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Abstract

This thesis addresses the biclique edge partition (cover) problem, the problem of
finding the minimum number of bicliques to partition (cover) the edge set of a given
input bipartite graph.

The biclique edge partition problem is known to be NP-hard, and few results are
known about its approximation hardness. In this thesis, a lower bound for the ap-
proximation ratio is demonstrated. Specifically, it is shown that we cannot have
an approximate solution that is less than 6053/6052 times the optimal solution un-
less P = NP. To obtain this hardness result, a gap-preserving reduction from the
satisfiability problem to the biclique edge partition problem is given.

The biclique edge cover problem is also known to be NP-hard, and a polynomial
time algorithm has been proposed for some restricted graph classes. For C4-free
graphs and distance-hereditary bipartite graphs, a polynomial time algorithm was
given in 1996. For domino-free graphs, which properly contain C4-free and distance-
hereditary bipartite graphs, a polynomial time algorithm was given in 1999. In this
thesis, a polynomial time algorithm for a new graph class is proposed. This graph
class properly contains the class of domino-free bipartite graphs. Specifically, for
a given bipartite graph B, a parameter R(B) is defined using the modified Galois
lattice, Gm(B). This thesis shows that B is a domino-free graph if and only if
R(B) = 0. The graph class defined by R(B) ≤ 1 properly includes the domino-free
graphs. A polynomial time algorithm is proposed for this new graph class.

It has been shown that if B is a domino-free graph then the size of the modified
Galois lattice Gm(B) is O(nm), where n and m are the numbers of vertices and
edges of B, respectively. In this thesis, it is shown that the size of Gm(B) is actually
O(n + m) for graphs with R(B) = O(1). This improves the time complexity of the
algorithm proposed in this thesis.



Chapter 1

Introduction

Graphs are not only mathematical objects but also very useful tools for modeling
real-world problems. In particular, bipartite graphs are often used to model real-
world problems. For example, in data mining, relations between two disjoint sets -
such as “customers” and “products” or “phrases” and “documents” - are modeled
by bipartite graphs. Also, in formal concept analysis, “objects” and “attributes”
are well-modeled by bipartite graphs. In these applications, bipartite graphs are
often required to be covered with bicliques. In this thesis, problems of finding the
minimum number of bicliques to partition or cover the edges of a given bipartite
simple graph are studied.

The biclique edge partition problem is the problem of finding the minimum number of
bicliques (complete bipartite graphs) to partition all of the edges of a given bipartite
graph, whereas the biclique edge cover problem is the problem of finding the minimum
number of bicliques to cover all edges of a given bipartite graph. These problems
are very similar. The difference is that the biclique edge partition problem does not
allow the bicliques in its solution to share edges.

In graph theory, problems of partitioning the set of vertices are thoroughly studied.
For example, the graph coloring problem is well known. This problem is equivalent
to the clique partition problem, which is the problem of finding the minimum number
of cliques that partition all of the vertices of a given graph, since the solution of the
graph coloring problem for G is also the solution of the clique partition problem for
Ḡ, which is the complement of G. Note that the clique partition and the clique
cover problems are essentially the same. However, when it comes to the problem of
partitioning or covering the set of edges of a graph, the edge partition and edge cover
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problems are not the same.

The edge-partition and cover problems do not appear to have been widely studied in
comparison to vertex-partition and cover problems. However, these problems have
applications in many areas such as electronic circuits, networks, data-minings, com-
puter graphics, and marketing. Let us consider an example wherein these problems
are applied to marketing data analysis (Market Basket Analysis).

In supermarkets, it is often the case that some items are consistently purchased to-
gether, for example, “breads” and “butter”, “coffee”, “milk”, and “sugar” or “wine”
and “cheese” and so on. Let us say that these items are associated with each other.
To gain as much profit as possible, it is best to put the associated set of items on a
single shelf. But all sets of items cannot be put on a single shelf, because the size
of a shelf is limited. Assume that the manager of a supermarket requires that each
customer buys all items from a single shelf. The minimum number of shelves that
satisfies this requirement is found by the biclique edge partition and cover problems.
Suppose that a 0-1 matrix M represents the shop’s transaction data such that if ith
customer buys the jth item, Mi,j = 1, otherwise Mij = 0. Let

M =


1 1 0 0 0 0
1 1 1 1 0 0
0 1 1 1 0 0
0 1 1 1 0 0
0 0 0 1 1 1
0 0 0 1 1 1


be an example of such a matrix. BM , an instance of the biclique edge partition
and cover problems, is constructed from M as follows. Make a bipartite graph BM

such that there is an edge (xi, yj) if and only if the ith customer buys the jth item.
An example of BM is shown in Fig.1.1. In this example, customer {1} buys items
{1, 2}, customer {2} buys items {1, 2, 3, 4}, customers {3, 4} buy items {2, 3, 4} and,
customers {5, 6} buy items {4, 5, 6}. It is easy to verify that the edge set of B can
be partitioned into four bicliques:

B1 = ({x1}, {y1, y2}),
B2 = ({x2}, {y1, y2, y3, y4}),
B3 = ({x3, x4}, {y2, y3, y4}),
B4 = ({x5, x6}, {y4, y5, y6}).

This partitioning gives the minimum number of the biclique edge partitions of B. In
this case, four shelves are sufficient to satisfy the requirement. That is, each set of

2



x
1

x
2

x
3

x
4

y
1

y
2

y
3

y
4

y
5

y
6

x
5

x
6

Figure 1.1: The bipartite graph BM represents the purchasing data.

items {1, 2}, {1, 2, 3, 4}, {2, 3, 4} and {4, 5, 6} is put on each shelf, for a total of four
shelves. Note that each customer buys no extra item. Meanwhile, B can be covered
by these three bicliques,

B′1 = ({x1, x2}, {y1, y2}),
B′2 = ({x2, x3, x4}, {y2, y3, y4}),
B′3 = ({x5, x6}, {y4, y5, y6}).

This covering information suggests that the manager of the supermarket should re-
duce the number of shelves by one. When there are three shelves such that each set of
items {1, 2}, {2, 3, 4}, and {4, 5, 6} is put on each shelf, customer 2 has to buy two of
item 2 under the manager’s requirement. If customers are wiling to buy excess items,
then the biclique edge cover problem gives the minimum number of shelves. This is
also an example that shows that the size of minimum biclique edge partitioning is
not always equal to the size of the minimum biclique edge covering.

As the biclique edge partition and cover problems are NP-hard, it is not possible
to find the optimal solution in polynomial time unless P = NP. In order to solve
NP-hard problems, heuristic algorithms are often used, and they provide solutions
to NP-hard problems that are good enough for practical purposes. However, there
is no guarantee that they will always provide good solutions in polynomial time. In
contrast to heuristic algorithms, approximation algorithms provide a solution close
enough to the optimal solution even in the worst case. Research on approximation
algorithms has shown that not all NP-hard problems have the same approximation
hardness, and that NP-hard problems can be classified by their approximation hard-
ness under the assumption that P 6= NP. The hardness of approximation is measured
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by an approximation ratio ρ. A ρ-approximation algorithm for a minimization (max-
imization) problem is the algorithm that is guaranteed to return a solution with a
size that is at most ρ (at least 1/ρ) times the size of the optimal solution. We say
that an optimization problem has a polynomial time approximation scheme (PTAS)
if it admits a ρ-approximation algorithm for any ρ > 1. For example, the knapsack
problem has a PTAS. Problems that have a PTAS are easy to approximate, but
there are a lot of NP-hard problems that do not have a PTAS. For example, the
MAX 3-SAT problem has an 8/7-approximation algorithm [KZ97], but it cannot be
approximated to within a ratio 8/7 − ε for any ε > 0 [H̊as01]. Furthermore, MAX
CLIQUE has no ρ-approximation algorithm with a constant ρ. Let APX denote the
class of approximation problems that have ρ-approximation algorithms. Then MAX
3-SAT belongs to APX, whereas MAX CLIQUE does not.

Further research on the classification of NP-hard problems has been progressed since
the discovery of the PCP theorem, which offers a new characterization of NP by
the probabilistically checkable proof (PCP) system. The PCP theorem states that
for NP-complete problems, there exist witnesses which can be verified with high
probability by only looking at a constant number of randomly chosen bits. The PCP
theorem was originally proved as a result of series of studies using the theory of codes
and the interactive proof [FGL+96] [AS98], and thus it was surprise to know that the
PCP theorem is closely related to the proof of approximation hardness of NP-hard
problems. In past decades, approximation hardness results for many important NP-
hard problems have been proved directly or indirectly using the PCP theorem. The
discovery of the approximation threshold of 8/7 for MAX 3-SAT [H̊as01] and the
discovery of an approximation hardness of O(n1−ε) for MAX CLIQUE [H̊as99] are
remarkable results obtained from the PCP theorem. With respect to the minimum
biclique edge cover problem, Gruber et al. showed that there is no O(n1/3−ε) and
O(m1/5−ε)-approximation algorithm for any ε > 0 [GH07]. The original proof of the
PCP theorem was complicated. However, Dinur [Din07] presented a relatively simple
proof of the PCP theorem using the gap-amplification method of the constraint
graphs.

In this thesis, it is shown that the biclique edge partition problem cannot be ap-
proximated within a ratio of 6053/6052 unless P = NP. In order to obtain this ap-
proximation hardness, an approximation-preserving (gap-preserving) reduction from
3-OCC-MAX 2-SAT is presented. 3-OCC-MAX 2-SAT is the satisfiability problem
such that each clause has exactly two literals, and every variable occurs exactly three
times. Berman and Karpinski [BK98] showed that a 2012/2011-approximation al-
gorithm for 3-OCC-MAX 2-SAT is NP-hard. Our reduction implies that if there is
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a 6053/6052-approximation algorithm for the biclique edge partition problem then
P = NP. Therefore, under the assumption that P 6= NP, the biclique edge partition
problem does not have a 6053/6052-approximation algorithm. It follows that the bi-
clique edge partition problem has no polynomial-time approximation scheme unless
P = NP. To the author’s knowledge, the ratio of 6053/6052 is the first explicit lower
bound on the approximation hardness of the biclique edge partition problem.

Now, let us consider the computational complexity of the biclique edge cover problem.
For general bipartite graphs, the biclique edge cover problem cannot be solved in
polynomial time if P 6= NP. However, it can be solved in polynomial time if we
restrict the class of input graphs. Müller showed that there is a polynomial time
algorithm for C4-free bipartite graphs and for distance-hereditary bipartite graphs
[Mül96]. A C4-free bipartite graph is a bipartite graph that has no C4, a cycle of
length four, as an induced subgraph. The distance-hereditary bipartite graph can
be characterized in several ways. One of these characterizations is that it is a (6, 2)-
chordal bipartite graph. A bipartite graph is (6, 2)-chordal if every cycle of length
at least six has at least two chords. A bipartite graph is domino-free if it has no
domino as an induced subgraph. Amilhastre et al. showed that there is a polynomial
time algorithm for domino-free bipartite graphs [AVJ98]. The class of domino-free
graphs properly contains both the C4-free and the distance-hereditary bipartite graph
classes. It is obvious that a solution to the biclique edge partition problem is also a
solution to the biclique edge cover problem. Amilhastre et al. showed that a solution
to the biclique edge partition problem can be obtained from a solution to the biclique
edge cover problem without changing the solution size if the graph is domino-free.
Thus the minimum biclique edge partition problem can also be solved in polynomial
time for a domino-free bipartite graph. This thesis extends the graph class for which
the minimum biclique edge cover problem can be solved in polynomial time.

This thesis defines a new graph class for which the minimum biclique edge cover
problem can be solved in polynomial time, and shows that this graph class properly
contains the domino-free graph class. In order to present the new graph class, the
modified Galois lattice Gm(B) for an input bipartite graph B is introduced. A partial
order on the set of maximal bicliques in B is defined, and Gm(B) is a Hasse diagram
of this partial order. Furthermore, the redundant parameter R(B) is defined on
Gm(B). It is shown that R(B) = 0 if and only if B is domino free. Furthermore, it
is shown that there is a polynomial time algorithm for a graph B with R(B) = 1. If
R(B) > 0, then B has at least one domino as an induced subgraph. Thus, we have
a new graph class such that there is a polynomial time algorithm for the minimum
biclique edge cover problem. See Fig. 1.2.

5



Domino-free
bipartite

C4-free
bipartite

Distance-
hereditary
bipartite

R(B)≦1

R(B)=0

Figure 1.2: The new graph class with R(B) = 1 properly includes the domino-free
graph class.

The computation time of the proposed algorithm depends on the size of Gm(B). The
size of Gm(B) could be as large as exponential in the size of B for a general bipartite
graph, B. However, this thesis shows that Gm(B) has at most 2n + 1 vertices for
a distance-hereditary bipartite graph, B. For a graph B such that R(B) ≤ 1, it is
shown that Gm(B) has at most O(n+m) vertices.

The structure of this thesis is as follows. In Chapter 2, definitions, notations, and
backgrounds of this study are given. In Chapter 3, the approximation hardness result
for the biclique edge partition problem is shown. In Chapter 4, the modified Galois
lattice Gm(B) is defined, and the redundant parameter R(B) is introduced. It is
proved that for a graph with R(B) ≤ 1, the biclique edge cover problem can be
solved in polynomial time. In Chapter 5, the size of the modified Galois lattice for
some restricted graph classes is investigated. Chapter 6 is the conclusion.

6



Chapter 2

Preliminary

As a preliminary for this thesis, basic terms and definitions are presented in this
chapter. In order to introduce the concept of computational complexity class, basic
terms (alphabet, language, Turing machines, and so on) are defined in Sections
2.1, 2.2, and 2.3. Basic terms in the graph theory are introduced in Section 2.4.
Satisfiability problems has important role in the theory of computational complexity
and approximation algorithms. These backgrounds are noticed from Sections 2.5 to
2.10. In Section 2.11, polynomial time algorithms for the biclique edge cover and
partition problems for restricted graph classes are reviewed.

2.1 Alphabet, relation, and partial order

Definition 1 (Alphabet, String). The alphabet Σ is a finite set of symbols or letters.
A sequence of symbols in Σ

a1a2 · · · an (a1, a2, . . . , an ∈ Σ)

is the string or word on Σ. The concatenation of strings a = a1a2 · · · an and b =
b1b2 · · · bm is ab = a1a2 · · · anb1b2 · · · bm.

The length of w = a1a2 · · · an is the number of symbols in w, denoted by |w| (= n).
If |w| = 0 then w is the empty word denoted by ε.
Definition 2 (Language). Σ∗ is the set of all strings on Σ. Σ+ is Σ∗ \ {ε}. An
language on Σ is a subset of Σ∗.
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For languages L and L′ on Σ, LL′ = {xy | x ∈ L, y ∈ L′} is the concatenation of L
and L′.
Definition 3 (Kleene closure). Ln is the concatenation of n Ls. Kleene closure L∗

is
⋃
n≥0 L

n. Note that L0 is {ε}. Kleene plus L+ is
⋃
n≥1 L

n.
Definition 4 (Binary relation). A binary relation R of two sets X and Y is a subset
of X × Y . R : X → Y means that R is a subset of X × Y .
Definition 5 (k-ary relation). A k-ary relation of k sets Xi (i = 1, . . . , k) is a subset
of X1 × · · · ×Xk.

