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Chapter 1

Introduction

This thesis is concerned with analytic properties of multiple zeta functions.
The aim of this thesis is to study mean value formulas for the multiple zeta
functions of Euler-Zagier type.

In Section 1 we introduce some basic properties of the Riemann zeta func-
tion and show the mean square value formula for the Riemann zeta function
on the critical line in two different ways.

In Section 2 we collect some analytic properties of the multiple zeta func-
tion.

1.1 Analytic properties of the Riemann zeta

function

Let s = σ + it be a complex variable with σ, t ∈ R. The Riemann zeta
function is defined by

ζ(s) =
∞∑
n=1

1

ns
.

Let Bn(x) be the Bernoulli polynomial defined by

zexz

ez − 1
=

∞∑
n=0

Bn(x)

n!
zn.

Let Bn(0) = Bn. By using the Euler-Maclaurin summation formula we get
the following lemma (see p. 114 in Edwards [6]).
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6 CHAPTER 1. INTRODUCTION

Lemma 1.1.1. Let s = σ + it ∈ C, m,N ∈ N and M = 2m+ 1. We have

ζ(s) =
∑
n≤N

1

ns
+

N1−s

s− 1
− N−s

2
+

2m∑
k=1

Bk+1

(k + 1)!
(s)kN

−(s+k)+

+RM,N(s),

where

RM,N(s) = −(s)M
M !

∫ ∞

N

BM(x− [x])x−s−Mdx.

If σ > −M − 1 then the integral is absolutely convergent. Hence we
get an analytic continuation of the Riemann zeta function to the region
{s = σ + it ∈ C|σ > −M − 1}. Riemann [26] first showed that ζ(s) is
continued meromorphically to the whole complex plane and discovered the
functional equation for the Riemann zeta function

ζ(s) = χ(s)ζ(1− s)

where
χ(s) = 2sπs−1 sin(sπ/2)Γ(1− s).

It is well-known that the distribution of zeros of the Riemann zeta function
is closely connected with that of prime numbers. In fact Koch [16] showed
that the Riemann Hypothesis is equivalent to

π(x) = li(x) +O(x1/2 log x)

where

li(x) =

∫ x

2

dt

log t

and π(x) is the number of primes less than x. The Riemann Hypothesis is
not proved or disproved, but there are some results supporting the Riemann
Hypothesis. Let N(T ) be the number of complex zeros of the Riemann zeta
function with multiplicity having imaginary part between 0 and T , and let
N0(T ) be the number of those zeros having real part equal to 1/2. The Rie-
mann Hypothesis states that all complex zeros of the Riemann zeta function
are on the critical line σ = 1/2 i.e. N(T ) = N0(T ). Selberg [27] proved that
there exists a constant A such that N0(T ) > AN(T ). Recently Bui, Conrey
and Young [5] proved

lim inf
T→∞

N0(T )

N(T )
≥ 0.4105.
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An important problem in the theory of the Riemann zeta function is to
determine the rate of growth of the Riemann zeta function. Let µ(σ) denote
the infimum of a number c such that

ζ(σ + it) ≪ tc.

The notation f ≪ g means that there exists some constant c > 0 such
that |f | ≤ cg. The Lindelöf Hypothesis states that µ(1/2) = 0. The Lindelöf
Hypothesis is not proved or disproved, but it is well known that the Riemann
Hypothesis implies the Lindelöf Hypothesis. If the Lindelöf Hypothesis is
true, then by the Phragmén-Lindelöf theorem we have

µ(σ) =

{
0 (σ ≥ 1/2)

1/2− σ (σ < 1/2).

Hence, if the Riemann Hypothesis is true then we get the exact rate of growth
of the Riemann zeta function. Take M = [t2] in Lemma 1.1.1, then we have

ζ(s) =
∑
n≤t2

n−s +O(t1−2σ).

Divide the sum over the range t < n ≤ t2 into ≪ log t subsums of the form∑
N<n≤N1

1

ns
,

where N1 = min(2N, t2) and use partial summation, we have

ζ(1/2 + it) ≪

∣∣∣∣∣∑
n≤t

n−1/2−it

∣∣∣∣∣+ log t.

Hence, if we get the growth rate of
∑

n≤t n
−1/2−it, we know that of the Rie-

mann zeta function on the critical line. But it is very difficult to evaluate the
function

∑
n≤t n

−1/2−it. The rate µ(1/2) has been studied by many mathe-
maticians. Hardy and Littlewood showed µ(1/2) ≤ 1/6, Kolesnik [17] showed
µ(1/2) ≤ 139/858, and recently Bourgain [3] showed µ(1/2) ≤ 53/342.

Consider mean values of the Riemann zeta function. Define

Iσ,2k(T ) =

∫ T

2

|ζ(σ + it)|2kdt.
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It is well known that if I1/2,2k(T ) ≪ T 1+ϵ for any k ∈ N then the Lindelöf
Hypothesis holds. This is one of the reasons why the study of mean values
is important. In the case k = 1, 2, it is classically well known that

Iσ,2(T ) ∼

{
ζ(2σ)T (σ > 1/2)

T log T (σ = 1/2)

and

Iσ,4(T ) ∼

{
ζ4(2σ)
ζ(4σ)

T (σ > 1/2)
T log4 T

2π2 (σ = 1/2).

It is believed that I1/2,2k(T ) ∼ CkT logk
2

T where Ck is a positive constant.

Ramachandra [24] [25] proved I1/2,2k(T ) ≫ T (log T )k
2
and recently Harper

[7] proved I1/2,2k(T ) ≪ T (log T )k
2
, assuming the truth of the Riemann Hy-

pothesis. Littlewood [18] showed

I1/2,2(T ) = T log T + (2γ − 1)T + E(T ),

where γ is the Euler constant defined by

γ = lim
n→∞

(
n∑

k=1

1

k
− log n

)

and E(T ) ≪ T 3/4+ϵ. The function E(T ) was further studied by Atkinson [2]
who proved that

E(T ) =

(
2T

π

)1/4 ∑
n≤X

(−1)n
d(n)

n3/4
e(T, n) cos(f(T, n))

− 2
∑

n≤l(T,X)

d(n)

n1/2

(
log

T

2πn

)−1

cos(g(T, n)) +O(log2 T )

under the condition T ≪ X ≪ T , where d(n) is the number of divisors of n,

e(T, u) =
(
1 +

πu

2T

)−1/4
(√

2T

πu
arsinh

√
πu

2T

)−1

,

f(T, u) = 2Tarsinh

√
πu

2T
+
√
2πuT + π2u2 − π

4
,
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g(T, u) = T log
T

2πu
− T + 2πu+

π

4
,

and

l(T, u) =
T

2π
+

u

2
−
√

u2

4
+

uT

2π
.

In order to get this result, Atkinson used the double zeta function of Euler-
Zagier type (the k-ple zeta function of Euler-Zagier type is defined in the
next section). Atkinson also derived the formula

ζ(s1)ζ(s2) = ζ2(s1, s2) + ζ2(s2, s1) + ζ(s1 + s2). (1.1.1)

This formula is sometimes called the harmonic product formula for the double
zeta function. By using Atkinson’s formula Heath-Brown [8] showed∫ T

2

E(t)2dt =
2ζ4(3/2)

3ζ(3)
√
2π

T 3/2 + F (T )

with F (T ) = O(T 5/4 log2 T ).

Here we sketch two different proofs of I1/2,2(T ) ∼ T log T .

The first method :
This method is based on the following equation (see pp. 81-84 in [12]).

Theorem 1.1.1. Let 0 < σ < 1 and 2πxy = t with x, y > h > 0. Then we
have

ζ(s) =
∑
n<x

1

ns
+ χ(s)

∑
n<y

1

n1−s
+O(x−σ) +O(t

1
2
−σyσ−1), (1.1.2)

where the constants in the O-terms depend on h and σ.

Take σ = 1/2, t > 2, x = t/(2π
√
log t) and y =

√
log t in (1.1.2). Since

χ(1/2 + it) = O(1) we have

ζ(1/2 + it) =
∑
n<x

n
1
2
−it +O(log

1
4 t).

Define T1 such that

max(m,n) =
T1

2π
√
log T1
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and X = T/(2π
√
log T ). We have∫ T

0

|
∑
n<x

n
1
2
−it|2dt =

∑
m,n<X

∫ T

T1

m− 1
2
−itn− 1

2
+itdt

=
∑
n<X

T − T1(n, n)

n
+
∑
m̸=n

1√
mn

∫ T

T1

(
n

m
)it

= T log T +O(T log log T ) +O(
∑
n<X

T1(n, n)

n
)+

+O(
∑

m<n<X

1√
mn log(n/m)

).

Since T1(n, n) = 2πn
√
log n, third term on the right side is O(X

√
logX). By

using the following lemma we get I1/2,2(T ) ∼ T log T .

Lemma 1.1.2. ∑
m<n<X

1√
mn log(n/m)

= O(X logX).

This lemma is proved by dividing the sum into two parts m ≤ n
2
and

n
2
< m < n, and evaluate each part carefully.

The second method :
This method is based on the following equation.

Lemma 1.1.3 (Theorem 5.2 in [12]). Let a1, · · · , aN be arbitrary complex
numbers. Then∫ T

0

∣∣∣∣∑
n≤N

ann
it

∣∣∣∣2dt = T
∑
n≤N

|an|2 +O

(∑
n≤N

n|an|2
)
, (1.1.3)

and the above formula remains also valid if N = ∞, provided that the series
on the right-hand side of (1.1.3) converges.

Take m = 2 in (1.1.1) we have

ζ(1/2 + it) =
∑
n≤T

1

n
1
2
+it

+O(T− 1
2 ). (1.1.4)
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Take an = n−1/2 and N = [T ] in (1.1.3) we have∫ T

2

|
∑
n≤T

1

ns
|2dt = T

∑
n≤T

n−1 +O(T )

= T log T +O(T ). (1.1.5)

By (1.1.4), (1.1.5) and Cauchy’s inequality we get I1/2,2(T ) ∼ T log T .
We can observe that the second proof is much simpler. This clearly shows

the importance of Lemma 1.1.3 in the mean value theorem.

1.2 Analytic properties of the multiple zeta

function

Let sj = σj + itj(j = 1, 2, ..., k) be complex variables with σj, tj ∈ R. The
k-ple zeta function of Euler-Zagier type is defined by

ζk(s1, s2, ..., sk) =
∑

1≤n1<···<nk

1

ns1
1 ns2

2 · · ·nsk
k

,

which is absolutely convergent for σk > 1, σk + σk−1 > 2, ..., σk + σk−1 +
· · ·σ1 > k. The multiple zeta functions of Euler-Zagier type at positive inte-
gers are closely connected with various fields of mathematics and physics (for
example, knot theory [29] [19] and perturbative quantum field theory [4]).
There are many relations among these values (see [23] [32], for example).
Recently analytic properties of multiple zeta functions have been studied
extensively. Akiyama, Egami and Tanigawa [1] studied the analytic contin-
uation of multiple zeta functions. Zhao [33] also obtained the continuation
independently.

Theorem 1.2.1 (Theorem 1 in [1]). The multiple zeta function ζk(s1, .., sk)
continues meromorphically to Ck and has singularities on

sk = 1, sk−1 + sk = 2, 1, 0,−2,−4, ...,

and
j∑

i=1

sk−i+1 ∈ Z≤j

where Z≤j is the set of integers less than or equal to j.
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Matsumoto [21] discovered the functional equation for the double zeta
function. Let

g(s1, s2) = ζ2(s1, s2)−
Γ(1− s1)

Γ(s2)
Γ(s1 + s2 − 1)ζ(s1 + s2 − 1).

