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PREFACE

The present volume is the proceedings of the 5th Japan-China Seminar
on Number Theory “Dreaming in dreams” held during August 27-31, 2008
at Kinki University, Higashi-osaka, Japan, the organizers being Shigeru
Kanemitsu and Jianya Liu with Professor Takashi Aoki as the local orga-
nizer.

The title sounded somewhat romantic or exotic and one of the partici-
pants, Professor Tim. D. Browning, a relative of the world famous poet R.
Browning, expressed a poetic view that the title suggested that one could
dream of proving the RH or whatsoever of the hardest nuts to crack in
dreams. But we chose this title in view of the following due reason. Osaka
is most well-known for its world famous Osaka Castle. The builder of Osaka
Castle, Hideyoshi Toyotomi, a hero in the 16th century made a poem at his
deathbed.“Like a dew drop was I born and into a dew drop am I fading,
all that prevails in Naniwa (the present world) is like dreams in a dream.”
Here Naniwa sounds the same as the old name of Osaka. Also many of
us went to the center of the city (for empty orchestra, perhaps), Namba,
which is the modern name of Naniwa. This gives a good reason to entitle
the seminar. This may not sound poetic but associatively logical. Indeed, at
the end we have a poem composed by Professor Chaohua Jia. Thus we now
have at least four poets among participants, including Professors Tianxin
Cai (a professional), Chaohua Jia, Jianya Liu (who composed a poem in
the proceedings of the 4th China-Japan Seminar), and Tim D. Browning.

The atmosphere was enjoyable as usual and we believe everyone enjoyed
the 5 rich days. We organized various social activities including reception
party at Sheraton-Miyako Hotel to which we thank for their great hospi-
tality and generosity of providing us with champagne bottles. We made a
tour to Kyoto (the bus was arranged through Sheraton-Miyako) and vis-
ited a few musts there. Some of the foreign participants paid multiple vis-
its to Kinkakuji Temple and Kiyomizu Temple. Evening events were also
entertaining which included empty orchestra activities at various places.
We found that not only Chinese participants who were known to be good
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and enthusiastic singers, but most of the Western participants shared the
same spirit. We found Professors Trevor Wooley, Winfried Kohnen, Katsuya
Miyake and Yumiko Hironaka most entertaining. Professor Jörg Brüdern,
though didn’t sing, promised to play the guitar at the next occasion. S.
Kanemitsu, to his regret, missed the chance of attending the ever-night
show including Professor Tim. D. Browning and Professor Koichi Kawada.

Now about the contents of the seminar and the present proceedings.
The talks ranged over a wide spectrum of contemporary number theory.
As can be seen from the papers themselves as well as in the following
brief descriptions in this volume, we succeeded in assembling topics from
Analytic Number Theory (Classical and Modern with emphasis on additive
number theory), Theory of Modular Forms, Algebraic Groups and Algebraic
Number Theory.

In the proceedings we collected not only papers from the participants
but from those invitees who could not attend the seminar, including Profes-
sors Andrzej Schinzel (who was about to come), Igor Shparlinski and Ken
Yamamura.

In [Browning] a new direction of research in analytic number theory is
exhibited, i. e. a quantitative study on the distribution of rational points of
some variety—specifically, a del Pezzo surface of degree 4, V ⊂ P4 which is
defined over the rationals and is assumed to have a conic bundle structure.
The main result is the asymptotic formula for the counting function

NU0,H(B) = #{x ∈ U0(Q) : H(x) ≤ B},
where U0 is a certain Zariski open subset and H(x) is a certain norm func-
tion. The formula reads

NU0,H(B) = cV0,HB(log B)4 + error term,

establishing the Manin conjecture in this case, where cV0,H is the constant
conjectured by Peyre.

The proof involves various ingredients, the geometric Picard group
Pic(V0) ' Z5, analysis of conic sections and classical techniques includ-
ing lattice points counting and divisor problems for binary forms.

[Brüdern-Kawada-Wooley] is the 8th of their series of papers “Additive
representation in thin sequences” I-VII and is a timely summary which
looks over their recent results in an enlightening way.

Their main concern is the diagonal form

λ1x
k
1 + · · ·+ λsx

k
s ,
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as x1, · · · , xs ranges over Z or a subset thereof, where s ≥ 2, k ≥ 1 and
λ1, · · · , λs are non-zero real numbers.

The purpose of the paper is two-fold; on one hand, it centers around
Diophantine inequalities and on the other on the potentials of the methods
developed in the series, including the Davenport-Heilbronn Fourier trans-
form method, a counterpart of the Hardy-Littlewood circle method for Dio-
phantine inequalities. Starting from the case of additive cubic forms, the
authors give a very clear survey on their hitherto contributions, giving
proofs of some of the important theorems, which makes the paper more
instructive and readable.

In the paper [Hoshi-Miyake] the authors are concerned with the FIP
(Fixed Isomorphism Problem) on k-generic polynomial fG

t (X) ∈ k(t)[X],
where k is a field of arbitrary characteristic, G is a finite group and k(t) is
the rational function field over k with n indeterminates t = (t1, t2, · · · , tn)
and where a monic separable polynomial fG

t (X) is called a k-generic poly-
nomial for G if

• (G1) the Galois group of fG
t (X) over k(t) is isomorphic to G

and

• (G1) every G-extension L/K, K ⊃ k may be obtained as
L = SplKfG

a , the splitting field of fG
a over K, for some a =

(a1, a2, · · · , an) ∈ Kn.

The FIP reads: For a field K ⊃ k and a, b ∈ Kn, determine whether
L = SplKfG

a and L = SplKfG
b are isomorphic over K or not.

Two more related problems are stated without details: Subfield Prob-
lem and Field Intersection Problem for generic polynomials and numerical
examples are given in the cases G = D4, D5 (dihedral) and G = C4 (cyclic).

In his paper [Jia], C. -H. Jia gives some developments over the results
on dynamics of the w-function introduced by W. -S. Goldring in 2006,
where dynamics refers to the orbit of successive iterates of the function.
For n = p1p2p3 ∈ S := C3 ∪ B3 (pi’s are prime, not all equal), the w-
function is defined by

w(n) = P (p1 + p2) P (p2 + p3) P (p3 + p1) ,

where P (n) signifies the largest prime factor of n. The objective is to classify
the elements of S and there are many results obtained by Goldring, Y.-G.
Chen et al.
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The inverse problem of finding the inverse image of the w-function is
also of interest. One of the conjectures of Goldring states that every element
of C3, which is the set of all n = p1p2p3 with pi all distinct primes, has
infinitely many C3-parents, i.e. there are infinitely many m ∈ C3 such that
w(m) = n. Jia proves, by making a novel use of the large sieve method, some
quantitative results including Theorem 9 saying that there is an element
of r2r2q ∈ C3, where r1, r2 ∼

√
x log x, q ≤ 4x which has many distinct

C3-parents (where the data is quantitative).

In the paper [Kohnen], Kohnen surveys on the recent results his paper
jointly with Mason on the generalized modular functions (GMF) (of weight
zero) on Γ, where Γ ⊂ SL2(Z) is a subgroup of finite index. A GMF is a
holomorphic function f : H → C satisfying the following two conditions.

i) f(γ ◦ z) = χ(γ)f(z) (∀γ ∈ Γ), where χ : Γ → C∗ is a (not necessarily
unitary) character of Γ,

ii) f is meromorphic at the cusps of Γ.

In the paper [Komori-Matsumoto-Tsumura], the authors report on some
recent developments on the second author’s
Problem: Is it possible to find some functional relations for multiple
zeta-functions which include some value-distribution for MZV’s (multi-
ple zeta values)? Here the multiple zeta-function of complex variables
s = (s1, s2, · · · .sr) is defined by

ζ(s1, s2, . . . , sr) =
∑

m1>m2>···>mr≥1

1
ms1

1 ms2
2 · · ·msr

r
.

and the MZV of depth r is ζ(k1, k2, . . . , kr) with k1, k2, . . . , kr ∈ N, k1 > 1.
The authors are concerned with the multi-variable (version of the) Wit-

ten zeta-function defined by

ζr(s; g) =
∞∑

m1=1

· · ·
∞∑

mr=1

∏

α∈∆+

〈α∨,m1λ1 + · · ·+ mrλr〉−sα ,

where g is a complex semi-simple Lie algebra with rank r, s = (sα)α∈∆+ ∈
Cn and the data appearing on the right-hand side are certain quantities
associated with g.

Theorem 5.1 seems to be the culmination of the results which gives
a general form of the functional relations for the multiple zeta-function
ζr(s,y;∆) with an additive character of a root system, i.e. for

∑

w∈W I

( ∏

α∈∆w−1

(−1)−sα

)
ζr(w−1s, w−1y;∆).
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However, to deduce explicit functional relations for specific root systems
from Theorem 5.1 seems rather cumbersome and the authors give some
handy formulas in §6 which they apply in later sections to deduce explicit
relations for g = A3, B2, B3, C3. There are given many concrete examples
which make the paper readable.

[Liu] is a short introduction to Maass wave forms, which originated from
his lectures at Postech in 2007. Restricting to the simplest setting of the
Maass forms of weight 0 on the full modular group, he manages to give
a quick introduction to its formidable theory and liquidates the situation
more familiar to analytic number-theorists. From the contents one can see
the flowchart of the paper. He starts from Fourier expansion of Maass forms,
proving thereby the Chowla-Selberg formula for the Eisenstein series, goes
on to the spectral decomposition of the Hilbert space of square-integrable
automorphic functions with respect to the non-Euclidean Laplacian, estab-
lishing the facts about the Laplace eigenvalues. After introducing Hecke
theory, he introduces the automorphic L-functions and develop analytic
methods to study them. Towards the end of the paper, a Linnik-type prob-
lem for Maass forms is studied, exhibiting how analytic number theory can
develop on such exotic stages.

There are two nice collections of problems by Andrzej and Igor’.

In [Schinzel] there is a collection of problems concerning the number
N(f) of non-zero coefficients of a polynomial f ∈ K, K being a field. f is
called an N(f)-nomial, e. g. xn−a is a binomial while 4x20 +7x18 +64 is a
trinomial. Problems are about the estimate from above or below on N(f).
E. g. Problem 2 asks about the existence (and boundedness if it exists) of a
constant C(K) such that every trinomial over K has an irreducible factor
f with N(f) < C(K).

In [Shparlinski] many open problems are given on the estimate of ex-
ponential and character sums according to the author’s taste and interest,
with enlightening annotation. Problems fall into two categories; in the first
category new improvements of the estimates are asked for, while the sec-
ond is concerned with applications of these sums. We shall talk about the
second category.

Problem ?? has a natural interpretation in the study of polynomially
growing sequences on orbits of the dynamical system generated by the map
u → gu in Z/gZ. Problem ?? gives the estimate for complexity of fac-
torization algorithm for polynomials over Fp. Problem ?? has applications
to the study of distribution of Selmer groups of a certain family of ellip-
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tic curves. Problem ?? is concerned with the estimate of the exponential
sum of a sparse polynomial and has applications to number theory, com-
puter science and cryptography. Problem ?? is about the exponential sum
of a non-linear recurrence sequence and has applications to pseudo-random
number generation.

We invited Professor Yamamura to contribute his list of determinan-
tal expressions for the class number of Abelian number fields. The theory
started from the paper of Carlitz and Olson in 1955 and has been pursued
constantly. The list is in the spirit of Dilcher-Skula-Slavutskii volume on
Bernoulli numbers, is complete and will be useful for researchers in the
relevant problems.

And we also need to add one sentence, Professor Haruo Tsukada added
corrigendum to his paper published in the last proceedings.

Finally, vote of thanks is due. We would like to thank Kinki University
for its generous permission of using its excellent facilities. The conference
room was equipped with modern conveniences and was very useful in con-
ducting the seminar. We would like to thank Professor Kohji Chinen for
his help in preparing posters of the seminar as well as constant support in
keeping the working conditions in the conference room pleasant. We would
like to thank Dr. Hiromitsu Tanaka for technical help in manipulating mod-
ern devices and for his thoughtful arrangement of things. We would like to
thank Sheraton-Miyako Hotel for its excellent service and hospitality; es-
pecially thanks are due to Messers H. Fujihara and K. Morimoto for their
thoughtful support throughout.

As in the case of the last proceedings, Professor Jing Ma from Jilin
University made a devoted help in editing and we record here our hearty
thanks to her for her excellent and beautiful preparation of the manuscript
of the proceedings. It was a pity that she could not attend the seminar, but
she came to Japan in July, 2009 to complete the editing work.

Finally, we would like to express our hearty thanks to S. Kanemitsu’s
students, Mr. N. -L. Wang and Ms. X. -H. Wang for their devoted support
in making the stay of foreign participants more comfortable and pleasant.

As usual we complete the preface by a poem. This time Professor Chao-
hua Jia composed it.
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We report on the theory of functional relations among zeta-functions of root

systems, including known formulas for their special values. In the first part of
this paper, we present known results on value-relations and functional relations

for zeta-functions of root systems of A2 type. Also, in view of the symmetry of

underlying Weyl groups, we discuss a general framework of functional relations.
In the second part of this paper, we prove several new results; we give a method

for constructing functional relations systematically, and prove new functional
relations among zeta-functions of root systems of types A3, C2(' B2), B3 and

C3, which include Witten’s volume formulas as value-relations with explicit

values of coefficients.

1. Introduction

Let N be the set of natural numbers, N0 the set of non-negative integers, Z
the ring of rational integers, Q the field of rational numbers, R the field of
real numbers and C the field of complex numbers.

The multiple zeta value (MZV) of depth r is defined by

ζ(k1, k2, . . . , kr) =
∑

m1>m2>···>mr≥1

1
mk1

1 mk2
2 · · ·mkr

r

(1.1)
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for k1, k2, . . . , kr ∈ N with k1 > 1 (see Zagier [51] and Hoffman [12]). It
was Euler who first studied the double zeta values and gave some relation
formulas among them such as

k−1∑

j=2

ζ(j, k − j) = ζ(k) (1.2)

for k ∈ N with k ≥ 3, where ζ(s) is the Riemann zeta-function. Equation
(1.2) is called the sum formula for double zeta values (see [9]). Research
on MZVs has been conducted intensively in this decade (see the survey,
[4,13,15]). A recent feature of studies on MZVs is to investigate the structure
of the Q-algebra generated by MZVs.

On the other hand, in the late 1990’s, it was established that the mul-
tiple zeta-function ζ(s1, s2, ..., sr) of complex variables can be continued
meromorphically to the whole complex space Cr by, for example, Essouabri
( [7,8]), Akiyama-Egami-Tanigawa ( [1]), Arakawa-Kaneko ( [3]), Zhao
( [52]) and the second-named author ( [23,25]).