Throughout this thesis, a relation is a binary relation unless otherwise noticed.

R is a relation on X if R : X → X. If (x, y) ∈ R then x and y have a relation R
denoted by xRy. R : X → Y is a partial function from X to Y if for all x ∈ X
there is at most one y ∈ Y . R is a total function (or simply a function) or a mapping
from X to Y if for all x ∈ X there is exactly one y ∈ Y . For a partial function R,
(x, y) ∈ R is denoted by R(x) = y. Let R : X → Y and S : Y → Z. The composition
of R and S is a relation R ◦ S : X → Z defined by

R ◦ S = {(x, z) | ∃y ∈ Y, (x, y) ∈ R, (y, z) ∈ S}.

For an integer n ≥ 0 and a relation R on X, relations Rn are defined as follows:

R0 = {(x, x) | x ∈ X}, Rn+1 = Rn ◦R.

R∗ =
⋃
n≥0R

n is a reflexive transitive closure, R+ =
⋃
n≥1R

n is a transitive closure
of R.
Definition 6 (Partial order). The partial order on X is a relation R if for any
x, y, z ∈ X, R satisfies following three properties: (i) xRx (reflexive law), (ii) xRy
and yRz ⇒ xRz (transitive law), (iii) xRy and yRx ⇒ x = y (antisymmetric law).
A partial order is often denoted by ≤.

A partially ordered set is a set on which a partial order is defined. (X,≤) means that
X is a partially ordered set of ≤.

2.2 Turing machines

Definition 7 (Turing machine). A Turing machine is a quadruple M = (K,Σ, δ, s).
K is a finite set of states and s is the initial state. Σ is the alphabet of M . Here K
and Σ are disjoint sets. Σ contains two of the special symbols the blank t and the first
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symbol .. δ is a transition function, which maps K × Σ to (K ∪ {h, “yes”, “no”})×
Σ × {←,→,−}. h is the halting state, “yes” and “no” is the accepting state and
rejecting state respectively. ← and → is the cursor direction for “left” and “right”
respectively, and − for stay. Note that ←, → and − are not in K ∪ Σ. Let current
state q ∈ K and current symbol σ ∈ Σ. Function δ specifies for each combination
of q and σ, a triple δ(q, σ) = (p, ρ,D). Here p is the next state, ρ is the symbol to
be overwritten on σ, and D ∈ {←,→,−} is the direction in which the cursor will
move. For any state q, δ(q, .) = (., p,→). That is, . always directs the cursor to
the right, and is never erased.

With the initial state s, a Turing machine works as follows. The string is initialized
to a ., followed by a finitely long string x ∈ (Σ \ {t})∗. Here x is the input of the
Turing machine. The cursor is pointing the first symbol, always a .. From this initial
configuration the machine takes a step according to δ, changing its state, overwriting
a symbol, and moving the cursor. Note that the string will always start with a .,
and thus the cursor will never “fall off” the left end of the string. The machine has
“halted” if one of the three states h, “yes” or “no” has reached. Furthermore, the
machine accepts the input if state “yes” has been reached, and it rejects the input
if state “no” has been reached. If a machine halts on input x, the output of the
machine M on x can be defined. In this case, the output is denoted by M(x). If
M accepts or rejects x then M(x) = “yes” or M(x) = “no” respectively. Otherwise,
if h was reached, then the output is the string of M at the time of halting. Since
the computation has gone on for finitely many steps, the string consists of a .,
possibly followed by a string of ts (y could be empty). Then string y is the output
of computation, and denoted by M(x) = y.

For an integer k ≥ 1, a k-string (a multistring) Turing machine Mk is defined as
follows.
Definition 8 (k-string Turing machine). Mk is a quadruple (K,Σ, δ, s), where K,
Σ and s are exactly as in ordinary Turing machine. Mk has multiple (k) strings.
In Mk, δ is a function from K × Σk to (K ∪ {h, “yes”, “no”})× (Σ× {←,→,−})k,
denoted by δ(q, σ1, . . . , σk) = (p, ρ1, D1, . . . , ρk, Dk). That is, δ decides the next state
as before, but also decides for each of string the symbol overwritten. δ also decides
the direction of cursor motion by looking at the current state and the current symbol
at each string.

In Mk, . still cannot be overwritten or passed on to the left, that is, if σi = ., then
ρi = . and Di =→. Initially, all strings start with a .. The first string contains the
input. The output of the computation of a k-string Turing machine Mk on input x
is as with ordinary machines M , but the output can be read from the last kth string
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when the machine halts. In the following, a k-string Turing machine is denoted by
M instead of Mk.

A configuration of M is a (2k + 1)-tuple (q, w1, u1, . . . , wk, uk). Here q ∈ K is a
current state. wiui are strings in Σ∗. wi is the ith string to the left of the ith cur-
sor, including the symbol on the cursor, and u is the ith string to the right of the
ith cursor (possibly empty). A configuration (q, w1, u1, . . . , wk, uk) yields a config-
uration (q′, q, w′1, u

′
1, . . . , w

′
k, u

′
k) if t(> 0) steps of M from (q, w1, u1, . . . , wk, uk) re-

sults in configuration (q′, w′1, u
′
1, . . . , w

′
k, u

′
k) (it is denoted by (q, w1, u1, . . . , wk, uk)

Mt

→
(q′, w′1, u

′
1, . . . , w

′
k, u

′
k)). If (q, w1, u1, . . . , wk, uk) yields (q′, w′1, u

′
1, . . . , w

′
k, u

′
k) it is de-

noted by (q, w1, u1, . . . , wk, uk)
M∗→ (q′, w′1, u

′
1, . . . , w

′
k, u

′
k)

Definition 9 (Nondeterministic Turing machine). A nondeterministic Turing ma-
chine is a quadruple N = (K,Σ,∆, s). K, Σ and s are as a Turing machine M .
Here ∆ is a relation such that ∆ ⊂ (K ×Σ)× [(K ∪{h, “yes”, “no”}×{←,→,−})].

2.3 Languages and complexity classes

Let L ⊂ (Σ \ {t})∗ be a language. Let M be a multistring Turing machine such
that, for any string x ∈ (Σ \ t)∗, if x ∈ L then M(x) = “yes” and if x /∈ L then
M(x) = “no”. Then it is said that M decides L.

Let M be a k-string Turing machine and x be its input. If

(s, ., x, ., ε, . . . , ., ε)
Mt

→ (H,w1, u1, . . . , wk, uk)

holds for some H ∈ {h, “yes”, “no”}, then the time required by M on input x is t.
That is, the time required by M on x is the number of steps to halting. Let f be
a function from the nonnegative integers to the nonnegative integers. If the time
required by M on x is at most f(|x|) for any input string x, then it is said that M
operates within time f(|x|). Also it is said that f(|x|) is a time bound for M .
Definition 10 (DTIME). Let L ⊂ (Σ\{t})∗ be a language. If there is a multistring
Turing machine operating in time f(n) to decide L, then a set of all L is denoted by
DTIME(f(n)).

DTIME(f(n)) contains exactly those languages that can be decided by Turing ma-
chines with multiple strings operating within the time bound f(n).

Let N be a nondeterministic Turing machine and x be its input. It is said that N
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decides L,

(s, ., x)
N∗→ (“yes”, w, u)

holds for some strings w and u if and only if x ∈ L. Let f be a function from the
nonnegative integers to the nonnegative integers.
Definition 11 (NTIME). If there is a nondeterministic Turing machine operating
in time f(n) to decide L, then a set of all L is denoted by NTIME(f(n)).

Let L be a language decided by some multistring Turing machine within a time
polynomial of the length of the input x. That is, there is an integer k > 0 such that
L ∈ DTIME(nk).
Definition 12 (P). The union of DTIME(nk) for all k > 0 is denoted by P.
Definition 13 (NP). The union of NTIME(nk) for all k > 0 is denoted by NP.

P and NP are two of the most significant complexity classes. It is obvious that
P ⊆ NP. The P versus NP problem, that is, whether P = NP or not, is a major
unsolved problem in computer science.
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2.4 Graph Theory

In order to make this thesis self-contained, terms in graph theory are defined in this
section. Graph-related problems addressed in this thesis are also defined.

2.4.1 Definitions and basic notations

Definition 14 (Undirected edge, Directed edge). An edge e = (u, v) is a set with
a relation of incidence that associates with each edge two vertices u and v. An edge
is undirected if there is no distinction between (u, v) and (v, u). Otherwise (u, v) is
considered to be directed edge from u to v.

If there is an edge e = (u, v) or e = (v, u) then u is adjacent to v. u and v are
endpoints of e.
Definition 15 (Multiple edges). Multiple edges (Parallel edges or a Multi-edge) are
two or more distinct edges that are incident to the same two vertices u and v.
Definition 16 (Graph). A graph G = (V,E) is a pair of two sets, a set of vertices
V and a set of edges E.

V (G) and E(G) are a set of vertices and a set of edges of G = (V,E) respectively.
u and v are independent if neither (u, v) nor (v, u) exists in G. A set of vertices
I ⊆ V (G) is independent if for any pair (u, v) in I, u and v are independent.
Definition 17 (Loop). If e = (v, v) then e is called a loop.
Definition 18 (Simple graph). A graph that has no loop and no multiple edges is
called a simple graph.
Definition 19 (Undirected graph, Directed graph). If E is a set of undirected edges
then G = (V,E) is an undirected graph, otherwise a digraph or a directed graph.
Definition 20 (Adjacency matrix). Let G = (V,E) be an undirected graph with
V = {v1, . . . , vn}. The adjacency matrix MG = (mij) of G is an n × n matrix such
that mij is the number of edges whose endpoints are vi and vj.

MG is symmetric. If G is a simple graph then mij are either 0 or 1 for i 6= j and
mii = 0.

Throughout in this thesis, graphs are undirected and simple graphs unless otherwise
noticed.
Definition 21 (Singleton). For a vertex v ∈ V (E), if there is no vertex u( 6= v) such
that e = (v, u) ∈ E(G) then v is called a singleton or an isolated vertex in G.

12



K1 K2 K3 K4 K5

Figure 2.1: Complete graphs Kn (n = 1, . . . , 5).

Definition 22 (Complement graph). A graph Ḡ is the complement graph of G such
that V (G′) = V (G) and E(G′) = [V (G)]2\E(G).
Definition 23 (Neighborhood). The set of all vertices adjacent to v is the neighbor-
hood of v denoted by NG(v) or Γ(v).
Definition 24 (Degree). The number of all edges incident to v is the degree of v
denoted by dG(v).
Definition 25 (Complete graph). A graph G is a complete graph if for all u, v ∈ V
there is an edge (u, v) ∈ E.

A complete graph is denoted by Kn where n = |V |. See Fig. 2.1.
Definition 26 (Subgraph). G′ is a subgraph of G if E(G′) ⊆ E(G) and V (G′) ⊆
V (G). Then G is a supergraph of G′.
Definition 27 (Induced subgraph). Let G′ be a subgraph of G. If (u, v) ∈ E(G′)
holds for all u, v ∈ V (G′) such that (u, v) ∈ E(G), then G′ is an induced subgraph of
G. The subgraph induced by a set of vertices W is denoted by G[W ].
Definition 28 (Path). A path Pk = (V,E) is a graph with distinct vertices V =
{v0, v1, . . . , vk} and edges E = {(v0, v1), (v1, v2), . . . , (vk−1, vk)}.
Definition 29 (Length). The length of a path Pk is the number of edges k = |E(P )|.
Definition 30 (Distance). The distance between two vertices u and v in G is the
shortest length of paths that have u and v.
Definition 31 (Chord). Let Pk be a path. An edge (vi, vj) is a chord of Pk if
|i− j| > 1.
Definition 32 (Connected graph). A connected graph G is a graph such that for
any u, v ∈ V (G) there is a path Pk such that u, v ∈ V (Pk).
Definition 33 (Distance hereditary graph). A distance hereditary graph is a graph
G in which the distances in any connected induced subgraph are the same as they are
in G.

13



K1,1 K1,2 K2,2 K3,2

Figure 2.2: Complete bipartite graphs K1,1, K1,2, K2,2 and K3,2.

Definition 34 (Cycle). For k ≥ 3, a cycle Ck = (V,E) is a path with vertices
V = {v0, v1, . . . , vk} and edges E = {(v0, v1), (v1, v2), . . . , (vk−1, v0)}.

If k is odd then Ck is an odd cycle, otherwise an even cycle.
Definition 35 (Clique). A clique of G is an induced subgraph of G that is a complete
graph.
Definition 36 (Bipartite graph). A bipartite graph B = (X, Y,E) is a graph G(V,E)
such that V = X ∪ Y , X ∩ Y = ∅, and E ⊆ X × Y .

Note that this notation specifies the partition of V into X and Y , also a bipartite
graph has no odd cycle as a subgraph.
Definition 37 (Complete bipartite graph). A complete bipartite graph is a bipartite
graph B = (X, Y,E) such that there is an edge (u, v) ∈ E for all u ∈ X and v ∈ Y .

A complete bipartite graph is denoted by Km,n where m = |X| and n = |Y |. See
Fig. 2.2.
Definition 38 (Stargraph). A star or stargraph is a complete bipartite graph Km,n

such that either m = 1 or n = 1.
Definition 39 (Biclique). A biclique of G is a subgraph of G that is a complete
bipartite graph.

Note that if G is a bipartite graph then a biclique of G is an induced subgraph of
G.
Definition 40 (Bisimplicial edge). A bismplicial edge e = (u, v) is an edge in G
such that the induced subgraph G[NG(v) ∪NG(u)] is a biclique (NG(v), NG(u), E) of
G.
Definition 41 (Maximal biclique). A biclique K in G is a maximal biclique if there
is no biclique K ′ in G such that V (K) ⊂ V (K ′) and E(K) ⊂ E(K ′).
Definition 42 (Domino). A domino is a graph with vertices V = {x1, x2, x3, y1, y2, y3}
and edges E = {(x1, y1), (x2, y2), (x3, y3), (x1, y2), (x2, y1), (x2, y3), (x3, y2)}.
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Figure 2.3: A domino.

See Fig. 2.3.
Definition 43 (Domino-free graph, C4-free graph). A domino-free graph is a graph
that has no domino as an induced subgraph. A C4-free graph is a graph that has no
C4 as an induced subgraph.

2.4.2 Graph-related problems

In this section, graph-related problems mentioned in this thesis are defined.

Let C ⊆ V be a clique of G = (V,E), and I ⊆ V is an independent set in G.
Definition 44 (The maximum independent set problem). The maximum indepen-
dent set problem is the problem of finding a set of independent vertices such that the
number of the vertices is maximum.

Let α(G) = max{|I| : I is an independent set inG}.
Definition 45 (The maximum clique problem (MAX CLIQUE)). The maximum
clique problem is the problem of finding a clique with the maximum size.