Let

Ψ(a, c;x) =
1

Γ(a)

∫ ∞eiϕ

0

e−xyya−1(1 + y)c−a−1dy

be the confluent hypergeometric function, where ℜa > 0, −π < ϕ < π,
|ϕ+ arg x| < π/2. We use the notation σl(k) =

∑
d|k d

l.

Theorem 1.2.2 (Matsumoto [21]). We have

g(s1, s2)

(2π)s1+s2−1Γ(1− s1)
=

g(1− s2, 1− s1)

is1+s2−1Γ(s2)
+ 2i sin

(
π

2
(s1 + s2 − 1)

)
F+(s1, s2),

(1.2.1)
where i =

√
−1 = exp(πi/2) and F+(u, v) is the series defined by

F+(u, v) =
∞∑
k=1

σu+v−1(k)Ψ(v, u+ v; 2πik). (1.2.2)

The series (1.2.2) is convergent only in the region ℜu < 0, ℜv > 1, but it
can be continued meromorphically to the whole C2 space.

We do not know the equation (1.2.1) has significant meaning as the func-
tional equation for the Riemann zeta function, but this equation is an ana-
logue of the functional equation for the Riemann zeta function.

Ishikawa and Matsumoto [11] showed that for a fixed α and any ϵ > 0,

ζ2(it, iαt) ≪ (1 + |t|)3/2+ϵ.

This result was improved by Kiuchi and Tanigawa [13].

Theorem 1.2.3 (Theorem 1.1 in [13]). Let |t1| and |t2| ≥ 2 be real numbers
such that

|t1| ≍ |t2| and |t1 + t2| ≫ 1.

In the case σ1 = σ2 = 0, we have

ζ2(it1, it2) ≪ |t1| log2 |t1|.
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Suppose that 0 ≤ σj < 1(j = 1, 2) and σ1 + σ2 > 0. Then we have

ζ2(σ1 + it1, σ2 + it2) ≪


|t1|1−

2
3
(σ1+σ2) log2 |t1| (0 ≤ σ1 ≤ 1

2
, 0 ≤ σ2 ≤ 1

2
)

|t1|
5
6
− 1

3
(σ1+2σ2) log3 |t1| (1

2
< σ1 < 1, 0 ≤ σ2 ≤ 1

2
)

|t1|
5
6
− 1

3
(2σ1+σ2) log3 |t1| (0 ≤ σ1 ≤ 1

2
, 1
2
< σ2 < 1)

|t1|
2
3
− 1

3
(σ1+σ2) log4 |t1| (1

2
< σ1 < 1, 1

2
< σ2 < 1).

Note that Kiuchi and Tanigawa [14] studied the triple zeta function and
obtained the upper bound of this function. In the case s1 = s2 = 1/2 + it,
by (1.1.1) we have

2ζ2(1/2 + it, 1/2 + it) = ζ2(1/2 + it)− ζ(1 + 2it).

Hence we obtain

ζ2(1/2 + it, 1/2 + it) ≪ |t|2µ(1/2)+ϵ.

But from Theorem 1.2.3 we only get

ζ2(1/2 + it, 1/2 + it) ≪ t1/3+ϵ.

From the above equations, Theorem 1.2.3 is far from the correct order of
the double zeta function. Kiuchi and Tanigawa considered that under the
condition |t1| ≍ |t2| and |t1 + t2| ≫ 1,

ζ2(s1, s2) ≪ |t1|µ(σ1)+µ(σ2) logA |t1|

holds, where A is some constant (see Remark 1.3 in [13]).
Recently Matsumoto and Tsumura [22] first studied a new type of some

mean value formulas for
∫ T

2
|ζ2(s1, s2)|2dt2 for a fixed complex number s1

and any large positive number T . They derived two approximate formulas
for ζ2(s1, s2) and three mean value formulas for ζ2(s1, s2). Let

ζ
[2]
2 (s1, s2) =

∞∑
k=2

∣∣∣∣∣
k−1∑
m=1

1

ms1

∣∣∣∣∣
2

1

ks2
. (1.2.3)

Since

k−1∑
m=1

1

ms1
≪


1 (σ1 > 1)

log k (σ1 = 1)

k1−σ1 (σ1 < 1)
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we have ∣∣∣∣∣
k−1∑
m=1

1

ms1

∣∣∣∣∣
2

1

k2σ2
≪


k−2σ2 (σ1 > 1)

k−2σ2 log2 k (σ1 = 1)

k2−2σ1−2σ2 (σ1 < 1).

Hence the right hand side of (1.2.3) is convergent when σ1 + σ2 > 3/2 and
σ2 > 1/2.

Theorem 1.2.4 (Theorem 1.1 in [22]). For s0 = σ0 + it0 ∈ C with σ0 > 1
and s = σ + it ∈ C with σ > 1, t ≥ 2, we have∫ T

2

|ζ2(s0, s)|2dt = ζ
[2]
2 (s0, 2σ)T +O(1).

Theorem 1.2.5 (Theorem 1.2 in [22]). For s0 = σ0 + it0 ∈ C with σ0 > 1
and s = σ + it ∈ C with 1

2
< σ ≤ 1, t ≥ 2 and σ0 + σ > 2, we have∫ T

2

|ζ2(s0, s)|2dt = ζ
[2]
2 (s0, 2σ)T +O(T 2−2σ log T ) +O(T 1/2).

Theorem 1.2.6 (Theorem 1.3 in [22]). Let s0 = σ0 + it0 ∈ C with σ0 > 1
and s = σ + it ∈ C with 1

2
< σ ≤ 1, t ≥ 2 and 3

2
< σ0 + σ ≤ 2, Assume that

when t moves from 2 to T , the point (s0, s) does not encounter the hyperplane
s0 + s = 2 (which is a singular locus of ζ2). Then∫ T

2

|ζ2(s0, s)|2dt = ζ
[2]
2 (s0, 2σ)T

+



O(T 4−2σ0−2σ) log T +O(T 1/2) (1
2
< σ0 ≤ 1, 1

2
< σ < 1)

O(T 2−2σ0)(log T )2 +O(T 1/2) (1
2
< σ0 ≤ 1, σ = 1)

O(T 2−2σ0)(log T )3 +O(T 1/2) (σ0 = 1, 1
2
< σ < 1)

O(T 1/2) (σ0 = 1, σ = 1)

O(T 2−2σ0) log T +O(T 1/2) (1 < σ0 <
3
2
, 1
2
< σ < 1).

They conjectured that when σ1 + σ2 = 3/2, the form of the main term of
the mean square formula would not be CT (with a constant C; most prob-
ably, some log-factor would appear) (see their conjecture (ii) in [22]). They
also conjectured that we could reduce the error terms O(T 1/2) by more elab-
orate analysis (see Remark 1.4 in [22]).
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In Chapter 2 we improve upon Theorem 1.2.4, Theorem 1.2.5 and Theo-
rem 1.2.6, and prove that their conjectures are true. Furthermore we study
two mean value formulas for

∫ T

2
|ζ2(σ1+it1, σ2+it2)|2dt1 and

∫ T

2
|ζ(σ+it, σ+

it)|2dt. This is a joint work with Soichi Ikeda and Yoshikazu Nagata.

In Chapter 3 we study
∫ T

2
|ζk(s1, s2, .., sk)|2dt1. This is a joint work with

Soichi Ikeda.





Chapter 2

Certain mean values of the
double zeta function

In this chapter we discuss three types of mean values of the Euler double zeta
function. In order to get results we introduce three approximate formulas for
this function. This is a joint work with Soichi Ikeda and Yoshikazu Nagata
and the contents of this chapter are based on the paper [10].

2.1 Introduction

Matsumoto and Tsumura studied the mean values∫ T

2

|ζ2(s1, s2)|2dt2, (2.1.1)

where s1 is a fixed complex number. This is the first study of the mean values
of ζ2(s1, s2). In this chapter we study (2.1.1) in the regions which are not
covered in the work of Matsumoto and Tsumura and introduce new types of
mean values of ζ2(s1, s2).

In this chapter we prove the following theorems.

Theorem 2.1.1. Let s1 = σ1 + it1, s2 = σ2 + it2 ∈ C, T ≥ 2 and

I [1](T ) =

∫ T

2

|ζ2(s1, s2)|2dt1.

17
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Assume that when t1 moves from 2 to T , the point (s1, s2) ∈ C2 does not
encounter the singularities of ζ2(s1, s2). In the case σ1 + σ2 > 2, we have

I [1](T ) = ζ
[1]
2 (2σ1, s2)T +O(1),

where, here and below, the implied constants depend on σ1, σ2, t2 and ζ
[1]
2 (2σ1, s2)

is a series which converges σ1 + σ2 > 3/2 (we define ζ
[1]
2 (σ1, s2) in the next

section). In the case 3/2 < σ1 + σ2 ≤ 2, we have

I [1](T ) = ζ
[1]
2 (2σ1, s2)T +

{
O(T 4−2σ1−2σ2) (3/2 < σ1 + σ2 < 2),

O((log T )2) (σ1 + σ2 = 2).

In the case σ1 + σ2 = 3/2, we have

I [1](T ) = |s2 − 1|−2T log T +O(T ).

Theorem 2.1.2. Let s1 = σ1 + it1, s2 = σ2 + it2 ∈ C, T ≥ 2 and

I [2](T ) =

∫ T

2

|ζ2(s1, s2)|2dt2.

Assume that when t2 moves from 2 to T , the point (s1, s2) ∈ C2 does not
encounter the singularities of ζ2(s1, s2). In the case σ2 > 1 and σ1 + σ2 > 2,
we have

I [2](T ) = ζ
[2]
2 (s1, 2σ2)T +O(1),

where, here and below, the implied constants depend on σ1, σ2, t1 and ζ
[2]
2 (s1, 2σ2)

is a series which converges σ1 + σ2 > 3/2 and σ2 > 1/2 (ζ
[2]
2 (s1, σ2) is used

in [22] and we show the definition of ζ
[2]
2 (s1, σ2) in the next section). In the

case σ1 > 1 and 1/2 < σ2 ≤ 1, we have

I [2](T ) = ζ
[2]
2 (s1, 2σ2)T +

{
O(T 2−2σ2) (σ2 ̸= 1),

O((log T )2) (σ2 = 1).

In the case σ1 ≤ 1, 3/2 < σ1 + σ2 ≤ 2 and s1 ̸= 1, we have

I [2](T ) = ζ
[2]
2 (s1, 2σ2)T +

{
O(T 4−2σ1−2σ2) (σ1 + σ2 ̸= 2),

O((log T )2) (σ1 + σ2 = 2).



2.1. INTRODUCTION 19

In the case s1 = 1 and 1/2 < σ2 ≤ 1, we have

I [2](T ) = ζ
[2]
2 (s1, 2σ2)T +

{
O(T 2−2σ2(log T )2) (σ2 ̸= 1),

O((log T )4) (σ2 = 1).

In the case σ1 > 1 and σ2 = 1/2, we have

I [2](T ) = |ζ(s1)|2T log T +O(T ).

In the case σ1 + σ2 = 3/2 and σ2 > 1/2, we have

I [2](T ) = |s1 − 1|−2T log T +O(T ).

