDとCVDで同じように、基板とYBCOの格子定数のミス
(1) Nucleation

(2) Spiral growth

(3) 45°-rotated grains growth

(4)

図7-12 MgO 基板上に成膜した YBCO 膜の初期成長モデル
(1) Nucleation

(2) Island growth

(3) Spiral growth

図 7-13 SrTiO₃ 基板上に成膜した YBCO 膜の初期成長モデル
フィットに影響された結果が得られている。今後、さらに YBCO 膜の成長過程を考察する上で、スパイラル成長の起源、特にキング付近での YBCO 結晶の成長過程を考察していく必要がある。

7.6 in-situ モニタリングによる相転移の観察

Block by block 法を用いた YBCO 膜の成膜過程は、He-Ne レーザーを用いて in-situ モニタリングを行っている。成膜中の回折ピークの変化については、「7.3 in-situ モニタリング」で詳細を述べた。本節では、成膜後の He-Ne レーザーの in-situ モニタリングによる光学特性の変化について検討した。

図7-14 に本章で検討した、Block by block 法による YBCO 膜の in-situ モニタリングの光学特性(a)、及び成膜後の降温過程における in-situ モニタリングにおける光学特性結果(b)を示す。

図7-14(a)において、20 分の基板の昇温時間が経過した後、基板温度は目的温度800℃に達し、同時に成膜が開始される。その後、随時各 MO 原料が基板に成膜され、one unit cell が成膜される毎に図7-5 で示したステップが観察される。30 unit cell 程の成膜を繰り返すと、膜表面の凹凸が大きくなり、そのためステップは観察されにくくなる。成膜終了とともに、1.0 Torr の酸素分圧で酸素を導入しながら、毎分10℃で降温する。その際、He-Ne レーザーの回折は一時的に急激に上昇した後、徐々に強度が上がっていく挙動を示す。

さらに図7-14(b)には、降温時の光学特性を、横軸に温度、縦軸に He-Ne レーザーの回折強度を拡大して示す。その結果、1 atm の酸素分圧の降温時には確認されなかった、図中矢印で示した回折強度の平坦な領域が存在する。この温度領域は約550℃から450℃ の範囲である。

H. Tagawa ら(128) は、高温 X 線回折法を用いて、酸素分圧の違いにおける斜方晶・正方晶の相転移の開始温度について報告している。その結果、酸素分圧の低下に伴い、相転移温度も低下する傾向があり、1.0 Torr では約530℃付近であることが報告されている。また、N. Kanda ら(128) は、レーザ蒸着法で YBCO 膜を成膜する際に、光学特性を観察した結果について報告している。用いた光学及び光学系は、用いたレーザー波長が670nm である点を除くと、全て本研究の in-situ モニタリング装置と同様である。SrTiO3 基板上に酸素分圧 400mTorr、基板温度(Ts)720℃で YBCO 膜を成膜した後の、毎分9℃での降温過程について検討したものであ
図7-14 Block by block 法でYBCO膜を作製する際のin-situモニタ(a)及び成膜後の降温過程におけるin-situモニタ(b)における光学特性
図7-15 レーザ蒸着法における成膜後の降温過程における in-situ モニタにおける光学特性(7.29)
る。図7-15に、降湿時の酸素分圧(P_O_2)が1atmの場合と400mTorrの場合における、膜表面のin-situモニタリングにおける光学特性を示す。図中、bで示された光学特性を拡大図で示している。回折パターンは降湿に伴い、強度が増加していくが、T_S480℃付近で平坦な領域が存在することが確認されている。また、降湿時の雰囲気が$P_O_2$10Torrの場合は、このようなフラットな温度領域は570℃付近に変化することが報告されている。

図7-14の光学特性は、高温X線回折における相転移及びレーザ蒸着法における光学特性などから、YBCO材料の斜方晶-正方晶の相転移と関係があると推察される。しかし、本来表面状態を光学的に観察するin-situモニタリングにおいて、斜方晶-正方晶の相転移の開始温度付近で回折パターンが変化したのか、などの詳細なことは、更なる検討を要すること考えられる。