Let ω(G) = max{|C| : C is a clique inG}.

A vertex cover S of a graph G is a set of vertices of G such that every edge of G has
at least one of the member of S as an endpoint.
Definition 46 (The vertex cover problem (VERTEX COVER)). The vertex cover
problem is the problem of finding a vertex cover with the minimum size.

Let σ(G) = min{|S| : S is a vertex cover of G}.

Let S = {s1, . . . , sk} be a set of subgraphs of G. If ∪ki=1V (si) is a vertex cover of G
then G is vertex-covered (or covered) by the set of graphs S.
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Definition 47 (The independent set cover problem). The independent set cover
problem is the problem of finding a set of independent sets S = {I1, . . . , Ik} of G
such that S covers G and k is the minimum.

Let χ(G) = min{k : ∪ki=1Ii is a vertex cover of G}
Definition 48 (The clique cover problem). The clique cover problem is the problem
of finding a set of cliques S = {C1, . . . , Ck} of G such that S covers G and k is the
minimum.

Let κ(G) = min{k : V is covered by a set of cliques C1, C2, . . . , Ck inG}
Definition 49 (The biclique cover problem). The biclique cover problem is the prob-
lem of finding a set of bicliques B = {B1, . . . , Bk} of G such that B covers G and k
is the minimum.

Let κB(G) = min{k : V is covered by a set of bicliquesB1, B2, . . . , Bk inG}.

Let B be a set of bicliques of G. If the union of all edges of all member of B is E(G),
then E(G) (or G) is edge-covered by B.
Definition 50 (The biclique edge cover problem (BEC)). The biclique edge cover
problem is the problem of finding a set of bicliques B = {B1, . . . , Bk} of G such that
B edge-covers G and k is the minimum.

Let c(G) = min{k : E is edge - covered by a set of bicliquesB1, B2, . . . , Bk inG}.

Let B = {B1, B2, . . . , Bk} be a set of bicliques of G such that E(Bi) ∩ E(Bj) = ∅
for i 6= j. If the union of all edges of all member of B is E(G), then E(G) (or G) is
edge-partitioned by B.
Definition 51 (The biclique edge partition problem (BEP)). The biclique edge par-
tition problem is the problem of finding a set of bicliques B = {B1, . . . , Bk} of G such
that B edge-partitions G and k is the minimum.

Let b(G) = min{k : E is edge - partitioned by a set of bicliquesB1, B2, . . . , Bk inG}

Let each vertex in V (G) be assigned an alphabet (symbol or color). Let k be a
number of alphabets that are assigned to V (G). If there is an assignment such that
two of vertices x and y are assigned different alphabets for each e = (x, y) ∈ E(G),
then G is k-colorable.
Definition 52 (The chromatic number problem). The chromatic number problem is
the problem of finding χC(G) such that

χC(G) = min{k : G is k - colorable}.

χC(G) is called the chromatic number of G.
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2.5 Satisfiability

The constraint satisfaction problem (CSP) and the satisfiability problem (SAT) have
played central role in the computational complexity theory. In this section, these
problems are defined.

2.5.1 CSP: Constraint satisfaction problem

Let V = {vi, . . . , vn} be a set of variables on a finite alphabet Σ.
Definition 53 (Constraint). A q-ary constraint (C, i1, . . . , iq) consists of a subset
C ⊆ Σq and a q-tuple of indices of variables i1, . . . , iq ∈ {1, . . . , n}. An assignment
a is a mapping a : V → Σ. A constraint is satisfied by a given assignment a if and
only if (a(vi1), . . . , a(viq)) ∈ C.
Definition 54 (CSP: Constraint satisfaction problem). Let C = {C1, . . . , CN} be
a set of q-ary constraints Ci over a set of variables V . The constraint satisfaction
problem (CSP) on C is the problem deciding whether there is an assignment of the
variables that satisfies every constraint.
Definition 55 (UNSAT(C)). UNSAT(C) is the smallest fraction of unsatisfied con-
straints over all possible assignments for V .

Note that C is satisfiable if and only if UNSAT(C) = 0.

2.5.2 SAT: Satisfiability problem

The satisfiability problem(SAT) is the special case of CSP such that constraints are
Boolean expressions and variables are over the truth values. Let X = {x1, x2, . . .}
be a countably infinite alphabet of Boolean variables. These variables can take the
two truth values TRUE and FALSE (or 1 and 0). These variables together with the
Boolean connectives ∨ (logical or), ∧ (logical and), and ¬ (logical not), form Boolean
expressions as follows.
Definition 56 (Boolean expression). A Boolean expression can be any one of (a)
a Boolean variable, such as xi, or (b) an expression of the form ¬φ1, where φ1 is a
Boolean expression, or (c) an expression of the form (φ1 ∨ φ2), where φ1 and φ2 are
Boolean expressions or (d) an expression of the form (φ1 ∧ φ2), where φ1 and φ2 are
Boolean expressions. In case (b) the expression is called the negation of φ1; in case
(c), it is the disjunction of φ1 and φ2; in case (d), it is the conjunction of φ1 and φ2.
An expression of the form xi or ¬xi is called a literal.
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Definition 57 (Truth assignment). A truth assignment T is a mapping from a finite
set X ′ of Boolean variables, X ′ ⊂ X, to the set of truth values TRUE and FALSE.

A Boolean expression φ is satisfied by an assignment a such that φ be TRUE.

The subset of X, X(φ) is the Boolean variables occurring (appearing) in φ defined
as follows. If φ is a Boolean variable xi, then X(φ) = {xi}. If φ = ¬φ1, then
X(φ) = X(φ1). If φ = (φ1∨φ2), or if φ = (φ1∧φ2), then X(φ) = X(φ1)∪X(φ2).
Definition 58 (CNF: Conjunctive normal form). A Boolean expression φ is in con-
junctive normal form (CNF) if φ =

∧n
i=1Ci where each of the Cis is the disjunction

of one or more literals. Ci is a clause of φ. k-CNF is a CNF such that each Ci has
at most k literals.
Definition 59 (SAT: Satisfiability problem). Let φ be a Boolean expression φ in
CNF. The satisfiability problem (SAT) for φ is the problem of deciding whether there
is an assignment of the variables that satisfies φ .

SAT is an NP-complete problem [Coo71]. k-SAT is SAT on k-CNF φ.
Definition 60 (Ek-SAT). Ek-SAT is SAT on CNF φ in which each clause has
exactly k literals.
Definition 61 (k′-OCC-Ek-SAT). k′-OCC-Ek-SAT is Ek-SAT on CNF φ in which
every variables occurs exactly k′ times.
Definition 62 (MAX SAT). MAX SAT for φ is the problem to find the largest
fraction of satisfied clauses of φ over all possible assignments.
Definition 63 (MAX Ek-SAT). MAX Ek-SAT for φ is the problem to find the
largest fraction of satisfied clauses of φ in which each clause has exactly k literals
over all possible assignments.
Definition 64 (k′-OCC-MAX Ek-SAT). k′-OCC-MAX Ek-SAT for φ is the problem
to find the largest fraction of satisfied clauses of φ in which each clause has exactly
k literals and every variables occurs exactly k′ times over all possible assignments.

18



2.6 NP-completeness

A decision problem is to ask whether a given input satisfies a certain property. As-
sume that x is a string x ∈ {0, 1}∗ encoded the input of a decision problem A.
Assume that there is a multistring Turing machine M such that M outputs “YES”
if x satisfies problem’s property, otherwise outputs “No”. That is, the set of x that
outputs “YES” is a language L decided by M . Then the decision problem A is in
P, if L is decided by M within a time polynomial of |x|. For a decision problem B,
assume that there is a nondeterministic Turing machine N that outputs “YES” if
and only if the input of the decision problem B satisfies problem’s property. Let L
be the set of inputs that output “YES”. Then the decision problem B is in NP, if L
is decided by N within a time polynomial of the size of the input of the problem. In
the following, a decision problem is identified to a language that encodes the input
of the problem.

Let A and B be two decision problems. If there is a polynomial time computable
function f such that x ∈ A if and only if f(x) ∈ B, then it is said that A reduces B.
It is denoted by A ≤ B. If A ≤ B and B ∈ P, then A ∈ P holds. If A ≤ B and
B ≤ C then A ≤ C holds.
Definition 65 (NP-hard). If L ≤ A holds for every problem L ∈ NP, then a
decision problem A is NP-hard.
Definition 66 (NP-complete). A is NP-complete if A is NP-hard and it belongs
to NP.

We denote decision version of the optimization problems defined in Section 2.4.2 as
follows. INDEPENDENT SET(k) is the decision problem such that for given a graph
G deciding whether α(G) ≥ k holds or not. VERTEX COVER(k) is the decision
problem such that for given a graph G deciding whether σ(G) ≤ k holds or not.
For the other problems we denote the decision version of problems in the same way.
CHROMATIC NUMBER(k) is also denoted by k-COLORABLITY.
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Figure 2.4: Verifier and Prover.

2.7 Interactive proof system

The Church-Turing thesis states that a function is algorithmically computable if and
only if it is computable by a Turing machine. That is, if some method (algorithm)
exists to carry out a calculation, then the same calculation can also be carried out by
a Turing machine. In the following, a multistring Turing machine M that decides L
is identified to an algorithm V (x, y) such that it decides whether there is a relation
(x, y) or not.

We defined the complexity class NP in Definition 13. There is another characteriza-
tion of NP as follows. A language L is in NP, if and only if there are an algorithm
V (·, ·) running in polynomial time and a polynomial p(·) such that

x ∈ L⇔ ∃y, |y| ≤ p(|x|) andV (x, y) accepts.

That is,

x ∈ L ⇒ ∃y, |y| ≤ p(|x|) andV (x, y) accepts (Completeness)

x /∈ L ⇒ ∀y, |y| ≤ p(|x|) andV (x, y) rejects (Soundness).

Also NP can be characterized by using the interactive proof with a Prover Po and a
Verifier Ve. Prover Po can do computations with unbounded time and space. Verifier
Ve asks queries to Po, and runs in polynomial time with messages from Po. The task
of the prover is to convince the verifier that x ∈ L. Here, a sequence of queries and
messages is exchanged between Po and Ve. Strategy for Po is a function from the
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sequence of messages that Po send to Ve so far (thus seen by Ve) to the next message.
Ve is convinced if and only if Ve can verify that x ∈ L using the sequence of messages
from Po.

Now the class NP is the set of languages L such that

x ∈ L ⇒ Po has a strategy to convinceVe (Completeness)

x /∈ L ⇒ Po has no strategy to convinceVe (Soundness),

where Ve may be a randomized machine, and may ask further questions of the prover
based on the messages that have been set to it. Exchanging messages are called
interactions.

By adding randomness to the class NP, the class MA is defied as follows.
Definition 67 (MA). L ∈MA if and only if there exists a probabilistic algorithm
Vr such that:

x ∈ L ⇒ ∃y, Pr[Vr(x, y) accepts] ≥ 2

3

x /∈ L ⇒ ∀y, Pr[Vr(x, y) accepts] ≤ 1

3
.
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Figure 2.5: The probabilistically checkable proof.

2.8 PCP:Probabilistically checkable proof

Let x be a string with a length n = |x|. The problem to decide whether x ∈ L or
not, is in the complexity class PCPc(n),s(n)(r(n), q(n)) defined as follows.
Definition 68 (PCPc(n),s(n)(r(n), q(n))). The decision problem is in PCPc(n),s(n)(r(n), q(n)),
if there is Ve such that

x ∈ L ⇒ ∃π, Pr[Ve accepts] ≥ c(n)

x /∈ L ⇒ ∀π, Pr[Ve accepts] ≤ s(n)

using O(r(n)) of random bits and read O(q(n)) bits of the proof π.
Theorem 1 (The PCP theorem). [AS98] NP = PCP 1,1/2(log n, 1).

In the early 1990s, the PCP theorem was proved with a little too complex transfor-
mations [AS98]. A recent work due to Dinur[Din07] gives a simple construction of
probabilistically checkable proofs. We briefly introduce the proof of the PCP theorem
following [Din07].
Definition 69 (Constraint graph). G = 〈(V,E),Σ, C〉 is a constraint graph, if

1. (V,E) is an undirected graph, called the underlying graph of G.

2. The set V is also viewed as a set of variables such that each of them has a value
over alphabet Σ.

3. Each edge e ∈ E has a constraint c(e) ⊆ Σ × Σ, and C = {c(e) | e ∈ E}. A
constraint c(e) is said to be satisfied by (a, b) if and only if (a, b) ∈ c(e).
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Figure 2.6: PCPc(n),s(n)(r(n), q(n)).

Note that if c(e) = {(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)} for all e, then the problem
to decide whether C is satisfiable or not is 3-COLORABILITY.

Let a mapping σ : V → Σ be an assignment to vertices in V . For any assignment σ,
UNSATσ(G) and UNSAT(G) are defined as follows.
Definition 70 (UNSAT(G)).

UNSATσ(G) =
∏

(u,v)∈E

Pr[(σ(u), σ(v)) /∈ c(e)]

UNSAT(G) = min
σ

UNSATσ(G)

3-COLORABILITY is NP-hard, thus it is NP-hard to distinguish between the cases
UNSAT(G) = 0 and UNSAT(G) 6= 0.

Let size(G) = |V |+ |E|. Dinur[Din07] proved the following theorem.
Theorem 2 (The gap amplification). There exist Σ0 such that the following holds.
For any finite alphabet Σ there exist constants C > 0 and 0 < α < 1 such that,
given a constraint graph G = 〈(V,E),Σ, C〉, one can construct, in polynomial time,
a constraint graph G ′ = 〈(V ′, E ′),Σ0, C ′〉 such that

• size(G ′) ≤ C · size(G).

• If UNSAT(G) = 0 then UNSAT(G ′) = 0 (Completeness).

• UNSAT(G ′) ≥ min(2 · UNSAT(G), α) (Soundness).
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If UNSAT(G ′) 6= 0, by repeating this construction, we have the constraint graph
Gfinal such that UNSAT(Gfinal) ≥ α holds. Let G ′final be the set of constraint graphs
of copied Gfinal for k times. Then the probability that each copy of Gfinal in G ′final is
satisfied by k distinct assignments, is at most (1 − α)k. If k ≥ − log2(1 − α) then
UNSAT(G ′final) ≥ 1/2. As we can construct such a system of constraint graphs from
an instance of 3-COLORABILITY in polynomial time, the next theorem follows from
Theorem 2.
Theorem 3 (Inapproximability version of the PCP theorem). There are integers
q > 1 and |Σ| > 1 such that, given an input a collection C of q-ary constraint over an
alphabet Σ, it is NP-hard to decide whether UNSAT(C) = 0 or UNSAT(C) ≥ 1/2.

The proof of Theorem 1 is as follows.