In the case σ2 = 1/2, σ1 = 1 and s1 ̸= 1, we have

I [2](T ) = (|s1 − 1|−2 + |ζ(s1)|2)T log T +O(T ).

In the case σ2 = 1/2 and s1 = 1, we have

I [2](T ) =
T (log T )3

3
+O(T (log T )2).

Theorem 2.1.3. Let s1 = σ1 + it, s2 = σ2 + it ∈ C, T ≥ 2 and

I□(T ) =

∫ T

2

|ζ2(s1, s2)|2dt.

In the case σ2 > 1 and σ1 + σ2 > 2, we have

I□(T ) = ζ□2 (σ1, σ2)T +O(1),

where, here and below, the implied constants depend on σ1, σ2 and ζ□2 (σ1, σ2)
is a series which converges if and only if σ2 > 1/2 and σ1+σ2 > 1 (we define
ζ□2 (σ1, σ2) in the next section). In the case σ1 > 1 and 1/2 < σ2 ≤ 1, we
have

I□(T ) = ζ□2 (σ1, σ2)T +O(T 2−2σ2+ϵ) +O(T 1/2)

for sufficiently small ϵ > 0. In the case σ1 ≤ 1 and 3/2 < σ1 + σ2 ≤ 2, we
have

I□(T ) = ζ□2 (σ1, σ2)T +O(T 4−2σ1−2σ2+ϵ) +O(T 1/2)

for sufficiently small ϵ > 0. In the case σ1 > 1 and σ2 = 1/2, we have

I□(T ) ∼ ζ(2σ1)ζ(σ1 + 1/2)2

ζ(2σ1 + 1)
T log T.
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Note that we can obtain I [2](T ) ∼ |ζ(s1)|2T log T (σ1 > 1, σ2 = 1/2) by
(1.1.1) and Theorem 2.1.1.

Matsumoto and Tsumura introduced I [2](T ) and studied the cases

1. σ1 > 1 and σ2 > 1 (Theorem 1.1 of [22]),

2. σ1 + σ2 > 2 and 1/2 < σ2 ≤ 1 (Theorem 1.2 of [22]),

3. 1/2 < σ1 < 3/2, 1/2 < σ2 ≤ 1 and 3/2 < σ1 + σ2 ≤ 2 (Theorem 1.3 of
[22]).

They conjectured that when σ1+σ2 = 3/2, the form of the main term of the
mean square formula would not be CT (with a constant C; most probably,
some log-factor would appear)(see their conjecture (ii) in [22]). Our results
include the regions which Matsumoto and Tsumura did not study and give
an improvement on the error estimate. Moreover by Theorem 1.2 we see that
their conjecture (ii) is true.

Outlines of the proof of our theorems are as follows. We can obtain
Theorem 2.1.1 and Theorem 2.1.2 by using the mean value theorems for
Dirichlet polynomials and suitable approximate formulas in each theorem
(cf. Theorem 3.1 and Theorem 6.3 in Matsumoto and Tsumura [22]). The
approximate formulas used in the proof of Theorem 2.1.1 and Theorem 2.1.2
are derived from the Euler-Maclaurin formula and the simplest approximate
formula to ζ(s) due to Hardy and Littlewood. On the other hand we need a
more elaborate method to get the proof of Theorem 2.1.3. In order to obtain
the suitable approximate formula for ζ2(σ1+it, σ2+it) we need the technique
of Kiuchi and Tanigawa [13], which enables us to get good estimates of the
error terms in the Euler-Maclaurin formula.

In Theorem 2.1.1 (resp. Theorem 2.1.2) we regard s2 (resp. s1) as a
constant term. On the other hand, from the study of Kiuchi, Tanigawa and
Zhai [15], we know that the behavior of |ζ2(s1, s2)| depends on both s1 and
s2 strongly. Therefore it is also important to consider a mean value which
depends on both s1 and s2.

From Theorem 2.1.1 and Theorem 2.1.2 we may expect that the behavior
of ζ2(s1, s2) in the region σ1 + σ2 = 3/2 is special (Matsumoto and Tsumura
conjectured that σ1 + σ2 = 3/2 might be the double analogue of the critical
line of the Riemann zeta-function (see Remark 1.6 in [22])). The error terms
in Theorem 2.1.3 support their conjecture. However, we can take a different
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point of view. For the Riemann zeta function ζ(σ + it), we know that∫ T

2

|ζ(σ + it)|2dt ∼ ζ(2σ)T

for σ > 1/2 and ∫ T

2

|ζ(1/2 + it)|2dt ∼ T log T

hold (see, for example, Theorem 7.2 and Theorem 7.3 in [31]). The line
σ = 1/2 is the critical line for ζ(σ + it) and the series

ζ(2σ) =
∞∑
n=1

1

n2σ

diverges on σ = 1/2. On the other hand, ζ□2 (σ1, σ2) converges if and only
if σ2 > 1/2 and σ1 + σ2 > 1. Moreover, if σ1 = σ2 > 1/2 then I□(T ) ∼
ζ□2 (σ1, σ2)T holds by ∫ T

2

|ζ(σ + it)|4dt = O(T )

for σ > 1/2 (see Theorem 7.5 in [31]) and Carlson’s mean value theorem (see
p. 304 in [30]). Hence we can expect that I□(T ) ∼ ζ□2 (σ1, σ2)T holds for
σ2 > 1/2 and σ1 + σ2 > 1 and the boundary of the region σ2 > 1/2 and
σ1 + σ2 > 1 is an analogue of the critical line for ζ2(σ1 + it, σ2 + it).

2.2 Lemmas for the proof of theorems

In this section, we collect some auxiliary results and definitions.
First, we give the definition of ζ

[1]
2 (σ1, s2), ζ

[2]
2 (s1, σ2) and ζ□2 (σ1, σ2).

We define

ζ
[1]
2 (σ1, s2) =

∞∑
m=1

1

mσ1

∣∣∣∣ζ(s2)− m∑
n=1

1

ns2

∣∣∣∣2
for s2 ̸= 1. Since we have

ζ
[1]
2 (2σ1, s2) ≪

∞∑
m=1


m2−2σ1−2σ2 (σ2 > 1)

m−2σ1(logm)2 (σ2 = 1)

m2−2σ1−2σ2 (σ2 < 1),

(2.2.1)
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the series ζ
[1]
2 (2σ1, s2) converges in the region σ1 + σ2 > 3/2.

We define

ζ
[2]
2 (s1, σ2) =

∞∑
n=2

∣∣∣∣n−1∑
m=1

1

ms1

∣∣∣∣2 1

nσ2

(this definition is the same as [22]). Since we have

ζ
[2]
2 (s1, 2σ2) ≪

∞∑
n=2


n−2σ2 (σ1 > 1)

n−2σ2(log n)2 (σ1 = 1)

n2−2σ1−2σ2 (σ1 < 1),

(2.2.2)

the series ζ
[2]
2 (s1, 2σ2) converges in the region σ2 > 1/2 and σ1 + σ2 > 3/2.

We define

ζ□2 (σ1, σ2) =
∞∑
k=2

(∑
mn=k
m<n

1

mσ1nσ2

)2

.

We note that #{(m,n)|mn = k,m < n} ≪ kϵ for any ϵ > 0. Since

ζ2(2σ1, 2σ2) < ζ□2 (σ1, σ2)

=
∞∑
k=2

k−2σ2

( ∑
m|k

m<
√
k

1

mσ1−σ2

)2

≪
∞∑
k=2

{
k−2σ2+ϵ (σ1 ≥ σ2)

k−σ1−σ2+ϵ (σ1 < σ2)

(2.2.3)

for any ϵ > 0, the series ζ□2 (σ1, σ2) converges if and only if σ2 > 1/2 and
σ1+σ2 > 1. From Lemma (1.1.1), we get the following corollary and lemma.

Corollary 2.2.1. Let s = 1 + it. For fixed t > 0 we have

ζ(s)−
∑
n≤N

1

ns
=

N1−s

s− 1
+O(N−1) = O(1),

where the implied constants do not depend on N .

Lemma 2.2.1. Let s = σ + it ∈ C. We have

ζ(s) =
∑

1≤n≤x

1

ns
− x1−s

1− s
+O(x−σ)
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uniformly for σ ≥ σ0 > 0, x ≥ 1, |t| ≤ 2πx/C, where C is a given constant
greater than 1.

We use the following evaluations in this chapter.

Remark 2.2.1. Let T ≥ 1 and M ≥ 1 with M ≪ log T . For fixed α, β ≥ 0
we have ∑

k≤M

(
T

2k

)α(
log

(
T

2k

))β

≪ Tα
∑
k≤M

(
1

2α

)k(
(log T )β + kβ

)
≪

{
Tα(log T )β (α ̸= 0)

(log T )β+1 (α = 0).

2.3 Proof of Theorem 2.1.1

In this section, we regard σ1, s2 as constants. We divide the proof into two
cases.

Proof of Theorem 2.1.1 for σ1 + σ2 > 2. We set

am =
1

mσ1

(
ζ(s2)−

m∑
n=1

1

ns2

)
for m ∈ N. If we assume σ2 > 1 then we have

ζ2(s1, s2) =
∞∑

m=1

1

mσ1+it1

∞∑
n=m+1

1

ns2

=
∞∑

m=1

amm
−it1 .

The last series converges absolutely in σ1 + σ2 > 2. Since

∞∑
m=1

m|am|2 =
∞∑

m=1

1

m2σ1−1

∣∣∣∣ζ(s2)− m∑
n=1

1

ns2

∣∣∣∣2
converges by (2.2.1), we have

I [1](T ) = ζ
[1]
2 (2σ1, s2)T +O(1)

by Lemma 1.1.3.
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In the case 3/2 ≤ σ1 + σ2 ≤ 2, we use the following lemma.

Lemma 2.3.1. Let s1 = σ1 + it1, s2 = σ2 + it2 ∈ C with t1 ≥ 1 and N ∈ N.
Let C > 1 be a given constant. Assume that the point (s1, s2) ∈ C2 does not
encounter the singularities of ζ2(s1, s2). If 1 < |t1 + t2| < 2πN/C, then we
have

ζ2(s1, s2) =
∑
m≤N

1

ms1

(
ζ(s2)−

m∑
n=1

1

ns2

)
+O(t−1

1 N2−σ1−σ2)

for σ1 + σ2 > 1 and any fixed σ1, s2.