Based on these researches, the second-named author raised the following
problem several years ago (see, for example, [27]).
Problem. Are the known relation formulas for multiple zeta values valid
only at positive integers, or valid continuously also at other values?

In other words, is it possible to find certain functional relations for
multiple zeta-functions, which include some value-relations for MZVs? A
classical example is the following formula which is often called the harmonic
product relation:

ζ(s1)ζ(s2) = ζ(s1, s2) + ζ(s2, s1) + ζ(s1 + s2).

As a related result, Bradley showed a certain class of functional relations
called partition identities (see [5]). However, there are many kinds of rela-
tions among MZVs, so it is natural to expect that there will be many other
classes of functional relations. For example, it seems interesting to prove
certain functional relations which include sum formulas for MZVs. In order
to give an “answer” to some specific cases of this Problem (the specifica-
tion being clear from the context), we consider a wider class of multiple
zeta-functions as follows.

Let g be a complex semisimple Lie algebra with rank r. The Witten
zeta-function associated with g is defined by

ζW (s; g) =
∑
ϕ

(dimϕ)−s, (1.3)
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where the summation runs over all finite dimensional irreducible represen-
tations ϕ of g.

Witten’s motivation [50] for introducing the above zeta-function is to
express the volumes of certain moduli spaces in terms of special values of
(1.3). The expression is called Witten’s volume formula, which especially
implies that

ζW (2k; g) = CW (2k, g)π2kn (1.4)

for any k ∈ N, where n is the number of all positive roots of g and
CW (2k, g) ∈ Q (Witten [50], Zagier [51]). In their work, the value of
CW (2k, g) is not explicitly given.

Let ∆ be the set of all roots of g in the vector space V equipped with an
inner product 〈·, ·〉, ∆+ the set of all positive roots of g, Ψ = {α1, . . . , αr}
the fundamental system of ∆, and α∨j the coroot associated with αj (1 ≤
j ≤ r). Let λ1, . . . , λr be the fundamental weights satisfying 〈α∨i , λj〉 =
λj(α∨i ) = δij (Kronecker’s delta). A more explicit form of ζW (s; g) can
be written down in terms of roots and weights by using Weyl’s dimension
formula (see (1.4) of [18]). Inspired by that form, we introduced in [18] the
multi-variable version of Witten zeta-function

ζr(s; g) =
∞∑

m1=1

· · ·
∞∑

mr=1

∏

α∈∆+

〈α∨,m1λ1 + · · ·+ mrλr〉−sα , (1.5)

where s = (sα)α∈∆+ ∈ Cn. In the case that g is of type Xr, we call (1.5)
the zeta-function of the root system of type Xr, and denote it by ζr(s;Xr),
where X = A,B, C, D, E, F, G. We also use the notation ζW (s;Xr) and
CW (2k, Xr), instead of ζW (s; g) and CW (2k, g), respectively. Note that from
(1.5) and [18, (1.7)], we have

ζW (s;Xr) = K(Xr)sζr(s, . . . , s;Xr), (1.6)

where

K(Xr) =
∏

α∈∆+

〈α∨, λ1 + · · ·+ λr〉. (1.7)

For example, K(A2) = 2 and K(C2) = 6 (see [18, (2.4) and (2.10)]).
More generally, in [18], we introduced multiple zeta-functions associated

with sets of roots. In fact, we studied recursive structures in the family of
those zeta-functions, which can be described in terms of Dynkin diagrams
of underlying root systems. The meromorphic continuation of those zeta-
functions is ensured as a special case of Essouabri’s general theorem ( [7,8]).
It can also be proved by using the Mellin-Barnes integral formula (see [26]).
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In [19], we established a general method for evaluating ζr(s, . . . , s;Xr)
at positive integers by considering generalizations of Bernoulli polynomials.
In terms of those generalized Bernoulli polynomials, we gave a certain gen-
eralization of Witten’s volume formula (1.4) with explicit determination of
the constant CW (2k, Xr).

Several cases of zeta-functions of root systems had already been studied.
A typical case is of A2 type:

ζ2(s1, s2, s3;A2) =
∞∑

m=1

∞∑
n=1

1
ms1ns2(m + n)s3

. (1.8)

In the 1950’s, Tornheim [39] first studied the value ζ2(d1, d2, d3;A2) for
d1, d2, d3 ∈ N, which is called the Tornheim double sum. Independently,
Mordell [33] studied the value ζ2(2d, 2d, 2d;A2) (d ∈ N) and proved, for
example,

ζ2(2, 2, 2;A2) =
1

2835
π6. (1.9)

This determines the value of CW (2k, A2) in (1.4). Following their works,
several value-relations for ζ2(s1, s2, s3;A2) were obtained by several au-
thors (see [6,14,37,40,51]), and also those for its alternating analogues
( [41,43,48]). On the other hand, from the analytic viewpoint, the second-
named author [24] studied the multi-variable function ζ2(s1, s2, s3;A2) for
s1, s2, s3 ∈ C which is also called the Mordell-Tornheim double zeta-
function, denoted by ζMT,2(s1, s2, s3).

Using ζ2(s1, s2, s3;A2), we can give an “answer” to the Problem, that
is, functional relations, for example,

ζ(s + 1, 1)− ζ2(s, 1, 1;A2) + ζ(s + 2) = 0 (1.10)

which holds for all s ∈ C except for singularities of the three functions on the
left-hand side. In fact, letting s = k− 2 for k ≥ 3 in (1.10) and considering
partial fraction decompositions, we can obtain the sum formula (1.2). This
implies that (1.10) is an answer to the Problem. More generally the third-
named author ( [47]) proved functional relations for ζ2(s1, s2, s3;A2) which
include (1.10) (see Theorem 3.1), and for its alternating analogues ( [45]),
and its χ-analogues ( [46]). A little later, Nakamura gave simple proofs of
these results ( [34,35]) whose method was inspired by Zagier’s lecture.

As for the case of C2 type, the second-named author defined
ζ2(s1, s2, s3, s4;C2) and studied its analytic properties (see [26]). A lit-
tle later, the third-named author gave some evaluation formulas for
ζ2(k1, k2, k3, k4;C2) (k1, k2, k3, k4 ∈ N) when k1 +k2 +k3 +k4 is odd ( [44]).
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As for the case of A3 type, Gunnells and Sczech [10] gave explicit forms
of Witten’s volume formulas of this type. Recently the second and the third-
named authors [30] studied ζ3(s;A3), and gave certain functional relations
for them.

Based on Zagier’s work [51] and, in particular, on Nakamura’s obser-
vation mentioned above, we found that the structural background of those
functional relations is given by the symmetry with respect to Weyl groups.
From this viewpoint, we considered this structure in [16–19]. In particular,
in [19], we gave general forms of functional relations for zeta-functions of
root systems. We will recall this result in Section 5.

In the first half of this paper, we summarize known results on func-
tional relations for zeta-functions of root systems, which can be regarded
as answers to the Problem. In Section 2, we recall a method of studying
relations among Dirichlet series, which is called the ‘u-method’, introduced
in [42]. In Section 3, we summarize known results on functional relations
for ζ2(s;A2). In Section 4, we introduce another method to construct func-
tional relations for multiple Dirichlet series ( [31]) which was inspired by
Hardy’s method of proving the functional equation for ζ(s) ( [11]). In Sec-
tion 5, we recall general forms of functional relations for ζr(s;Xr) which
we gave in [19]. This is the most general result stated in the present paper,
but in general, from this theorem, it is not easy to deduce explicit forms of
functional relations in each case. Therefore in the latter half of the paper
we give a different method of constructing explicit functional relations. In
Section 6, we prove a key lemma (Lemma 6.2) to give a certain procedure to
construct functional relations systematically, which has the same flavour as
the u-method. In Section 7, by using this lemma combined with a new idea
of making use of polylogarithms, we give a functional relation for ζ3(s;A3)
which includes the explicit form of Witten’s volume formula of A3 type.
(By “explicit form” we mean that the exact value of CW (2k, g) is also de-
termined.) In Sections 8 and 9, by a combination of the methods in Section
4 and in Section 7, we give functional relations for ζ2(s;C2), for ζ3(s;B3),
and for ζ3(s;C3) which include explicit forms of Witten’s volume formulas.

2. A method to evaluate the Riemann zeta-function

In this section, we introduce a method for evaluating the (multiple) Dirich-
let series at positive integers from the information of its trivial zeros, which
is called the ‘u-method’. In [42], the third-named author first established a
method to prove Euler’s formula for ζ(2k) (k ∈ N). By applying this method
to multiple series, several value-relations and functional relations for them
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have been given (see [40,44–47]). Here we briefly explain this method and
recover Euler’s formula for ζ(s):

ζ(2m) =
(−1)m−122m−1π2m

(2m)!
B2m (m ∈ N), (2.11)

where Bn is the nth Bernoulli number defined by t/(et − 1) =∑
n≥0 Bntn/n!. For a small δ > 0 and u ∈ [1, 1 + δ], we let

F (t;u) :=
2et

et + u
=

∞∑
n=0

En(u)
tn

n!
(|t| < π), (2.12)

where each En(u) is a rational function in u and is continuous for u ∈ [1, 1+
δ] because (∂k/∂tk)F (t;u) is continuous for (t, u) ∈ {|t| < π}×[1, 1+δ]. Let
γ ∈ R with 0 < γ < π, and Cγ : z = γeit for 0 ≤ t ≤ 2π, where i =

√−1.
From (2.12), we have

∫

Cγ

F (z;u)z−n−1dz =
(2πi)En(u)

n!
(n ∈ N0). (2.13)

Let M = M(γ) := max |F (z, u)| for (z, u) ∈ Cγ × [1, 1 + δ], which is inde-
pendent of u ∈ [1, 1 + δ]. Then we obtain

|En(u)|
n!

≤ 1
2π

∫

Cγ

|F (z;u)| |z|−n−1|dz| ≤ M(γ)
γn

(n ∈ N0).

We let φ(s;u) =
∑

n≥1(−u)−nn−s for s ∈ C. As is well known, φ(s;u) is
convergent for <s > 0 when u = 1 and is convergent for any s ∈ C when
u > 1. Furthermore, we see that φ(s; 1) = (21−s − 1)ζ(s). When u > 1, the
second member of (2.12) can be expanded as −2

∑
n≥1(−u)−nent. Hence

we have Em(u) = −2φ(−m;u) for m ∈ N0.
For any k ∈ N and θ ∈ (−π, π), we set

Ik(θ;u) := i

∞∑
n=1

(−u)−n sin(nθ)
n2k+1

. (2.14)

Suppose u ∈ (1, 1 + δ] and θ ∈ (−π, π), then

Ik(θ;u)

=
∞∑

j=0

φ(2k − 2j;u)
(iθ)2j+1

(2j + 1)!

=
k−1∑

j=0

φ(2k − 2j;u)
(iθ)2j+1

(2j + 1)!
− 1

2

∞∑
m=0

E2m(u)
(iθ)2m+2k+1

(2m + 2k + 1)!
.

(2.15)
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If |θ| < γ < π, we see that the right-hand side of (2.15) is uniformly
convergent with respect to u on [1, 1 + δ], so is continuous on u ∈ [1, 1 + δ]
(see Remark 2.1 (ii)). On the other hand, the left-hand side of (2.15) is also
continuous on u ∈ [1, 1 + δ] from the definition of Ik(θ;u). Hence we can
let u → 1 on both sides of (2.15).

Now we arrive at the crucial point of the argument. We use the fact that
ζ(−2m) = 0, that is, E2m(1) = 0 for m ∈ N and E0(1) = 1 (see Remark 2.1
(i)). Then, for θ ∈ (−π, π), we have

Ik(θ; 1) =
k−1∑

j=0

φ(2k − 2j; 1)
(iθ)2j+1

(2j + 1)!
− (iθ)2k+1

2(2k + 1)!
. (2.16)

Since k ≥ 1, each side of (2.16) is continuous in θ ∈ [−π, π]. Hence we can
let θ → π on both sides of (2.16) to obtain

0 = Ik(π; 1) =
k−1∑

j=0

φ(2k − 2j; 1)
(iπ)2j+1

(2j + 1)!
− (iπ)2k+1

2(2k + 1)!
.

For simplicity, we define

A2m = φ(2m; 1)
(2m)!
(iπ)2m

= (21−2m − 1)ζ(2m)
(2m)!
(iπ)2m

(m ∈ N0), (2.17)

and A0 = −1/2. Then (2.16) implies that

k∑

j=0

(
2k + 1
2j + 1

)
A2k−2j = 0

for k ∈ N. Since A0 = −1/2, we obtain

− t

2
=

∞∑

k=0




k∑

j=0

(
2k + 1
2j + 1

)
A2k−2j


 t2k+1

(2k + 1)!
=

( ∞∑
m=0

A2m
t2m

(2m)!

)
et − e−t

2
.

We can easily check that

2t

et − e−t
=

2tet

e2t − 1
=

∞∑
m=0

(
2− 22m

)
B2m

t2m

(2m)!
,

so we have A2m = (22m−1 − 1)B2m for any nonnegative integer m. In view
of (2.17), we obtain Euler’s formula (2.11).

Remark 2.1. (i) It should be noted that the fact

− 2φ(−2m; 1)
(
= −2

(
22m+1 − 1

)
ζ(−2m)

)

= E2m(1) (= 0) (m ∈ N)
(2.18)
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(the trivial zeros of zeta-function!) plays a vital role in the above argument.
In fact, equation (2.18) can be obtained by proving

∞∑
n=0

{−2φ(−n; 1)} tn

n!
=

∞∑
n=0

{−2
(
2n+1 − 1

)
ζ(−n)

} tn

n!

= 1 + 2
∞∑

n=1

(
2n+1 − 1

)
Bn+1

tn

(n + 1)!

= 2 +
4

e2t − 1
− 2

et − 1
=

2et

et + 1
,

(2.19)

because ζ(1 − k) = −Bk/k (k ∈ N; k ≥ 2) and ζ(0) = −1/2. (ii) Also we
note that φ(s;u) is continuous in u as u → 1 + 0 for any s ∈ C. In fact,
similarly to the case of ζ(s), we can easily see that

φ(s;u) =
1

(e2πis − 1) Γ(s)

∫

C

et

et + u
ts−1dt, (2.20)

where C is the contour, that is, the path which starts at +∞, passes through
the real axis, goes around the origin counterclockwise and goes back to +∞.
From (2.20), we immediately obtain the desired continuity.