Proof. (L ∈ NP ⇒ L ∈ PCP1,1/2(log n, 1)) We show that every NP language has
a verification procedure Ver that reads c log n random bits, accesses q = O(1) bits
from the proof and decides whether to accept or reject (where q and c are constants).
For each fixed random bit pattern r ∈ {0, 1}c logn, Ver deterministically reads a fixed

set of q bits from the proof: i
(r)
1 , . . . , i

(r)
q . Denote by C(r) ⊆ {0, 1}c logn the possible

contents of the accessed proof bits that would cause Ver to accept.

We present a reduction from L to gap constraint satisfaction. Let Σ = {0, 1} and
x ∈ Σn be the input. Put a Boolean variable for each proof location accessed by Ver
on input x. The length of string of these Boolean variables is at most q2c logn = qnc.
Let r0 = {c log n}. Construct a system of constrains Cx = {cr}r∈{0,1}r0 such that the

constraint cr is defined by cr = {C(r), i
(r)
1 , . . . , i

(r)
q }. We observe that the rejection

probability of Ver is exactly equal UNSAT(Cx) so it is zero if x ∈ L, and at least 1/2
if /∈ L.

(L ∈ NP ⇐ L ∈ PCP1,1/2(log n, 1)) For the converse, assume there is a reduc-
tion taking instances of any NP-language into constraint systems such that the gap
property holds. Here is how to construct a verifier. The verifier will first (determin-
istically) compute the constraint system output by the reduction guaranteed above.
It will expect the proof to consist of an assignment for the variables of the constraint
system. Next, the verifier will use its random string to select a constraint uniformly
at random, and check that the assignment satisfies it, by querying the proof at the
appropriate locations.

We omit parameters c(n)(= 1) and s(n)(= 1/2) in the following, unless otherwise
noticed.
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2.9 Approximation algorithms

Both of the bicliqe edge partition and the biclique edge cover problems are NP-hard.
Thus we cannot have exact solutions for them in polynomioal time.

Let I be an instance of an optimization problem. A solution S(I) is an object
that satisfies some specified property required by the problem. A solution S(I) is
associated with a value of an objective function. |S(I)|, the size of S(I), is the value
of the objective function.

The hardness of approximation is measured by an approximation ratio ρ. A ρ-
approximation algorithm for a minimization (maximization) problem is the algorithm
that guarantees to return a solution with the size at most ρ (at least 1/ρ) times the
size of the optimal solution.
Definition 71 (Approximation algorithm). Let P ′ be an NP-hard optimization prob-
lem. Let I be an instance of P ′, and So(I) be an optimal solution. If P ′ is a min-
imization problem, then a ρ-approximation algorithm is an algorithm that gives a
solution S(I) for any instance I such that

ρ|So(I)| ≥ |S(I)|

in polynomial time. If P ′ is a maximization problem, then a ρ-approximation algo-
rithm is an algorithm that gives a solution S(I) for any instance I such that

|So(I)|/ρ ≤ |S(I)|

in polynomial time.

Note that ρ > 1 holds for both of minimization and maximization NP-hard problems.
The factor ρ is called the approximation ratio (or the relative performance guarantee)
of an approximation algorithm for an NP-hard problem.

For example, let us see an approximation algorithm for the minimum vertex cover
problem. Let So be an optimal solution of the minimum vertex cover problem. Let
E ′ be the set of edges (u, v) chosen in Algorithm 1. The set of vertices in So covers
every edge in E ′. Thus vertices in So include at least one of the endpoints of each
edge in E ′. As no two edges in E ′ share an endpoint, |So| ≥ |E ′| holds. Algorithm
1 gives S such that |S| = 2|E ′|. Thus this algorithm guarantees to give a solution
with the size at most 2|So|.

NP-hard problems that have a ρ-approximation algorithm with any constant ρ > 1
is not hard to solve in the sense of approximation. These problems are said to have a
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Algorithm 1 The 2-approximation algorithm for the vertex cover problem.

Input a graph G = (V,E)
S ⇐ ∅
while E(G) 6= ∅ do

choose arbitrarily an edge (u, v) ∈ E(G)
S ⇐ S ∪ {u, v}
Delete u, v and their incident edges from G. Let G be the resulted graph.

end while
Output S

polynomial-time approximation scheme (PTAS). For example, the knapsack problem
has PTAS. On the other hand, there are some problems that has no ρ-approximation
algorithm with some constant ρ. For example, the minimum vertex cover problem
cannot be approximated within a factor of 1.3606 for any sufficiently large vertex
degree [DS05]. Furthermore, there are some problems that have no ρ-approximation
algorithm with any constant ρ. For example, it is known that the set cover problem
cannot be approximated within the ratio (1−O(1)) lnn [Fei98]. Also, the maximum
clique problem cannot be approximated within the ratio O(n1−ε) for any ε > 0
[H̊as99].
Definition 72 (PTAS: A polynomial time approximation scheme). A polynomial
time approximation scheme (PTAS) is a family of algorithms {Aρ}, where there is
an algorithm for each ρ > 1, such that Aρ is a ρ-approximation algorithm.

MAX E3-SAT has no PTAS. However, it has an 8/7- approximation algorithm. Let
us see this algorithm.

Let Φ be an instance of MAX E3-SAT with m clauses. Let xi and φj be a variable
and a clause of Φ, respectively. Suppose that xi be a probabilistic variable that is
either TRUE or FALSE with probabilty 1/2. Let E[φ] be the expected number of
satisfied clauses in φ. Note that E[φj] = 7/8 and E[Φ] = 7m/8 hold. Let Φxi=t be Φ
such that xi is fixed to t ∈ {TRUE,FALSE}. Then

E[Φ] =
1

2
(E[Φx1=TRUE] + E[Φx1=FALSE])

holds. If E[Φx1=TRUE] > E[Φx1=FALSE] then set x1 = TRUE otherwise x1 = FALSE.
Repeat this pocedure to Φ until values of all variables are fixed. It is easy to see
that the expected number of satisfied clauses never decreased in each steps. Thus
we have an assignment that satisfies at least 7m/8 clauses of Φ.
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Let Π be an NP-hard minimization problem. To obtain an approximation hardness
result of Π, a reduction from an NP-complete decision problem ΠD into a set of
instances of Π is constructed. In these reductions, if any “Yes” instance of ΠD is
mapped to an instance of Π with objective function value ≤ k, whereas any “No”
instance of ΠD is mapped to an instance of Π with objective function value ≥ k+ 1.
This implies that obtaining an approximation algorithm with approximation ratio
better than (k+1)/k is not possible unless P = NP, since this would then allow us to
distinguish between the “Yes” and “No” instances of NP-complete decision problem
ΠD.

As mentioned in Chapter 1, although MAX 3-SAT has an 8/7-approximation al-
gorithm [KZ97], it cannot be approximated within a ratio of 8/7 − ε for any ε >
0 [H̊as01]. Furthermore, MAX CLIQUE has no ρ-approximation algorithm with
a constant ρ. Let APX denote the class of approximation problems that have
ρ-approximation algorithms. Then MAX 3-SAT belongs to APX, whereas MAX
CLIQUE does not belong APX. These hardness results are mostly derived by reduc-
tions using the PCP theorem noticed in the following sections.
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2.10 Hardness of MAX 3-SAT

MAX 3-SAT is the optimization version of 3-SAT. (See Definition59.) That is, MAX
3-SAT is the problem to find the maximum fraction of satisfied clauses in 3-CNF
formula φ. As MAX 3-SAT is NP-hard, it cannot be solved in polynomial time
unless P = NP. The next theorem follows from the PCP theorem.
Theorem 4. There is an ε > 0 such that (1 − ε)-approximation of MAX 3-SAT is
NP-hard.

Proof. Let L be a language such that the problem deciding whether x ∈ L or not
is NP-complete. Let |x| = n. By the PCP theorem, L ∈ PCP(log n, 1) holds. Let
V be the verifier for L. Then there is two constants c and q such that V can check
whether x ∈ L or not by using c · log n random bits and reading q bits from the proof.

Given an instance x of L, we construct a 3-CNF formula φx on m clauses such that
for some ε

x ∈ L ⇒ φx is satisfiable

x /∈ L ⇒ no more than (1− ε)m clauses of φx are satisfiable.

Then this theorem holds from the observation of the previous section. Such φx can
be constructed as follows. By using c · log n random bits, V chooses one string r
from 2c·logn(= nc) number of strings. For each r, V reads q bits from the proof.
Let i1, . . . , iq be positions of the proof that V reads by choosing r. For each r,
let fr : {0, 1}q → {0, 1} be a Boolean function such that V accepts if and only if
fr(π(i1), . . . , π(iq)) = 1. Note that π(i) is a value of the proof at the ith position. Now
we have nc functions fr that have q variables. Each function fr can be transformed
to a CNF formula φr of 2q clauses such that φr = TRUE under π if and only
if fr(π(i1), . . . , π(iq)) = 1. A clause with k > 3 literals can be transformed to
clauses such that each clause has exact three literals as follows. Let y1, . . . , yq−3 be
(q − 2) auxiliary variables. A clause cr = (xi1 ∨ xi2 ∨ · · · ∨ xiq) is transformed to
c′r = (xi1 ∨ xi2 ∨ y1)∧ (ȳ1 ∨ xi3 ∨ y2)∧ (ȳ2 ∨ xi4 ∨ y3)∧ · · · ∧ (ȳq−3 ∨ xiq−1 ∨ xiq). Note
that c′r has (q − 2) clauses. Let φ′r be the 3-CNF formula to which all clauses of
φr is transformed by the above way. It is easy to check that if cr is satisfiable then
there is an assignment that satisfies all clauses of c′r. If there is no assignment that
satisfies cr, then at least one clause of c′r is unsatisfied by any assignment. If V reject
x with probability more than 1/2, more than nc/2 of φR are unsatisfiable. Thus, in
this case, more than nc/2 of nc · 2q(q − 2) clauses of

∧
r φ
′
r are unsatisfied by any

assignment. If φx =
∧
r φ
′
r then ε = 1/(2q+1(q − 2)) holds.
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2.11 Polynomial-Time Algorithms for the Biclique

Edge Cover and Partition Problems

This section reviews some known polynomial time algorithms that are related to the
biclique edge cover and partition problems. In Subsection 2.11.1, a polynomial-time
algorithm of the biclique edge cover problem for a distance-hereditary bipartite graph
is noticed. In Subsection 2.11.2, a relation between the minimum biclique (cover)
problem and the rank of a matrix is noticed.

2.11.1 A Polynomial-time algorithm for a distance-hereditary
bipartite graph

As mentioned in Introduction, the biclique edge cover problem can be solved in
polynomial time for some restricted graph classes. Müller [Mül96] showed that for
C4-free bipartite and distance-hereditary bipartite graphs, the biclique edge cover
problem can be solved in polynomial time. If a given graph B is C4-free bipartite
then each maximal biclique in B is a stargraph. For this graph class, the biclique
edge cover problem is equivalent to VERTEX COVER. VERTEX COVER can be
solved in polynomial time when restricted to bipartite graphs [Yan81]. Thus the
biclique edge cover problem can be solved in polynomial time for C4-free bipartite
graph class.

Algorithm 2 Algorithm for the distance-hereditary bipartite graph [Mül96].

Input a bipartite graph B = (V,E)
s⇐ 0
F ⇐ E
Remove isolated vertices in B.
while V 6= ∅ do

Choose a bisimplicial edge e of B[V ].
s⇐ s+ 1
Remove all edges dependent on e from F .
Remove isolated vertices in B = (V, F ).

end while
Output s

Let us overview Müller’s algorithm of the biclique edge cover problem for a distance-
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hereditary bipartite graph [Mül96]. For a bipartite graph B = (V,E), let e = (u, v)
be a bismplicial edge in B. That is, the induced subgraph B[NB(v) ∪ NB(u)] is a
biclique of B. Müller showed that any distance-hereditary bipartite graph contains
a bisimplicial edge. Let us define some terms for presenting the algorithm. A pair of
edges e and f in B = (V,E) is dependent in B if either of the following conditions
holds: (1) e and f are incident with a common vertex in V , or (2) e and f form a
cycle of length four in B, possibly with chords. M ⊆ E is an independent set of edges
in B = (V,E) if no pair of distinct edges of M is dependent in B. The algorithm is
shown in Algorithm 2. From the fact that a bisimplicial edge is contained in exactly
one maximal biclique [Mül96], it is easy to show that s, the output of Algorithm 2,
is the size of an optimal solution of the biclique edge cover.

The class of domino-free bipartite graphs properly contains the class of C4-free bi-
partite graphs the class of the distance-hereditary bipartite graphs. Amilhastre et
al. [AVJ98] showed that the size of the minimum biclique edge partition is equal to
the size of the minimum biclique edge cover for this graph class. As mentioned in
Chapter 1, the biclique edge cover problem can be solved in polynomial time for the
domino-free bipartite graph class. Thus the biclique edge partition problem also can
be solved in polynomial time for this graph class. The computational complexity
of these problems for the domino-free bipartite graph class is noticed in Chapter
4.

2.11.2 The biclique edge cover and partition problems and
the rank of matrix

As shown in Chapter 1, the biclique edge cover and partition problems can be for-
mulated by using matrices. This section shows that the size of the minimum biclique
edge partition is given by the rank of a 0-1 matrix, and the size of the minimum
biclique edge cover is given by the Boolean rank of a matrix. It is also known that a
lower bound of the minimum biclique edge partition is given by the Hermitian rank
of same matrices.

In Chapter 1, we have demonstrated that the biclique edge partition and cover prob-
lems have an application in large databases that is called the association rule learning.
The association rule learning is a well researched method of discovering significant
relations between variables in large databases such as finding rules like that each
customer who buys item A always buys B, or word X and word Y are often appeared
in a web page.
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Let us recall the application of databases appeared in Chapter 1. Let M be a 0-1
matrix. In Market Basket Analysis, M represents that if ith customer buys jth item
then Mi,j = 1 otherwise Mi,j = 0. Under the requirement that each customer buys
all items from a single shelf, we have considered the optimization problem of finding
the minimum number of shelves.

Let M be as follows

M =


1 1 1 1 0 0
1 1 1 1 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 1 1 1 1
0 0 1 1 1 1

 .

In this case, customers {1, 2} buy items {1, 2, 3, 4}, customers {3, 4} buy items
{1, 2, 3} and customers {5, 6} buy items {3, 4, 5, 6}. M can be expressed as a product
of M = S ·R, where S is a 6× 3 matrix and R is a 3× 6 matrix, as

S =


1 1 0
1 1 0
0 1 0
0 1 0
1 0 1
1 0 1


and

R =

0 0 0 1 0 0
1 1 1 0 0 0
0 0 1 0 1 1

 .

Matrix R shows that three shelves such that item {4} on shelf 1, items {1, 2, 3} on
shelf 2 and items {3, 5, 6} on shelf 3 satisfy the requirement. Suppose that m × n
matrix M can be expressed the product of an m×k matrix and a k×n matrix. The
rank of M is defined to be the minimum integer of k. In this case, it is easy to show
that the minimum k is three.