Proof. Let l ∈ N with σ2 > −2l. In order to obtain the analytic continuation
of ζ2(s1, s2), we regard s1 and s2 as complex variables and assume σ1, σ2 > 1
temporarily. For any N ∈ N, we have

ζ2(s1, s2) =
N∑

m=1

1

ms1

∞∑
n=m+1

1

ns2
+

∞∑
m=N+1

1

ms1

∞∑
n=m+1

1

ns2
= V1 + V2,

say. Since

V1 =
N∑

m=1

1

ms1

(
ζ(s2)−

m∑
n=1

1

ns2

)
,

V1 is continued meromorphically to C2. By setting M = 2l + 1 in Lemma
1.1.1, we have

V2 =
∞∑

m=N+1

1

ms1

(
m1−s2

s2 − 1
− m−s2

2
+

M−1∑
k=1

Bk+1

(k + 1)!
(s2)km

−s2−k +RM,m(s2)

)

=
1

s2 − 1

∞∑
m=N+1

1

ms1+s2−1
− 1

2

∞∑
m=N+1

1

ms1+s2
+

+
M−1∑
k=1

Bk+1

(k + 1)!
(s2)k

∞∑
m=N+1

1

ms1+s2+k
+

∞∑
m=N+1

1

ms1
RM,m(s2)

=
1

s2 − 1

(
ζ(s1 + s2 − 1)−

N∑
m=1

1

ms1+s2−1

)
− 1

2

∞∑
m=N+1

1

ms1+s2
+

+
M−1∑
k=1

Bk+1

(k + 1)!
(s2)k

∞∑
m=N+1

1

ms1+s2+k
+

∞∑
m=N+1

1

ms1
RM,m(s2)

= I1 + I2 + I3 + I4,
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say. Since I4 converges absolutely for σ2 > −M +1 = −2l and σ1+σ2 > −1,
V2 is continued meromorphically to σ2 > −2l and σ1+σ2 > 1. Now, we regard
σ1, s2 as constants. By Lemma 2.2.1, we have I1 ≪ t−1

1 N2−σ1−σ2 . Also we
can easily obtain I2, I3, I4 ≪ t−1

1 N2−σ1−σ2 . This implies the lemma.

Proof of Theorem 2.1.1 for 3/2 ≤ σ1 + σ2 ≤ 2. Let

am = m−σ1(ζ(s2)−
m∑

n=1

n−s2)

and

m0 = max{m ∈ N | T

2m
> |t2|+ 1}.

Note that
∞∑

m=1

|am|2 = ζ
[1]
2 (2σ1, s2)

in the case σ1 + σ2 > 3/2 and

m0 <
log T − log(|t2|+ 1)

log 2
≤ m0 + 1

hold. We take T ≥ 2 and N ∈ N with |t2|+ 1 < T and 3T < 2πN/C, where
C > 1, and we assume T < t1 < 2T . Then we have

1 < t1 − |t2| < |t1 + t2| < |t1|+ |t2| < 3T <
2πN

C
.

Therefore we can use Lemma 2.3.1, and we have

ζ2(s1, s2) =
N∑

m=1

amm
−it1 +O(t−1

1 N2−σ1−σ2) = I1 + I2,

say. Since am ≪ m−σ1−σ2+1 by Corollary 2.2.1, we obtain

N∑
m=1

ma2m ≪
N∑

m=1

m3−2σ1−2σ2 ≪

{
logN (σ1 + σ2 = 2)

N4−2σ1−2σ2 (σ1 + σ2 < 2)

and

I1 ≪
N∑

m=1

am ≪
N∑

m=1

m1−σ1−σ2 ≪

{
logN (σ1 + σ2 = 2)

N2−σ1−σ2 (σ1 + σ2 < 2).
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Therefore we have

∫ 2T

T

|I1|2dt1 = T
N∑

m=1

|am|2 +

{
O(logN) (σ1 + σ2 = 2)

O(N4−2σ1−2σ2) (σ1 + σ2 < 2)

by Lemma 1.1.3 and

∫ 2T

T

|I1I2|dt1 ≪ N2−σ1−σ2 max
T<t1<2T

|I1| ≪

{
logN (σ1 + σ2 = 2)

N4−2σ1−2σ2 (σ1 + σ2 < 2).

On the other hand, we have

∫ 2T

T

|I2|2dt1 ≪ N4−2σ1−2σ2

∫ 2T

T

dt1
t21

≪ T−1N4−2σ1−2σ2 .

Therefore we have

∫ 2T

T

|ζ2(s1, s2)|2dt1 = T
N∑

m=1

|am|2 +

{
O(logN) (σ1 + σ2 = 2)

O(N4−2σ1−2σ2) (σ1 + σ2 < 2).

By setting N = [T ] + 1, we obtain

∫ 2T

T

|ζ2(s1, s2)|2dt1 = T
∑
m≤T

|am|2 +

{
O(log T ) (σ1 + σ2 = 2)

O(T 4−2σ1−2σ2) (σ1 + σ2 < 2).

(2.3.1)
Therefore, in the case σ1 + σ2 > 3/2, we have

∫ 2T

T

|ζ2(s1, s2)|2dt1 = ζ
[1]
2 (2σ1, s2)T +

{
O(log T ) (σ1 + σ2 = 2)

O(T 4−2σ1−2σ2) (3/2 < σ1 + σ2 < 2).
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By this relation and Remark 2.2.1, we obtain∫ T

|t2|+1

|ζ2(s1, s2)|2dt1

=

∫ T

T/2m0

|ζ2(s1, s2)|2dt1 +O(1)

=
∑

1≤k≤m0

∫ T/2k−1

T/2k
|ζ2(s1, s2)|2dt1 +O(1)

= ζ
[1]
2 (2σ1, s2)T

∑
1≤k≤m0

1

2k
+


O
( ∑
1≤k≤m0

log
T

2k

)
(σ1 + σ2 = 2)

O
( ∑
1≤k≤m0

( T
2k

)4−2σ1−2σ2
)

(3/2 < σ1 + σ2 < 2)

= ζ
[1]
2 (2σ1, s2)T +

{
O((log T )2) (σ1 + σ2 = 2)

O(T 4−2σ1−2σ2) (3/2 < σ1 + σ2 < 2).

This implies the theorem for 3/2 < σ1 + σ2 ≤ 2.
In the case σ1 + σ2 = 3/2, since

am = m−σ1

(
ζ(s2)−

m∑
n=1

n−s2

)
=

m1−σ1−s2

s2 − 1
+O(m−σ1−σ2)

by Lemma 1.1.1, we have

|am|2 =
m−1

|s2 − 1|2
+O(m−2).

Therefore we have ∫ 2T

T

|ζ2(s1, s2)|2dt1 =
T log T

|s2 − 1|2
+O(T )

by (2.3.1). By Remark 2.2.1 and this relation we obtain the theorem.

2.4 Proof of Theorem 2.1.2

In this section, we regard σ2, s1 as constants. We divide the proof into three
cases.
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Proof of Theorem 2.1.2 for σ2 > 1 and σ1 + σ2 > 2. We set

an =
1

nσ2

n−1∑
m=1

1

ms1

for n ∈ N. We have

ζ2(s1, s2) =
∞∑
n=2

(n−1∑
m=1

1

ms1

)
1

nσ2+it2
=

∞∑
n=2

ann
−it2 .

Since
∞∑
n=2

n|an|2 =
∞∑
n=2

(n−1∑
m=1

1

ms1

)
1

n2σ2−1

converges by (2.2.2), we have

I [2](T ) = ζ
[2]
2 (s1, 2σ2)T +O(1)

by Lemma 1.1.3.

We use the following lemma in the cases either σ1 > 1, 1/2 < σ2 ≤ 1 or
σ1 ≤ 1, 3/2 ≤ σ1 + σ2 ≤ 2.

Lemma 2.4.1. Let s1 = σ1+it1, s2 = σ2+it2 ∈ C with t2 ≥ 1 and N ∈ N with
N > e2. Let C > 1 be a given constant. Assume that the point (s1, s2) ∈ C2

does not encounter the singularities of ζ2(s1, s2). If 1 < t2 < 2πN/C and
1 < |t1 + t2| < 2πN/C, then we have

ζ2(s1, s2) =
∑

2≤n≤N

(n−1∑
m=1

1

ms1

)
1

ns2
+

{
O(t−1

2 N1−σ2 + t−1
2 N2−σ1−σ2) (s1 ̸= 1)

O(t−1
2 N1−σ2 logN) (s1 = 1)

for σ2 ≥ 1/2, σ1 + σ2 > 1 and any fixed σ2, s1.

Proof. Let l ∈ N with σ1 > −2l. In order to obtain the analytic continuation
of ζ2(s1, s2), we regard s1 and s2 as complex variables and assume σ1, σ2 > 1
temporarily. For any N ∈ N, we have

ζ2(s1, s2) =
∑

2≤n≤N

(n−1∑
m=1

1

ms1

)
1

ns2
+
∑
n>N

(n−1∑
m=1

1

ms1

)
= U1 + U2, (2.4.1)
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say. The first term U1 is obviously holomorphic in C2. By setting M = 2l+1
in Lemma 1.1.1, we have

U2 =
∑
n>N

( n∑
m=1

1

ms1
− 1

ns1

)
1

ns2

=
∑
n>N

(
ζ(s1)−

n1−s1

s1 − 1
− n−s1

2
−

M−1∑
k=1

Bk+1

(k + 1)!
(s1)kn

−s1−k −RM,n(s1)

)
1

ns2

= ζ(s1)
∑
n>N

1

ns2
+

1

1− s1

∑
n>N

1

ns1+s2−1
− 1

2

∑
n>N

1

ns1+s2
−

−
M−1∑
k=1

Bk+1

(k + 1)!
(s1)k

∑
n>N

1

ns1+s2+k
−
∑
n>N

1

ns2
RM,n(s1)

= ζ(s1)

(
ζ(s2)−

N∑
n=1

1

ns2

)
+

1

1− s1

(
ζ(s1 + s2 − 1)−

N∑
n=1

1

ns1+s2−1

)
−

− 1

2

∑
n>N

1

ns1+s2
−

M−1∑
k=1

Bk+1

(k + 1)!
(s1)k

∑
n>N

1

ns1+s2+k
−
∑
n>N

1

ns2
RM,n(s1)

= I1 + I2 + I3 + I4 + I5,

(2.4.2)

say. Since I5 converges absolutely for σ1 > −M +1 = −2l and σ1+σ2 > −1,
U2 is continued meromorphically to σ2 > 0, σ1 > −2l and σ1 + σ2 > 1. Now,
we regard σ2, s1 as constants.

In the case s1 ̸= 1, by Lemma 2.2.1, we have I1 ≪ |s1 − 1|−1t−1
2 N1−σ2

and I2 ≪ |s1 − 1|−1t−1
2 N2−σ1−σ2 . Also we can easily obtain I3, I4, I5 ≪

t−1
2 N2−σ1−σ2 . This implies the lemma for s1 ̸= 1. In the case s1 = 1, we
obtain the lemma by using the maximum modulus principle.

We prove Theorem 2.1.2 for σ1 > 1, 1/2 ≤ σ2 ≤ 1 or σ1 ≤ 1, 3/2 ≤
σ1 + σ2 ≤ 2. We divide the proof into the case s1 ̸= 1 and the case s1 = 1.

Proof of Theorem 2.1.2 for s1 ̸= 1. We prove the theorem by the same argu-
ment as in the proof of Theorem 2.1.1.

Let

an = n−σ2

n−1∑
m=1

m−s1 .
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Note that
∞∑
n=2

|an|2 = ζ
[2]
2 (s1, 2σ2)

in the case σ1 + σ2 > 3/2 and σ2 > 1/2. We take T ≥ 2 and N ∈ N with
N > e2, |t1| + 1 < T and 3T < 2πN/C, where C > 1, and we assume
T < t2 < 2T . Then we can use Lemma 2.4.1, and we have

ζ2(s1, s2) =
N∑

n=2

ann
−it2 +O(t−1

2 N1−σ2 + t−1
2 N2−σ1−σ2) = I1 + I2,

say. Since

an ≪

{
n−σ2 (σ1 ≥ 1)

n−σ1−σ2+1 (σ1 < 1)

by Corollary 2.2.1, we obtain

N∑
n=2

na2n ≪


logN (σ2 = 1, σ1 ≥ 1)

N2−2σ2 (σ2 < 1, σ1 ≥ 1)

logN (σ1 + σ2 = 2, σ1 < 1)

N4−2σ1−2σ2 (σ1 + σ2 < 2, σ1 < 1)

and

I1 ≪
N∑

n=2

an ≪


logN (σ2 = 1, σ1 ≥ 1)

N1−σ2 (σ2 < 1, σ1 ≥ 1)

logN (σ1 + σ2 = 2, σ1 < 1)

N2−σ1−σ2 (σ1 + σ2 < 2, σ1 < 1).