3. Functional relations for ζ2(s1, s2, s3; A2)

By applying the method introduced in Section 2 to ζ2(s1, s2, s3;A2), the
third-named author gave value-relation formulas for ζ2(s1, s2, s3;A2) (see
[40]). Moreover, applying the above method to the double series in complex
variables, he gave functional relations for ζ2(s1, s2, s3;A2) (see [47]). The
original form in [47, Theorem 4.5] is a little complicated. By using a certain
transformation formula (see Lemma 6.1, which is [28, Lemma 2.1]), we
obtain the following simpler form.

Theorem 3.1. For k, l ∈ N0,

ζ2(k, l, s;A2) + (−1)kζ2(k, s, l;A2) + (−1)lζ2(l, s, k;A2)

= 2
[k/2]∑
ρ=0

(
k + l − 2ρ− 1

l − 1

)
ζ(2ρ)ζ(s + k + l − 2ρ)

+ 2
[l/2]∑
ρ=0

(
k + l − 2ρ− 1

k − 1

)
ζ(2ρ)ζ(s + k + l − 2ρ)

(3.21)
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holds for all s ∈ C except for singularities of functions on both sides.

Proof. For θ, r, u ∈ R with r > 1 and u ∈ [1, 1 + δ], and k, p ∈ N0, we let

F(iθ; r;u) =
∞∑

n=1

(−u)−neint

nr
,

Jp(iθ; k;u) =
ip−1

2
{
F(iθ; k;u) + (−1)p−1F(−iθ; k;u)

}

−
k∑

j=0

φ(k − j;u) εp+1+j
(iθ)j

j!
,

where εm = {1 + (−1)m}/2 for m ∈ Z. Then, similarly to the proof of
(2.16), we see that if k 6≡ p (mod 2) and θ ∈ (−π, π) then Jp(iθ; k;u) → 0
as u → 1. Let

R(s1, s2; s3;u) =
∞∑

m,n=1

(−u)−2m−n

ms1ns2(m + n)s3
,

S(s1, s2; s3;u) =
∞∑

m,n=1

(−u)−m−n

ms1ns2(m + n)s3
,

which are double analogues of φ(s;u). Then, for u ∈ (1, 1 + δ],

Jp(iθ; k;u)F(iθ; r;u)

= ip−1
∞∑

N=0

1
2

{
S(k, r;−N ;u) + (−1)p−1R(k,−N ; r;u)

+ (−1)p−1+NR(r,−N ; k;u)
}

(iθ)N

N !

−
∞∑

N=0

k∑

j=0

(
N

j

)
φ(k − j;u)φ(r + j −N ;u)εp+1+j

(iθ)N

N !

+
(−i)p−1

2

∞∑
m=1

u−2m

mk+r
.

As noted above, the left-hand side tends to 0 as u → 1 when k 6≡ p (mod 2)
and θ ∈ (−π, π). Therefore, similarly to the case of ζ(s), we can obtain the
original form of the functional relation ( [47, Lemma 4.5]):

ζ2(k, l, s;A2) + (−1)kζ2(k, s, l;A2) + (−1)lζ2(l, s, k;A2)
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= 2
k∑

j=0
j≡k (2)

(
21−k+j − 1

)
ζ(k − j)

×
[j/2]∑
µ=0

(iπ)2µ

(2µ)!

(
l − 1 + j − 2µ

j − 2µ

)
ζ(l + j + s− 2µ)

− 4
k∑

j=0
j≡k (2)

(
21−k+j − 1

)
ζ(k − j)

[(j−1)/2]∑
µ=0

(iπ)2µ

(2µ + 1)!

l∑
ν=0

ν≡l (2)

ζ(l − ν)

×
(

ν − 1 + j − 2µ

j − 2µ− 1

)
ζ(ν + j + s− 2µ)

holds for all s ∈ C except for singularities of functions on both sides, where
k, l ∈ N. Additionally, using a transformation formula in Lemma 6.1 below
( [28, Lemma 2.1]), we obtain (3.21).

Example 3.1. Setting (k, l) = (2, 2), (3, 2) in (3.21), we have

ζ2(2, 2, s;A2) + 2ζ2(2, s, 2;A2) = 4ζ(2)ζ(s + 2)− 6ζ(s + 4), (3.22)

ζ2(3, s, 2;A2)− ζ2(3, 2, s;A2)− ζ2(2, s, 3;A2)

= 10ζ(s + 5)− 6ζ(2)ζ(s + 3). (3.23)

Setting s = 2 in (3.22) and (3.23), we have (1.9) and

ζ2(2, 2, 3;A2) = 6ζ(2)ζ(5)− 10ζ(7), (3.24)

respectively, where (3.24) was given by Tornheim [39]. Note that
ζ2(k, 0, l;A2) = ζ(l, k). Then, setting s = 0 in (3.23), we have ζ(2, 3) −
ζ(3, 2) = 10ζ(5) − 5ζ(2)ζ(3). On the other hand, it is well-known that
ζ(3, 2) + ζ(2, 3) = ζ(2)ζ(3) − ζ(5). Combining these results, we obtain the
known results

ζ(2, 3) =
9
2
ζ(5)− 2ζ(2)ζ(3); ζ(3, 2) = −11

2
ζ(5) + 3ζ(2)ζ(3),

which were originally obtained by double shuffle relations.
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Remark 3.1. In [32], the second and the third-named authors generalized
the result in Theorem 3.1 to the case of polylogarithmic analogues, that is,
∞∑

m,n=1

xn

mknl(m+n)s
+ (−1)k

∞∑
m,n=1

xn

mkns(m+n)l
+ (−1)l

∞∑
m,n=1

xm+n

mlns(m+n)k

= 2
[k/2]∑
ρ=0

(
k + l − 2ρ− 1

k − 2ρ

)
ζ(2ρ)

∞∑
m=1

xm

ms+k+l−2ρ

+ 2
[l/2]∑
ρ=0

(
k + l − 2ρ− 1

l − 2ρ

)
ζ(2ρ)

∞∑
m=1

xm

ms+k+l−2ρ
, (3.25)

for x ∈ C with |x| ≤ 1. The idea of this generalization gives an important
key to construct functional relations for zeta-functions of the type of A3,
C2, B3 and C3 (see Remark 7.1).

In [34], Nakamura gave an alternative simple proof of (3.21) whose
method was inspired by Zagier’s lecture. We explain this method. We
denote by {Bn(x)} the Bernoulli polynomials defined by text/(et − 1) =∑

n≥0 Bn(x)tn/n! (|t| < 2π). It is known (see [2, p.266 - p.267]) that
B2j(0) = B2j for j ∈ N0 and

Bj(x− [x]) = − j!
(2πi)j

lim
K→∞

K∑

k=−K
k 6=0

e2πikx

kj
(j ∈ N), (3.26)

where [ · ] is the integer part. For k ∈ Z, j ∈ N we have

∫ 1

0

e−2πikxBj(x) dx =

{
0 (k = 0),

−(2πik)−jj! (k 6= 0),
(3.27)

by (3.26). We further quote [2, p.276 19.(b)], for p, q ≥ 1, which is

Bp(x)Bq(x) =
max(p,q)/2∑

k=0

{
p

(
q

2k

)
+ q

(
p

2k

)}
B2kBp+q−2k(x)

p + q − 2k

− (−1)p p!q!
(p + q)!

Bp+q.

(3.28)

On the other hand, for a, b ≥ 2, and <(s) > 1, we have
∫ 1

0

∞∑

l=1

e2πilx

la

∞∑
m=1

e2πimx

mb

∞∑
n=1

e−2πinx

ns
dx = ζ2(a, b, s;A2),
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∫ 1

0

∞∑

l,m=1

e2πimx

(m + l)alb

∞∑
n=1

e−2πinx

ns
dx = ζ2(b, s, a;A2),

∫ 1

0

∞∑

l=1

e2πilx

la+b−j

∞∑
m=1

e−2πinx

ns
dx = ζ(a + b + s− j).

Combining these relations and (3.26)-(3.28), we see that

ζ2(a, b, s;A2) + (−1)bζ2(b, s, a;A2) + (−1)aζ2(s, a, b;A2)

=
2

a!b!

max(a,b)/2∑

k=0

{
a

(
b

2k

)
+ b

(
a

2k

)}

× (a + b− 2k − 1)!(2k)!ζ(2k)ζ(a + b− s− 2k), (3.29)

which coincides with (3.21). Nakamura also gave some more generalized for-
mulas for double zeta and L-functions and triple zeta-functions of Mordell
and Tornheim type ( [35,36]). Furthermore triple zeta and L-functions were
studied by Nakamura, Ochiai, and the second and the third-named authors
( [28,29]). The aforementioned Lemma 6.1 first appeared in those studies.

4. Another method to construct functional relations for
Dirichlet series

In this section, we introduce another method to study functional relations
for Dirichlet series, whose basic idea was originally introduced by Hardy.
Hardy gave an alternative proof of the functional equation for ζ(s) ( [11], see
also [38] Section 2.2). By generalizing this method, we can give functional
relations for multiple zeta-functions, for example, (3.21) in Theorem 3.1.

First we consider a general Dirichlet series Z(s) =
∑∞

m=1 amm−s where
{an} ⊂ C. Let <s = ρ (ρ ∈ R) be the abscissa of convergence of Z(s). This
means that if <s > ρ then Z(s) is convergent and if <s < ρ then Z(s) is
not convergent. We further assume that 0 ≤ ρ < 1.

Theorem 4.1 ( [31], Theorem 3.1). Assume that
∑∞

m=1 am sin(mt) =
0 is boundedly convergent for t > 0 and that, for ρ < s < 1,

lim
λ→∞

∞∑
m=1

am

∫ ∞

λ

ts−1 sin(mt)dt = 0. (4.30)

Then Z(s) can be continued meromorphically to C, and actually Z(s) = 0
for all s ∈ C. The same conclusion holds if we assume the formulas similar
to the above but “ sin” (two places) is replaced by “ cos”.
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We give a simple example showing how to apply this theorem. From
(2.16) and the formula obtained by differentiating both sides of (2.16), we
have

∞∑

l=1

(−1)l cos(lθ)
l2p

=
p∑

ν=0

φ(2p− 2ν)
(−1)νθ2ν

(2ν)!
, (4.31)

∞∑

l=1

(−1)l sin(lθ)
l2q+1

=
q∑

ν=0

φ(2q − 2ν)
(−1)νθ2ν+1

(2ν + 1)!
(4.32)

for p ∈ N, q ∈ N0 and θ ∈ (−π, π). Note that the case q = 0 in (4.32)
is a little delicate. To prove this case, we define I0(θ;u) for θ ∈ (−π, π)
and u ∈ [1, 1 + δ] by (2.14). Then equation (2.15) in the case q = 0 holds
for u ∈ (1, 1 + δ]. From [49, § 3.35] (see also [31, Lemma 4.1]) and Abel’s
theorem (see [49, § 3.71]), we can let u → 1 in (2.15) for I0(θ;u). Then, as
well as (2.16), we obtain the case q = 0 in (4.32). Additionally we note that
if p, q ∈ N then (4.31) and (4.32) hold for θ ∈ [−π, π] because both sides
are continous for θ ∈ [−π, π].

Combining these results and putting t = θ+π, we obtain, for t ∈ R\2πZ,

∞∑
m,n=1

cos((m + n)t)
m2n2

+ 2
∞∑

m,n=1

cos(mt)
n2(m + n)2

+ 6
∞∑

m=1

cos(mt)
m4

− 4ζ(2)
∞∑

m=1

cos(mt)
m2

= 0

(4.33)

(see [31, Lemma 2.2]). We denote by f(t) the left-hand side of (4.33). Note
that each sum on the left-hand side of (4.33) is absolutely and uniformly
convergent for t ∈ R. Hence, for s ∈ R with 0 < s < 1, we have

0 =
∫ ∞

0

ts−1f(t)dx

=
∫ ∞

0

ts−1

{ ∞∑
m,n=1

cos((m + n)t)
m2n2

+ 2
∞∑

m,n=1

cos(mt)
n2(m + n)2

+ 6
∞∑

m=1

cos(mt)
m4

− 4ζ(2)
∞∑

m=1

cos(mt)
m2

}
dt. (4.34)

By the same argument as in [38, Section 2.1], we have
∫ ∞

λ

cos(Nx)
x1−s

dx =
[
sin(Nx)
Nx1−s

]∞

λ

− s− 1
N

∫ ∞

λ

sin(Nx)
x2−s

dx = O

(
1

Nλ1−s

)
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for N ∈ N. Using this result, we see that

lim
λ→∞

∞∑
m,n=1

1
m2n2

∫ ∞

λ

cos((m + n)x)
x1−s

dx = 0,

lim
λ→∞

∞∑
m,n=1

1
n2(m + n)2

∫ ∞

λ

cos(mx)
x1−s

dx = 0,

lim
λ→∞

∞∑
m=1

1
ml

∫ ∞

λ

cos(mx)
x1−s

dx = 0 (l = 2, 4)

hold for 0 < s < 1. Hence we can justify term-by-term integration on the
right-hand side of (4.34). Therefore it follows from Theorem 4.1 and the
facts ∫ ∞

0

cos bx

x1−s
dx =

π

2
b−s sec(π(1− s)/2)

Γ(1− s)
,

∫ ∞

0

sin bx

x1−s
dx =

π

2
b−s cosec(π(1− s)/2)

Γ(1− s)

for b > 0 and 0 < s < 1 (see [49, Chapter 12]) that the functional relation

ζ2(2, 2, s;A2) + 2ζ2(s, 2, 2;A2) + 6ζ(s + 4)− 4ζ(2)ζ(s + 2) = 0 (4.35)

holds for 0 < s < 1 (and then for any s ∈ C by analytic continuation). This
coincides with (3.22).

By using this method, we can give functional relations for more general
types of multiple zeta-functions (see [31]).

5. A general form of functional relations

In the previous sections, we present various methods to obtain functional
relations. However in those methods, it is not clear why these functional
relations exist. From the viewpoint of Weyl group symmetry in the un-
derlying Lie algebra structure, we can give a certain explanation of this
phenomenon. In fact, in view of the Weyl group symmetry, we can show a
general form of functional relations for zeta-functions of root systems. For
the details, see [19,22].