Next, the 0-1 matrix M can be expressed as a bipartite graph BM as follows. Make
a vertex xi for each ith row and a vertex yj for each jth column of M . Put an edge
(xi, yj) if and only if Mij = 1. The bipartite graph BM for M is shown in Fig.2.7.
There are three bicliques B1, B2 and B3 in BM , where
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Figure 2.7: The bipartite graph BM represents M .

B1 = ({x1, x2, x5, x6}, {y4}),
B2 = ({x1, x2, x3, x4}, {y1, y2, y3}),
B3 = ({x5, x6}, {y3, y5, y6}).

It is easy to see that {B1, B2, B3} is a biclique edge partition of B. Thus the rank
of M is equal to the minimum size of the biclique edge partition of BM .

Let us see another case of M . Let M ′ be a matrix as follows.

M ′ =


1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 1 1 1
1 1 1 1 1 1
0 0 1 1 1 1
0 0 1 1 1 1

 .

M ′ can be expressed S ·R where

S ≡


1 1 0
1 1 0
1 1 1
1 1 1
0 1 1
0 1 1


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and

R ≡

1 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 1 1

 .
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Figure 2.8: The bipartite graph BM ′ represents M ′.

Same as in the case of M , the bipartite graph BM ′ is partitioned into three bi-
cliques.

B′1 = ({x1, x2, x3, x4}, {y1, y2}),
B′2 = ({x1, x2, x3, x4, x5, x6}, {y3}),
B′3 = ({x3, x4, x5, x6}, {y4, y5, y6}).

It is easy to show that this is a minimum biclique edge partition of BM ′ .

Consider the following two matrices S and R.

S ≡


1 0
1 0
1 1
1 1
0 1
0 1

 ,

R ≡
(

1 1 1 0 0 0
0 0 1 1 1 1

)
.
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Let � be the operator of matrix multiplication in which the addition is replaced by
the Boolean addition, that is, 1 + 1 = 1 + 0 = 0 + 1 = 1 and 0 + 0 = 0. Then
M = S � R holds. For an n × m Boolean matrix M , the Boolean rank is defined
to be the least integer k such that M can be expressed by the Boolean product (�)
of n × k matrix S and k × m matrix R. In this case, it is easy to show that the
minimum k is two. Thus the Boolean rank of M ′ is two. It is easy to show that the
bipartite graph BM ′ is covered by two bicliques as follows,

B′4 = ({x1, x2, x3, x4}, {y1, y2, y3}),
B′5 = ({x3, x4, x5, x6}, {y3, y4, y5, y6}).

As we observed, the biclique edge cover problem is equivalent to the problem of
finding the Boolean rank for the matrix corresponding to a given graph. On the
other hand, the biclique edge partition problem is to find the “ordinary” matrix
rank. Thus these statements are essentially the same: (1) the rank of 0-1 matrix is
not always equal to the Boolean rank. (2) the solution of the biclique edge partition
problem is not always equal to the solution of the minimum edge cover problem.

2.11.3 The biclique edge partition and the Hermitian rank

We next show a relation between the “ordinary” rank of the adjacency matrix of a
general graph G and the minimum number of biclique partition b(G). Let A be the
adjacency matrix of G. We assume that such that |V (G)| = 2n. Let n+(A) be the
number of positive eigenvalues and n−(A) be the number of negative eigenvalues of
A. Let A be a 2n× 2n Hermite matrix, that is, A = AT . Then the Hermitian rank,
h(A) is the least k such that A = XY T + Y XT for some 2n × k matrices X and
Y . Then h(A) = max{n+(A), n−(A)} and Witsenhausen’s inequality b(G) ≥ h(A)
hold [GVB99]. This inequality gives a lower bound of the number of the minimum
biclique edge partitioning.

We show examples of Witsenhausen’s inequality for some bipartite graphs. Let AB
be the adjacency matrix of a bipartite graph B = (X, Y,E) such that |X| = |Y | = n.
Let R′ be an n×n matrix such that if there is an edge (xi, yj) then R′i,j = 1 otherwise
R′i,j = 0. Then

AB =

(
0 R′

R′T 0

)
where 0 is an n×n matrix with all zero entries and R′T is the transpose of R′. Thus
if R′ = R′T then AB is an Hermite matrix, and then b(B) ≥ h(AB) holds.
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Let B be a bipartite graph expressed by the following R′

R′ =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 .

where R′ = R′T holds. See Fig. 2.9. AB is an Hermite matrix. Eigenvalues of AB
are {−3,−1,−1,−1, 1, 1, 1, 3}. Then b(B) = 4 and b(B) ≥ h(AB) holds.
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Figure 2.9: A bipartite graph expressed by B′.

A domino D (Fig.2.10) is expressed as

D =

0 1 1
1 1 1
1 1 0

 .

Thus the adjacency matrix AD is a Hermite matrix. Eigenvalues of AD are {−1 −√
2,−1, 1−

√
2,−1+

√
2, 1, 1+

√
2}. Then h(AD) = 3 and b(D) ≥ h(AD) holds.

As the number of eigenvalues of a matrix can be found in polynomial time, Wit-
senhausen’s inequality gives a good estimation for a lower bound of the size of an
optimal solution of the minimum bipartite edge partitioning. Gregory et.al [GVB99]
showed the minimum number of bipartite edge partitioning for some graph classes
using the eigenvalue of the Hermite matrix. For example, if G is the complement
of a path then b(G) = b2(n − 1)/3c, while if G is the complement of a cycle then
b(G) = 2b(n− 1)/3c or b(2n− 1)/3c.
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Figure 2.10: A domino D.
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Chapter 3

Approximation Hardness of the
Biclique Edge Partition Problem

3.1 Previous works

For a graph G, let SBC(G) = {C1, C2, . . . , Ck} be a collection of bicliques Ci such
that each edge of G is contained in any one of Ci. The biclique edge cover problem
(BEC) asks for SBC(G) with the minimum size. (See Definition 50). Let SBP (G) =
{B1, B2, . . . , Bk} be a collection of bicliques Bi such that each edge of G is contained
in exactly one Bi. The biclique edge partition problem (BEP) asks for SBP (G) with
the minimum size. (See Definition 51). Unless P = NP, the biclique edge cover
problem (BEC) does not have O(n1/3)-approximation algorithm[GH07]. It is known
that BEP is NP-hard [JR93]. While BEC has been widely studied, BEP has not
been given so much attention.

In this chapter, we construct a gap preserving reduction[Vaz01] from 3-OCC-MAX
E2-SAT to BEP, and show for arbitrary small ε > 0, (6053/6052− ε)-approximation
of BEP is NP-hard. 1

1Recently, the hardness result for BEP was given by Chalermsook et.al [CHHK14]. They showed
that BEC and BEP do not admit O(n1−ε)- and O(m1/2−ε)- approximation algorithm for any ε > 0
for a bipartite graph with n vertices and m edges, unless P = NP.
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3.2 Construction of an instance of biclique edge

partition problem

A Boolean expression ϕ is in the conjunctive normal form (CNF) if ϕ is a conjunction
of clauses and each clause is a disjunction of literals. For a given ϕ in CNF, the
maximum satisfiability problem (MAX SAT) asks for an assignment that satisfies
simultaneously the maximum number of clauses of ϕ. MAX 2-SAT is MAX SAT in
which each clause has at most two literals. MAX E2-SAT is MAX 2-SAT in which
each clause has exactly two literals of different variables. k-OCC-MAX 2-SAT (k-
OCC-MAX E2-SAT) is MAX 2-SAT (MAX E2-SAT) in which each variable occurs
exactly k times in the expression.

Let N be a positive integer, Berman and Karpinski[BK98] showed inapproximability
of 3-OCC-MAX 2-SAT as follows.
Theorem 5 ([BK99]). For any positive ε(< 1/2), it is NP-hard to decide whether
an instance of 3-OCC-MAX 2-SAT with 2016N clauses has a truth assignment that
satisfies at least (2012− ε)N clauses, or at most (2011 + ε)N .

In their proof, all clauses of an instance of 3-OCC-MAX 2-SAT have exactly two
literals[BK98]. So this theorem can be applied to 3-OCC-MAX E2-SAT.

Let ϕ be an instance of 3-OCC-MAX E2-SAT and let s(ϕ) be the maximum number
of clauses that can be satisfied simultaneously by an assignment. In this section, we
transform ϕ into an instance G = (V,E) of BEP such that G can be partitioned
into (3 + ε)m bicliques if and only if s(ϕ) ≥ (1− ε)m for a positive integer m and a
positive constant ε (< 1).

Suppose ϕ has n variables xi(i = 1, . . . , n) and m clauses cj(j = 1, . . . ,m). For
cj = α ∨ β, we call α (resp. β) as the first (resp. second) literal of cj. Since each
variable occurs exactly three times in ϕ, 3n = 2m holds. For each variable xi, we
construct Gi as follows.

V (Gi) = {x1
i , x

2
i , x

3
i , x̄

1
i , x̄

2
i , x̄

3
i }

E(Gi) = {(x1
i , x̄

2
i ), (x̄

2
i , x

3
i ),

(x3
i , x̄

1
i ), (x̄

1
i , x

2
i ), (x

2
i , x̄

3
i ), (x̄

3
i , x

1
i )}.

Each Gi is a cycle graph C6 (Fig. 3.1 (a)). We denote by Vx the set of vertices in these
cycles, that is, Vx = {xdi , x̄di |1 ≤ i ≤ n, d = 1, 2, 3}. For each clause cj, we create two
vertices yj, zj and an edge ej = (yj, zj). Let Vc = {yj, zj|1 ≤ j ≤ m}.
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Figure 3.1: (a) Gi and its vertices. (b) Gi with nonadjacent degree-three vertices.
(c) Gi with contiguous degree-three vertices.

We connect vertices of Vx and Vc as follows. Let xi be a variable and suppose it
appears in three clauses cj1 , cj2 , cj3 . For d = 1, 2, 3, if the occurrence of xi is the
first literal of cjd , we connect yjd to either xdi (if the literal is xi) or x̄di (if the literal
is x̄i) by an edge. If the occurrence of xi is the second literal of cjd , we connect zjd
to either xdi (if the literal is xi) or x̄di (if the literal is x̄i) by an edge. We denote by
eyj(ezj) the added edge incident to yj(zj).

Note that if xi occurs all positive (all negative) in ϕ, the degree-three vertices ap-
pearing in Gi are not adjacent each other (Fig. 3.1 (b)). Otherwise, the degree-three
vertices appear contiguously in Gi(Fig. 3.1(c)). We summarize the construction of
G as follows.

V (G) = Vx ∪ Vc

E(G) =
n⋃
i=1

E(Gi) ∪
m⋃
j=1

E(Gcj).

G for ϕ = (x̄1 ∨ x2)∧ (x2 ∨ x3)∧ (x̄1 ∨ x̄3)∧ (x1 ∨ x4)∧ (x2 ∨ x4)∧ (x3 ∨ x̄4) is shown
in Fig. 3.2.

The following lemma holds.
Lemma 1. All biclique subgraphs of G are stargraphs K1,s(s ≥ 1).

Proof. G is constructed by cycle graphs C6 connected each other by a path P4. Thus,
G has no Ks,t(s ≥ 2, t ≥ 2) as a subgraph.
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Figure 3.2: G for ϕ = (x̄1∨x2)∧ (x2∨x3)∧ (x̄1∨ x̄3)∧ (x1∨x4)∧ (x2∨x4)∧ (x3∨ x̄4)
where black and white vertices represent positive and negative literals respectively.

3.3 Inapproximability of the biclique edge parti-

tion problem

In the sequel, we use “biclique” and “stargraph” interchangeably. For a stargraph
K1,s(s ≥ 2), the vertex of degree s is called its center. For each i, we define six
stargraphs (K1,2) as follows.

S1
i = {(x̄3

i , x
1
i ), (x

1
i , x̄

2
i )}

S2
i = {(x̄1

i , x
2
i ), (x

2
i , x̄

3
i )}

S3
i = {(x̄2

i , x
3
i ), (x

3
i , x̄

1
i )}

S̄1
i = {(x3

i , x̄
1
i ), (x̄

1
i , x

2
i )}

S̄2
i = {(x1

i , x̄
2
i ), (x̄

2
i , x

3
i )}

S̄3
i = {(x2

i , x̄
3
i ), (x̄

3
i , x

1
i )}.
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We denote two sets of graphs as follows.

STi = {S1
i , S

2
i , S

3
i },

SFi = {S̄1
i , S̄

2
i , S̄

3
i }.

Each Gi(i = 1, . . . , n) can be partitioned into the three bicliques of STi or into the
three bicliques of SFi .

We denote by S(G) the size of an optimal solution of BEP for G. We give the
following lemma.
Lemma 2. For any positive ε(< 1), if s(ϕ) > (1− ε)m then S(G) < (3 + ε)m holds.

Proof. Let π be an assignment that satisfies more than (1 − ε)m clauses of ϕ. We
show that we can construcnt a set of bicliques SOL′(G), a solution of BEP for G,
such that |SOL′(G)| < (3 + ε)m.

Let SOL′(G) be an empty set. For each xi, if π assigns TRUE (FALSE) to xi, we
add STi (SFi ) to SOL′(G). Note that all edges of Gi have been partitioned by these
3n(= 2m) bicliques.

Let cj be an arbitrary clause of ϕ. If the assignment π satisfies cj, there is at least
one stargraph K1,2 in SOL′(G) whose center is adjacent to yj or zj. W.l.o.g., we
assume that yj is adjacent to the center of this K1,2. We replace this stargraph
K1,2 in SOL′(G) with a stargraph K1,3 by adding eyj . This manipulation does not
increase |SOL′(G)|. Furthermore, we add to SOL′(G) a stargraph K1,2 consisting
of ej and ezj .

If the assignment π does not satisfy cj, we add two stargraphs to SOL′(G); K1,2

consisting of ej and eyj , and K1,1 (=ezj). The number of K1,1 in SOL′(G) is less
than εm because of the assumption. In SOL′(G), we have 2m stargraphs, K1,2 or
K1,3, whose centers are in Vx, and m stargraphs, K1,2, that have an edge ej. Thus,
we have |SOL′(G)| < 2m+ (1− ε)m+ 2εm = (3 + ε)m.

Lemma 3. For any positive ε(< 1), if s(ϕ) ≤ (1− ε)m then S(G) ≥ (3 + ε)m holds.

Proof. Assume that there is a set of bicliques SOL(G), a solution of BEP for G,
such that |SOL(G)| < (3 + ε)m. We show that there is an assignment that satisfies
more than (1− ε)m clauses of ϕ.

We construct SOL′(G), a solution of BEP for G, such that SOL′(G) induces an
assignment that satisfies more than (1−ε)m clauses of ϕ, and |SOL′(G)| ≤ |SOL(G)|
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holds. Let SOL′(G) be an empty set. We denote by SC(G) the set of all bicliques
in SOL(G) that have an edge ej(j = 1, . . . ,m). Then |SC(G)| = m. We add all
bicliques in SC(G) to SOL′(G).