Therefore we have

∫ 2T

T

|I1|2dt2 = T

N∑
n=2

|an|2 +


O(logN) (σ2 = 1, σ1 ≥ 1)

O(N2−2σ2) (σ2 < 1, σ1 ≥ 1)

O(logN) (σ1 + σ2 = 2, σ1 < 1)

O(N4−2σ1−2σ2) (σ1 + σ2 < 2, σ1 < 1)
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by Lemma 1.1.3 and

∫ 2T

T

|I1I2|dt2 ≪


(N1−σ2 +N2−σ1−σ2) logN (σ2 = 1, σ1 ≥ 1)

(N1−σ2 +N2−σ1−σ2)N1−σ2 (σ2 < 1, σ1 ≥ 1)

(N1−σ2 +N2−σ1−σ2) logN (σ1 + σ2 = 2, σ1 < 1)

(N1−σ2 +N2−σ1−σ2)N2−σ1−σ2 (σ1 + σ2 < 2, σ1 < 1)

≪


logN (σ2 = 1, σ1 ≥ 1)

N2−2σ2 (σ2 < 1, σ1 ≥ 1)

logN (σ1 + σ2 = 2, σ1 < 1)

N4−2σ1−2σ2 (σ1 + σ2 < 2, σ1 < 1).

On the other hand, we have∫ 2T

T

|I2|2dt2 ≪ T−1(N2−2σ2 +N4−2σ1−2σ2).

Therefore we have

∫ 2T

T

|ζ2(s1, s2)|2dt2 = T

N∑
n=2

|an|2 +


O(logN) (σ2 = 1, σ1 ≥ 1)

O(N2−2σ2) (σ2 < 1, σ1 ≥ 1)

O(logN) (σ1 + σ2 = 2, σ1 < 1)

O(N4−2σ1−2σ2) (σ1 + σ2 < 2, σ1 < 1).

By setting N = [T ] + 1, we obtain

∫ 2T

T

|ζ2(s1, s2)|2dt2 = T
∑
n≤T

|an|2 +


O(log T ) (σ2 = 1, σ1 ≥ 1)

O(T 2−2σ2) (σ2 < 1, σ1 ≥ 1)

O(log T ) (σ1 + σ2 = 2, σ1 < 1)

O(T 4−2σ1−2σ2) (σ1 + σ2 < 2, σ1 < 1).

(2.4.3)
Therefore, in the case σ1 + σ2 > 3/2 and σ2 > 1/2, we have

∫ 2T

T

|ζ2(s1, s2)|2dt2 = ζ
[2]
2 (s1, 2σ2)T+


O(log T ) (σ2 = 1, σ1 ≥ 1)

O(T 2−2σ2) (σ2 < 1, σ1 ≥ 1)

O(log T ) (σ1 + σ2 = 2, σ1 < 1)

O(T 4−2σ1−2σ2) (σ1 + σ2 < 2, σ1 < 1).

(2.4.4)
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In the case σ1 > 1, σ2 = 1/2, since

an = n−σ2

n−1∑
m=1

m−s1 = n−σ2(ζ(s1) +O(n−σ1+1))

by Lemma 1.1.1, we have

|an|2 = n−1|ζ(s1) +O(n−σ1+1)|2 = n−1|ζ(s1)|2 +O(n−σ1).

Therefore we obtain∫ 2T

T

|ζ2(s1, s2)|2dt2 = |ζ(s1)|2T log T +O(T ) (2.4.5)

by (2.4.3). In the case σ1 < 1 and σ1 + σ2 = 3/2, since

an = n−σ2

(n−s1+1

s1 − 1
+O(n−σ1) +O(1)

)
by Lemma 1.1.1, we have

|an|2 = n−2σ2

(∣∣∣∣n−s1+1

s1 − 1

∣∣∣∣2 +O(n−2σ1+1) +O(n−σ1+1)

)
=

n−1

|s1 − 1|2
+O(n−2) +O(n−2+σ1).

Therefore we obtain∫ 2T

T

|ζ2(s1, s2)|2dt2 =
T log T

|s1 − 1|2
+O(T ) (2.4.6)

by (2.4.3). In the case σ1 = 1 and σ2 = 1/2, since

an = n−σ2

(
ζ(s1)−

n−s1+1

s1 − 1
+O(n−σ1)

)
by Lemma 1.1.1, we have

∑
n≤T

|an|2 =
∑
n≤T

(
n−1

∣∣∣∣ζ(s1)− n−s1+1

s1 − 1

∣∣∣∣2 +O(n−2)

)
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by Corollary 2.2.1. Since we have

∑
n≤T

n−1

∣∣∣∣ζ(s1)− n−s1+1

s1 − 1

∣∣∣∣2
= (|ζ(s1)|2 + |s1 − 1|−2) log T − 2

∑
n≤T

ℜ
(
ζ(s1)

n−s1

s1 − 1

)
+O(1)

= (|ζ(s1)|2 + |s1 − 1|−2) log T +O(1)

by Corollary 2.2.1, we have∑
n≤T

|an|2 = (|ζ(s1)|2 + |s1 − 1|−2) log T +O(1).

Therefore we obtain∫ 2T

T

|ζ2(s1, s2)|2dt2 = (|ζ(s1)|2 + |s1 − 1|−2)T log T +O(T ) (2.4.7)

by (2.4.3). By (2.4.4), (2.4.5), (2.4.6) and (2.4.7), we can obtain the theorem
by the same argument as in the proof of Theorem 2.1.1.

Proof of Theorem 2.1.2 for s1 = 1. We prove the theorem by the same argu-
ment as in the proof of Theorem 2.1.1.

Hereafter we use the same notations as in the previous proof. Note that,
in this case, we have I2 = O(t−1

2 N1−σ2 logN) by using Lemma 2.4.1. Since
an ≪ n−σ2 log n, we obtain

N∑
n=2

n|an|2 ≪
N∑

n=2

n1−2σ2(log n)2 ≪

{
O((logN)3) (σ2 = 1)

O(N2−2σ2(logN)2) (σ2 < 1)

and

I1 ≪
N∑

n=2

|an| ≪

{
(logN)2 (σ2 = 1)

N1−σ2 logN (σ2 < 1).

Therefore we have∫ 2T

T

|I1|2dt2 = T
N∑

n=2

|an|2 +

{
O((logN)3) (σ2 = 1)

O(N2−2σ2(logN)2) (σ2 < 1)
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by Lemma 1.1.3 and

∫ 2T

T

|I1I2|dt2 ≪

{
O((logN)3) (σ2 = 1)

O(N2−2σ2(logN)2) (σ2 < 1).

On the other hand, we have∫ 2T

T

|I2|2dt2 ≪ T−1N2−2σ2(logN)2.

Therefore, by setting N = [T ] + 1, we obtain

∫ 2T

T

|ζ2(s1, s2)|2dt2 = T
∑
n≤T

|an|2 +

{
O((log T )3) (σ2 = 1)

O(T 2−2σ2(log T )2) (σ2 < 1).
(2.4.8)

In the case σ2 > 1/2, we have

∫ 2T

T

|ζ2(s1, s2)|2dt2 = ζ
[2]
2 (s1, 2σ2)T +

{
O((log T )3) (σ2 = 1)

O(T 2−2σ2(log T )2) (σ2 < 1).

(2.4.9)
In the case σ2 = 1/2, since

|an|2 = n−1
(n−1∑
m=1

m−1
)2

=
(log n)2

n
+O

( log n
n

)
and

N∑
n=2

(log n)2

n
=

∫ N

1

x−1(log x)2dx+O(1) =
(logN)3

3
+O(1)

hold, we have∫ 2T

T

|ζ2(s1, s2)|2dt2 =
T (log T )3

3
+O(T (log T )2) (2.4.10)

by (2.4.8). By (2.4.9) and (2.4.10), we can obtain the theorem by the same
argument as in the proof of Theorem 2.1.1.
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2.5 Proof of Theorem 2.1.3

We divide the proof into four cases.

Proof of Theorem 2.1.3 for σ2 > 1 and σ1 + σ2 > 2. We set

ak =

( ∑
m|k

m<
√
k

1

mσ1−σ2

)
1

kσ2

for k ∈ N. We have

ζ2(s1, s2) =
∑

1≤m<n

1

mσ1nσ2(mn)it

=
∑
k≥2

(∑
mn=k
m<n

1

mσ1nσ2

)
1

kit

=
∑
k≥2

( ∑
m|k

m<
√
k

1

mσ1−σ2

)
1

kσ2+it

=
∑
k≥2

akk
−it.

Since ∑
k≥2

k|ak|2 =
∞∑
k≥2

( ∑
m|k

m<
√
k

1

mσ1−σ2

)2
1

k2σ2−1

converges by (2.2.3), we have

I□(T ) = ζ□2 (σ1, σ2)T +O(1)

by Lemma 1.1.3.

We use the following lemma in the cases either σ1 > 1, 1/2 < σ2 ≤ 1 or
σ1 ≤ 1, 3/2 < σ1 + σ2 ≤ 2.

Lemma 2.5.1. Let σ1 + σ2 > 1, σ2 > 0, s1 = σ1 + it and s2 = σ2 + it. Then

ζ2(s1, s2) =
∑
n≤t

n−s2

n−1∑
m=1

m−s1 +


O(t−σ2) (σ1 > 1)

O(t−σ2+ϵ) (σ1 = 1)

O(t1−σ1−σ2) (σ1 < 1)

holds for t ≥ 2, where the implied constants depend on σ1, σ2.
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In order to prove Lemma 2.5.1, we use the following lemma and corollary.

Lemma 2.5.2 (Lemma 2.2 in [13]). Let s = σ + it, |t| > 1. For N > 1
4
|t|,

m ≥ 1 and σ > −2m− 1, we have

ζ(s) =
∑
n≤N

1

ns
+

N1−s

s− 1
− N−s

2
+

2m∑
k=1

Bk+1

(k + 1)!
(s)kN

−(s+k)+

+O
(
|t|2m+1N−σ−2m−1

)
,

where the implied constant does not depend on t.

Corollary 2.5.1 (Corollary 2.3 in [13]). Let s = σ+it, |t| > 1. For N > 1
4
|t|

and σ > −3, we have

ζ(s) =
∑
n≤N

1

ns
+

N1−s

s− 1
− N−s

2
+

s

12
N−s−1 +O

(
|t|3N−σ−3

)
,

where the implied constant does not depend on t.

The following proof is similar to that in [13] (section 4.1 Evaluation of
S2(s1, s2)).

Proof of Lemma 2.5.1. Let l ∈ N with σ1 > −2l. We use (2.4.1) and (2.4.2).
Hence we obtain the analytic continuation of ζ2(s1, s2) for σ2 > 0, σ1 > −2l
and σ1 + σ2 > 1. Now, we set s1 = σ1 + it, s2 = σ2 + it with t ≥ 1 and
N = [t]. Then we have

I1 = ζ(s1)

(
N1−s2

s2 − 1
− N−s2

2
+

s2
12

N−s2−1 +O
(
|t|3N−σ2−3

))
≪ |ζ(s1)|t−σ2

≪


t−σ2 (σ1 > 1)

t−σ2+ϵ (σ1 = 1)

t1−σ1−σ2 (σ1 < 1)
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for σ2 > −3 by Corollary 2.5.1. Similarly, we have

I2 =
1

1− s1

(
N2−s1−s2

s1 + s2 − 2
− 1

2
N1−s1−s2 +

s1 + s2 − 1

12
N−s1−s2+

+O
(
|t|3N1−σ1−σ2−3

))
≪ t1−σ1−σ2

for σ1 + σ2 > −2. Since σ1 + σ2 > 1, we have

Ij ≪ t1−σ1−σ2 (j = 3, 4).