He-Neレーザなどのレーザ光を用いたin-situモニタリングはRHEEDなどと同じように成膜過程の表面状態を観察できるとともに、RHEEDでは観察できない降湿時の構造変化、表面状態などの観察ができる手法であることが分かった。

7.7 まとめ

組成再現性を向上することができる液体MO原料によるBlock by block法を用いて、MgO基板、SrTiO₃基板上にYBCO膜を作製し、その膜の面内配向性及び表面形態を観察した。さらに膜厚の異なるYBCO膜を作製し、その成長メカニズムのモデルを提案した。また、He-Neレーザによるin-situモニタリングを併用して成膜することにより、MOCVD法においてその場観察を行うことができた。以下にその詳細についてまとめる。

フッ素原子を含まない液体MO原料を用いて、同時供給法と異なり成膜速度を一定にして成長することができ、さらに膜厚の薄い成長初期状態を検討することのできるBlock by block法を用いてYBCO膜を作製した。YBCO膜の作製は、成膜サイクルを結晶構造上準じてBa/Cu,Y,Cu/Ba/Cuの順に成長する以外は第五章での成膜条件を用いた。その結果、T_S800℃においてc軸配向単相膜を得る条件を求めることができた。

MgO基板上に成膜したYBCO膜は、膜厚240Åの成長初期段階においては基板面のa/b軸に沿って結晶が成長するcube on cubeで成長し、膜厚増加に伴い基板面のa/b軸と45°ずれた結晶が成長してくることが分かった。また、AFMによる表面観察の結果、膜に空隙が存在し、基板が膜に覆われていない膜厚240Åの成長初期段階において、テラス高さ12Å、
テラス幅1050 Åのスパイラル模様が観察される。そのスパイラルのテラス高さ、テラス幅は膜厚が増加してもほぼ一定である。以上のことから、MgO基板上の膜の成長は、基板上に幾何学的に配置された結晶が、主にスパイラル成長で、さらに面内方位の異なる結晶が同時に進行していくと考えられる。

一方、SrTiO₃基板上の膜は、膜厚約1000 Å以下の場合膜厚に依らずcube on cubeで結晶が成長する。幾何学的に配置された結晶が、島状に基板を覆うように成長し、平坦な膜表面形態になる。膜で基板の全面を覆いつくした後に、スパイラル模様が確認されるような結晶成長過程を経ることが分かる。

さらに、in-situモニタリングを用い、膜表面のその場観察を行った。成膜中はone unit cell成膜される毎に、反射回折パターンが段階的にステップを形成していく。さらに、成膜後の降温過程において、斜方晶-正方晶の相転移の温度付近で反射回折パターンの挙動が変化している。さらに光学特性と表面形態、結晶格子の相転移の関係を詳細に検討する必要がある。
参考文献

(7.9)A. Koukitsu, N. Takahashi and H. Seki : 応用物理 63 (1994) p682
(7.19)オプトロニクス社「光・薄膜技術マニュアル」
(7.20)小田俊理: 固体物理 28 (1993) p659

第八章 結言

8.1 研究成果のまとめ

MOCVD法を用いたYBa$_2$Cu$_3$O$_{7-y}$(YBCO)超伝導薄膜のデバイス応用や線材化応用を目指した基礎検討として、

- MO原料の選定、評価
- CVD装置の改良とその成膜条件
- 膜質評価

の方法で膜の検討を行ってきた。特に新規MO原料の選択及び評価を行い、線材応用、デバイス応用などの超伝導応用に重要な要因であるMO原料の安定性向上を試み、その結果得られた再現性により、今まで報告例のなかったCVD膜の成長メカニズムについて検討した。

成膜に用いたMO原料は、従来報告されている(DPM)や(HFA)などの固体MO原料に代わり、低温点でしかも融点以上の温度での蒸発量の制御が可能なMO原料を液体状態にして用いる液体MO原料を用いた。DTA-TG 装置を用いて、成膜時と同じAr気流中で液体MO原料の融点及び蒸発量の検討をして、成膜実験に用いる液体MO原料を選択した。その結果、フッ素原子を構造内に含むMO原料