Next, we remove all edges of bicliques in SC(G) from G. If there are singletons in
the resulted graph, we remove all of them. Let G′ be the resulted graph. G′ consists
of n connected components. Each of the connected components is Gi possibly with
its incident edges. Note that for all j(= 1 . . . ,m), at least one edge eyj or ezj remains
in G′.

For each i(= 1, . . . , n), we denote by G′i a connected component of G′ whose C6

subgraph is Gi. We denote by A the set of all G′i that has no contiguous degree-three
vertices, and we denote by B the set of all G′i that has some contiguous degree-three
vertices.

It is clear that each G′i ∈ A cannot be partitioned into less than three bicliques.
For each G′i ∈ A, we add three bicliques as shown in Fig. 3.1(a), to SOL′(G) as
follows. If some of xdi (d ∈ {1, 2, 3}) are the degree-three vertices, we add three
bicliques(stargraphs) whose centers are xdi to SOL′(G). Otherwise, we add three
bicliques(stargraphs) whose centers are x̄di to SOL′(G).

It is also clear that each G′i ∈ B cannot be partitioned into less than four bicliques.
For each G′i ∈ B, we add four bicliques as follows. If there are three degree-three
vertices in G′i, we denote these contiguous vertices by v1, v2, v3 in this order as shown
in Fig. 3.1(c). We add to SOL′(G) four bicliques; one stargraph K1,1 that is an edge
connecting v2 and a vertex of ej, two stargraphs K1,3 whose center vertices are v1

and v3 and one stargraph K1,2 for the remaining part(Fig. 3.3 (b)).

If there are only two degree-three vertices in G′i, we denote these two contiguous
vertices by v1 and v2. Then we add to SOL′(G) four bicliques; one stargraph K1,1

that is an edge connecting v2 and a vertex in ej, one stargraph K1,3 whose center
vertex is v1 and two stargraphs K1,2 for the remaining part.

SOL′(G) has the same subset SC(G) of SOL(G), and the remaining part is parti-
tioned into the optimal number of bicliques. So it is clear that SOL′(G) is a biclique
partition of G and |SOL′(G)| ≤ |SOL(G)| holds.

Let |B| = ε′m, then |A| = n− ε′m and

|SOL′(G)| = |SC(G)|+ 3|A|+ 4|B| = (3 + ε′)m.

From the assumption |SOL(G)| < (3 + ε)m, we have (3 + ε′)m < (3 + ε)m, and
|B| < εm holds.
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Figure 3.3: (a) Gi partitioned into three bicliques. (b) Gi partitioned into four
bicliques.

We induce an assignment π′ from SOL′(G) as follows. For each G′i ∈ A, if some
of xdi ( x̄

d
i ) are degree-three vertices, we assign TRUE(FALSE) to xi. If there is no

degree-three vertex inG′i, we assign FALSE to xi. For eachG′i ∈ B, if the degree-three
vertex v1 is xdi ( x̄

d
i ) for some d ∈ {1, 2, 3}, we assign TRUE(FALSE) to xi.

Note that under this assignment π′ the literals associating degree-three vertices de-
noted by v2 are FALSE and the other literals are TRUE. Therefore, if cj is not
satisfied by π′, at least one endpoint of ej must be adjacent to v2 in some G′i ∈ B.
The number of vertices denoted by v2 in G is exactly the size of B. Since |B| < εm,
the number of clauses not satisfied by π′ is less than εm, and thus π′ satisfies more
than (1− ε)m clauses in ϕ.

Theorem 6. (6053/6052− ε)-approximation of BEP is NP-hard, for arbitrary small
ε > 0.

Proof. From Theorem 5, it is NP-hard to decide whether s(ϕ) > (2016N − 4N −
εN) or s(ϕ) ≤ (2016N − 5N + εN) for ϕ with 2016N clauses. Let m = 2016N ,
ε1m = (4 + ε)N , and ε2m = (5 − ε)N . From Lemma 2, if s(ϕ) > (1 − ε1)m then
S(G) < (3 + ε1)m = 3 · 2016N + (4 + ε)N . From Lemma 3, if s(ϕ) ≤ (1− ε2)m then
S(G) ≥ (3 + ε2)m = 3 · 2016N + (5 − ε)N . Therefore, for any ε, it is NP hard to
decide whether S(G) < (6052 + ε)N or S(G) >= (6053− ε)N .
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Chapter 4

New Graph Class for the Biclique
Edge Cover Problem

In this chapter, a new graph class for which the biclique edge cover problem can be
solved in polynomial time is presented.

For a bipartite graph B, the modified Galois lattice Gm(B) is defined. Investigating
the structure of Gm(B), the redundant parameter R(B) is introduced. It is proved
that for a bipartite graph B with R(B) ≤ 1, the biclique edge cover problem can be
solved in polynomial time.

4.1 Previous Works

The problem of covering the edges of a graph has been studied in various ways. In this
chapter, we consider the cover problem in which all edges of an input bipartite graph
are covered by the edges of bicliques (BEC). (See Definition 50). Covering a graph
by bicliques arises in many areas [FH96]. In computer graphics, bicliques are used to
model the rectangle cover problem that asks if a rectilinear polygon can be expressed
as the union of a minimum number of rectangles [Lub90]. There are some applications
in artificial intelligence, data mining [Wil09] and biology [NMWA78].
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BEC is NP-hard for general bipartite graphs [Sto75][Orl77][FMPS09]. 1 BEC is
NP-hard for chordal bipartite graphs. However, it can be solved in polynomial time
for C4-free bipartite graphs [Mül96], bipartite distance-hereditary graphs [Mül96]
and bipartite domino-free graphs [AVJ98]. A bipartite graph is C4-free if it has
no cycle of length four as an induced subgraph. There are some characterizations
for bipartite distance-hereditary graphs and we adopt the following definition: a
bipartite graph is bipartite distance-hereditary if it is (6,2)-chordal, that is, every
cycle of length at least 6 has at least 2 chords. A bipartite graph is domino-free if it
has no domino as an induced subgraph, where a domino is a cycle of length six with
exactly one chord as in Fig. 4.1. By definition, neither bipartite C4-free graphs nor
bipartite distance-hereditary graphs have any domino as an induced subgraph. Thus
the class of bipartite domino-free graphs properly contains C4-free bipartite graphs
and distance-hereditary bipartite graphs.

Amilhastre et al. [AVJ98] showed that the size of a minimum biclique cover and the
size of a minimum biclique partition are equal if the graph is bipartite domino-free.
To solve these problems, they defined a partial order for the set of maximal bicliques
of a bipartite domino-free graph B. They used the Hasse diagram (the Galois lat-
tice) G(B) of this partial ordered set and solved the biclique edge cover/partition
problem by finding a minimum cut of G(B). The time complexity of this algorithm
is O(n×m), where n and m are the numbers of vertices and edges of the input graph,
respectively.

In this chapter, we define the modified Galois lattice Gm(B) for a bipartite graph B.
Next, we introduce the redundant parameter R(B), and show that R(B) = 0 if and
only if B is domino-free. Furthermore, for the input graph such that R(B) = 1, we
show that the biclique edge cover problem can be solved in polynomial time.

In Section 4.2, we give definitions which are necessary for our discussion. Also we
define the modified Galois lattice Gm(B) for a bipartite graph B. In Section 4.3,
some properties of Gm(B) are investigated and some lemmas related to Gm(B) are
proved. In Section 4.4, defining the redundant parameter R(B), we prove that B is a
domino-free bipartite graph if and only if R(B) = 0. Also, we show that if R(B) = 1,
the biclique edge cover problem can be solved in polynomial time.

1Chalermsook et.al [CHHK14] showed that BEC do not admit O(n1−ε)- and O(m1/2−ε)-
approximation algorithm for any ε > 0 for a bipartite graph with n vertices and m edges, unless
P = NP.
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4.2 Definitions

Figure 4.1: A domino

LetB = (X, Y,E) be a bipartite graph, whereX = {x1, x2, . . . , xnx}, Y = {y1, y2, . . . , yny}
are the sets of vertices and E ⊆ X × Y is the set of edges. Let n = nx + ny and
m = |EB|. Let NB(x) = {y | (x, y) ∈ EB} be the set of neighbors of x in B. We
denote by XB the set X of vertices of B. We denote by YB the set Y of vertices
of B. Let K = (X ′, Y ′, E ′) be a subgraph of B such that X ′ ⊆ XB and Y ′ ⊆ YB.
K is a biclique if E ′ = X ′ × Y ′, X ′ 6= ∅ and Y ′ 6= ∅. A biclique edge cover of
B is a set of bicliques {K1, K2, . . . , Ks} such that EB =

⋃s
i=1EKi

, and a biclique
edge partition of B is a set of bicliques {K1, K2, . . . , Ks} such that EB =

⋃s
i=1EKi

and EKi
∩ EKj

= ∅ (i 6= j). In this chapter, we simply call the biclique edge cover
(partition) as “biclique cover (partition)”.

A domino is a cycle of length six with exactly one chord that produces two C4’s as
in Fig. 4.1. A bipartite graph B is domino-free if B has no domino as an induced
subgraph. Let KM(B) be the set of maximal bicliques of B. We define a partially
order < on KM(B) as follows. For distinct bicliques Kp, Kq ∈ KM(B), Kp < Kq

if and only if YKp ⊂ YKq (See Fig. 4.2). Kr and Ks are incomparable if neither
Kr < Ks nor Ks < Kr. Let (KM(B),≤) be the reflexive closure of the defined
ordered set.

In [AVJ98], Amilhastre et al. defined a directed graph G(B) for a domino-free bipar-
tite graph B as follows. The set of vertices of G(B) is KM(B) ∪ {>,⊥}, where > is
the maximum element to KM(B), that is, > > K for all K ∈ KM(B) and ⊥ is the
minimum element. For two elements Kp and Kq such that Kp < Kq, put a directed
edge (Kq, Kp) if there is no Kr such that Kp < Kr and Kr < Kq. They call G(B)
as Galois lattice of B [AVJ98]. G(B) is actually the Hasse diagram of the partially
ordered set (KM(B),≤) [Wil92].

In this section, we define the modified Galois lattice Gm(B) as follows. Here, we do
not assume that B is domino-free. Let Xi (1 ≤ i ≤ nx) be the maximal stargraph
centered at xi. Note that Xi may not be a maximal biclique in B. Denote the set
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Figure 4.2: Two bicliques Kp and Kq in B such that Kp < Kq.

of all Xi by Xs(B). Define Yj (1 ≤ j ≤ ny) and Ys(B) in the same manner. We
define the partial order on Ks(B) ≡ KM(B) ∪ Xs(B) ∪ Ys(B) as follows: for any
distinct Kp, Kq ∈ Ks(B), Kp < Kq if and only if YKp ⊆ YKq and XKp ⊇ XKq . Let
K(B) ≡ Ks(B) ∪ {>,⊥}. According to this partial order on K(B), we construct
Gm(B) in the same manner as G(B). In the rest of this chapter, < represents the
partial order defined in this paragraph.

Here we give some examples of the modified Galois lattice. Fig. 4.3 and Fig. 4.4 show
that a bipartite graph B and its modified Galois lattice. (> and ⊥ are omitted.)
Here, we follow the conventional drawing of the Hasse diagram, that is, each edge has
downward direction. It is easy to see that the graph B in Fig. 4.3 has two maximal
bicliques and the graph B in Fig. 4.4 has three maximal bicliques.

Fig. 4.5 shows the case in which B is itself a domino and its modified Galois lattice.

Let us see an example for a bipartite graph B shown in Fig. 4.6. As vertices
{x2, x3, x4, y3, y4, y5} induces a domino, B is not domino-free. It is obvious that
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Figure 4.3: B with two maximal bicliques and its modified Galois lattice Gm(B).
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Figure 4.4: B with three maximal bicliques and its modified Galois lattice Gm(B).
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Figure 4.5: A domino B and its modified Galois lattice Gm(B).

B has six maximal bicliques K1, . . . , K6 such that

XK1 = {x1, x4}, YK1 = {y1, y2, y3},
XK2 = {x2, x3}, YK2 = {y2, y3, y4},
XK3 = {x3, x4}, YK3 = {y2, y3, y5, y6},
XK4 = {x1, x2, x3, x4}, YK4 = {y2, y3},
XK5 = {x3}, YK5 = {y2, y3, y4, y5, y6}
XK6 = {x4}, and YK6 = {y1, y2, y3, y5, y6}.

Then the Galois lattice G(B) and the modified Galois lattice Gm(B) are shown in
Fig. 4.7 and Fig. 4.8, respectively.
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Figure 4.6: A Bipartite graph B.

49



K6
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K4

⊥
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Figure 4.7: The Galois lattice G(B) for B in Fig. 4.6.
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X1 X2
X3=K5 X4=K6

Y1 Y2 Y3 Y4 Y5 Y6

K1 K2 K3

K4

⊥
Figure 4.8: The modified Galois lattice Gm(B) for B in Fig. 4.6.
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Note that the Galois lattice is embedded, in some way, in the modified Galois lat-
tice.

Amilhastre et al. [AVJ98] defined a “simplification” operation on a domino-free bi-
partite graph. They repeatedly apply this operation to an input bipartite graph B
until no operation can be applied. The resulted graph is called as a “simplified”
domino-free bipartite graph. Gm(B) is coincident with G(B) if B is a simplified
domino-free bipartite graph.

4.3 Properties of the modified Galois lattice

Let K1 = (XK1 , YK1 , EK1) and K2 = (XK2 , YK2 , EK2) be different bicliques in KM(B).
K1 and K2 have the following property.
Property 1. For any distinct K1, K2 ∈ KM(B), XK1 ⊂ XK2 ⇐⇒ YK2 ⊂ YK1 .

Proof. Assume that XK1 ⊂ XK2 and YK2 6⊂ YK1 . Then there exists a vertex y ∈ YK2

but y 6∈ YK1 . From y ∈ YK2 , (x, y) ∈ EK2 ⊆ EB follows for any x ∈ XK2 . From
XK1 ⊂ XK2 , biclique K3 = (XK1 , YK1 ∪ {y}, XK1 × (YK1 ∪ {y})) is a subgraph of B,
which contradicts to the maximality of K1.

For two vertices Xi ∈ Xs(B) and Yj ∈ Ys(B) of Gm(B), let P(i, j) be the set of
directed paths from Xi to Yj. (Note that Xi is a stargraph in B and it is a vertex in
Gm(B). ) Then we have the next lemma.
Lemma 4. |P(i, j)| > 0 ⇐⇒ (xi, yj) ∈ EB, for all i and j.

Proof. (⇒) Assume that there is a directed edge from Xi to Yj in Gm(B). Then
{yj} = YYj ⊆ YXi

= NB(xi) holds. Thus there is edge (xi, yj) in B. Assume
that there is a path P ∈ P(i, j) from Xi to Yj with length greater than two. Let
P = (Xi, Ki1 , . . . , Kis , Yj). Then Xi > Ki1 > . . . > Kis > Yj and thus Xi > Yj holds.
This means that in B, the center of stargraph Yj is in YXi

(= NB(xi)). Therefore, B
has edge (xi, yj).

