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1 INTRODUCTION 4

1 Introduction

Since the discovery of Fe-based high-Tc superconductors by Kamihara et al
[1], the pairing mechanism and superconducting (SC) symmetry had been
studied very intensively. In this section, we explain the present situation of
the study on Fe-based superconductors. Next, we describe the contents of
this thesis.

1.1 Background

Superconductivity is a significant research field for not only engineering but
also fundamental physics. Understanding the mechanisms of the supercon-
ductivity is one of the most important themes. Since Kamerlingh Onnes
found that electronic conductivity of mercury becomes zero below the criti-
cal temperature Tc [2], a lot of efforts had been devoted in order to reveal the
mechanism. Primarily, the mechanism is explained by Bardeen, Cooper, and
Schrieffer [3]. According to the BCS theory, superconductivity is realized
by electrons forming Cooper pairs realized by attractive interaction between
electrons and phonon. This theory explains superconductivity in weakly cor-
related electron systems. However, in 1987, high-Tc cuprate superconductors
were found [4]. Tc of cuprates is too high to be explained by BCS theory.
The interaction causing the paring is mediated by spin fluctuations.

In 2008, iron based superconductors were found [1] and Tc leaped to 55K
immediately. At present, it is the superconductor with the highest Tc next
to cuprates. Iron based superconductors had been studied intensively from a
lot of aspects since not only do they have very high Tc but also a new pairing
mechanism different from that of cuprates can be realized in iron pnictides.

In iron pnictides, 3d electrons construct the electronic structure near the
Fermi level and all of five d electrons play prominent roll. Therefore, iron
based superconductor is a multiorbital system, differently from single orbital
cuprate. In many iron pnictides, antiferromagnetic and orbital orders are
realized in the mother compounds. By doping the carrier, these long range
orders vanish and the superconductivity is realized. Therefore, in the super-
conducting phase, both the spin and orbital fluctuations are developed. Since
these fluctuations mediate the pairing interaction of the cooper pairs, the-
orists had been studied the scenarios of both the spin-fluctuation-mediated
superconductivity [5] and orbital-fluctuation-mediated superconductivity [6].

In the spin-fluctuation-mediated superconductivity, the s-wave state with
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sign reversal (s±-wave state) is realized [5]. However, the s±-wave supercon-
ducting state is very fragile against the non-magnetic impurity because of
the sign change of the superconducting gap [7, 8]. Although the s±-wave
state with Tc=30K is predicted to disappear when the residual resistivity ρ0
is as small as 20 ∼ 30 µΩcm [9, 10], the superconductivity of iron pnictides
is very robust against impurities up to ρ0 = 300 ∼ 500 µΩcm. In addition,
the correlation between Tc and the strength of spin fluctuations is unclear
in various compounds. For example, Tc of Ba(Fe,Co)2As2 and LiFeAs are
similar. However, the spin fluctuations are developed in Ba(Fe,Co)2As2 [11]
although are weak in LiFeAs [12] according to the NMR experiments.

On the other hand, in the orbital-fluctuation-mediated superconductivity,
the s-wave state without sign reversal (s++-wave state) is realized [6]. In this
case, the robustness of impurity is consistent because the s++-wave state do
not have the sign change of superconducting gap functions [9, 10].

Development of orbital fluctuations is explained by the Aslamazov-
Larkin-type term of vertex correction (VC) [13, 14]. Indeed, the orbital
fluctuations are developed in self consistent VC (SC-VC) method. By ap-
plying SC-VC method, the property of normal state, for example, structural
phase transition [14], softening of sheer modulus C66 [15], and so on, can be
explained.

For understanding the mechanism of the superconductivity, the study of
superconducting gap structure is significant. In the case of cuprates, the d-
wave superconducting state is realized, which is the most important evidence
for the realization of the spin-fluctuation-mediated superconductivity.