Ba(TDFND)tetraglyme, Cu(TDFND)$_2$

と、フッ素原子を構造内に含まないMO原料

Y(DPM)$_3$4tBuPyNO, Ba(DPM)$_2$2tetraen, Cu(TMHPD)$_2$

とを用いることとした。フッ素原子を含まないMO原料におけるY-MO原料がないため、フッ素原子を含まないY(DPM)$_3$4tBuPyNOを重複して用い、フッ素原子を含む液体MO原料及び含まない液体MO原料として検討を行った。

フッ素原子を含むMO原料においては、成膜時にフッ素原子が膜中に混入してBaFの異相を生成して、YBCO相の生成を抑制してしまう。そこで、反応ガスとともに水蒸気を導入することにより、化学量論組成のY:Ba:Cu=1:2:3でc軸配向YBCO相を生成することができた。その時の超伝導特性 T_c としてはMgO基板上、SrTiO$_3$基板上及びNdGaO$_3$基板上において、それぞれ82K、92K及び92Kを得た。さらに膜の組成及び T_c の実験回数による再現性評価
行った。組成の再現性については、(DPM)系固体原料に比べ飛躍的に向上し、安定した組成制御が可能であることが分かった。また、T_cの再現性においては、MgO基板上とSrTiO₃基板上の膜について評価し、MgO基板上では75K程度の値が再現良く得られた。一方、SrTiO₃基板上においては90K以上の特性が得られており、超伝導特性の面からも応用を念頭にいれた研究を行っていくのに十分な再現性が得られた。

フッ素原子を含まない液体MO原料を用いた場合は、フッ素原子を含むMO原料を用いた場合と異なり、フッ素原子の除去のための水蒸気を反応ガスに混入する必要がない。水蒸気を混入せずに組成制御を行い、化学量論組成に合わせてc軸配向YBCO相を得ることができ、MgO基板上及びSrTiO₃基板上においてそれぞれT_c80K及び91Kの特性を得た。超伝導特性の面からはMO原料の違いによる差はなかった。さらに、フッ素原子を含んだMO原料を用いた場合と同様に再現性の評価を行い、再現性の絶対的評価を標準偏差により比較した。(DPM)系固体原料、フッ素原子を含む液体MO原料さらにフッ素を含まないMO原料の(Ba/Y)量の再現性は、標準偏差σで0.25、0.21、0.12で、また(Cu/Y)量は0.21、0.09、0.12となった。フッ素を含まない液体MO原料における組成再現性も、フッ素を含む液体MO原料同様の良好な再現性が得られることが分かる。基板と膜との拡散反応をRBSを用い評価した結果、フッ素原子を含むMO原料を用いた膜においては、成膜中に混入した水蒸気により拡散層が生成しているが、フッ素を含まないMO原料の場合には生成していないことを確認した。ナノメートルでの膜厚制御や基板面のフラット性を要求される応用においては、フッ素原子を含まないMO原料を用いる必要があると考えられる。

従来の固体原料ではその再現性の低さから、連続的に条件を変化させ観察する表面形態の変化についての報告例は少なかった。そこで、再現性が向上し組成制御が容易になった液体MO原料を用いることにより、基板温度とAFMにより観察した表面形態について検討した。

Ts 700℃〜850℃の範囲において、液体MO原料を用いたMgO基板上の膜の表面形態はテラス高さ約12Åと、YBCO結晶構造のc軸長とほぼ同じ高さを有したスパイラル模様が観察された。さらに、異なる基板温度におけるスパイラル模様のテラス幅の変化は、Ts 750℃以下には約300Åと一定であるが、Ts 750℃以上では基板温度に伴い急激に広くなる。フッ素原子を含むMO原料を用いた場合における、基板温度と原料供給量の関係は、Ba-MO原料やCu-MO原料が温度に依らず一定であるのに対し、Y-MO原料はTs 750℃以上で供給量が