First we prepare some notation. Let V be an r-dimensional real vector
space equipped with an inner product 〈·, ·〉. Let ∆ be a finite reduced root
system in V of Xr type and Ψ = {α1, . . . , αr} its fundamental system. Let
∆+ and ∆− be the set of all positive roots and negative roots respectively.
Then we have a decomposition of the root system ∆ = ∆+

∐
∆−. Let Q∨
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be the coroot lattice, P the weight lattice, P+ the set of integral dominant
weights and P++ the set of integral strongly dominant weights respectively
defined by

Q∨ =
r⊕

i=1

Zα∨i , P =
r⊕

i=1

Zλi, P+ =
r⊕

i=1

N0 λi, P++ =
r⊕

i=1

Nλi, (5.36)

where the fundamental weights {λj}r
j=1 form a basis dual to Ψ∨ satisfying

〈α∨i , λj〉 = δij . The reflection σα : V → V with respect to a root α ∈ ∆
is defined by σα(v) = v − 〈α∨, v〉α. For a subset A ⊂ ∆, let W (A) be the
group generated by reflections σα for α ∈ A. Let W = W (∆) be the Weyl
group. Then σj = σαj

(1 ≤ j ≤ r) generates W . We denote the fundamental
domain called the fundamental Weyl chamber by C = {v ∈ V | 〈Ψ∨, v〉 ≥
0}, where 〈Ψ∨, v〉 means any of 〈α∨, v〉 for α∨ ∈ Ψ∨. Then W acts on the
set of Weyl chambers WC = {wC | w ∈ W} simply transitively. Moreover
if wx = y for x, y ∈ C, then x = y holds. The stabilizer Wx of a point x ∈ V

is generated by the reflections which stabilize x. We see that P+ = P ∩ C.
For w ∈ W , we set ∆w = ∆+ ∩ w−1∆−.

Let I ⊂ {1, . . . , r} and ΨI = {αi | i ∈ I} ⊂ Ψ. Let VI be the lin-
ear subspace spanned by ΨI . Then ∆I = ∆ ∩ VI is a root system in VI

whose fundamental system is ΨI . For the root system ∆I , we denote the
corresponding coroot lattice (resp. weight lattice etc.) by Q∨I =

⊕
i∈I Zα∨i

(resp. PI =
⊕

i∈I Zλi etc.). Let ∆∨
+ be the set of all positive coroots, and

W I = {w ∈ W | ∆∨
I+ ⊂ w∆∨

+}.
Let y ∈ V and s = (sα)α∈∆ ∈ C|∆+|, where ∆ is the quotient of ∆

obtained by identifying α and −α. Define an action of W to s by (ws)α =
sw−1α. Now we introduce the “twisted” multiple zeta-function of the form

ζr(s,y;∆) =
∑

λ∈P++

e2π
√−1〈y,λ〉 ∏

α∈∆+

1
〈α∨, λ〉sα

. (5.37)

A motivation of introducing such a generalized form with exponential fac-
tors is to study multiple L-functions of root systems (see [17,21]). When
y = 0 in (5.37), the function ζr(s;∆) = ζr(s, 0;∆) coincides with the zeta-
function of the root system ∆, defined by (1.5).

For s ∈ C, <s > 1 and x, c ∈ R, let

Ls(x, c) = − Γ(s + 1)
(2π

√−1)s

∑

n∈Z
n+c6=0

e2π
√−1(n+c)x

(n + c)s
. (5.38)

Then we obtain the following general form of functional relations for zeta-
functions of root systems.
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Theorem 5.1 ( [19], Theorem 4.3). When I 6= ∅, for s ∈ S and y ∈ V ,
we have

S(s,y; I;∆) (5.39)

:=
∑

w∈W I

( ∏

α∈∆w−1

(−1)−sα

)
ζr(w−1s, w−1y;∆)

= (−1)|∆+\∆I+|
( ∏

α∈∆+\∆I+

(2π
√−1)sα

Γ(sα + 1)

) ∑

λ∈PI++

e2π
√−1〈y,λ〉 ∏

α∈∆I+

1
〈α∨, λ〉sα

×
∫ 1

0

. . .

∫ 1

0

exp
(
−2π

√−1
∑

α∈∆+\(∆I+∪Ψ)

xα〈α∨, λ〉
)

×
( ∏

α∈∆+\(∆I+∪Ψ)

Lsα
(xα, 0)

)

×
(∏

i∈Ic

Lsαi

(
〈y, λi〉 −

∑

α∈∆+\(∆I+∪Ψ)

xα〈α∨, λi〉, 0
)) ∏

α∈∆+\(∆I+∪Ψ)

dxα.

Remark 5.1. We also studied the case I = ∅ and gave an integral expres-
sion of S(s,y; ∅;∆) similar to (5.39) (see [19, Theorem 4.4]).

Example 5.1. Here we give an alternative proof of (3.23). Set ∆+ =
∆+(A2) = {α1, α2, α1 +α2}, and y = 0, s = (2, s, 3) for s ∈ C with <s > 1,
I = {2}, that is, ∆I+ = {α2}. Then we see that the left-hand side of (5.39)
is

S(s,y; I;∆) =
∞∑

m,n=1

1
m2ns(m + n)3

−
∞∑

m,n=1
m 6=n

1
m2ns(−m + n)3

= ζ2(2, s, 3;A2)− ζ2(3, 2, s;A2) + ζ2(3, s, 2;A2).

On the other hand, the right-hand side of (5.39) is
(

(2π
√−1)2

2!

)(
(2π

√−1)3

3!

) ∞∑
m=1

1
ms

∫ 1

0

e−2π
√−1mxL2(x, 0)L3(−x, 0)dx

=
(

(2π
√−1)2

2!

)(
(2π

√−1)3

3!

) ∞∑
m=1

1
ms

∫ 1

0

e−2π
√−1mxB2(x)B3(1− x)dx,

by Lk(x, 0) = Bk(x− [x]) for x ∈ R (see (3.26)). Hence, by using (3.27) and
(3.28), we obtain (3.23).
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6. Some lemmas for explicit construction of functional
relations

From the general form of functional relations in Theorem 5.1, it is possible
to deduce explicit formulas of functional relations for zeta-functions of root
systems, e.g., as in Example 5.1. However, if a rank of the root system is
high, then it seems quite hard to give explicit forms directly from Theorem
5.1. Therefore now we introduce a different procedure to construct explicit
functional relations. For this aim, we give some general preparatory lemmas.
We first quote the following lemma from our previous paper. Let φ(s) :=∑

n≥1(−1)nn−s =
(
21−s − 1

)
ζ(s), and εν := (1 + (−1)ν)/2 (ν ∈ Z).

Lemma 6.1 ( [28] Lemma 2.1). Let f, g : N0 → C be arbitrary func-
tions. Then, for a ∈ N, we have

a∑

k=0

φ(a− k)εa−k

[k/2]∑
µ=0

f(k − 2µ)
(−1)µπ2µ

(2µ)!
=

[a/2]∑

ξ=0

ζ(2ξ)f(a− 2ξ), (6.40)

and

a∑

k=1

φ(a− k)εa−k

[(k−1)/2]∑
µ=0

g(k − 2µ)
(−1)µπ2µ

(2µ + 1)!
= −1

2
g(a). (6.41)

Corollary 6.1. With the same notation as in Lemma 6.1, put

h(d) :=
[d/2]∑
µ=0

g(d− 2µ)
(−1)µπ2µ

(2µ + 1)!
(d ∈ N0).

Then we have

g(d) = −2
d∑

µ=0

φ(d− µ)εd−µh(µ) (d ∈ N0).

Proof. In (6.41), we replace g(x) by g(x− 1). Then (6.41) implies that

a∑

k=1

φ(a− k)εa−kh(k − 1) = −1
2
g(a− 1)

for a ∈ N. Replacing a by d + 1 and k− 1 by µ, respectively, we obtain the
desired assertion.
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Using Lemma 6.1, we prove the following lemma which is a key to con-
struct functional relations. Let h ∈ N, and

C := {C(l) ∈ C | l ∈ Z, l 6= 0} ,

D := {D(N ;m; η) ∈ R |N, m, η ∈ Z, N 6= 0, m ≥ 0, 1 ≤ η ≤ h} ,

A := {aη ∈ N | 1 ≤ η ≤ h}

be sets of numbers indexed by integers. We let

(
x

k

)
:=

{
x(x−1)···(x−k+1)

k! (k ∈ N),

1 (k = 0).

Lemma 6.2. With the above notation, we assume that the infinite series
appearing in

∑
N∈Z
N 6=0

(−1)NC(N)eiNθ − 2
h∑

η=1

aη∑

k=0

φ(aη − k)εaη−k

×
k∑

ξ=0





∑
N∈Z
N 6=0

(−1)ND(N ; k − ξ; η)eiNθ





(iθ)ξ

ξ!
(6.42)

are absolutely convergent for θ ∈ [−π, π], and that (6.42) is a constant
function for θ ∈ [−π, π]. Then, for d ∈ N0,

∑
N∈Z
N 6=0

(−1)NC(N)eiNθ

Nd
= 2

h∑
η=1

aη∑

k=0

φ(aη − k)εaη−k

×
k∑

ξ=0

{ k−ξ∑
ω=0

(
ω + d− 1

ω

)
(−1)ω

∑
m∈Z
m 6=0

(−1)mD(m; k − ξ − ω; η)eimθ

md+ω

}
(iθ)ξ

ξ!

− 2
d∑

k=0

φ(d− k)εd−k

k∑

ξ=0

{ h∑
η=1

aη−1∑
ω=0

(
ω + k − ξ

ω

)
(−1)ω

×
∑
m∈Z
m 6=0

D(m; aη − 1− ω; η)
mk−ξ+ω+1

}
(iθ)ξ

ξ!
(6.43)

holds for θ ∈ [−π, π], where the infinite series appearing on both sides of
(6.43) are absolutely convergent for θ ∈ [−π, π].
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Proof. For d ∈ N0, put

Gd(θ;C;D;A) (6.44)

:=
1
id

[∑
l∈Z
l 6=0

(−1)lC(l)eilθ

ld
− 2

h∑
η=1

aη∑

k=0

φ(aη − k)εaη−k

×
k∑

ξ=0

{ ξ∑
ν=0

(
d− 1 + ξ − ν

ξ − ν

)
(−1)ξ

∑
m∈Z
m 6=0

(−1)mD(m; k − ξ; η)eimθ

md+ξ−ν

(−iθ)ν

ν!

}]

=
1
id

[∑
l∈Z
l 6=0

(−1)lC(l)eilθ

ld
− 2

h∑
η=1

aη∑

k=0

φ(aη − k)εaη−k

×
k∑

ν=0

{k−ν∑
ω=0

(
d− 1 + ω

ω

)
(−1)ω

∑
m∈Z
m 6=0

(−1)mD(m; k − ν − ω; η)eimθ

md+ω

}
(iθ)ν

ν!

]
.

Note that the second equality of (6.44) follows by putting ω = ξ − ν. Then
the assumption of (6.42) implies that

G0(θ;C;D;A) = R0 (θ ∈ [−π, π]), (6.45)

where there exists a constant R0 = R0(C;D;A) ∈ C, because
(−1+ξ−ν

ξ−ν

)
=

0 if ξ > ν. Furthermore we can check that Gd(θ;C;D;A) is absolutely
convergent with respect to θ ∈ [−π, π] and that

d

dθ
Gd(θ;C;D;A) = Gd−1(θ;C;D;A) (d ∈ N). (6.46)

In fact, if we differentiate the second member of (6.44) with respect to θ,
then we have

d

dθ
Gd(θ;C;D;A)

=
1

id−1

[∑
l∈Z
l 6=0

(−1)lC(l)eilθ

ld−1
− 2

h∑
η=1

aη∑

k=0

φ(aη − k)εaη−k

×
k∑

ξ=0

{ ξ∑
ν=0

(
d− 1 + ξ − ν

ξ − ν

)
(−1)ξ

∑
m∈Z
m 6=0

(−1)mD(m; k − ξ; η)eimθ

md+ξ−ν−1

(−iθ)ν

ν!

−
ξ∑

ν=1

(
d− 1 + ξ − ν

ξ − ν

)
(−1)ξ

∑
m∈Z
m 6=0

(−1)mD(m; k − ξ; η)eimθ

md+ξ−ν

(−iθ)ν−1

(ν − 1)!

}]
.
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Replacing ν−1 by µ in the last member of the above summation, and using
the well-known relation

−
(

m− 1
l − 1

)
+

(
m

l

)
=

(
m− 1

l

)
(l, m ∈ N),

we obtain (6.46).
By integrating both sides of (6.45) and multiplying by i on both sides, we

have iG1(θ;C;D;A) = R0(iθ) + R1 with some constant R1 = R1(C;D;A).
Repeating this operation, and by (6.46), we obtain

idGd(θ;C;D;A) =
d∑

k=0

Rd−k
(iθ)k

k!
, (6.47)

where there exist constants Rk = Rk(C;D;A) (0 ≤ k ≤ d). We can ex-
plicitly determine {Rk} as follows. Putting θ = ±π in (6.47) with d + 1
(d ∈ N0), we have

id+1

2(iπ)
{Gd+1(π;C;D;A)−Gd+1(−π;C;D;A)}

=
[d/2]∑
µ=0

Rd−2µ
(iπ)2µ

(2µ + 1)!
. (6.48)

It follows from (6.44) that the left-hand side of (6.48) is equal to

− 2
h∑

η=1

aη∑

k=0

φ(aη − k)εaη−k (6.49)

×
[(k−1)/2]∑

τ=0

{k−2τ−1∑
ω=0

(
d + ω

ω

)
(−1)ω

∑
m∈Z
m 6=0

D(m; k − 2τ − 1− ω; η)
md+ω+1

}
(iπ)2τ

(2τ + 1)!
.

Applying (6.41) with

g(x) =
x−1∑
ω=0

(
d + ω

ω

)
(−1)ω

∑
m∈Z
m 6=0

D(m;x− 1− ω; η)
md+ω+1

,

we can rewrite (6.48) as

h∑
η=1

aη−1∑
ω=0

(
d + ω

ω

)
(−1)ω

∑
m∈Z
m 6=0

D(m; aη − 1− ω; η)
md+ω+1

=
[d/2]∑
ν=0

Rd−2ν
(iπ)2ν

(2ν + 1)!
. (6.50)
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Hence, by Corollary 6.1, we have

Rd = Rd(C;D;A) (6.51)

= −2
d∑

ν=0

φ(d− ν)εd−ν

h∑
η=1

aη−1∑
ω=0

(
ν + ω

ω

)
(−1)ω

∑
m∈Z
m 6=0

D(m; aη − 1− ω; η)
mν+ω+1

for d ∈ N0. Therefore, combining (6.44),(6.47) and (6.51), we have

∑
l∈Z
l 6=0

(−1)lC(l)eilθ

ld
− 2

h∑
η=1

aη∑

k=0

φ(aη − k)εaη−k (6.52)

×
k∑

ν=0

{ k−ν∑
ω=0

(
d− 1 + ω

ω

)
(−1)ω

∑
m∈Z
m 6=0

(−1)mD(m; k − ν − ω; η)eimθ

md+ω

}
(iθ)ν

ν!

= −2
d∑

µ=0

d−µ∑
ν=0

φ(d− µ− ν)εd−µ−ν

×
h∑

η=1

aη−1∑
ω=0

(
ν + ω

ω

)
(−1)ω

∑
m∈Z
m 6=0

D(m; aη − 1− ω; η)
mν+ω+1

(iθ)µ

µ!
.