On the other hand, RM,n(s1) = O(tMn−σ1−M) for σ1 > −M by Lemma 2.5.2.
Hence we have

I5 ≪ tM
∑
n>N

1

nσ1+σ2+M
≪ t1−σ1−σ2 .

This implies the lemma.

We prove Theorem 2.1.3 for σ1 > 1, 1/2 < σ2 ≤ 1 or σ1 ≤ 1, 3/2 <
σ1+σ2 ≤ 2. First we consider the case σ1 > σ2. In particular, this condition
is satisfied when σ1 > 1 and 1/2 < σ2 ≤ 1.

Proof of Theorem 2.1.3 for σ1 > σ2. If we set

A(s1, s2) =
∑
n≤t

n−s2

n−1∑
m=1

m−s1
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then we have∫ T

2

|A(s1, s2)|2dt =
∫ T

2

(∑
n1≤t

n−s2
1

n1−1∑
m1=1

m−s1
1

∑
n2≤t

n−s2
2

n2−1∑
m2=1

m−s1
2

)
dt

=
∑

2≤n1≤T

n1−1∑
m1=1

∑
2≤n2≤T

n2−1∑
m2=1

n−σ2
1 m−σ1

1 n−σ2
2 m−σ1

2

∫ T

M(n1,n2)

(
m2n2

m1n1

)it

dt

=
∑

m1n1=m2n2

∑
1≤m1≤n1−1

2≤n1≤T

∑
1≤m2≤n2−1

2≤n2≤T

n−σ2
1 m−σ1

1 n−σ2
2 m−σ1

2

(
T −M(n1, n2)

)

+
∑

m1n1 ̸=m2n2

∑
1≤m1≤n1−1

2≤n1≤T

∑
1≤m2≤n2−1

2≤n2≤T

n−σ2
1 m−σ1

1 n−σ2
2 m−σ1

2

×
exp

(
iT log

(
m2n2

m1n1

))
− exp

(
iM(n1, n2) log

(
m2n2

m1n1

))
i log

(
m2n2

m1n1

)
= S1T − S2 + S3,

say, where M(n1, n2) = max(n1, n2). First, we rewrite

S1 =
∑

2≤k≤T

( ∑
mn=k

m<n≤T

m−σ1n−σ2

)2

+
∑

T<k<T 2

( ∑
mn=k

m<n≤T

m−σ1n−σ2

)2

=
∞∑
k=2

(∑
mn=k
m<n

m−σ1n−σ2

)2

−
∑
k>T

(∑
mn=k
m<n

m−σ1n−σ2

)2

+
∑

T<k<T 2

( ∑
mn=k

m<n≤T

m−σ1n−σ2

)2

.

Since

∑
k>T

(∑
mn=k

m−σ1n−σ2

)2

=
∑
k>T

(∑
m|k

m−σ1mσ2k−σ2

)2

≪
∑
k>T

k−2σ2+ϵ ≪ T 1−2σ2+ϵ,

we have

S1 = ζ□2 (σ1, σ2) +O(T 1−2σ2+ϵ).
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Next, we rewrite

S2 ≪
∑

m1n1=m2n2

∑
1≤m1≤n1−1

2≤n1≤T

∑
1≤m2≤n2−1

2≤n2≤T

n−σ2
1 m−σ1

1 n−σ2
2 m−σ1

2 O(n1 + n2)

≪
∑

2≤k<T 2

( ∑
mn=k

1≤m<n≤T

m−σ1n1−σ2

)( ∑
mn=k

1≤m<n≤T

m−σ1n−σ2

)

≪
∑

2≤k≤T

( ∑
mn=k

1≤m<n≤T

m−σ1n1−σ2

)( ∑
mn=k

1≤m<n≤T

m−σ1n−σ2

)

+
∑

T<k<T 2

( ∑
mn=k

1≤m<n≤T

m−σ1n1−σ2

)( ∑
mn=k

1≤m<n≤T

m−σ1n−σ2

)
= A1 + A2,

say. Since we have

A1 =
∑

2≤k≤T

k1−2σ2

( ∑
m|k

m<
√
k

mσ2−σ1−1

)( ∑
m|k

m<
√
k

mσ2−σ1

)

≪
∑

2≤k≤T

k1−2σ2+ϵ ≪ T 2−2σ2+ϵ

and

A2 ≪
∑

T<k<T 2

k−2σ1

(∑
n|k
n≤T

n1+σ1−σ2

)(∑
n|k
n≤T

nσ1−σ2

)

≪ T 1+2σ1−2σ2+ϵ
∑

T<k<T 2

k−2σ1 ≪ T 2−2σ2+ϵ,
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we have S2 ≪ T 2−2σ2+ϵ. Next, we have

S3 =
∑

m1n1 ̸=m2n2

∑
1≤m1≤n1−1

2≤n1≤T

∑
1≤m2≤n2−1

2≤n2≤T

n−σ2
1 m−σ1

1 n−σ2
2 m−σ1

2

×
exp

(
iT log

(
m2n2

m1n1

))
− exp

(
iM(n1, n2) log

(
m2n2

m1n1

))
i log

(
m2n2

m1n1

)
≪

∑
m1n1<m2n2

∑
1≤m1≤n1−1

2≤n1≤T

∑
1≤m2≤n2−1

2≤n2≤T

n−σ2
1 m−σ1

1 n−σ2
2 m−σ1

2

1

log
(

m2n2

m1n1

)
=

∑
m1n1<m2n2<2m1n1

∑
1≤m1≤n1−1

2≤n1≤T

∑
1≤m2≤n2−1

2≤n2≤T

n−σ2
1 m−σ1

1 n−σ2
2 m−σ1

2

1

log
(

m2n2

m1n1

)
+

∑
m2n2≥2m1n1

∑
1≤m1≤n1−1

2≤n1≤T

∑
1≤m2≤n2−1

2≤n2≤T

n−σ2
1 m−σ1

1 n−σ2
2 m−σ1

2

1

log
(

m2n2

m1n1

)
= B1 +B2,

say. We have B2 ≪ T 2−2σ2 in the case σ1 > 1. In the case σ1 ≤ 1 we have

B2 ≪
∑

1≤m1≤n1−1
2≤n1≤T

∑
1≤m2≤n2−1

2≤n2≤T

n−σ2
1 m−σ1

1 n−σ2
2 m−σ1

2 ≪ T 4−2σ1−2σ2+ϵ. (2.5.1)

Hence, we have

B2 ≪

{
T 2−2σ2+ϵ (σ1 > 1),

T 4−2σ1−2σ2+ϵ (σ1 ≤ 1).

Next we evaluate B1. In the case σ1 > 1 we have

B1 ≪
∑
r≤T 2

∑
m2n2−r=m1n1

r<m2n2

∑
1≤m1<n1≤T

∑
1≤m2<n2≤T

n−σ2
1 m−σ1

1 n−σ2
2 m−σ1

2

m1n1

r

≪
∑
r≤T 2

∑
2≤n1≤T

∑
1≤m2<n2≤T

∑
n1|(m2n2−r)

r<m2n2

n1−σ2
1 n−σ2

2 m−σ1
2

1

r

≪
∑
r≤T 2

∑
2≤n1≤T

∑
1≤m2<n2≤T

T 1−σ2+ϵn−σ2
2 m−σ1

2

1

r
≪ T 2−2σ2+ϵ.
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If σ1 ≤ 1 we have

B1 ≪
∑
r≤T 2

∑
1≤m1<n1≤T

∑
1≤m2<n2≤T

∑
m2n2=m1n1+r

r<m2n2

n−σ2
1 m−σ1

1 n−σ2
2 m−σ1

2

m1n1

r

≪
∑
r≤T 2

∑
1≤m1<n1≤T

∑
1≤m2<n2≤T

∑
m2n2=m1n1+r

n−σ2
1 m−σ1

1 n−σ2
2 m−σ1

2

m1n1

r

m2n2

m1n1

(2.5.2)

≪
∑
r≤T 2

∑
1≤m1<n1≤T

n−σ2
1 m−σ1

1

T 2−σ1−σ2+ϵ

r
≪ T 4−2σ1−2σ2+ϵ,

since we are in the case σ2 ≤ σ1 ≤ 1. Hence, we have

B1 ≪

{
T 2−2σ2+ϵ (σ1 > 1),

T 4−2σ1−2σ2+ϵ (σ1 ≤ 1).

This implies

S3 ≪

{
T 2−2σ2+ϵ (σ1 > 1),

T 4−2σ1−2σ2+ϵ (σ1 ≤ 1).

Therefore we have∫ T

2

|A(s1, s2)|2dt = ζ□2 (σ1, σ2)T +

{
O(T 2−2σ2+ϵ) (σ1 > 1),

O(T 4−2σ1−2σ2+ϵ) (σ1 ≤ 1).

Now, if we set

λ =


−σ2 (σ1 > 1),

−σ2 + ϵ (σ1 = 1),

1− σ1 − σ2 (σ1 < 1)

then we have∫ T

2

|ζ(s1, s2)|2dt =
∫ T

2

|A(s1, s2) +O(tλ)|2dt

=

∫ T

2

|A(s1, s2)|2dt+O

(∫ T

2

|A(s1, s2)tλ|dt
)
+O(1).
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By the Cauchy-Schwarz inequality, we have

∫ T

2

|A(s1, s2)tλ|dt ≪
(∫ T

2

|A(s1, s2)|2dt
) 1

2
(∫ T

2

t2λdt

) 1
2

≪ T
1
2 .

This implies the theorems.

Next, we consider the case σ1 ≤ σ2.

Proof of Theorem 2.1.3 for σ1 ≤ σ2. Hereafter we use the same notations as
in the previous proof. First we evaluate S1. Since

∑
k>T

(∑
mn=k
m<n

m−σ1n−σ2

)2

=
∑
k>T

( ∑
m|k

m<
√
k

m−σ1mσ2k−σ2

)2

≪
∑
k>T

k−2σ2
(
k

1
2
(σ2−σ1)+ϵ

)2
≪
∑
k>T

k−σ1−σ2+ϵ ≪ T 1−σ1−σ2+ϵ,

we have

S1 = ζ□2 (σ1, σ2) +O(T 1−σ1−σ2+ϵ).

Next we evaluate S2. Since∑
mn=k
m<n

m−σ1n−σ2 =
∑
m|k

m<
√
k

mσ2−σ1k−σ2 ≪ k− 1
2
(σ1+σ2)+ϵ, (2.5.3)

∑
mn=k
m<n

m−σ1n1−σ2 =
∑
m|k

m<
√
k

k1−σ2mσ2−σ1−1 ≪

{
k1−σ2+ϵ (σ2 − σ1 − 1 ≤ 0)

k
1
2
(1−σ1−σ2)+ϵ (σ2 − σ1 − 1 > 0)
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hold, we have

A1 ≪


∑

2≤k≤T

k− 1
2
(σ1+σ2)+ϵk1−σ2+ϵ (σ2 − σ1 − 1 ≤ 0)∑

2≤k≤T

k− 1
2
(σ1+σ2)+ϵk

1
2
(1−σ1−σ2)+ϵ (σ2 − σ1 − 1 > 0)

=


∑

2≤k≤T

k1− 1
2
σ1− 3

2
σ2+ϵ (σ2 − σ1 − 1 ≤ 0)∑

2≤k≤T

k
1
2
−σ1−σ2+ϵ (σ2 − σ1 − 1 > 0).