150
多くなってくる。基板温度により、Ba分子やCu分子に比べて、Y分子の付着量が変化していると推察された。これらの結果から、CVDプロセスによるYBCO膜の成長には、疑似液体層(Ba-Cu-O)が反応に介在するVapor-Liquid-Solidメカニズムが寄与していると推察した。また、フッ素原子を含むMO原料を用いた膜と含まないMO原料を用いた膜において、Ts 800℃のスパイラルの形状が、前者が等方的に成長しているが、後者は異方的に成長しており、さらに基板温度によっても変化していくことが観察された。この形状の違いをJacsonが定義したα値\(^{[1]}\)を用い定量化し考察した。Temkinらが提唱しているα値と過飽和度の関係から\(^{[2]}\)、MO原料の違いにおけるスパイラル形状の変化する成長温度の違いを理解ことができた。

YBCOは結晶構造に由来するコヒーレント長の異方性があり、そのためデバイス応用のためにはa軸、b軸配向膜のc軸配向以外の配向膜の配向制御が必要である。固体MO原料においては、レーザ光をアシストしなければa軸配向膜を得ることはできなかった。また、フッ素原子を含むMO原料を用いた場合は、Ts 700℃以下の範囲ではX線回折パターンからは酸化物相のみのピークが確認される。フッ素原子を含まないMO原料を用いてSrTiO\(_3\)基板上に膜を作製する際に、Po\(_2\)1.0TorrではTs 750℃以上においてc軸配向膜が得られるが、Ts 700℃以下ではa軸配向膜が得られ、さらに酸素分圧との制御によりc軸配向膜とa軸配向膜の配向制御が可能であることを確認した。また、NdGaO\(_3\)基板上やLaAlO\(_3\)基板上では、それぞれa/b軸混相膜、b軸配向膜を得ることができる。格子定数の異なる基板を用いることによりa軸とb軸の配向制御もすることが可能であることを明らかにした。CVD法における配向制御に関して、レーザ光をアシストし固体MO原料を用いて成膜した膜とフッ素原子を含まないMO原料を用いた膜の配向制御メカニズムについて考察した。Ba-MO原料の重合などにより、原料がクラスタとして結晶成長に関与するため、c軸配向膜に比べa軸配向膜が生成しやすくなるというモデルを提案した。

フッ素原子を含まないMO原料を用いて、同時供給法に比べ成長速度の遅いBlock by block法において、MgO基板及びSrTiO\(_3\)基板上にc軸配向膜を作製し、成長初期状態からの膜表面形態及び面内配向性について検討した。MgO基板上の膜においては、基板上に幾何学的に配置された結晶が、基板面のa/b軸に沿ってcube on cubeで成長し、また膜表面は主にスパイラルを形成しながら成長し、膜厚の増加に伴い面内方位が45°ずれた結晶の成長と移
行していくことが確認された。また、SrTiO_3基板上の膜について、結晶成長はcube on cubeで成長し、基板面を膜が覆い尽くすまでの成長初期は島状成長の様相で、その後スパイラル成長に変化していくことが確認された。

最後に、本論文はYBCO系やBi_2Sr_2CaCu_2O_8系などの酸化物系超伝導体で用いられていた、(DPM)系のMO原料を固体状態で用いる固体MO原料の問題点を克服するために、新たに液体状態で用いる液体MO原料を用いて、YBCO膜の作製及び評価について述べたものである。

その結果、上記で述べてきたような多元素で構成される酸化物系超伝導体の最大課題である組成制御の安定性を得ることができ、さらに報告例の少ない酸化物系超伝導体の、CVDプロセスにおける結晶成長メカニズムについての多くの知見を得ることができた。
8.2 本論文の工学的意義及び今後の展望

以上述べてきたMOCVD法におけるYBa$_2$Cu$_3$O$_{1+y}$超伝導膜に関する研究において、組成制御の安定なMO原料や、酸化物系超伝導膜の成長メカニズムにおける疑似液体層の存在などの知見を得た。本節ではこれらの知見の工学的意義について述べるとともに、今後の展望として成長メカニズムなどの基礎的な面と線材、デバイスなどの応用の面から、残された課題を述べる。