Changing the running indices (µ, ν) into (k, ξ) with k = µ+ν and ξ = µ ≤ k,
we find that the right-hand side of (6.52) is equal to the second term on
the right-hand side of (6.43).

7. Functional relations for ζ3(s; A3)

In the rest of this paper, we will give explicit forms of functional relations
for zeta-functions of root systems by using lemmas proved in Section 6. In
this section, we consider the case of Ar type.

Fix p ∈ N and s ∈ R with s > 1 and x ∈ C with |x| = 1. From (4.31),
we have




∑
l∈Z
l 6=0

(−1)leilθ

l2p
− 2

p∑

j=0

φ(2p− 2j)
(iθ)2j

(2j)!




∞∑
m=1

(−1)mxmeimθ

ms
= 0 (7.53)
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for θ ∈ [−π, π]. Hence we have

∑
l∈Z, l 6=0

m≥1
l+m 6=0

(−1)l+mxmei(l+m)θ

l2pms

− 2
p∑

j=0

φ(2p− 2j)

{ ∞∑
m=1

(−1)mxmeimθ

ms

}
(−1)jθ2j

(2j)!

= −
∞∑

m=1

xm

ms+2p
(7.54)

for θ ∈ [−π, π]. Now we use Lemma 6.2 with h = 1, a1 = 2p,

C(N) =
∑

l 6=0, m≥1
l+m=N

xm

l2pms
(N ∈ Z, N 6= 0),

and D(N ;µ; 1) = xNN−s (if µ = 0 and N ≥ 1), or = 0 (otherwise).
Under these choices, we see that the left-hand side of (7.54) is of the form
(6.42) because ε2p−k = 1 (0 ≤ k ≤ 2p) implies k = 2j (0 ≤ j ≤ p).
Furthermore the right-hand side of (7.54) is a constant, because we fix s, x

and p. Therefore we can apply Lemma 6.2 with d = 2q for q ∈ N. Then
(6.43) gives that

0 =
∑

l 6=0, m≥1
l+m 6=0

(−1)l+mxmei(l+m)θ

l2pms(l + m)2q

− 2
p∑

j=0

φ(2p− 2j)
2j∑

ξ=0

(
2q − 1 + 2j − ξ

2q − 1

)
(−1)2j−ξ

×
∞∑

m=1

(−1)mxmeimθ

ms+2q+2j−ξ

(iθ)ξ

ξ!

+ 2
q∑

j=0

φ(2q − 2j)
2j∑

ξ=0

(
2p− 1 + 2j − ξ

2p− 1

)
(−1)2p−1

×
∞∑

m=1

xm

ms+2p+2j−ξ

(iθ)ξ

ξ!
= 0 (7.55)

for θ ∈ [−π, π], where we replace k by 2j in (6.43) because (a1, d) = (2p, 2q)
as mentioned above. This relation will play an important role in the next
section. Here we apply Lemma 6.1 to the real part of (7.55) in the case
θ = π and x = 1. Then we have the following.
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Proposition 7.1. For p, q ∈ N,
∑

l∈Z, l 6=0
m≥1

l+m 6=0

1
l2pms(l + m)2q

= 2
p∑

ν=0

(
2p + 2q − 2ν − 1

2q − 1

)
ζ(2ν)ζ(s + 2p + 2q − 2ν)

+ 2
q∑

ν=0

(
2p + 2q − 2ν − 1

2p− 1

)
ζ(2ν)ζ(s + 2p + 2q − 2ν) (7.56)

holds for s ∈ C except for singularities of functions on both sides.

Note that (7.56) essentially coincides with (3.21) in the case (k, l) =
(2p, 2q), because the left-hand side of (7.56) can be easily transformed to
that of (3.21) in the case (k, l) = (2p, 2q). This implies that, from relation
(7.53) which is given by multiplying two quantities of A1 type, we can obtain
relation (7.56) for zeta-functions of A2 and A1 type. From the view point of
Dynkin diagrams, we may say that (7.53) corresponds to two vertices, and
the above procedure of applying Lemma 6.2 to obtain (7.56) corresponds to
the fact that the Dynkin diagram of A2 can be produced by joining those
two vertices. Based on this observation, instead of (7.53), we next combine
a quantity of A2 type and a quantity of A1 type to get a relation for zeta-
functions of A3 and of A2 type. From (1.5), we see that the zeta-function
of root system of A3 type is defined by

ζ3(s1, s2, s3, s4, s5, s6;A3)

=
∞∑

l=1

∞∑
m=1

∞∑
n=1

1
ls1ms2ns3(l + m)s4(m + n)s5(l + m + n)s6

.
(7.57)

Fix p, q, b ∈ N and s ∈ R with s > 1 and x ∈ C with |x| = 1. From
(4.31), we have




∑
l∈Z
l 6=0

(−1)leilθ

l2p
− 2

p∑

j=0

φ(2p− 2j)
(iθ)2j

(2j)!




×
∑

m∈Z, m 6=0
n≥1

m+n6=0

(−1)m+nxnei(m+n)θ

m2qns(m + n)2b
= 0 (7.58)

for θ ∈ [−π, π]. This formula corresponds to a diagram of A2 and another
vertex. Next we use Lemma 6.2, which gives the procedure of joining these
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two figures to obtain the diagram of A3. First, by separating the terms
corresponding to l + m + n = 0, we have

∑
l,m 6=0, n≥1

m+n6=0, l+m+n6=0

(−1)l+m+nxnei(l+m+n)θ

l2pm2qns(m + n)2b

− 2
p∑

j=0

φ(2p− 2j)





∑
m 6=0
n≥1

m+n6=0

(−1)m+nxnei(m+n)θ

m2qns(m + n)2b





(−1)jθ2j

(2j)!

= −
∑
m 6=0
n≥1

m+n6=0

xn

m2qns(m + n)2p+2b
(7.59)

for θ ∈ [−π, π]. We can apply Lemma 6.2 with h = 1, a1 = 2p,

C(N) =
∑

l,m 6=0
n≥1

m+n6=0
l+m+n=N

xn

l2pm2qns(m + n)2b
,

D(N ;µ; 1) =





∑
m 6=0
n≥1

m+n=N

xn

m2qns(m + n)2b
(ν = 0, N 6= 0),

0 (ν ≥ 1, N 6= 0),

and d = 2c (c ∈ N). Formula (7.59) implies that the assumptions of Lemma
6.2 are satisfied, so consequently we have

∑
l,m 6=0, n≥1

m+n6=0, l+m+n6=0

(−1)l+m+nxnei(l+m+n)θ

l2pm2qns(m + n)2b(l + m + n)2c

= 2
p∑

j=0

φ(2p− 2j)
2j∑

ξ=0

(
2j − ξ + 2c− 1

2c− 1

)
(−1)2j−ξ

×
∑
m 6=0
n≥1

m+n6=0

(−1)m+nxnei(m+n)θ

m2qns(m + n)2b+2c+2j−ξ

(iθ)ξ

ξ!

− 2
c∑

j=0

φ(2c− 2j)
2j∑

ξ=0

(
2j − ξ + 2p− 1

2p− 1

)
(−1)2p−1

×
∑
m 6=0
n≥1

m+n6=0

xn

m2qns(m + n)2p+2b+2j−ξ

(iθ)ξ

ξ!
.
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Putting x = −e−iθ (θ ∈ R) on both sides and separating the terms corre-
sponding to l + m = 0, we have

∑
l,m 6=0, n≥1

l+m 6=0, m+n6=0
l+m+n6=0

(−1)l+mei(l+m)θ

l2pm2qns(m + n)2b(l + m + n)2c

− 2
p∑

j=0

φ(2p− 2j)
2j∑

ξ=0

(
2j − ξ + 2c− 1

2c− 1

)
(−1)2j−ξ

×
∑
m 6=0
n≥1

m+n6=0

(−1)meimθ

m2qns(m + n)2b+2c+2j−ξ

(iθ)ξ

ξ!

+ 2
c∑

j=0

φ(2c− 2j)
2j∑

ξ=0

(
2j − ξ + 2p− 1

2p− 1

)
(−1)2p−1

×
∑
m 6=0
n≥1

m+n6=0

(−1)ne−inθ

m2qns(m + n)2p+2b+2j−ξ

(iθ)ξ

ξ!

= −
∑
m 6=0
n≥1

m+n6=0

1
m2p+2qns+2c(m + n)2b

.

Again we apply Lemma 6.2 with h = 2, a1 = 2p, a2 = 2c and d = 2a for
a ∈ N. Then

∑
l,m 6=0, n≥1

l+m 6=0, m+n6=0
l+m+n6=0

(−1)l+mei(l+m)θ

l2pm2qns(l + m)2a(m + n)2b(l + m + n)2c

= 2
p∑

j=0

φ(2p− 2j)
2j∑

ξ=0

2j−ξ∑
ω=0

(
ω + 2a− 1

ω

)
(−1)ω

(
2j − ξ − ω + 2c− 1

2c− 1

)

× (−1)2j−ξ−ω
∑
m 6=0
n≥1

m+n6=0

(−1)meimθ

m2q+2a+ωns(m + n)2b+2c+2j−ξ−ω

(iθ)ξ

ξ!

− 2
c∑

j=0

φ(2c− 2j)
2j∑

ξ=0

2j−ξ∑
ω=0

(
ω + 2a− 1

ω

)
(−1)ω

(
2j − ξ − ω + 2p− 1

2p− 1

)

× (−1)2p−1(−1)2a+ω
∑
m 6=0
n≥1

m+n6=0

(−1)ne−inθ

m2qns+2a+ω(m + n)2p+2b+2j−ξ−ω

(iθ)ξ

ξ!
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− 2
a∑

j=0

φ(2a− 2j)
2j∑

ξ=0

2p−1∑
ω=0

(
ω + 2j − ξ

ω

)
(−1)ω

(
2p + 2c− 2− ω

2c− 1

)

× (−1)2p−1−ω
∑
m 6=0
n≥1

m+n6=0

1
m2q+2j−ξ+ω+1ns(m + n)2p+2b+2c−1−ω

(iθ)ξ

ξ!

+ 2
a∑

j=0

φ(2a− 2j)
2j∑

ξ=0

2c−1∑
ω=0

(
ω + 2j − ξ

ω

)
(−1)ω

(
2p + 2c− 2− ω

2p− 1

)

× (−1)2p−1(−1)2j−ξ+ω+1
∑
m 6=0
n≥1

m+n6=0

1
m2qns+2j−ξ+ω+1(m+n)2p+2b+2c−1−ω

(iθ)ξ

ξ!

holds for θ ∈ [−π, π]. Now we put θ = π in this equation and take its real
part. For simplicity, we denote the obtained equation by J1 = J2 + J3 +
J4 + J5. First we consider J1. This can be divided into the following:

∑
l≥1

m≥1
n≥1

+
∑
l≤−1
m≥1
n≥1

l+m 6=0
l+m+n6=0

+
∑
l≥1

m≤−1
n≥1

l+m 6=0
m+n6=0

l+m+n6=0

+
∑
l≤−1

m≤−1
n≥1

m+n6=0
l+m+n6=0

,

which we denote by J11 + J12 + J13 + J14. We can immediately see that
J11 = ζ3(2p, 2q, s, 2a, 2b, 2c;A3). For J12, replacing l by −l, we have

J12 =
∑

l≥1, m≥1
n≥1, l 6=m

l 6=m+n

1
(−l)2pm2qns(−l + m)2a(m + n)2b(−l + m + n)2c

.

Here, putting j = −l + m if l < m and k = l−m if l > m, respectively, we
have

J12 =
∑

l≥1, j≥1
n≥1

1
l2p(l + j)2qnsj2a(l + j + n)2b(j + n)2c

+
∑

k≥1, m≥1
n≥1, k 6=n

1
(k + m)2pm2qnsk2a(m + n)2b(−k + n)2c

,

where the first term on the right-hand side is ζ3(2p, 2a, s, 2q, 2c, 2b;A3).
Furthermore, putting j′ = −k + n if k < n and k′ = k − n if k > n,
respectively, in the second term on the right-hand side, we can obtain

J12 = ζ3(2p, 2a, s, 2q, 2c, 2b;A3) + ζ3(2q, 2a, 2c, 2p, s, 2b;A3)

+ ζ3(2q, s, 2c, 2b, 2a, 2p;A3).
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Similarly we can express J13 and J14 as sums of values of the zeta-function
of A3 type. Therefore J1 can be transformed to the left-hand side of the
following theorem. On the other hand, if we apply (6.40) to J2+J3+J4+J5,
then it can be transformed to the right-hand side of the following theorem
with

T (2d, s, 2e) =
∑

m 6=0, n≥1
m+n6=0

1
m2dns(m + n)2e

for d, e ∈ N. From Proposition 7.1, we see that T (2d, s, 2e) can be written
as (7.60) below.

Theorem 7.1. For p, q, a, b, c ∈ N,

ζ3(2p, 2q, s, 2a, 2b, 2c;A3) + ζ3(2p, 2a, s, 2q, 2c, 2b;A3)

+ ζ3(2q, 2a, 2c, 2p, s, 2b;A3) + ζ3(2q, s, 2c, 2b, 2a, 2p;A3)

+ ζ3(2a, 2p, 2b, 2q, 2c, s;A3) + ζ3(2a, 2c, 2b, s, 2p, 2q;A3)

+ ζ3(s, 2c, 2p, 2a, 2b, 2q;A3) + ζ3(2b, 2q, 2a, s, 2p, 2c;A3)

+ ζ3(2b, s, 2a, 2q, 2c, 2p;A3) + ζ3(2p, 2b, s, 2c, 2q, 2a;A3)

+ ζ3(2c, 2p, 2q, 2b, 2a, s;A3) + ζ3(2c, 2b, 2q, 2p, s, 2a;A3)

= 2
p∑

ξ=0

ζ(2ξ)
2p−2ξ∑
ω=0

(
ω + 2a− 1

ω

)(
2p + 2c− 2ξ − ω − 1

2c− 1

)

× T (2q + 2a + ω, s, 2p + 2b + 2c− 2ξ − ω)

+ 2
c∑

ξ=0

ζ(2ξ)
2c−2ξ∑
ω=0

(
ω + 2a− 1

ω

)(
2p + 2c− 2ξ − ω − 1

2p− 1

)

× T (2q, s + 2a + ω, 2p + 2b + 2c− 2ξ − ω)

+ 2
a∑

ξ=0

ζ(2ξ)
2p−1∑
ω=0

(
ω + 2a− 2ξ

ω

)(
2p + 2c− 2− ω

2c− 1

)

× T (2q + 2a− 2ξ + ω + 1, s, 2p + 2b + 2c− 1− ω)

+ 2
a∑

ξ=0

ζ(2ξ)
2c−1∑
ω=0

(
ω + 2a− 2ξ

ω

)(
2p + 2c− ω − 2

2p− 1

)

× T (2q, s + 2a− 2ξ + ω + 1, 2p + 2b + 2c− ω − 1)
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holds for s ∈ C except for singularities of functions on both sides, where

T (2d, s, 2e) = 2
d∑

ν=0

(
2d + 2e− 2ν − 1

2e− 1

)
ζ(2ν)ζ(s + 2d + 2e− 2ν)

+ 2
e∑

ν=0

(
2d + 2e− 2ν − 1

2d− 1

)
ζ(2ν)ζ(s + 2d + 2e− 2ν).