We note that 1− 1
2
σ1 − 3

2
σ2 < −1 is equivalent to σ2 > −1

3
σ1 +

4
3
. Hence we

have

A1 ≪

{
T 2− 1

2
σ1− 3

2
σ2+ϵ (σ2 − σ1 − 1 ≤ 0 and σ2 ≤ −1

3
σ1 +

4
3
),

1 (otherwise)

because σ1 + σ2 > 3/2. Similarly, we have

A2 ≪


∑

T<k<T 2

k1− 1
2
σ1− 3

2
σ2+ϵ (σ2 − σ1 − 1 ≤ 0)∑

T<k<T 2

k
1
2
−σ1−σ2+ϵ (σ2 − σ1 − 1 > 0)

≪

{
T 4−σ1−3σ2+ϵ (σ2 − σ1 − 1 ≤ 0 and σ2 ≤ −1

3
σ1 +

4
3
)

1 (otherwise).

Therefore we have

S2 ≪

{
T 4−σ1−3σ2+ϵ (σ2 − σ1 − 1 ≤ 0 and σ2 ≤ −1

3
σ1 +

4
3
)

1 (otherwise).

Next we evaluate S3. Since estimation (2.5.1) remains also valid in this case,
we have B2 ≪ T 4−2σ1−2σ2+ϵ. Since we have∑
1≤m2<n2≤T

∑
m2n2=m1n1+r

n1−σ2
2 m1−σ1

2 ≪
(
m1n1 + r

T

)1−σ2

T 1−σ1+ϵ ≪ T 2−σ1−σ2+ϵ

for σ1 ≤ 1, σ2 > 1, 0 ̸= m1n1 + r ≪ T 2, estimation (2.5.2) remains also valid
in this case. Therefore we have S3 ≪ T 4−2σ1−2σ2+ϵ. Since 4 − 2σ1 − 2σ2 −
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(4− σ1 − 3σ2) = σ2 − σ1 ≥ 0, we have∫ T

2

|A(s1, s2)|2dt = ζ□2 (σ1, σ2)T +O(T 4−2σ1−2σ2+ϵ).

By the same argument as in the case σ1 > σ2, we obtain the theorem.

Proof of Theorem 2.1.3 for σ1 > 1 and σ2 = 1/2. By Theorem 2.2 in [28] we
have ∫ T

2

|ζ(1/2 + it)|2|ζ(σ1 + it)|2dt ∼ ζ(2σ1)ζ(σ1 + 1/2)2

ζ(2σ1 + 1)
T log T.

By (1.1.1) and the Cauchy-Schwarz inequality we have

I□(T ) ∼
∫ T

2

|ζ(1/2 + it)|2|ζ(σ1 + it)|2dt.

This completes the proof.



Chapter 3

Certain mean values of the
multiple zeta function

In this chapter we study certain mean values of the k-ple zeta function. This
is a joint work with Soichi Ikeda.

3.1 Introduction

In the theory of the Riemann zeta function ζ(s), estimation of the bounds
for ζ(s) in the critical strip is important and difficult. In [13] and [14], Kiuchi
and Tanigawa studied the bounds for ζ2(s1, s2) and ζ3(s1, s2, s3), respectively,
but it is difficult to determine the correct order of ζ2(s1, s2) and ζ3(s1, s2, s3).

On the other hand it is well-known that∫ T

2

|ζ(σ + it)|2dt ∼


ζ(2σ)T (σ > 1/2)

T log T (σ = 1/2)
(2π)2σ−1

2−2σ
ζ(2− 2σ)T 2−2σ (σ < 1/2).

(3.1.1)

Recently, Matsumoto and Tsumura studied∫ T

2

|ζ2(s1, s2)|2dt2 (3.1.2)

in [22]. In [10] Ikeda, Matsuoka and Nagata improved the results of Mat-
sumoto and Tsumura and studied∫ T

2

|ζ2(s1, s2)|2dt1

45
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and ∫ T

2

|ζ2(σ1 + it, σ2 + it)|2dt.

More generally, we may consider the mean values

I
[j]
k (T ; s1, . . . , σj, . . . , sk) =

∫ T

2

|ζk(s1, . . . , sk)|2dtj (1 ≤ j ≤ k).

The following are our main results.

Theorem 3.1.1. Let s1 = σ1 + it1, . . . , sk = σk + itk ∈ C with k ∈ N,
k ≥ 2 and T ≥ 2. Assume that when t1 moves from 2 to T , the point
(s1, . . . , sk) ∈ Ck does not encounter the singularities of ζk(s1, . . . , sk). In
the case σ1 + · · ·+ σk > k, we have

I
[1]
k (T ;σ1, s2, . . . , sk) = ζ

[1]
k (2σ1, s2, . . . , sk)T +O(1),

where the implied constant depends on σ1, s2, . . . , sk and ζ
[1]
k (2σ1, s2, . . . , sk) is

a series which converges σ1+ · · ·+σk > k−1/2 (we define ζ
[1]
k (σ1, s2, . . . , sk)

in the next section). In the case k − 1/2 < σ1 + · · ·+ σk ≤ k, we have

I
[1]
k (T ;σ1, s2, . . . , sk) = ζ

[1]
k (2σ1, s2, . . . , sk)T+

+

{
O(T 2k−2(σ1+···+σk)) (k − 1/2 < σ1 + · · ·+ σk < k),

O((log T )2) (σ1 + · · ·+ σk = k).

In the case σ1 + · · ·+ σk = k − 1/2, we have

I
[1]
k (T ;σ1, s2, . . . , sk) = |Fk(s2, . . . , sk)|2T log T +O(T ),

where

Fk(s2, . . . , sk) =
k−2∏
i=0

( k∑
j=k−i

sj − (i+ 1)

)−1

.

In the case σ1 + · · ·+ σk < k − 1/2, we have

I
[1]
k (T ;σ1, s2, . . . , sk) ∼ |Fk(s2, . . . , sk)|2

(2π)2(σ1+···+σk)−2k+1

2k − 2(σ1 + · · ·+ σk)
×

× ζ(2k − 2(σ1 + · · ·+ σk))T
2k−2(σ1+···+σk).
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In Theorem 1.1 in [10], Ikeda, Matsuoka and Nagata studied I
[1]
2 (T ;σ1, s2)

for σ1 + σ2 ≥ 3/2. Therefore our result includes an improvement of their
result.

By Theorem 3.1.1 we may conjecture that the analytic properties of
ζk(s1, . . . , sk) are special in the region σ1+· · ·+σk = k−1/2. Matsumoto and
Tsumura conjectured that σ1+σ2 = 3/2 might be the double analogue of the
critical line of the Riemann zeta-function (see Remark 1.6 in [22]). In fact,
Theorem 1.2 in [10] and the present Theorem 3.1.1 support this conjecture.

Remark 3.1.1. Theorem 3.1.1 can be proved by the methods similar to those
of [10]. By using the methods similar to those of [10], one can proba-

bly obtain the asymptotic behaviors of I
[j]
k (T ; s1, . . . , σj, . . . , sk) for all j

and k. In the case j, k ≥ 2, we guess that the asymptotic behaviors of
I
[j]
k (T ; s1, . . . , σj, . . . , sk) are different from those of I

[1]
k (T ;σ1, s2, . . . , sk) and

complicated.

3.2 Lemmas for the proof of the theorem

In this section, we collect some auxiliary results and definitions.

Definition 3.2.1. Let k ∈ N and N ∈ N ∪ {0}. We define

Zk(s1, . . . , sk;N) =
∞∑

n1=N+1

1

ns1
1

∞∑
n2=n1+1

1

ns2
2

· · ·
∞∑

nk=nk−1+1

1

nsk
k

for σk > 1, σk−1 + σk > 2, . . . , σ1 + · · ·+ σk > k.

Note that we have Zk(s1, . . . , sk; 0) = ζk(s1, . . . , sk),

Zk(s1, . . . , sk;N) = ζk(s1, . . . , sk)−
∑

1≤n1≤N

1

ns1
1

∞∑
n2=n1+1

1

ns2
2

· · ·
∞∑

nk=nk−1+1

1

nsk
k

(3.2.1)
and, for k ≥ 2,

ζk(s1, . . . , sk) =
∞∑

n1=1

1

ns1
1

Zk−1(s2, . . . , sk;n1). (3.2.2)

The following lemma is a generalization of (4) in [1].
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Lemma 3.2.1. Let k, l ∈ N and N ∈ N∪{0}. The function Zk(s1, . . . , sk;N)
is continued meromorphically to Ck and satisfies

Zk+1(s1, . . . , sk+1;N)

=
Zk(s1, . . . , sk−1, sk + sk+1 − 1;N)

sk+1 − 1
− Zk(s1, . . . , sk−1, sk + sk+1;N)

2
+

+
2l∑
j=1

Bj+1

(j + 1)!
(sk+1)jZk(s1, . . . , sk−1, sk + sk+1 + j;N)+

−
∑

N<n1<···<nk

ϕl(nk, sk+1)

ns1
1 · · ·nsk

k

for σk+1 + 2l > 0, σk + σk+1 + 2l > 1, . . . , σ1 + · · ·+ σk+1 + 2l > k.

Proof. We prove the continuation by induction. Our method is similar to
that of Akiyama, Egami and Tanigawa(see p. 109 in [1]). Since we have

Z1(s1;N) = ζ(s1)−
∑
n1≤N

1

ns1
1

,

the function Z1(s1;N) is meromorphic in C. We assume that Zk(s1, . . . , sk;N)
(k ≥ 1) is continued meromorphically to Ck. By Lemma 1.1.1 we have

Zk+1(s1, . . . , sk+1;N)

=
∞∑

n1=N+1

1

ns1
1

· · ·
∞∑

nk=nk−1+1

1

nsk
k

(
n
1−sk+1

k

sk+1 − 1
− n

−sk+1

k

2

+
2l∑
j=1

Bj+1

(j + 1)!
(sk+1)jn

−(sk+1+j)
k − ϕl(nk, sk+1)

)
=

Zk(s1, . . . , sk−1, sk + sk+1 − 1;N)

sk+1 − 1
− Zk(s1, . . . , sk−1, sk + sk+1;N)

2
+

+
2l∑
j=1

Bj+1

(j + 1)!
(sk+1)jZk(s1, . . . , sk−1, sk + sk+1 + j;N)+

−
∑

N<n1<···<nk

ϕl(nk, sk+1)

ns1
1 · · ·nsk

k

=: A1 + A2 + A3 + A4,
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say. By the assumption A1, A2, A3 are continued meromorphically to Ck+1.
The sum A4 is absolutely convergent for σk+1 + 2l > 0, σk + σk+1 + 2l >
1, . . . , σ1 + · · · + σk+1 + 2l > k. Therefore, by taking sufficiently large l, the
function Zk+1(s1, . . . , sk+1;N) is continued meromorphically to Ck+1. This
implies the lemma.

