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1 Introduction

In the past few vears, the appeal of modulation spaces and Wiener amalgam spaces has risen
significantly for researchers in the field of PDE. This is due to the capability of these spaces
to treat both local and global beheaviour of functions separately. Unimodular Fourier multi-
plier operators ¢"?” which are generally unbounded on L” and Besov spaces are bounded on
modulation spaces and Wiener amalgam spaces with zero to a small loss of regularity [1, 3. 5].
Research papers dedicated to establish basic properties of these spaces are constantly being
published. In this thesis, we give new results on boundedness of unimodular Fourier multipliers
on Wiener amalgam spaces. We also determined optimal inclusion relations between LP-Sobolev
and Wiener amalgam spaces, which enables us to describe the mapping properties of unimod-
ular Fourier operators ¢''™" between LP-Sobolev and Wiener amalgam spaces. Moreover, some
Littlewood-Paley type inequalities were derived from the inclusion.

2 Main Results

Theorem 2.1. Let o > 2 and p be a real-valued homogenecous function on K" of degree o whach
belongs to C=(R™\{0}). Let 1 < p,q < = and s € R. Then Fourier multiplier operator ')
s bounded from WPI(R") to WPA(R") whenever

s > n(a-2)|1/p-1/2| 4+ n|l/p - 1/q|.

In the following theorem we prove optimality of the threshold in Theorem 2.1 for certain
values of p and q.

Theorem 2.2. Let o > 2 and p be a real-valued homogencous function on B" of degree o whach
belongs to C*(R"\{0}). Suppose there exist a point & # 0 at which the Hesstan deferminant
of i s not zero. Let max(1/q,1/2) < 1/p.min(1/q.1/2) > 1/p and s € R and suppose the
Fourier multiplier operator P is bounded from WPA(R™) to WP9(R"™). Then
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s 2 nfa = 2)[1/p - 1/2| + n|1/p - 1/q.

We first need to define the following indices in order to state our results on inclusion relations
between LF-Sobolev and Wiener amalgam spaces. For (1/p, 1/q) € [0,1] x [0.1] we define the
indices 71(p. q) and m(p. q) as follows:

0 if (1/p.1/q) € I : min(1/p/,1/2) > 1/q
nlp.q) = p+1/g-1 if(1/p.1/g) € I3 : min(1/q,1/2) = 1/p/
1/q - 1/2 il (1/p.1/q) € I3 : min(1/p, 1/q) > 1/2
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Figure 1: The index sets

0 if (1/p,1/q) € I - max(1/p'.1/2) < 1/q
n(p.q) = /p+1/g-1 if(1/p.1/q) € I : max(1/q.1/2) < 1/p/
1/q - 1/2 if (1/p,1/q) € Iy : max(1/p’. 1/¢q) <1/2

where 1/p+ 1/p' = 1= 1/ + 1/¢. See Figure 1 for a visualization.
Our main results are the following theorems.

Theorem 2.3. Let ]l < p.g < o and s € R. Then L7 < W9 if one of the following conditions
s salisfied.

1.p>q.q<2and s > nn(p.q)
2. p# 1, mar(1/p.1/2) > 1/q and s = nny(p.q);
3. p=1,g=2o and s > nn(l,x):
4. p=1,q# > and s > nn(l.q);
Conversely, if LY «<» WPA_ then s > nny(p.q).

Theorem 2.4. Letl < p.q < oc and s € R. Then W9 < L2 if one of the following conditions
s salisfied.

1. p<q.q>2and s < nr(p.q):
2. p# oo, min(l/p.1/2) < 1/q and s < nrz(p. q):

3. p=oc,q=1 and s < nmy(0, 1):
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4. p=00.q# 1 and s < nm(oc.q):

Conversely, if WP <« L2 then s < nry(p.q).

Corolarry 2.5. Let 1 < p<oc.1l/p+ 1/ =1 and s € R". Then
J‘Imm(pr’.'z),p @ FLP < “!'"0-'17'3]-7‘

This corollary gives us an understanding of the inclusion relations between modulation
spaces and Fourier Lebesgue spaces FL* which is an improvement of [7, Prop. 1.7]

As an application of the results, we discuss Littlewood-Paley type estimates derived from
our Sobolev-Wiener amalgam inclusions. Let ¢ = 2 and p > 2 in Theorem 2.3, we arrived to a
Littlewood-Paley type inequality analogous to the work of Rubio de Francia. We write

2y1/2 v
(D 1e(D = k)Y 2ler < Gyl
kezZ"
Lastly, in the final chapter of the thesis, we survey some recent progress on Wiener amalgam
spaces and modulation spaces and their connection to nonlinear evolution equations, i.e., well-
posedness results, Strichartz estimates, smoothing estimates, etc.
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