(7.60)

Example 7.1. In the case when (p, q, a, b, c) = (k, k, k, k, k) and s = 2k

for k ∈ N in Theorem 7.1, we recover the explicit expression for Wit-
ten’s volume formula of A3 type, which has been proved by Gunnells and
Sczech ( [10, Proposition 8.5]). For example, in the case when (p, q, a, b, c) =
(1, 1, 1, 1, 1), we obtain

4ζ3(2, 2, s, 2, 2, 2;A3) + 2ζ3(2, s, 2, 2, 2, 2;A3)

+ 4ζ3(2, 2, 2, s, 2, 2;A3) + 2ζ3(2, 2, 2, 2, 2, s;A3)

= 678ζ(s + 10)− 512ζ(2)ζ(s + 8)

+ 148ζ(4)ζ(s + 6) + 4ζ(6)ζ(s + 4),

(7.61)

because ζ3(s1, s2, s3, s4, s5, s6;A3) = ζ3(s3, s2, s1, s5, s4, s6;A3). In particu-
lar when s = 2, we obtain the explicit value of CW (2, A3), that is,

ζ3(2, 2, 2, 2, 2, 2;A3) =
23

2554051500
π12. (7.62)

In our previous work [16, Theorem 3.4], we already obtained the functional
relation between ζ3(s;A3) and ζ2(s;A2), and checked that the functional
relation implicitly implies (7.62), by using the properties of ζ2(s;A2). On
the other hand, we can see that the above formula in Theorem 7.1 itself
includes the explicit form of Witten’s volume formula of A3 type.

Example 7.2. By the same method as above, we can obtain the following
formulas ( [30]):

ζ3(1, 1, 1, 2, 1, 2;A3) = − 29
175

ζ(2)4 + ζ(3)ζ(5)− 1
2
ζ(6, 2),

ζ3(1, 1, 2, 1, 2, 1;A3) =
2683
1050

ζ(2)4 +
1
2
ζ(2)ζ(3)2 − 16ζ(3)ζ(5) +

29
4

ζ(6, 2),

ζ3(1, 1, 1, 2, 1, 3;A3) =
2
5
ζ(2)2ζ(5) + 10ζ(2)ζ(7)− 53

3
ζ(9).

Remark 7.1. Here we summarize the method developed in this section.
The starting point is the simple identity (4.31) (and (4.32)), which is based
on the fact ζ(−2n) = 0 (n ∈ N). One basic idea is to multiply (4.31) by
an infinite series (see (7.53))) to obtain a new identity (see (7.54)). Then
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we apply the argument of repeated integration, embodied in Lemma 6.2,
to deduce the functional relations. This procedure is the essence of the “u-
method” mentioned in Sections 2 and 3, though the parameter u > 1 does
not appear in this section.

However, the original u-method (developed, for instance, in [30]) is un-
satisfactory because it only produces functional relations in which some of
the variables should be equal to 0. In order to remove this restriction, we
introduce the idea of considering the infinite series of polylogarithm type
(that is, with an additional parameter x in the numerators). This idea, in-
spired by the method in [32] (see Remark 3.3), was first successfully used
in [16] under the name of the “polylogarithm technique”. This additional
flexibility enables us to deduce more general type of functional relations
such as Theorem 7.1. We will also use this technique in the following sec-
tions.

We may proceed further. Next we combine a quantity of A3 type and a
quantity of A1 type to obtain




∑
k∈Z
k 6=0

(−1)keikθ

k2p
− 2

p∑

j=0

φ(2p− 2j)
(iθ)2j

(2j)!




×
∑

l,m∈Z, n≥1,
l,m 6=0, l+m 6=0

m+n6=0, l+m+n6=0

(−1)l+m+nxmynei(l+m+n)θ

l2qm2rns(l + m)2a(m + n)2b(l + m + n)2c
= 0

for p, q, r, a, b, c ∈ N and x, y ∈ C with |x| = 1 and |y| = 1. Again, by using
Lemma 6.2 repeatedly, we will be able to obtain the functional relation for
zeta-functions of A4 and A3 type. Then, by using the result in Theorem
7.1, we will be able to obtain functional relations for zeta-functions of A4

and A1 type, which include explicit forms of Witten’s volume formulas of
A4 type, for example,

ζ4(2, 2, 2, 2, 2, 2, 2, 2, 2, 2;A4) =
1

650970015609375
π20. (7.63)

By continuing this procedure inductively, it seems to be possible to ob-
tain functional relations which include explicit forms of Witten’s volume
formulas of Ar type for any r ∈ N.
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8. Functional relations for ζ2(s; C2)

In this section, we study

ζ2(s1, s2, s3, s4;C2) =
∞∑

m=1

∞∑
n=1

1
ms1ns2(m + n)s3(m + 2n)s4

(8.64)

(see [18, (6.1)], also [19, Example 7.3]). As noted in [18, Section 2], we know
that

ζ2(s1, s2, s3, s4;B2) =
∞∑

m=1

∞∑
n=1

1
ms1ns2(m + n)s3(2m + n)s4

(8.65)

(see [18, (2.11)]), which coincides with ζ2(s2, s1, s3, s4;C2). This fact is the
natural consequence of the isomorphism B2 ' C2.

Here we consider ζ2(s;C2) and construct explicit functional relations
which include explicit forms of Witten’s volume formulas of C2 type.

As we mentioned in the previous section, the procedure of producing
a functional relation for ζ2(s;A2) corresponds to the fact that the Dynkin
diagram of A2 can be produced by adding one edge which joins two vertices.
From this viewpoint, we should step on the procedure corresponding to
adding another edge to the Dynkin diagram of A2 to obtain the diagram
of C2, by using Lemma 6.2.

Replacing x by −xeiθ on the left-hand side of (7.55), we have

∑
l∈Z, l 6=0

m≥1, l+m 6=0

(−1)lxmei(l+2m)θ

l2pms(l + m)2q

− 2
p∑

j=0

φ(2p− 2j)
2j∑

ξ=0

(
2q − 1 + 2j − ξ

2q − 1

)
(−1)2j−ξ

∞∑
m=1

xme2imθ

ms+2q+2j−ξ

(iθ)ξ

ξ!

− 2
q∑

j=0

φ(2q − 2j)
2j∑

ξ=0

(
2p− 1 + 2j − ξ

2p− 1

) ∞∑
m=1

(−1)mxmeimθ

ms+2p+2j−ξ

(iθ)ξ

ξ!
= 0

for θ ∈ [−π, π]. From the first sum, we separate the terms corresponding
to the condition l + 2m = 0 and move them to the right-hand side. Then,
as well as in the case of (7.54), applying Lemma 6.2 with (h, a1, a2, d) =
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(2, 2p, 2q, 2r) for r ∈ N, we obtain

∑
l∈Z, l 6=0

m≥1, l+m 6=0
l+2m 6=0

(−1)lxmei(l+2m)θ

l2pms(l + m)2q(l + 2m)2r

− 2
p∑

j=0

φ(2p− 2j)
2j∑

ξ=0

2j−ξ∑
ω=0

(
ω + 2r − 1

ω

)
(−1)ω

×
(

2q − 1 + 2j − ξ − ω

2q − 1

)
(−1)2j−ξ−ω 1

22r+ω

∞∑
m=1

xme2imθ

ms+2q+2j−ξ+2r

(iθ)ξ

ξ!

− 2
q∑

j=0

φ(2q − 2j)
2j∑

ξ=0

2j−ξ∑
ω=0

(
ω + 2r − 1

ω

)
(−1)ω

×
(

2p− 1 + 2j − ξ − ω

2p− 1

) ∞∑
m=1

(−1)mxmeimθ

ms+2p+2j−ξ+2r

(iθ)ξ

ξ!

+ 2
r∑

j=0

φ(2r − 2j)
2j∑

ξ=0

2p−1∑
ω=0

(
ω + 2j − ξ

ω

)
(−1)ω

×
(

2p + 2q − 2− ω

2q − 1

)
(−1)2p−1−ω 1

22j−ξ+ω+1

∞∑
m=1

xm

ms+2q+2j−ξ+2p

(iθ)ξ

ξ!

+ 2
r∑

j=0

φ(2r − 2j)
2j∑

ξ=0

2q−1∑
ω=0

(
ω + 2j − ξ

ω

)
(−1)ω

×
(

2p + 2q − 2− ω

2p− 1

) ∞∑
m=1

xm

ms+2p+2j−ξ+2q

(iθ)ξ

ξ!
= 0 (8.66)

for θ ∈ [−π, π]. Then, putting (x, θ) = (1, π) in (8.66) and applying Lemma
6.1 to the real part of this equation, we obtain the following relation which
holds for s > 1, and furthermore for s ∈ C except for singularities by the
meromorphic continuation of ζ2(s;C2).

Theorem 8.1. For p, q, r ∈ N,

ζ2(2p, s, 2q, 2r;C2) + ζ2(2p, 2q, s, 2r;C2)

+ ζ2(2r, 2q, s, 2p;C2) + ζ2(2r, s, 2q, 2p;C2)
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= 2
p∑

ν=0

ζ(2ν)ζ(2p + 2q + 2r − 2ν + s)

×
2p−2ν∑
µ=0

1
22r+µ

(
2p + 2q − 2ν − µ− 1

2q − 1

)(
2r − 1 + µ

2r − 1

)

+ 2
q∑

ν=0

ζ(2ν)ζ(2p + 2q + 2r − 2ν + s)

×
2q−2ν∑
µ=0

(−1)µ

(
2p + 2q − 2ν − µ− 1

2p− 1

)(
2r − 1 + µ

2r − 1

)

+ 2
r∑

ν=0

ζ(2ν)ζ(2p + 2q + 2r − 2ν + s)

×
2p−1∑
µ=0

1
22r−2ν+µ+1

(
2p + 2q − µ− 2

2q − 1

)(
2r − 2ν + µ

2r − 2ν

)

+ 2
r∑

ν=0

ζ(2ν)ζ(2p + 2q + 2r − 2ν + s)

×
2q−1∑
µ=0

(−1)µ+1

(
2p + 2q − µ− 2

2p− 1

)(
2r − 2ν + µ

2r − 2ν

)

holds for all s ∈ C except for singularities of functions on both sides. Note
that singularities of ζ2(s, C2) have been determined in [18, Theorem 6.2].

Example 8.1. Putting (p, q, r) = (1, 1, 1) in Theorem 8.1, we can obtain

ζ2(2, s, 2, 2;C2) + ζ2(2, 2, s, 2;C2) = −39
16

ζ(s + 6) +
3
2
ζ(2)ζ(s + 4). (8.67)

In particular when s = 2, we obtain

ζ2(2, 2, 2, 2;C2) =
π8

302400
, (8.68)

which have already been obtained in [19, (7.24)]. It should be noted that
Equations (8.67) and (8.70) mentioned below coincide with Equations (2.6)
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and (2.7) in [16], respectively. Note that, in [16], we used the notation
ζ2(s1, s2, s3, s4;B2) defined by

∞∑
m=1

∞∑
n=1

1
(2m + n)s1ns2ms3(m + n)s4

,

different from (8.65) (see [18, Section 2]).

Remark 8.1. Using the same method as in the proof of Theorem 8.1, we
can prove that

ζ2(p, s, q, r;C2) + (−1)pζ2(p, q, s, r;C2) + (−1)p+qζ2(r, q, s, p;C2)

+ (−1)p+q+rζ2(r, s, q, p;C2)

= 2(−1)p

{ [p/2]∑
ν=0

ζ(2ν)ζ(p + q + r − 2ν + s)

×
p−2ν∑
µ=0

1
2r+µ

(
p + q − 2ν − µ− 1

q − 1

)(
r − 1 + µ

r − 1

)

+
[q/2]∑
ν=0

ζ(2ν)ζ(p + q + r − 2ν + s)

×
q−2ν∑
µ=0

(−1)µ

(
p + q − 2ν − µ− 1

p− 1

)(
r − 1 + µ

r − 1

)

+
[r/2]∑
ν=0

ζ(2ν)ζ(p + q + r − 2ν + s)

×
p−1∑
µ=0

1
2r−2ν+µ+1

(
p + q − µ− 2

q − 1

)(
r − 2ν + µ

r − 2ν

)

+
[r/2]∑
ν=0

ζ(2ν)ζ(p + q + r − 2ν + s)

×
q−1∑
µ=0

(−1)µ+1

(
p + q − µ− 2

p− 1

)(
r − 2ν + µ

r − 2ν

)}
(8.69)

holds for all s ∈ C except for singularities of functions on both sides, where
p, q, r ∈ N. For example, we have

ζ2(2, s, 2, 1;C2) + ζ2(2, 2, s, 1;C2) + ζ2(1, 2, s, 2;C2)− ζ2(1, s, 2, 2;C2)

= 3ζ(2)ζ(s + 3)− 39
8

ζ(s + 5). (8.70)
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In particular, putting s = 2 in (8.70), we have

ζ2(2, 2, 2, 1;C2) =
3
2
ζ(2)ζ(5)− 39

16
ζ(7),

which coincides with our previous result in [44, Example in §3 ]. Note
that the left-hand side of (8.69) is equal to S(s,y; I;∆) for ∆ = ∆(C2),
s = (p, s, q, r), y = 0 and I = {2}. Therefore we can see that Theorem 8.1
corresponds to the case C2 of Theorem 5.1.