The following lemma is an analogue of Theorem 1 in [1].

Lemma 3.2.2. Let k, l ∈ N and N ∈ N ∪ {0}. Let p = (s1, . . . , sk) ∈ Ck.
The point p is a singularity of Zk(s1, . . . , sk;N) if and only if the point p is
a singularity of ζk(s1, . . . , sk).

Proof. We prove the lemma by induction. Our method is similar to that of
Akiyama, Egami and Tanigawa(see p. 110 in [1]). In the case k = 1, the
assertion of the lemma is obviously true. We assume that the assertion of
the lemma is true for k ≥ 1. We use the notation in the proof of Lemma
3.2.1. Note that, by Lemma 3.2.1, the singular part of Zk+1(s1, . . . sk+1;N)
is A1 + A2 + A3 for all N ∈ N ∪ {0}. First we show that no singularities
appeared in A1, A2 or A3 identically vanish. This can be shown by changing
variables:

u1 = s1, . . . , uk−1 = sk−1, uk = sk + sk+1, uk+1 = sk+1.

In fact, we see that the singular part of Zk+1(u1, . . . , uk − uk+1, uk+1;N) is
given by

Zk(u1, . . . , uk − 1;N)

uk+1 − 1
+

2l∑
j=0

Bj+1

(j + 1)!
(uk+1)jZk(u1, . . . , uk + j;N). (3.2.3)

By this expression we see that the singularities of Zk(u1, . . . , uk + j;N) are
summed with functions of uk+1 of different degree. Thus the singularities, as
a weighted sum by another variable uk+1, will not vanish identically. This
implies the lemma, because, in (3.2.3), the singularities of Zk(u1, . . . , uk +
j;N) coincide with ζk(u1, . . . , uk + j) by the assumption of induction.

Remark 3.2.1. By Lemma 3.2.2 and Theorem 1 in [1], we see that the function
Zk(s1, . . . , sk;N) has singularities on

sk = 1, sk−1 + sk = 2, 1, 0,−2,−4, . . . ,
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and
j∑

i=1

sk−i+1 ∈ Z≤j (j = 3, 4, . . . , k),

where Z≤j is the set of integers less than or equal to j. In addition, if
Zk(s1, . . . , sk;N) is holomorphic at the point (s1, . . . , sk), then Zk−1(s2, . . . , sk;N)
is holomorphic at (s2, . . . , sk).

The following lemmas can be obtained by Lemma 3.2.1 and induction.

Lemma 3.2.3. Let k,N ∈ N. For fixed s1, . . . , sk ∈ C, we have

Zk(s1, . . . , sk;N) =
k−1∏
i=0

( k∑
j=k−i

sj−(i+1)

)−1

Nk−(s1+···+sk)+O(Nk−1−(σ1+···+σk)),

where the implied constant depends on s1, . . . , sk ∈ C.

Proof. We prove the lemma by induction. First we consider the case k = 1.
Let l ∈ N with σ1 > −2l. In order to obtain the analytic continuation of
Z1(s1;N), we regard s1 as a complex variable and assume σ1 > 1 temporarily.
Then, by Lemma 1.1.1, we obtain the analytic continuation of Zk(s1;N) for
the region σ1 > −2l. If we regard s1 as a constant, then, by Lemma 1.1.1,
we have

Z1(s1;N) =
N1−s1

s1 − 1
+O(N−σ1).

This implies the lemma for k = 1.
We assume that the assertion of the lemma is true for k ≥ 1. Let l ∈ N

with σk+1 + 2l > 0, σk + σk+1 + 2l > 1, . . . , σ1 + · · · + σk+1 + 2l > k. In
order to obtain the analytic continuation of Zk+1(s1, . . . , sk+1;N), we re-
gard s1, . . . , sk+1 as complex variables and assume σ1, . . . , σk+1 > 1 tem-
porarily. Then, by Lemma 3.2.1, we obtain the analytic continuation of
Zk+1(s1, . . . , sk+1;N) for the region σk+1+2l > 0, σk+σk+1+2l > 1, . . . , σ1+
· · · + σk+1 + 2l > k. If we regard s1, . . . , sk+1 as constants, then, by Lemma
3.2.1 and the assumption of induction, we obtain the lemma.

Lemma 3.2.4. Let k ∈ N with k ≥ 2. Let σ1+ · · ·+σk ≤ k− 1/2. For fixed
σ1, s2, . . . , sk, we have

ζk(s1, . . . , sk) = Fk(s2, . . . , sk)ζ(s1+· · ·+sk−k+1)+O(ζ(s1+· · ·+sk−k+2)),

where the implied constant does not depend on t1.
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Proof. This lemma can be obtained by the method similar to that of Lemma
3.2.3.

The following lemma can be obtained by Lemma 2.2.1, Lemma 3.2.1 and
the argument similar to that of Lemma 3.2.3. This lemma is a generalization
of Lemma 3.1 in [10].

Lemma 3.2.5. Let N ∈ N and k ∈ N with k ≥ 2. Let C > 1 be a given
constant. Assume that the point (s1, . . . , sk) ∈ Ck does not encounter the
singularities of ζk(s1, . . . , sk). If 1 < |t1+· · ·+tk| < 2πN/C and σ1+· · ·+σk >
k − 1 hold for fixed σ1 ∈ R and s2, . . . , sk ∈ C, then we have

ζk(s1, . . . , sk) =
∑
n1≤N

1

ns1
1

Zk−1(s2, . . . , sk;n1) +O(t−1
1 Nk−(σ1+···+σk)).

We define

ζ
[1]
k (σ1, s2, . . . , sk) =

∞∑
n1=1

1

nσ1
1

|Zk−1(s2, . . . , sk;n1)|2,

where the point (s2, . . . , sk) ∈ Ck−1 is not a singularity of Zk−1(s2, . . . , sk;n1).

By Lemma 3.2.3, the series ζ
[1]
k (2σ1, s2, . . . , sk) is absolutely convergent in the

region σ1 + · · ·+ σk > k − 1/2.

3.3 Proof of Theorem 3.1.1

In this section, we regard σ1, s2, . . . , sk as constants and we define

an1 = n−σ1
1 Zk−1(s2, . . . , sk;n1).

Note that
∞∑

n1=1

|an1 |2 = ζ
[1]
k (2σ1, s2, . . . , sk).

We divide the proof into three cases.

Proof of Theorem 3.1.1 for the case σ1 + · · ·+ σk > k. By (3.2.2) we have

ζk(s1, . . . , sk) =
∞∑

n1=1

an1n
−it1
1 .
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By Lemma 3.2.3 the last series converges absolutely in σ1 + · · · + σk > k.
Since the series

∞∑
n1=1

n1|an1 |2 =
∞∑

n1=1

1

n2σ1−1
1

|Zk−1(s2, . . . , sk;n1)|2

converges by Lemma 3.2.3, we have

I
[1]
k (T ;σ1, s2, . . . , sk) = ζ

[1]
k (2σ1, s2, . . . , sk)T +O(1)

by Lemma 1.1.3.

Proof of Theorem 3.1.1 for the case k − 1/2 ≤ σ1 + · · ·+ σk ≤ k. Let

m0 = max{m ∈ N | T/2m > |t2 + · · ·+ tk|+ 1}.

Note that

m0 <
log T − log(|t2 + · · ·+ tk|+ 1)

log 2
≤ m0 + 1

holds. We take T ≥ 2 andN ∈ N with |t2+· · ·+tk|+1 < T and 3T < 2πN/C,
where C > 1, and we assume T < t1 < 2T . Then we have

1 < t1 − |t2 + · · ·+ tk| < |t1|+ |t2 + · · ·+ tk| < 3T <
2πN

C
.

Therefore we can use Lemma 3.2.5. We have

ζk(s1, . . . , sk) =
N∑

n1=1

an1n
−it1
1 +O(t−1

1 Nk−σ1−···−σk) =: I1 + I2,

say. Since an1 ≪ nk−1−σ1−···−σk
1 by Lemma 3.2.3, we obtain

N∑
n1=1

n1|an1 |2 ≪
N∑

n1=1

n
2k−1−2(σ1+···+σk)
1 ≪

{
logN (σ1 + · · ·+ σk = k)

N2k−2(σ1+···+σk) (σ1 + · · ·+ σk < k)

and

I1 ≪
N∑

n1=1

|an1 | ≪

{
logN (σ1 + · · ·+ σk = k)

Nk−(σ1+···+σk) (σ1 + · · ·+ σk < k).
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Therefore we have∫ 2T

T

|I1|2dt1 = T
N∑

n1=1

|an1 |2 +

{
O(logN) (σ1 + · · ·+ σk = k)

O(N2k−2(σ1+···+σk)) (σ1 + · · ·+ σk < k)

by Lemma 1.1.3 and∫ 2T

T

|I1I2|dt1 ≪

{
logN (σ1 + · · ·+ σk = k)

N2k−2(σ1+···+σk) (σ1 + · · ·+ σk < k).

On the other hand, we have∫ 2T

T

|I2|2dt1 ≪ N2k−2(σ1+···+σk)

∫ 2T

T

dt1
t21

≪ T−1N2k−2(σ1+···+σk).

Therefore we have∫ 2T

T

|ζk(s1, . . . , sk)|2dt1 = T
N∑

n1=1

|an1 |2+

{
O(logN) (σ1 + · · ·+ σk = k)

O(N2k−2(σ1+···+σk)) (σ1 + · · ·+ σk < k).

By setting N = [T ] + 1, we obtain∫ 2T

T

|ζk(s1, . . . , sk)|2dt1 = T
∑
n1≤T

|an1 |2+

{
O(log T ) (σ1 + · · ·+ σk = k)

O(T 2k−2(σ1+···+σk)) (σ1 + · · ·+ σk < k).

(3.3.1)
Therefore, in the case k − 1/2 < σ1 + · · ·+ σk, we have∫ 2T

T

|ζk(s1, . . . , sk)|2dt1 = ζ
[1]
k (2σ1, s2, . . . , sk)T+

{
O(log T ) (σ1 + · · ·+ σk = k)

O(T 2k−2(σ1+···+σk)) (σ1 + · · ·+ σk < k).

Note that 1/2m0 = O(1/T ). By∫ T

|t2+···+tk|+1

|ζk(s1, . . . , sk)|2dt1 =
∫ T

T/2m0

|ζk(s1, . . . , sk)|2dt1 +O(1)

=
∑

1≤k≤m0

∫ T/2k−1

T/2k
|ζk(s1, . . . , sk)|2dt1 +O(1),
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and Remark 2.2.1, we obtain the theorem for k − 1/2 < σ1 + · · ·+ σk ≤ k.
In the case σ1 + · · ·+ σk = k − 1/2, since

an1 = Fk(s2, . . . , sk)n
k−1−σ1−s2−···−sk
1 +O(nk−2−σ1−σ2−···−σk

1 )

by Lemma 3.2.3, we have

|an1 |2 = |Fk(s2, . . . , sk)|2n−1
1 +O(n−2

1 ).

Therefore, by (3.3.1), we obtain∫ 2T

T

|ζk(s1, . . . , sk)|2dt1 = |Fk(s2, . . . , sk)|2T log T +O(T ).

This implies the theorem for σ1 + · · ·+ σk = k − 1/2.

Proof of Theorem 3.1.1 for the case σ1 + · · ·+ σk < k − 1/2. By (3.1.1), Lemma
3.2.4 and the Cauchy-Schwarz inequality we can easily obtain the theo-
rem.
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