In this thesis, we study the superconducting state of iron pnictides by fo-
cusing on the gap structures. In order to understanding pairing mechanisms,
we make realistic three dimensional multiorbital model of KFe2Se2, LiFeAs,
and BaFe2(As,P)2. Next, we calculate the gap structures when both the spin
fluctuations and orbital fluctuations are developed. Finally, we clarify the
superconducting mechanism of iron based superconductivity by comparing
the numerical results with the experimental results.

1.2 Typical T -x (doping rate) phase diagram

Figure 1 shows typical T -x (doping rate) phase diagram of iron pnictides.
Mother compounds of most iron pnictides show the antiferromagnetism and
do not show superconductivity. When carrier doping or isovalent doping
is induced, superconductivity is realized. In the underdoped regime, the
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Figure 1: A typical phase diagram for Fe-based superconductors. TS is the
structure transition temperature, which is expected to be induced by orbital
polarization nxz > nyz according to the ARPES measurements and the siz-
able softening of C66. TN is the magnetic transition temperature. Reprinted
from Ref.[16]. c⃝2013 by the American Physical Society.

second-order orthorhombic structural transition occurs at TS and striped
type magnetic order is realized at TN ≲ TS. In the orthorhombic phase, the
Fe d-orbital polarization nxz ̸= nyz is realized, where nxz(yz) is the filling of
dxz(yz) orbital[17]. Also, sizable softening of shear modulus C66 [18, 19, 20]
and the renormalization of phonon velocity [21] indicate the development of
orbital fluctuations near the orthorhombic phase. Strong spin fluctuations
are also observed near the magnetic ordered phase. Next to the structural
transition, the SC phase appears. Thus, the phase diagram in fig. 1 (a)
indicates that both orbital and spin fluctuations could be closely related to
the mechanisms of superconductivity. Up to now, pairing mechanism of iron
pnictides had been studied from aspects of development of both the spin
fluctuations and orbital fluctuations based on multiorbital models.

1.3 Crystal structures

Iron pnictides are classified into some groups by crystal structures. However,
conductive layer of all type of the structures is same and composed of Fe and
pnictogen. Figure 2 (a) shows the overhead view of conducting layer. Fe is
located in same plane and + (−) in Pn means the pnictogen is located above
(under) the Fe plane.

Figure 2 (b) shows the crystal structure of LaFeAsO, which is called
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Figure 2: (a) Overhead view of conducting layer of iron pnictides. Fe is
located in same plane. + (−) in Pn means the pnictogen is located above
(under) the Fe plane. (b)-(d) Crystal structures of (b) LnFePnO (1111
system), (c) AeFe2Pn2 (122 system), and (d) AFePn (111 system).

1111 system because of the elemental ratio. All Fe is located in same plane
and pnictogen is located tetrahedrally above and under the Fe plane. The
mother compound LaFeAsO is antiferromagnetism. However, when O is
substituted for F and electron is doped, the antiferomagnetism is broken and
superconductivity is realized. The compound which has the most highest
Tc(∼55K) in iron pnictides is comprised in 1111 system.

Figure 2 (c) shows the crystal structure of BaFe2As2, which is called 122
system. The conductive layer is same as 1111 system. However insulated
layer is comprised of only alkali earth elements. Same as 1111 system, the
mother compound BaFe2As2 is antiferromagnetism. When Ba is substituted
for K (hole is doped), Fe is substituted for Co (electron is doped), or As
is substituted for P (chemical pressure is added), the antiferromagnetism
is broken and supercinductivity is realized. In 122 system, high quality and
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large single crystal can be synthesized and numerous measurements had been
conducted. Therefore, 122 system is important for understanding entire iron
pnictides.

Figure 2 (d) shows the crystal structure of LiFeAs, which is called 111
system. Unlike in the case of 1111 or 122 system, LiFeAs shows supercon-
ductivity without doping. Recently, very clean single crystal of LiFeAs is
synthesized. Since measurements which are not affected by impurity can
be performed, LiFeAs is significant compound for understanding the pairing
mechanism of iron pnictides.