(⇐) Assume that B has an edge (xi, yj). Then yj ∈ NB(xi), and thus, YYj ⊆ YXi

and Yj < Xi. Therefore, there is at least one directed path from Xi to Yj in Gm(B).
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We have the following lemmas for a vertex on a path from a vertex of Xs(B) to a
vertex of Ys(B) in Gm(B).
Lemma 5. Let K be a vertex on a path from Xi to Yj then (xi, yj) ∈ EK .

Proof. If K is either Xi or Yj then the lemma obviously holds. Then K is not a
stargraph and Xi > K > Yj holds. Therefore, in B, YXi

⊇ YK ⊃ YYj = {yj} holds.
Thus, (xi, yj) is an edge of K, since K is a maximal biclique.

Lemma 6. If (xi, yj) ∈ EK for some K ∈ K(B)\{>,⊥} then there is a path from
Xi to Yj passing through K in Gm(B).

Proof. Since (xi, yj) ∈ EK , xi ∈ XK . Then XXi
⊆ XK and YK ⊆ YXi

. Thus K ≤ Xi

holds. Similarly, Yj ≤ K holds. From the construction of Gm(B), there is a path
from Xi to K and a path from K to Yj.

Let C be a subset of K(B)\{>,⊥}. C is a cut of Gm(B), if for all i, j, every path
from Xi to Yj on Gm(B) has at least one vertex that belongs to C. That is, all paths
from a vertex of Xs(B) to a vertex of Ys(B) are cut by C. Obviously {X1, . . . , Xnx}
(or also {Y1, . . . , Yny}) is a cut of Gm(B). A minimum cut of Gm(B) is a cut with
the minimum size. In Fig. 4.8, for example, {K1, K2, K3} is the minimum cut of
Gm(B).
Lemma 7. A cut of Gm(B) is a biclique cover of B.

Proof. Let C be a cut of Gm(B). For any (xi, yj) ∈ EB, there is a path from vertex
Xi ∈ Xs(B) to vertex Yj ∈ Ys(B) in Gm(B) by Lemma 4. Let K be a vertex on the
path and K ∈ C. From Lemma 5, K has edge (xi, yj). Thus, every edge (xi, yj) of
B is contained in at least one biclique of C.

If B is a domino-free bipartite graph, then B has the following property. (We give
the proof to make the chapter self-contained.)
Property 2 (Theorem 3.1 of [AVJ98]). Let B be a bipartite graph. Then B is
domino-free if and only if for any distinct K1, K2 ∈ KM(B) such that K1 and K2

have at least one common edge, one of these statements is true: (i) XK1 ⊂ XK2 and
YK2 ⊂ YK1 ,(ii) XK2 ⊂ XK1 and YK1 ⊂ YK2 .

Proof. (⇒) Let K1 and K2 be two maximal bicliques sharing a common edge {x, y}
and such that (i) and (ii) are false. From Property 1, we have XK1\XK2 6= ∅,
XK2\XK1 6= ∅, YK1\YK2 6= ∅ and YK2\YK1 6= ∅. Let x1 ∈ XK1\XK2 . We claim that
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there exists y2 ∈ YK2\YK1 such that (x1, y2) /∈ EB. If YK2\YK1 ⊆ N(x1) then YK2 ⊆
N(x1) since YK1 ∩ YK2 ⊆ N(x1). Then K2 is not maximal. Thus, there exists y2 ∈
YK2\YK1 such that (x1, y2) /∈ EB. Let x2 ∈ XK2\XK1 . From similar discussion, there
exist y1 ∈ YK1\YK2 such that (x2, y1) /∈ EB. Then, {x, y, x1, y1} and {x, y, x2, y2}
induces two C4’s. As (x1, y2) /∈ EB and (x2, y1) /∈ EB holds, {x, y, x1, y1, x2, y2}
induces a domino.

(⇐) Assume that B has a domino induced by {x, y, x1, y1, x2, y2} with chord {x, y}.
Then there isK1 ∈ KM(B) such thatK1 contains C4 = (x, y, x1, y1) andK2 ∈ KM(B)
such that K2 contains C4 = (x, y, x2, y2). Since (x1, y2) /∈ EB, x1 ∈ X1\X2, so (i) is
false. Similarly, we obtain that (ii) is false.

We define Unique Path Condition as follows.

For all i, j (1 ≤ i ≤ nx, 1 ≤ j ≤ ny)

|P(i, j)| = 1 ⇐⇒ (xi, yj) ∈ EB.

Lemma 8. If B is a domino-free bipartite graph then Gm(B) satisfies Unique Path
Condition.

Proof. Suppose B is a domino-free bipartite graph. From Lemma 4, (xi, yi) ∈ EB, if
and only if |P(i, j)| ≥ 1. Therefore it is sufficient to prove that if (x1, yi) ∈ EB then
|P(i, j)| < 2.

Assume that |P(i, j)| ≥ 2. Let P1, P2 be paths from Xi to Yj such that P1 6= P2.
Then there are two incomparable bicliques K1 on P1 and K2 on P2. Note that neither
K1 nor K2 is a stargraph. Thus |XK1|, |YK1|, |XK2|, |YK2| ≥ 2 holds. Since K1 and
K2 are incomparable, neither YK1 ⊂ YK2 nor YK2 ⊂ YK1 . Thus YK1\YK2 6= ∅ and
YK2\YK1 6= ∅ hold. As K1 and K2 are maximal bicliques, Property 1 implies that
XK1\XK2 6= ∅ and XK2\XK1 6= ∅. Then there exist four vertices of B, x1, x2, y1 and
y2 such that x1 ∈ XK1 , x1 /∈ XK2 , x2 /∈ XK2 , x2 ∈ XK1 , y1 ∈ YK1 , y1 /∈ YK2 , y2 /∈ YK1

and y2 ∈ YK2 . Thus, the graph induced by the set of vertices {xi, x1, x2, yj, y1, y2} is
a domino. This contradicts to the premise that B is a domino-free bipartite graph.
Therefore, if (xi, yj) ∈ EB then |P(i, j)| = 1.

Also the converse of Lemma 8 holds.
Lemma 9. If Unique Path Condition holds then B is a domino-free bipartite graph.
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Proof. Assume that B is not a domino-free graph. Then there is a subgraph induced
by six vertices of two C4’s sharing edge (xi, yj). Then there are two incomparable
maximal bicliques K1 and K2 that shares edge (xi, yj). Thus there is two distinct
paths form Xi to Yj in Gm(B) and |P(i, j)| ≥ 2 holds. That is, if B is not a
domino-free graph, then Unique Path Condition does not hold.

Let P be the set of all paths from a vertex of Xs(B) to a vertex of Ys(B) in Gm(B),
that is, P =

⋃
1≤i≤nx,1≤j≤ny

P(i, j). Let Pi,j ∈ P(i, j) be a path from Xi to Yj. Let

f be a map from P to EB such that f(Pi,j) → (xi, yj). For example, in Fig. 4.8, a
path P = (X2, K2, K4, Y3) is mapped to edge (x2, y3), that is, f(P ) = (x2, y3).
Corollary 7. B is a domino-free bipartite graph if and only if f is bijective.

Proof. From Lemma 8 and Lemma 9, the corollary holds.

For any biliques K1, K2 in B, we define a subgraph K2−1 = K2 −K1. K2−1 has all
edges of K2 but no edge of K1, and has no singletons. We denote the edges of K2−1

by E2−1. From Property 2, the next lemma holds.
Lemma 10. (Lemma 3.1 of [AVJ98]) Let B be a domino-free bipartite graph. Let
K1 be any maximal biclique and K2 be any biclique in B such that EK2 6⊂ EK1 .
Then K2−1 is a biclique.

Proof. If K2 is a stargraph, the proof is trivial. Assume that K2 is not a stargraph.
Let K3 ∈ KM(B) such that EK2 ⊆ EK3 . By Property 2, there are two cases: (i)
XK3 ⊂ XK1 and (ii)YK3 ⊂ YK1 . (i) XK3 ⊂ XK1 implies XK2 ⊂ XK1 . Then for
any x ∈ XK2 and y ∈ YK2\YK1 , (x, y) ∈ E2−1 and (x, y) /∈ EK1 holds. Thus
K2−1 = (XK2 , YK2\YK1 , E2−1) is a biclique of B. (ii) YK3 ⊂ YK1 implies YK2 ⊂ YK1 .
Then for any x ∈ XK2\XK1 and y ∈ YK1 , (x, y) ∈ E2−1 and (x, y) /∈ EK1 holds. Thus
K2−1 = (XK2\XK1 , YK2 , E2−1) is a biclique of B. There is no other case.

Theorem 8. (Theorem 3.2 of [AVJ98]) Let B be a domino-free bipartite graph. The
size of a minimum biclique cover of B is equal to the size of a minimum biclique
partition of B.
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Proof. Let SCOVER(B) be a minimum biclique cover of B and let SPARTITION(B)
be a minimum biclique partition of B. Since any biclique partition of B is also
a biclique cover of B, |SCOVER(B)| ≤ |SPARTITION(B)| holds. Let SCOVER(B) =
{K1, K2, . . . , Kc}. Then {Ki − Ki+1 − Ki+2 − · · · − Kc|1 ≤ i ≤ c} is a set of
bicliques of B (Lemma 10) that form a biclique partition of B. Thus |SCOVER(B)| ≥
|SPARTITION(B)| holds. Therefore |SCOVER(B)| = |SPARTITION(B)|.

A cut of Gm(B) is a set of vertices {k1, k2, . . . , kt} of Gm(B) such that there is at
least one ki (1 ≤ i ≤ t) of every path from > to ⊥. Let SCUT(B) be a cut of Gm(B)
with the size is the minimum. Then the next theorem holds.
Theorem 9. LetB be a domino-free bipartite graph. Then |SCUT(B)| = |SPARTITION(B)| =
|SCOVER(B)| holds.

Proof. From Theorem 8, it is sufficient to prove that |SCUT(B)| = |SCOVER(B)|. As-
sume that there is a path from Xi to Yj in Gm(B). Then there exists an edge (xi, yj)
in B by Lemma 4. As SCOVER(B) covers (xi, yj), there exists K ∈ SCOVER(B) such
that (xi, yj) ∈ EK . From Lemma 6, K is on a path from Xi to Yj in Gm(B). If B
is a domino-free bipartite graph, then the path from Xi to Yj in Gm(B) is unique
from Corollary 7. Thus, SCOVER(B) is a cut of Gm(B) and |SCUT(B)| ≤ |SCOVER(B)|.
From Lemma 7, |SCUT(B)| ≥ |SCOVER(B)| holds. Therefore, |SCUT(B)| = |SCOVER(B)|.

For a simplified domino-free bipartite graph B, Amilhastre et al. [AVJ98] showed that
the size of Galois lattice G(B) is O(n + m). They constructed G(B) in O(n ×m)
time. Since a minimum cut of G(B) can be computed in polynomial time by using
network flows techniques, the minimum cover/partition problem can be solved in
polynomial time.

4.4 The redundant parameter and the biclique edge

cover

We denote the degree of a vertex x in B by dB(x). We denote by P(i, ∗) the set of
directed paths of Gm(B) from Xi to any vertex of Ys(B), and denote by P(∗, j) the
set of directed paths of Gm(B) from any vertex of Xs(B) to Yj. That is, P(i, ∗) =
∪ny

j=1P(i, j) and P(∗, j) = ∪nx
i=1P(i, j).
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We define R(B) as follows.

R(B) ≡ max
(

max
1≤i≤nx

(|P(i, ∗)| − dB(xi)), max
1≤j≤ny

(|P(∗, j)| − dB(yj))
)

We call it the redundant parameter of B. For example, for B in Fig. 4.6, it is easy
to verify that R(B) = 2.
Theorem 10. B is a domino-free bipartite graph if and only if R(B) = 0.

Proof. Assume that B is a domino-free bipartite graph. From Corollary 7, there is
a bijective map such that the unique path from Xi to Yj is mapped to edge (xi, yj).
Thus |P(i, ∗)| is the number of the edges incident to xi and |P(i, ∗)| = dB(xi) holds
for all i. Similarly, |P(∗, j)| = dB(yj) holds for all j. Therefore, R(B) = 0 holds.

Assume that R(B) = 0. As |P(i, ∗)| ≥ dB(xi), R(B) = 0 implies |P(i, ∗)| = dB(xi)
for all i. From Lemma 4, there is an unique path in P(i, ∗) from Xi to each Yj
such that (xi, yj) ∈ EB. Then f is a bijective map from P to EB. Therefore B is a
domino-free bipartite graph by Corollary 7.

If R(B) = 0 then B is a domino-free bipartite graph, and any minimum cut of
Gm(B) defines a minimum cover/partition of B by Theorem 9. We will show that
if R(B) = 1, any minimum cover of B is a minimum cut of Gm(B). Note that
the minimum cover of B does not define the minimum partition of B, if B is not
domino-free. For example, B in Fig. 4.5 can be covered by two bicliques, but cannot
partitioned into less than three bicliques.
Theorem 11. Let B be a bipartite graph with R(B) ≤ 1. Then any biclique cover
of B is a cut of Gm(B).

Proof. Assume that there is a minimum biclique cover S of B that is not a cut of
Gm(B). As S is not a cut, there is at least one path P that is not cut by S in
Gm(B). Let P be a path from X1 to Y1 in Gm(B). Since edge (x1, y1) is covered
by S, if there is no vertex on P except for X1 and Y1, then X1 or Y1 is in S. This
contradicts to the assumption that P is not cut by S. Thus there is at least one
biclique K on P . Since S does not cut P , K /∈ S. As K is not a stargraph, it has
at least four vertices that induce C4 in B. Let x1, x2 ∈ XK and y1, y2 ∈ YK and
e1 = (x1, y1), e2 = (x1, y2), e3 = (x2, y1) and e4 = (x2, y2). As S is a cover of B, these
four edges must be covered by some bicliques Ki in S. There are two cases that we
must consider.
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(Case 1) Assume that S has four distinct bicliques K1, . . . , K4 such that ei ∈ EKi

and ei /∈ EKi′
for i 6= i′. Then there are eight vertices such that

x1, x3 ∈ XK1 , y1, y3 ∈ YK1 ,

x1, x4 ∈ XK2 , y2, y4 ∈ YK2 ,

x2, x5 ∈ XK3 , y1, y5 ∈ YK3 ,

x2, x6 ∈ XK4 , y2, y6 ∈ YK4 .

See Fig. 4.9 and Fig. 4.10. Since e1 = (x1, y1) ∈ EK1 , K1 is on a path P ′ from X1

to Y1 from Lemma 6. K1 ∈ S implies P ′ 6= P . Thus the number of paths from
X1 to Y1 is at least two. Similar discussion holds for K2, thus the number of paths
from X1 to Y2 is at least two. Therefore the number of paths from X1 to Y1 or Y2

is at least four. From Lemma 4, there is a path from x1 to each yj ∈ NB(x1). Thus
R(B) ≥ |P(1, ∗)| − dB(x1) ≥ 2 holds.