YBCO系超伝導体の特徴である、液体窒素温度以上で超伝導体状態になることを用いた応用製品には、液体窒素温度作動のマグネットやジョセフソン接合を用いたデバイスによる超高頻度コンピューター、マイクロ波用フィルター及び試験シールド材などが挙げられる。その中でもYBCO系超伝導線材を用いたマグネットやYBCO系超伝導薄膜を用いたデバイス用の素子の開発は、市場規模が大きく、米国や日本の大学、国立や企業の研究機関などで活発に研究開発が行われている。その中で、本研究で検討したMOCVD法は、酸化物系超伝導体が発見された当時から、超伝導薄膜プロセス技術の最有力候補であった。しかし、MO原料の蒸発量などに課題があり、超伝導薄膜作製技術が遅れていた。本研究で検討した液体MO原料は、MO原料の蒸発量、膜組成の再現性、さらに得られた膜の超伝導特性の再現性の面で、従来の固体MO原料を用いていたMOCVD法に変わる新たな技術と考えられる。現在、次のステップである、液体MO原料を用いた超伝導線材の開発とマイクロ波用フィルターのための両面膜の開発を行っており、液体MO原料を用いたMOCVD法による応用製品として工学的に実証している。

また、液体MO原料を用いて検討した表面成長、特にスパイラル成長に関する結果及び考察は、原子スケールで超平坦膜を要求されるデバイス応用の観点から意味があると考えられる。今後作製していかなければならない、デバイス応用のための超平坦膜においては、本研究で得られた知見をもとに、スパイラル成長のような三次元的な凹凸は排除すべきであり、ステップ形成を起こさない基板や成長プロセスを考察していく必要があると考えられる。

さらに、今後の展望としては以下の点が必要であると考えている。超伝導膜の成長メカニズムに関して、本論文ではAFM観察で得られた表面形状及び原料供給量などからBa-Cu-O系の低融点酸化物層が存在していることを確認した。しかし、表面形状の観察は成膜後の室
図 8-1 Hot-wall 型 MOCVD 装置の外観図
図8-2 Hot-wall型MOCVD装置の反応部
温での観察であり、in situでの測定ではない。本論文の第七章で述べたHe-Neレーザを用いたin situモニタリングでは、基板温度の違いにおける回折パターンの違いはなかった。これは疑似液体層の厚みが薄いためと推察している。疑似液体層の厚さと光学特性の関係を検討するためには、現在のin situモニタリング装置の光の偏りを変える必要がある。すなわち、第七章で述べたHe-Neレーザを用いたin situモニタリングのような光学はある限られた条件で成立する直線偏光であり、光の波としての性格から、楕円偏光の軌跡で光は進行する。光のような波においては、振動が進行方向と一致する縦波では、波の性質は進行方向の周りに対称で、ある方向に特別の性質を持たない。しかし、振動が進行方向と垂直の横波では、その方向の周りに一様な性質を持たない。光の波としての性格を積極的に活用して、古川らの楕円偏光解析法を用いて、氷の結晶表面上の疑似液体層の厚みと光学特性を求める。疑似液体層のin situモニタリングのためには、現在の光学系の見直しを行い、MOCVD法における楕円偏光分析法などのによるin situモニタリングが必要と考え、現在検討を行っている。

また、新規液体MO原料により組成制御の安定性が図られたことにより、CVDプロセスによる応用への道が一歩近づいたといえる。超伝導コイル、送電ケーブルなどの超伝導線材においては長尺化が大きな課題であった。すなわち、安定した原料供給と、常圧に可能な限りの成膜プロセス、さらに成膜速度の高速化の課題を抱えている。本論文で述べた液体MO原料によるCVDプロセスによって、これらの課題が原理上克服された。しかし、本論文で述べてきたCVD装置はセラミックヒータを用いており、基板の大きさ(10mmx10mm)のみを加熱するCold-wall型MOCVD装置を用いており線材などの長尺線を加熱、成膜することができない。また、デバイス応用の面においても、例えば両面成膜が必要なマイクロ波用のフィルターなどにおいても、Cold-wall型MOCVD装置では片面成膜しか行えず、問題点として残る。超伝導膜を片面ごとに成膜する方法も考えられるが、両面とも高特性の均一な超伝導特性が得られない。