9. Functional relations for ζ3(s; B3) and for ζ3(s; C3)

In this section, we consider ζ3(s;B3) and ζ3(s;C3) defined by

ζ3(s1, s2, s3, s4, s5, s6, s7, s8, s9;B3)

=
∞∑

m1=1

∞∑
m2=1

∞∑
m3=1

m−s1
1 m−s2

2 m−s3
3 (m1 + m2)−s4(m2 + m3)−s5

× (2m2 + m3)−s6(m1 + m2 + m3)−s7(m1 + 2m2 + m3)−s8

× (2m1 + 2m2 + m3)−s9 , (9.71)

and

ζ3(s1, s2, s3, s4, s5, s6, s7, s8, s9;C3)

=
∞∑

m1=1

∞∑
m2=1

∞∑
m3=1

m−s1
1 m−s2

2 m−s3
3 (m1 + m2)−s4(m2 + m3)−s5

× (m2 + 2m3)−s6(m1 + m2 + m3)−s7(m1 + m2 + 2m3)−s8

× (m1 + 2m2 + 2m3)−s9 , (9.72)

which have been continued meromorphically to the whole space whose pos-
sible singularities have been determined in [18, Theorems 6.1 and 6.3]. Note
that ζ3(s;D3) essentially coincides with ζ3(s;A3) which has been considered
in [16,30].

We aim to prove functional relations for these functions, namely gener-
alize the result in Theorems 7.1 and 8.1 to the cases B3 and C3. However,
it seems too complicated to treat these cases in full generality. Hence we
study some special cases as follows.

First we prove the following functional relation for ζ3(s;C3). The basic
structure of the proof, based on Lemma 6.2, is similar to that in the proof
of Theorem 7.1 for ζ3(s;A3). A novel point here is that we will also use the
result described in Section 4.
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Theorem 9.1. The functional relation

8ζ3(2, 2, s, 2, 2, 2, 2, 2, 2;C3) + 8ζ3(2, 2, 2, 2, s, 2, 2, 2, 2;C3)

+ 8ζ3(2, 2, 2, 2, 2, 2, s, 2, 2;C3)

=
184775

512
ζ(s + 16)− 16875

64
ζ(2)ζ(s + 14) +

513
8

ζ(4)ζ(s + 12)

+
25
8

ζ(6)ζ(s + 10) +
1
4
ζ(8)ζ(s + 8)

(9.73)

holds for s ∈ C except for singularities of functions on both sides. In par-
ticular when s = 2,

ζ3(2, 2, 2, 2, 2, 2, 2, 2, 2;C3) =
19

8403115488768000
π18, (9.74)

hence CW (2, C3) = 19/16209713520 in Witten’s volume formula (1.4).

Proof. Instead of (7.53) or (7.58), we start the same argument as in the
proof of Proposition 7.1 or Theorem 7.1 from the relation

{G(θ; 2, 2, 2;x) + G(−θ; 2, 2, 2;x−1)}
∞∑

n=1

(−1)nyneinθ

ns
= 0 (9.75)

for s > 1, where we denote by G(θ; 2, 2, 2;x) the left-hand side of (7.55)
in the case (2p, 2q, s) = (2, 2, 2). Then, by replacing −m (m ≥ 1) by m

(m ≤ −1) on the left-hand side of (9.75), we can rewrite (9.75) to

∑
l 6=0, m 6=0

n≥1, l+m 6=0

(−1)l+m+nxmynei(l+m+n)θ

l2m2ns(l + m)2

− 2
1∑

j=0

φ(2− 2j)
2j∑

ξ=0

(
1 + 2j − ξ

1

)
(−1)2j−ξ

×
∑
m 6=0
n≥1

(−1)m+nxmynei(m+n)θ

m4+2j−ξns

(iθ)ξ

ξ!

+ 2
1∑

j=0

φ(2− 2j)
2j∑

ξ=0

(
1 + 2j − ξ

1

)
(−1)

∑
m 6=0
n≥1

(−1)nxmyneinθ

m4+2j−ξns

(iθ)ξ

ξ!
= 0.

As well as in the proof of Theorem 7.1, separate the constant terms corre-
sponding to l + m + n = 0 in the first term and to m + n = 0 in the second
term on the left-hand side, move them to the right-hand side, and apply
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Lemma 6.2 with d = 2. Then we obtain
∑

l 6=0, m 6=0
n≥1, l+m 6=0

l+m+n6=0

(−1)l+m+nxmynei(l+m+n)θ

l2m2ns(l + m)2(l + m + n)2

− 2
1∑

j=0

φ(2− 2j)
2j∑

ξ=0

2j−ξ∑
ω=0

(
ω + 1

ω

)
(−1)ω

(
1 + 2j − ξ − ω

1

)
(−1)2j−ξ−ω

×
∑
m 6=0
n≥1

(−1)m+nxmynei(m+n)θ

m4+2j−ξ−ωns(m + n)2+ω

(iθ)ξ

ξ!

+ · · · = 0,

where we omit three terms on the left-hand side, which are of the form
similar to the second term on the left-hand side. Note that each of their
denominators is of the form of A2 type. Next we replace y by −yeiθ, move
the constant terms to the right-hand side and apply Lemma 6.2 with d = 2.
Then we have

∑
l 6=0, m 6=0

n≥1, l+m 6=0
l+m+n6=0

l+m+2n6=0

(−1)l+mxmynei(l+m+2n)θ

l2m2ns(l + m)2(l + m + n)2(l + m + 2n)2

− 2
1∑

j=0

φ(2− 2j)
2j∑

ξ=0

2j−σ∑
σ=0

(
σ + 1

σ

)
(−1)σ

2j−ξ−σ∑
ω=0

(
ω + 1

ω

)
(−1)2j−ξ−σ

×
(

1 + 2j − ξ − σ − ω

1

)∑
m 6=0
n≥1

(−1)mxmynei(m+2n)θ

m4+2j−ξ−ωns(m + n)2+ω(m + 2n)2+σ

(iθ)ξ

ξ!

+ · · · = 0,

where we omit seven terms of the forms similar to the second term. Each
denominator of these terms is of the form of C2 type. Replacing x by −xeiθ,
applying Lemma 6.2 with d = 2, and putting θ = π, we obtain

∑
l 6=0, m 6=0

n≥1, l+m 6=0
l+m+n6=0

l+m+2n6=0
l+2m+2n6=0

xmyn

l2m2ns(l + m)2(l + m + n)2(l + m + 2n)2(l + 2m + 2n)2

+ · · · = 0, (9.76)

where the omitted terms are of the form of C2 type. Next, we replace (x, y)
by

(
xeiθ, yeiθ

)
and

(
xe−iθ, ye−iθ

)
respectively, and subtract these terms.
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Then we have

∑
l 6=0, m 6=0

n≥1, l+m 6=0
m+n6=0

l+m+n6=0
l+m+2n6=0

l+2m+2n6=0

xmyn sin((m + n)θ)
l2m2ns(l + m)2(l + m + n)2(l + m + 2n)2(l + 2m + 2n)2

+ · · · = 0, (9.77)

where the omitted terms are double series of similar forms.
Finally, in order to complete the proof of this theorem, we need to apply

Theorem 4.1 to each term on the left-hand side of (9.77) with s = 2. Then
we consequently obtain

∑
l 6=0, m 6=0

n≥1, l+m 6=0
m+n6=0

l+m+n6=0
l+m+2n6=0

l+2m+2n6=0

xmyn

l2m2ns(l + m)2(m + n)2(l + m + n)2(l + m + 2n)2(l + 2m + 2n)2

+ · · · = 0. (9.78)

We further replace (x, y) by
(
eiθ, e2iθ

)
and

(
e−iθ, e−2iθ

)
respectively, sub-

tract these terms, and apply Theorem 4.1 with s = 2. Then we obtain

∑
l 6=0, m 6=0

n≥1, l+m 6=0
m+n6=0, m+2n6=0

l+m+n6=0
l+m+2n6=0

l+2m+2n6=0

1
l2m2ns(l + m)2(m + n)2(m + 2n)2(l + m + n)2

× 1
(l + m + 2n)2(l + 2m + 2n)2

+ · · · = 0,

(9.79)

where the omitted terms are finite sums of zeta values of C2 type. Though
we omit their explicit forms, we can also apply Theorem 8.1 to these terms,
and can express them as the right-hand side of (9.73). On the other hand,
similarly to the case of Theorem 7.1, we can transform the first term on
the left-hand side of (9.79) to the left-hand side of (9.73).

Moreover, from (2.16) in [18], we can easily check that K(C3) = 720 (see
definition (1.7)). Hence, combining (1.6) and (9.74), we obtain the value of
CW (2, C3).

Similarly we can obtain the following formula in the case B3.
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Theorem 9.2. The functional relation

4ζ3(2, s, 2, 2, 2, 2, 2, 2, 2;B3) + 4ζ3(s, 2, 2, 2, 2, 2, 2, 2, 2;B3) (9.80)

+ 4ζ3(2, 2, 2, s, 2, 2, 2, 2, 2;B3) + 4ζ3(2, 2, 2, 2, s, 2, 2, 2, 2;B3)

+ 4ζ3(2, 2, 2, 2, 2, 2, s, 2, 2;B3) + 4ζ3(2, 2, 2, 2, 2, 2, 2, s, 2;B3)

=
(

9 · 2−s−6 +
5626955

256

)
ζ(s + 16) +

(
5 · 2−s−5 − 59131

4

)
ζ(2)ζ(s + 14)

+
(

5 · 2−s−5 +
17155

8

)
ζ(4)ζ(s + 12) +

241
16

ζ(6)ζ(s + 10) +
1
8
ζ(8)ζ(s + 8)

holds for s ∈ C except for singularities of functions on both sides. In par-
ticular when s = 2, we have

ζ3(2, 2, 2, 2, 2, 2, 2, 2, 2;B3) =
19

8403115488768000
π18, (9.81)

hence CW (2, B3) = 19/16209713520 in Witten’s volume formula (1.4).

Proof. The argument is similar to that in the proof of Theorem 9.1. In
fact, instead of (9.75), we start the same argument from the relation

{H(θ; 2, 2, 2, 2;x) + H(−θ; 2, 2, 2, 2;x)}
∞∑

n=1

(−1)nyneinθ

ns
= 0 (9.82)

for s > 1, where we denote by H(θ; 2, 2, 2, 2;x) the left-hand side of (8.66)
in the case (2p, 2q, 2r, s) = (2, 2, 2, 2). Repeating the same procedure as in
the proof of Theorem 9.1, we can describe the left-hand side of (9.80) as
a finite sum of the forms of the left-hand side of (8.69). Hence, by using
(8.69), we can obtain (9.80). The value of CW (2, B3) can be calculated from
(1.6), (9.81), and the fact K(B3) = 720.

Remark 9.1. Comparing the above two theorems, we see that
CW (2, B3) = CW (2, C3). However it does not always hold that
CW (2k, B3) = CW (2k, C3), that is, ζW (2k;B3) = ζW (2k;C3) for k ≥ 2.
In fact, we can compute that

ζW (4;B3) = 1.00066856607695295 · · · ,

ζW (4;C3) = 1.00082905650461486 · · · ,

hence CW (4, B3) 6= CW (4, C3).

Note that the left-hand side of (9.73) corresponds to S(s,y; I;∆) for
∆ = ∆(C3), s = (2, s, 2, 2, 2, 2, 2, 2, 2), y = 0 and I = {3} in the terminology
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of Section 5. Next we prove the following result which is corresponding to
the case ∆ = ∆(C3), s = (2, s, t, 2, u, v, 2, 2, 2), y = 0 and I = {2, 3}.

Theorem 9.3. The functional relation

ζ3(2, s, t, 2, u, v, 2, 2, 2;C3) + 2ζ3(2, 2, t, s, 2, 2, u, v, 2;C3)

+ 2ζ3(s, 2, 2, 2, t, 2, u, 2, v;C3)

=
∑

ξ=0,1

ζ(2ξ)
2−2ξ∑
τ=0

(τ + 1)
2−2ξ−τ∑

ν=0

(ν + 1)

×
{ 2−2ξ−τ−ν∑

ω=0

(ω + 1)(3− 2ξ − τ − ν − ω)

× 1
2τ+2

ζ2(s + 2 + ω, t, u + 6− 2ξ − ν − ω, v + 2 + ν;C2)

+ (−1)τ+ν

2−2ξ−τ−ν∑
ω=0

(ω + 1)(3− 2ξ − τ − ν − ω)

× ζ2(s, t + 4 + ω + ν, u + 6− 2ξ − ω − ν, v;C2)

+ (−1)τ+ν
∑

ω=0,1

(
ω + 2− 2ξ − τ − ν

ω

)
(2− ω)

× 1
2ν+2

ζ2(s + 3− 2ξ − τ − ν + ω, t + 2 + ν, u + 3− ω, v + 2 + τ ;C2)

+
∑

ω=0,1

(
ω + 2− 2ξ − τ − ν

ω

)
(2− ω)

× 1
2ν+2

ζ2(s, t + 5− 2ξ − τ + ω, u + 3− ω, v + 2 + τ ;C2)
}

−
∑

ξ=0,1

ζ(2ξ)
2−2ξ∑
τ=0

(τ + 1)
∑

ν=0,1

(
ν + 2− 2ξ − τ

ν

)

×
{

(−1)τ+1
1−ν∑
ω=0

(ω + 1)(2− ν − ω)

× ζ2(q, r + 3− ν − ω, v + 3− 2ξ − τ + ν, p + 4 + τ + ω;C2)

+ (−1)τ+ν
1−ν∑
ω=0

(ω + 1)(2− ν − ω)

× ζ2(s + 2 + τ, t + 5− 2ξ − τ + ν + ω, u + 3− ν − ω, v;C2)
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+ (−1)τ+ν
∑

ω=0,1

(
ω + 1− ν

ω

)
(2− ω)

× 1
23−2ξ−τ+ν

ζ2(s + 4 + τ − ν + ω, t + 3− 2ξ − τ + ν, u + 3− ω, v;C2)

+ (−1)τ+1
∑

ω=0,1

(
ω + 1− ν

ω

)
(2− ω)

× 1
23−2ξ−τ+ν

ζ2(s + 2 + τ, t + 5− 2ξ − τ + ω, u + 3− ω, v;C2)
}

−
∑

ξ=0,1

ζ(2ξ)
∑

τ=0,1

(
τ + 2− 2ξ

τ

) 1−τ∑
ν=0

(ν + 1)

×
{
−

1−τ−ν∑
ω=0

(ω + 1)(2− τ − ν − ω)

× 1
23−2ξ+τ

ζ2(s + 2 + ω, t, u + 6− 2ξ − ν − ω, v + 2 + ν, ;C2)

+ (−1)τ+ν
1−τ−ν∑

ω=0

(ω + 1)(2− τ − ν − ω)

× ζ2(s, t + 4 + ν + ω, u + 6− 2ξ − ν − ω, v;C2)

+ (−1)τ+ν
∑

ω=0,1

(
ω + 1− τ − ν

ω

)
(2− ω)

× 1
2ν+2

ζ2(s + 2− τ − ν + ω, t + 2 + ν, u + 3− ω, v + 3− 2ξ + τ ;C2)

−
∑

ω=0,1

(
ω + 1− τ − ν

ω

)
(2− ω)

× 1
2ν+2

ζ2(s, t + 4− τ + ω, u + 3− ω, v + 3− 2ξ + τ ;C2)
}

+
∑

ξ=0,1

ζ(2ξ)
∑

τ=0,1

(
τ + 2− 2ξ

τ

) ∑
ν=0,1

(
ν + 1− τ

ν

)

×
{

(−1)τ+1
1−ν∑
ω=0

(ω + 1)(2− ν − ω)

× ζ2(s + 5− 2ξ + τ + ω, t, u + 3− ν − ω, v + 2− τ + ν;C2)

+ (−1)τ+ν
1−ν∑
ω=0

(ω + 1)(2− ν − ω)

× ζ2(s + 3− 2ξ + τ, t + 4 + ω − τ + ν, u + 3− ν − ω, v;C2)
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+ (−1)τ+ν
∑

ω=0,1

(
ω + 1− ν

ω

)
(2− ω)

× 1
2ν+2−τ

ζ2(s + 5− 2ξ + τ − ν + ω, t + 2− τ + ν, u + 3− ω, v;C2)

+ (−1)τ+1
∑

ω=0,1

(
ω + 1− ν

ω

)
(2− ω)

× 1
2ν+2−τ

ζ2(s + 3− 2ξ + τ, t + 4− τ + ω, u + 3− ω, v;C2)
}

holds for s, t, u, v ∈ C except for singularities of functions on both sides.