(Case 2) Assume that there is a biclique K1 ∈ S such that K1 has at least two
edges among ei (i = 1 . . . 4). Without loss of generality, we can assume that K1 has
e1, e2. (See Fig. 4.11 and Fig. 4.12.) Since e1 = (x1, y1) ∈ EK1 , K1 is on a path
P ′ from X1 to Y1 by Lemma 6 and K 6= K1. Thus the number of paths from X1

to Y1 is at least two. Since e2 = (x1, y2) ∈ EK , K is on a path P1 from X1 to Y2.
Since e2 = (x1, y2) ∈ EK1 , K1 is on a path P1

′ from X1 to Y2. Thus the number of
paths from X1 to Y2 is at least two. Therefore, there are at least four paths from
X1 to Y1 or Y2. From Lemma 4, there is a path from x1 to each yj ∈ NB(x1). Thus
R(B) ≥ |P(1, ∗)| − dB(x1) ≥ 2 holds.

Therefore, if R(B) ≤ 1 the assumption that S is not a cut of Gm(B) fails.

Theorem 11 is the best one in the sense that there is a bipartite graph B with
R(B) = 2 for which the theorem does not hold. For example, the graph shown in
Fig. 4.9 can be covered by {K1, K2, K3, K4}, but this set is not a cut of Gm(B) (Fig.
4.10). Whereas for the graph B shown in Fig. 4.13, it is easy to verify that R(B) = 1
and a cut of B is a cover of B.
Corollary 12. Let B be a bipartite graph with R(B) ≤ 1. Then any minimum cut
of Gm(B) is a minimum biclique cover of B.

Proof. Let C be a minimum cut of Gm(B). From Lemma 7, C is a biclique cover
of B. Let SCOVER(B) be a minimum biclique cover of B. Then |SCOVER(B)| ≤ |C|.
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From Theorem 11, SCOVER(B) is a cut of Gm(B). This implies |SCOVER(B)| ≥ |C|.
Therefore, |SCOVER(B)| = |C|, and thus C is a minimum biclique cover of B.
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Figure 4.9: K and K1 in Case 1.

In the rest of this chapter, we investigate the size of Gm(B). Gm(B) could be very
large if B is not domino-free. Consider the bipartite graph B = Kn,n −Mn, where
Kn,n is the complete bipartite graph with 2n vertices and Mn is its perfect matching.
Then B has 2n− 2 maximal bicliques, and thus Gm(B) has 2n vertices. If R(B) = 0,
that is, B is domino-free, then the number of edges in G(B) is O(n + m) [AVJ98]
and also it is O(n+m) in Gm(B).

We will show that for a bipartite graph B with R(B) = 1 the number of edges in
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Figure 4.10: The modified Galois lattice of the graph in Fig. 4.9 (excluding > and
⊥).
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Figure 4.11: The subgraphs of K and K1 induced by x1, x2, y1, y2 in Case 2.
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Figure 4.12: Two paths from X1 to Y1 in Gm(B) for Fig. 4.11.

Gm(B) is bounded by 2n+m. Assume R(B) = 1, we have

nx∑
i=1

|P(i, ∗)| ≤
nx∑
i=1

(R(B) + dB(xi)) = nx +m,

ny∑
j=1

|P(∗, j)| ≤
ny∑
j=1

(R(B) + dB(yj)) = ny +m.

Thus, the total number of paths from vertices of Xs(B) to vertices of Ys(B) is at
most n+m. Then next theorem holds.
Theorem 13. Let B be a bipartite graph with R(B) = 1. Then the number of
edges in Gm(B) is at most 2n+m.

Proof. We replace all vertices in Gm(B) that are not stargraphs with bicliques as
follows. Let K ∈ KM(B) be a vertex in Gm(B). Let XK = {x1, . . . , xs}, YK =
{y1, . . . , yt} in B. Delete K and its incident edges from Gm(B), and add edges
X(K)×Y (K) where X(K) = {X1, . . . , Xs} and Y (K) = {Y1, . . . , Yt}. Note that we
allow multiedges when we add edges. In this operation, the number of edges does
not decrease in Gm(B). The number of paths from > to ⊥ does not change and is
bounded by 2n+m. Thus, after replacing all vertices of KM(B), the total number of
the edges in Gm(B) is equal to the total number of the paths. Note that if we replace
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Figure 4.13: A graph B with R(B) = 1 and the modified Galois lattice Gm(B).
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each multiedge with a single edge and delete > and ⊥ and their incident edges, we
obtain B. Therefore, the lemma holds.

4.5 Summary

In this chapter, we define the modified Galois lattice Gm(B) for a bipartite graph B.
We introduce the redundant parameter R(B), and show that R(B) = 0 if and only
if B is a domino-free. Furthermore, we show that the biclique edge cover problem
can be solved in polynomial time for the class of bipartite graphs B with R(B) = 1.
This graph class properly includes the domino-free bipartite graphs.
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Chapter 5

The Size of the Modified Galois
Lattice Gm(B)

As we have seen in Section 4.4, the size of the modified Galois lattice can be very
large for a general bipartite graph. Here, we review the example given in Section
4.4. Consider a bipartite graph Bn = (X, Y,E) with |X| = |Y | = n vertices. Let
X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn}. Bn has edges (xi, yj) for all i and
j such that i 6= j. Let I be any subset of {1, 2, . . . , n}. Let X ′ =

⋃
i∈I xi and

Y ′ =
⋃
j∈{1,2,...,n}−I yj. That is, X ′ is a subset of X and Y ′ is the subset of Y

uniquely determined by X ′. Then the subgraph induced by X ′ ∪ Y ′ is a maximal
biclique. Thus the size (the number of vertices) of Gm(Bn) increases exponentially
to n.
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Figure 5.1: The bipartite graph B5.

In this chapter, it is shown that the size of the modified Galois lattice is fairly small
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for some restricted graph classes. For a distance-hereditary bipartite graph B with
n vertices, it is shown that the size of Gm(B) is at most 2n + 1. Furthermore, for
general bipartite graphs with n vertices and m edges, it is shown that the size of the
modified Galois lattice is at most (R(B)/2 + 1)n+m+ 2.

A distance-hereditary bipartite graph contains a bisimplicial edge [Mül96]. As men-
tioned in Section 2.11.1, every bisimplicial edge is contained in only one maximal
biclique. The following lemma is given in [Mül96] and the proof is given for the
reader’s convenience.
Lemma 11. Let B be a distance-hereditary bipartite graph. Let e be a bisimplicial
edge in Ki ∈ KM(B). Then e /∈ E(Kj) for Kj ∈ KM(B) (j 6= i).

Proof. Let e = (x, y) be a bisimplicial edge. Assume that e ∈ K1 and e ∈ K2

for K1, K2 ∈ KM(B) and K1 6= K2. As e is a bisimplicial edge, the subgraph
induced by N(x) ∪N(y) is a biclique. From our assumption, there are four distinct
vertices x1, y1, x2, y2 such that x1 ∈ XK1 − XK2 , y1 ∈ YK1 − YK2 , x2 ∈ XK2 − XK1 ,
and y2 ∈ YK2 − YK1 . Then vertices x, y, x1, y1, x2, y2 induce C6 with a cord. This
contradicts that B is a distance hereditary bipartite graph, that is, (6, 2)-chordal
graph.

Recall that edge e and e′ are dependent if either e and e′ share an endpoint in common
or there is a cycle C4 that has e and e′. An edge e and e′ are independent if they
are not dependent. We say that an edge e and a biclique K are independent if any
edge in K and e are independent. If e = (x, y) and K are independent then x /∈ XK

and y /∈ YK hold. Let B = (X, Y,E) be a distance-hereditary bipartite graph with
n(= |X| + |Y | ≥ 2) vertices. Let KM(B) be the set of all maximal bicliques of B.
For any v ∈ B, we denote by Sv the maximal stargraph with its center v. Then the
next lemma holds.
Lemma 12. For a distance-hereditary bipartite graph B with n ≥ 2 vertices,
|KM(B)| ≤ n− 1 holds.

Proof. The proof is by induction on n. Suppose that n = 2 and |E(B)| = 1. Then
the lemma holds since |KM(B)| = 1. If B consists of two isolated vertices, then
|KM(B)| = 0, and thus the lemma holds.

Let B be a distance-hereditary bipartite graph with n > 2 vertices. We can assume
that B is connected. Let e = (x, y) be a bisimplicial edge in B. From Lemma 11,
e is contained in the only one maximal biclique K. We claim that at least one of x
and y is in only one maximal biclique. Assume that there are two different maximal
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bicliques K1 and K2 and x ∈ V (K1) and y ∈ V (K2). Then e ∈ E(Sx) and e ∈ E(Sy),
and both of Sx and Sy are maximal bicliques of B. This leads to a contradiction
since e is a bisimplicial edge. Thus at least one of x and y is in only one maximal
biclique.

Let x be contained in only K. Delete x from B and let B′ be the resulted graph.
Then B′ is a distance-hereditary graph from the definition of distance-hereditary
graphs.

A maximal biclique in B that is independent to e, is also a maximal biclique in
B′. A maximal biclique in B that is not K and dependent to e, is also a maximal
biclique in B′. The subgraph induced by V (K) \ {x} may not be a maximal biclique
in B′. Thus the decrease of the number of vertices in B′ is at most one. That is
|KM(B′)| ≥ |KM(B)| − 1. From the assumption of the induction, |KM(B′)| ≥ n− 2
holds for B′. Therefore, n− 1 ≥ |KM(B′)|+ 1 ≥ |KM(B)|.

Corollary 14. For a distance-hereditary bipartite graph B with n(≥ 2) vertices,
|V (Gm(B))| ≤ 2n+ 1 holds.

Proof. Since V (Gm(B)) = V (KM(B))∪V (Xs(B))∪V (Ys(B)), |V (Gm(B))| ≤ |KM(B)|+
n+ 2 ≤ 2n+ 1 holds.

For a general bipartite graph, we have the next theorem.
Theorem 15. |V (Gm(B))| ≤ (R(B)/2 + 1)n+m+ 2 holds for any bipartite graph
B.

Proof. Let M(B) ≡ KM(B)\{Xs(B) ∪ Ys(B)}. We claim that the number of paths
from a vertex in Xs(B) to a vertex in Ys(B) is greater than the size of M(B). To
prove this claim, we consider a mapping from M(B) to a set of paths of Gm(B).

We denote by P the set of all paths from a vertex in Xs(B) to a vertex in Ys(B) of
Gm(B). That is, P = ∪ny

j=1P(∗, j). Let P ∈ P be a path of Gm(B) from a vertex X
in Xs(B) to a vertex Y in Ys(B). Let K0(= X), K1, K2, . . . , Kt, Kt+1(= Y ) be the
vertices on P in Gm(B) from X to Y in this order. Then XK1 ⊂ XK2 ⊂ · · · ⊂ XKt

holds from the maximality of bicliques. For each j (1 ≤ j ≤ t), choose a vertex
xij ∈ V (B) such that xij ∈ XKj

\ XKj−1
. Since xij ∈ XKj

, there is a path P ′ ∈ P
from Xij to Kj in Gm(B). Let PKj

be the path obtained by concatinating P ′ and
the subpath of P from Kj to Y in Gm(B). We map each Kj to PKj

for 1 ≤ j ≤ t.
For each remaining paths in P , we map a vertex Ki on the path to PKi

∈ P in the
same way unless PKi

is already mapped from some Kj in the previous construction
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of mapping. From the construction of this mapping, it is clear that each vertex in
M(B) is mapped to a distinct path of P . Thus for each vertex K ∈ M(B), there
is at least one distinct path from a vertex in Xs(B) to a vertex in Ys(B). From the
definition of R(B),

|M(B)| −m ≤
|X|∑
i=1

(|P(i, ∗)| − dB(xi)) ≤ R(B)|X|, and

|M(B)| −m ≤
|Y |∑
i=1

(|P(∗, j)| − dB(yj)) ≤ R(B)|Y |

hold. Thus 2|M(B)| ≤ R(B)n + 2m and |V (Gm(B))| ≤ (R(B)/2 + 1)n + m + 2
holds.

Then the next corollary holds.
Corollary 16. For a bipartite graph B with R(B) = 1, |V (Gm(B))| = 3n/2 +m+ 2
holds

Gély et al. [GNS09] gave an algorithm that outputs all maximal bicliques of an input
graph G = (U, V,E) in lexicographical order on U with O((|U | + |V |)2) delay. If
R(B) = 1, as the number of vertices of Gm(B) is O(n + m), then Gm(B) can be
constructed in O(n3 + m3) time. By using network flow techniques [AMO93], the
minimum cut ofGm(B) can be computed inO(|E|

√
|V |) for a graphGm(B) = (V,E).

Thus the minimum cut of Gm(B) can be found in O(n5/2 +m5/2) time.
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Chapter 6

Conclusion

In this thesis, two closely related problems, the biclique edge partition problem and
the biclique edge cover problem, have studied.

In chapter 3, it has shown that the biclique edge partition problem cannot be ap-
proximated within a ratio of 6053/6052 unless P = NP. In order to obtain this ap-
proximation hardness, an approximation-preserving (gap-preserving) reduction from
3-OCC-MAX 2-SAT is presented. Our reduction implies that if there is a 6053/6052-
approximation algorithm for the biclique edge partition problem then P = NP.
Therefore, under the assumption that P 6= NP, the biclique edge partition problem
does not have a 6053/6052-approximation algorithm. It follows that the biclique edge
partition problem has no polynomial-time approximation scheme unless P = NP. To
the author’s knowledge, the ratio of 6053/6052 is the first explicit lower bound for
the approximation hardness of the biclique edge partition problem. 1

In chapter 4, the complexity of the biclique edge cover problem has studied. For gen-
eral bipartite graphs, the biclique edge cover problem cannot be solved in polynomial
time if P 6= NP. This thesis has presented a new graph class for which the minimum
biclique edge cover problem can be solved in polynomial time, and has shown that
this graph class properly contains the domino-free bipartite graph class. In order to
present the new graph class, the modified Galois lattice Gm(B) for an input bipartite
graph B is introduced. A partial order on the set of maximal bicliques in B is defined
and Gm(B) is the Hasse diagram of this partial order. Furthermore, the redundant
parameter R(B) is defined on Gm(B). It is shown that R(B) = 0 if and only if B

1However, after this work was published, much better result was reported by Chalermsook et
al. [CHHK14].
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is domino-free bipartite. Furthermore, it is shown that there is a polynomial time
algorithm for a graph B with R(B) = 1. If R(B) > 0 then B has at least one
domino as an induced subgraph. Thus, we have a new graph class such that there is
a polynomial time algorithm for the minimum biclique edge cover problem.

The computation time of the proposed algorithm depends on the size of Gm(B).
This thesis shows that Gm(B) has at most 2n + 1 vertices for a distance-hereditary
bipartite graph B. For a graph B such that R(B) ≤ 1, it is shown that Gm(B) has
at most O(n+m) vertices.

Whether the biclique edge cover problem can be solved in polynomial time for graphs
with R(B) > 1 is an open question.
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