そこで、図8-1に示すようなHot-wall型MOCVD装置を設計し、制作し、酸化物系超伝導材料の応用化に着手しようと考えた。Hot-wall型MOCVD装置は制御部、原料槽部、配管部及び反応部から構成されている。制御部、原料槽部及び配管部は、液体MO原料に対応した部品を用いている以外は、第二章で述べたCold-wall型MOCVD装置とはほぼ同様の構造をしている。また、反応部は図8-2に示したように局所加熱型で設計されており、長尺線や両面成膜に適していることが分かる。図中、ファイバーと示した場所に基板やファイバーなどの基材を設置し、赤外線ヒータにより局所的に加熱する。またサンプルホルダーを移動するこ
とや、線材巻き取り機械を用いることにより、長尺化も可能となっている。このようなHot-wall型MOCVD装置を用い、長尺繊や両面性膜への可能性を検討し、CVDプロセスへの実用化に近づきたいと考えている。

このように、酸化物系超伝導体を用いたCVDプロセスにおける基礎的検討及び応用的検討と両面からの課題が未だ残されている。酸化物系超伝導体が発見された時から、数年続いた超伝導フィーバーが落ち着き、それに伴いCVDプロセスを検討するグループが滅りだし、今、液体MO原料を用いたCVDプロセスを最大限に活用して、さらに新たな知見を得ていきたいと考えている。
参考文献

(8-3) 古川義純: 応用物理 61 (1992) p776
謝辞

本論文は、著者が1995年から1998年の間の3年半に（財）国際超電導産業技術研究センター超電導工学研究所及び名古屋大学大学院工学研究科において行った研究成果をまとめたものである。

本研究の遂行ならびに本論文の執筆にあたり、3年間御指導、御助言を賜りました名古屋大学大学院工学研究科教授高井吉明博士に深く感謝の意を表します。

本論文をまとめるにあたり、有益な御助言、御意見を頂きました名古屋大学大学院工学研究科教授早川尚夫博士ならびに名古屋大学大学院工学研究科教授松村年郎博士に謹んで御礼申し上げます。

本研究を遂行するにあたり、終始暖かい励ましを頂きました（財）国際超電導産業技術研究センター超電導工学研究所所長田中昭二博士に感謝いたします。また、3年間の間、終始有益な御指導、御助言を頂きました同研究所第八研究部部長平林泉博士に深く感謝いたします。親切な御助言を頂きました同研究所第四研究部長塩原融博士ならびに同研究所第五研究部長森下忠隆博士に感謝いたします。

研究の遂行にあたっては、超電導工学研究所第八研究部ならびに名古屋大学工学研究科超伝導工学講座の多くの方々に御協力、御助言を頂きました。薄膜評価方法を含め有益な御指導を頂きました名古屋大学大学院工学研究科助教授松波紀明博士に感謝いたします。また、本研究を始めた当初から、共に研究する機会に恵まれ、多大な御協力を頂きました同研究部主任研究員伊藤嘉章氏（現中部電力（株））、同講座永井尚氏（現（株）三洋電機）に感謝致します。本研究を進めるにあたり多大なる御協力を得ました同研究部主任研究員山田容士博士、同研究部研究員長谷川真人氏、同講座熊谷義文氏、同講座岩田守広氏に感謝致します。また、御助言、励ましの言葉を頂いた超電導工学研究所主任研究員松本要博士、主任研究員座間秀明博士を始めとする研究員の皆様や高木淳氏、堀井滋氏を始めとする学生の皆様には感謝します。

本研究を行う機会を与えて頂きました（株）日立製作所日立研究所に感謝致します。また、本研究を論文にまとめるにあたり御理解を頂いた日立研究所所長川上潤三博士、同研究所副所長向尾昭夫博士、同研究所エネルギー素材研究部部長小園裕三博士、同研究部超電導センタ主任研究員東山和寿博士に感謝致します。