Proof. As well as (7.53) and (7.58), we begin by combining quantities of
type A1 and of type C2, that is,




∞∑

l=1

(−1)l(eilθ + e−ilθ)
l2

− 2
∑

j=0,1

φ(2− 2j)
(iθ)2j

(2j)!




×
∞∑

m,n=1

(−1)m+nxmynei(m+n)θ

msnt(m + n)u(m + 2n)v
= 0

(9.83)

for θ ∈ [−π, π], where we fix s, t, u, v ∈ {z ∈ R | z > 1} and x, y ∈ {z ∈
R | |z| = 1}. Then

∞∑

l,m,n=1

(−1)l+m+nxmynei(l+m+n)θ

l2msnt(m + n)u(m + 2n)v
+

∞∑
l,m,n=1
l 6=m+n

(−1)l+m+nxmynei(−l+m+n)θ

l2msnt(m + n)u(m + 2n)v

− 2
∑

j=0,1

φ(2− 2j)
(−1)jθ2j

(2j)!

∞∑
m,n=1

(−1)m+nxmynei(m+n)θ

msnt(m + n)u(m + 2n)v

= −
∞∑

m,n=1

xmyn

msnt(m + n)u+2(m + 2n)v
(9.84)

for θ ∈ [−π, π]. Applying Lemma 6.2 with d = 2, we have

∞∑

l,m,n=1

(−1)l+m+nxmynei(l+m+n)θ

l2msnt(m + n)u(m + 2n)v(l + m + n)2

+
∞∑

l,m,n=1
l 6=m+n

(−1)l+m+nxmynei(−l+m+n)θ

l2msnt(m + n)u(m + 2n)v(−l + m + n)2
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− 2
∑

j=0,1

φ(2− 2j)
2j∑

ξ=0

(
2j − ξ + 1

2j − ξ

)
(−1)2j−ξ (iθ)ξ

ξ!

×
∞∑

m,n=1

(−1)m+nxmynei(m+n)θ

msnt(m + n)u+2+2j−ξ(m + 2n)v

− 2
∑

j=0,1

φ(2− 2j)
2j∑

ξ=0

(
1 + 2j − ξ

1

)
(iθ)ξ

ξ!

×
∞∑

m,n=1

xmyn

msnt(m + n)u+2+2j−ξ(m + 2n)v
= 0 (θ ∈ [−π, π]). (9.85)

For simplicity, we denote the sum of the third and the fourth terms on the
left-hand side of (9.85) by

− 2
∑

j=0,1

φ(2− 2j)
2j∑

ξ=0

(iθ)ξ

ξ!

×
[ ∞∑

m,n=1

{
(−1)m+nD1(m,n; 2j − ξ)ei(m+n)θ +D2(m,n; 2j − ξ)

}
xmyn

]
,

where Dj(m,n; ν) ∈ R (j = 1, 2). Since (9.85) holds for y ∈ C with |y| = 1,
we replace y by −ye−iθ with y ∈ C (|y| = 1). Then we have

∞∑

l,m,n=1

(−1)l+mxmynei(l+m)θ

l2msnt(m + n)u(m + 2n)v(l + m + n)2

+
∞∑

l,m,n=1
l 6=m+n, l 6=m

(−1)l+mxmynei(−l+m)θ

l2msnt(m + n)u(m + 2n)v(−l + m + n)2

− 2
∑

j=0,1

φ(2− 2j)
2j∑

ξ=0

∞∑
m,n=1

{
(−1)mD1(m,n; 2j − ξ)eimθ

+ (−1)nD2(m,n; 2j − ξ)e−inθ

}
xmyn (iθ)ξ

ξ!

= −
∞∑

m,n=1

xmyn

ms+2nt+2(m + n)u(m + 2n)v
(θ ∈ [−π, π]). (9.86)
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Therefore, applying Lemma 6.2 with d = 2, we have

∞∑

l,m,n=1

(−1)l+mxmynei(l+m)θ

l2msnt(l + m)2(m + n)u(m + 2n)v(l + m + n)2
(9.87)

= −
∞∑

l,m,n=1
l 6=m+n, l 6=m

(−1)l+mxmynei(−l+m)θ

l2msnt(−l + m)2(m + n)u(m + 2n)v(−l + m + n)2

+ 2
∑

j=0,1

φ(2− 2j)
2j∑

ξ=0

∞∑
m,n=1

{
(−1)mD′1(m,n; 2j − ξ)eimθ

+ (−1)nD′2(m,n; 2j − ξ)e−inθ +D′3(m,n; 2j − ξ)
}

xmyn (iθ)ξ

ξ!

for θ ∈ [−π, π] with some D′j(m,n; ν) ∈ R (j = 1, 2, 3).
Now we repeat this procedure. Namely, replace y by ye2iθ and apply

Lemma 6.2 with d = 2. Furthermore, replace x by −xeiθ and apply Lemma
6.2 with d = 2. Then we can obtain the equation

∞∑

l,m,n=1

(−1)lxmynei(l+2m+2n)θ

l2msnt(l + m)2(m + n)u(m + 2n)v(l + m + n)2

× 1
(l + m + 2n)2(l + 2m + 2n)2

= −
∞∑

l,m,n=1
l 6=m, l 6=m+n

l 6=m+2n, l 6=2m+2n

1
l2msnt(−l + m)2(m + n)u(m + 2n)v(−l + m + n)2

× (−1)lxmynei(−l+2m+2n)θ

(−l + m + 2n)2(−l + 2m + 2n)2

+ 2
∑

j=0,1

φ(2− 2j)
2j∑

ξ=0

∞∑
m,n=1

{
D̃1(m,n; 2j − ξ)ei(2m+2n)θ

+ (−1)m+nD̃2(m,n; 2j − ξ)ei(m+n)θ + (−1)mD̃3(m,n; 2j − ξ)ei(m+2n)θ

+ (−1)mD̃4(m,n; 2j − ξ)eimθ + D̃5(m,n; 2j − ξ)
}

xmyn (iθ)ξ

ξ!
(9.88)

for θ ∈ [−π, π] with some D̃j(m,n; ν) ∈ R (j = 1, 2, . . . , 5). Put θ = π and
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(x, y) = (1, 1), and consider the real part. Then we have
∞∑

l,m,n=1

1
l2msnt(l + m)2(m + n)u(m + 2n)v(l + m + n)2

× 1
(l + m + 2n)2(l + 2m + 2n)2

+
∞∑

l,m,n=1
l 6=m, l 6=m+n

l 6=m+2n, l 6=2m+2n

1
l2msnt(−l + m)2(m + n)u(m + 2n)v(−l + m + n)2

× 1
(−l + m + 2n)2(−l + 2m + 2n)2

− 2
∑

j=0,1

φ(2− 2j)
j∑

τ=0

∞∑
m,n=1

{
D̃1(m,n; 2j − 2τ) + D̃2(m,n; 2j − 2τ)

+ D̃3(m,n; 2j − 2τ) + D̃4(m,n; 2j − 2τ) + D̃5(m,n; 2j − 2τ)
}

× (−1)τπ2τ

(2τ)!
= 0. (9.89)

By (9.72), we see that the first term on the left-hand side of (9.89)
coincides with

ζ3(2, s, t, 2, u, v, 2, 2, 2;C3).

For the second term on the left-hand side of (9.89), change the running
indices of summation corresponding to the conditions l 6= m, l 6= m + n,
l 6= m + 2n, l 6= 2m + 2n. Then we can see that the second term on the
left-hand side of (9.89) coincides with

ζ3(2, s, t, 2, u, v, 2, 2, 2;C3) + 2ζ3(2, 2, t, s, 2, 2, u, v, 2;C3)

+ 2ζ3(s, 2, 2, 2, t, 2, u, 2, v;C3).

Furthermore, using Lemma 6.1, we can rewrite the third term on the left-
hand side of (9.89) as

− 2
∑

ξ=0,1

ζ(2ξ)
∞∑

m,n=1

{
D̃1(m,n; 2− 2ξ) + D̃2(m,n; 2− 2ξ)

+ D̃3(m,n; 2− 2ξ) + D̃4(m,n; 2− 2ξ) + D̃5(m,n; 2− 2ξ)
}

.

We can concretely calculate the value D̃j(m,n; ν) in terms of ζ2(s;C2) and
ζ(s). Combining these results, we obtain the assertion.
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Example 9.1. Putting (s, t, u, v) = (2, 2, 2, 2), we obtain

3 ζ3(2, 2, 2, 2, 2, 2, 2, 2, 2;C3)

= ζ2(5, 5, 4, 2;C2)ζ(2)− 3
2
ζ2(5, 5, 6, 2;C2) +

1
2
ζ2(6, 4, 4, 2;C2)ζ(2)

− 3
4
ζ2(6, 4, 6, 2;C2) + ζ2(6, 5, 3, 2;C2)ζ(2)− 3

2
ζ2(6, 5, 5, 2;C2)

− 3
2
ζ2(6, 8, 2, 2;C2) +

3
4
ζ2(7, 4, 3, 2;C2)ζ(2)− 9

8
ζ2(7, 4, 5, 2;C2)

− 11
16

ζ2(7, 5, 4, 2;C2)− 23
32

ζ2(8, 4, 4, 2;C2)− ζ2(8, 6, 2, 2;C2)

+ ζ2(4, 5, 4, 3;C2)ζ(2)− 3
2
ζ2(4, 5, 6, 3;C2) +

1
2
ζ2(5, 5, 3, 3;C2)ζ(2)

− 3
4
ζ2(5, 5, 5, 3;C2) + ζ2(6, 5, 2, 3;C2)ζ(2)− 3

16
ζ2(6, 5, 4, 3;C2)

− 3
4
ζ2(7, 4, 2, 3;C2)ζ(2) + ζ2(2, 5, 5, 4;C2)ζ(2) +

3
2
ζ2(2, 6, 4, 4;C2)ζ(2)

− 3
8
ζ2(2, 6, 6, 4;C2)− 7

8
ζ2(2, 7, 5, 4;C2)− 15

16
ζ2(2, 8, 4, 4;C2)

+
1
2
ζ2(4, 4, 4, 4;C2)ζ(2)− 3

4
ζ2(4, 4, 6, 4;C2)− 1

2
ζ2(4, 5, 3, 4;C2)ζ(2)

+
3
4
ζ2(4, 5, 5, 4;C2) +

1
4
ζ2(5, 4, 3, 4;C2)ζ(2)− 3

8
ζ2(5, 4, 5, 4;C2)

− 3
2
ζ2(5, 5, 2, 4;C2)ζ(2) +

1
4
ζ2(5, 5, 4, 4;C2) +

1
2
ζ2(6, 4, 2, 4;C2)ζ(2)

− 3
32

ζ2(6, 4, 4, 4;C2) +
11
16

ζ2(7, 5, 2, 4;C2)− 23
32

ζ2(8, 4, 2, 4;C2)

− 2ζ2(2, 4, 5, 5;C2)ζ(2)− ζ2(2, 5, 4, 5;C2)ζ(2)− 1
2
ζ2(2, 6, 5, 5;C2)

− 7
8
ζ2(2, 7, 4, 5;C2)− 1

2
ζ2(4, 4, 3, 5;C2)ζ(2) +

3
4
ζ2(4, 4, 5, 5;C2)

+
3
2
ζ2(4, 5, 2, 5;C2)ζ(2)− 1

4
ζ2(4, 5, 4, 5;C2)− 1

4
ζ2(5, 4, 2, 5;C2)ζ(2)

+
1
4
ζ2(5, 4, 4, 5;C2)− 27

16
ζ2(6, 5, 2, 5;C2) +

9
8
ζ2(7, 4, 2, 5;C2)

− 3
2
ζ2(2, 4, 6, 6;C2) + 4ζ2(2, 5, 3, 6;C2)ζ(2)− ζ2(2, 5, 5, 6;C2)

− 3
8
ζ2(2, 6, 4, 6;C2)− 2ζ2(3, 5, 2, 6;C2)ζ(2) + ζ2(4, 4, 2, 6;C2)ζ(2)

− 3
8
ζ2(4, 4, 4, 6;C2) +

19
8

ζ2(5, 5, 2, 6;C2)− 27
32

ζ2(6, 4, 2, 6;C2)

+ 4ζ2(2, 4, 3, 7;C2)ζ(2) + 2ζ2(2, 4, 5, 7;C2) + 3ζ2(2, 5, 4, 7;C2)
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− 2ζ2(3, 4, 2, 7;C2)ζ(2)− 9
4
ζ2(4, 5, 2, 7;C2) +

1
2
ζ2(5, 4, 2, 7;C2)

− 6ζ2(2, 5, 3, 8;C2) + 3ζ2(3, 5, 2, 8;C2)− 3
2
ζ2(4, 4, 2, 8;C2)

− 6ζ2(2, 4, 3, 9;C2) + 3ζ2(3, 4, 2, 9;C2).

The authors also checked this equation numerically by using definitions
(8.64) and (9.72).

Remark 9.2. From these considerations, we can see that our method may
be applied to much wider class of multiple zeta-functions. As another ex-
ample, we will consider the zeta-function ζ2(s;G2) associated with the ex-
ceptional Lie algebra of type G2 and will give certain functional relations
including explicit forms of Witten’s volume formulas of type G2 in a forth-
coming paper [20].

Acknowledgements. The authors greatly thank Dr. Takuya Okamoto for
his pointing out a mistake in this paper.
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