最後に私事にわたることを御容赦願い、父吉田洋三、母礼子、弟功のこれまでに感謝

159
するとともに、家族の深い理解と暖かい励ましにより本論文をまとめることができたことに感謝します。
<table>
<thead>
<tr>
<th>論文題目</th>
<th>公表の方法及び時期</th>
<th>著 者</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 学会誌等</td>
<td></td>
<td></td>
</tr>
<tr>
<td>論文題目</td>
<td>公表の方法及び時期</td>
<td>著 者</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>12 Preparation and surface morphology of YBa2Cu${3-x}$O$_y$ films by metalorganic chemical vapor deposition block by block deposition using liquid sources</td>
<td>(Physica Cに投稿中)</td>
<td>Y. Yoshida, Y. Ito, H. Nagai, Y. Takai, I. Hirabayashi</td>
</tr>
<tr>
<td>論文題目</td>
<td>公表の方法及び時期</td>
<td>著 者</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------</td>
<td>-------</td>
</tr>
<tr>
<td>II. 国際会議</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Improvement of Jc in plasma sprayed TI-based thick films</td>
<td>The 5th International Symposium on Superconductivity, Kobe, Japan, abstract p.110, 1992</td>
<td>Y. Yoshida, H. Akata, T. Kanai, T. Kamo, S. Matsuda, 他1名</td>
</tr>
<tr>
<td>4 Preparation of Nd-123 superconducting films by MOCVD</td>
<td>The 1995 International Workshop on Superconductivity co-sponsored by ISTECE and MRS, Hawaii, USA, abstract p.403, 1995</td>
<td>Y. Ito, Y. Yoshida, Y. Mizushima, I. Hirabayashi</td>
</tr>
<tr>
<td>論文題目</td>
<td>公表の方法及び時期</td>
<td>著者者</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>7 Low temperature growth of YBCO crystal by liquid epitaxy</td>
<td>The 1996 International Workshop on Superconductivity, Iwate, Japan, abstract p.171, 1996</td>
<td>Y. Yamada, Y. Niiori, Y. Yoshida, I. Hirabayashi, S. Tanaka</td>
</tr>
<tr>
<td>12 Preparation of YBa$_2$CuxO${y}$ thin films by hot-wall type MOCVD</td>
<td>The 5th International Conference Materials & Mechanisms of Superconductivity High Temperature Superconductors, abstracts p.45, 1997</td>
<td>Y. Ito, Y. Yoshida, M. Iwata, Y. Takai, I. Hirabayashi, 他1名</td>
</tr>
<tr>
<td>論文題目</td>
<td>公表の方法及び時期</td>
<td>著 者</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>16 YBaCu3O7 and NdBaCu3O7 films by metal organic chemical vapor deposition using liquid sources</td>
<td>The 1997 International Workshop on Superconductivity co-sponsored by ISTEC and MRS, Hawaii, USA, abstract p.285, 1997</td>
<td>Y. Yoshida, Y. Ito, H. Nagai, Y. Takai, I. Hirabayashi, 他1名</td>
</tr>
<tr>
<td>17 Transmission electron microscopy studies of NdBaCu3O7 / MgO interface fabricated by MOCVD</td>
<td>Advances in Superconductivity X (Proceedings of the 10th International Symposium on Superconductivity, Gifu, Japan, 1997), 1997, (印刷中)</td>
<td>Y. Sugawara, T. Hirayama, Y. Ikuhara, Y. Yoshida, I. Hirabayashi</td>
</tr>
<tr>
<td>論文題目</td>
<td>公表の方法及び時期</td>
<td>著 者</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>Surface morphology of YBa$_2$Cu3O${7-y}$ thin films by hot-wall type</td>
<td>Advances in Superconductivity X (Proceedings of the 10th International Symposium on Superconductivity, Gifu, Japan, 1997), 1997 (印刷中)</td>
<td>M. Iwata, Y. Yoshida, Y. Ito, I. Hirabayashi, Y. Takai</td>
</tr>
<tr>
<td>Fabrication and characterization of Nd-123 thin films by MOCVD</td>
<td>Advances in Superconductivity X (Proceedings of the 10th International Symposium on Superconductivity, Gifu, Japan, 1997), 1997 (印刷中)</td>
<td>Y. Kumagai, Y. Yoshida, Y. Ito, I. Hirabayashi, Y. Takai</td>
</tr>
</tbody>
</table>