There are other groups which have no insulated layer or more complex
insulated layer. However, we do not explain these groups in detail since these
groups are not discussed in this thesis.

1.4 Electronic band structures

In this section, we explain typical electronic band structure of iron pnictides.
In this thesis, we denote dz2 , dxz, dyz, dxy, dx2−y2 orbitals as 1, 2, 3, 4, 5,
where x, y axis correspond to the nearest Fe-Fe directions.

two-Fe Brillouin zone

single-Fe Brillouin zone

h-FS1 (inner)

h-FS2 (outer)
e-FS1

e-FS2
h-FS3

X

Y M

Γ

kx

ky

−π

π

0

−π π0
kx

ky

−π

π

0

−π π0

(a) 5 orbital model (b) 10 orbital model

Figure 3: (a) FSs for n = 6.05 in the unfolded five orbital model. (b) FSs for
n = 6.05 in the ten orbital model. They are mainly composed of dxz (green)
dyz (red) dxy (blue).

The Fermi surfaces (FSs) for filling n = 6.05 in the five orbital model
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given by the first principle calculation for LaFeAsO [5] is shown in Fig. 3
(a). This is typical example of FSs of iron pnictides. The five orbital model
(single Fe unit cell) is obtained by the unfolding the ten orbital model (two-
Fe unit cell), which is shown in fig. 3 (b). Both models are equivalent
mathematically, and the unfolding is performed by following the procedure
in ref. [22]. n = 6.05 correspond to underdoped regime (LaFeAsO0.95F0.05).
The green, red, and green colors correspond to dxz, dyz, and dxy orbital,
respectively. There are two holelike FSs (h-FSs) at Γ point, electronlike FSs
(e-FSs) at X and Y points, and one h-FS at M point.

In most iron pnictides, there are h-FSs at Γ and M points and e-FS at
X and Y points, which is similar to LaFeAsO0.95F0.05, although the size or
number of FSs are different.

1.5 Candidates of pairing mechanisms and supercon-
ductive symmetry: spin-fluctuation-mediated s±-
wave state and orbital-fluctuation-mediated s++-
wave state

Just after the discovery of Fe-based superconductors, the spin-fluctuation-
mediated s-wave with sign reversal (s±-wave) between h-FSs and e-FSs
had been proposed based on the band calculation [23] and the random
phase approximation (RPA) [5, 24, 25]. Spin-fluctuation-mediated uncon-
ventional superconductivity is believed to be realized in various metals, such
as high-Tc cuprates [26, 27, 28], κ-(BEDT-TTF)2X [29, 30, 31], and CeMIn5

(M=Co,Rh,Ir) [32].
In principle, spin-fluctuation-mediated superconductivity is fragile

against nonmagnetic impurities or randomness, since the SC gap function
has sign changes inevitably. This is also true for iron pnictides, although
the FSs are disconnected and the SC gap is fully-gapped. According to Ref.
[9, 10], decrease in Tc per ρimp = 1µΩcm reaches ∼ 1K independently of the
impurity potential strength. Contrary to this expectation, the SC state is
very robust against various impurities [7, 8] and heavy-particle irradiations
[33]. Moreover, the spin-fluctuation-mediated superconductors are expected
to show a “resonance peak” in the neutron inelastic scattering as a reflec-
tion of sign-change in the SC gap. However, the observed “resonance-like”
peak structure in iron pnictides [34, 35, 36] is reproduced theoretically by
considering the strong correlation effect via quasiparticle damping, even in
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the conventional s-wave state without sign reversal (s++-wave state) [37].
In BaFe2(As1−xPx)2, Tc increases as x decreases till the lattice struc-

ture transition occurs at x = 0.27, and Tc is positively correlated to the
spin-fluctuation strength for x ≥ 0.33 [38]. On the other hand, Tc in
LaFeAsO1−xFx at x = 0.14 increases from 26 K to 43 K by applying the
pressure, whereas spin-fluctuation strength observed by 1/T1T measurement
is almost unchanged [39]. Thus, the correlation between the spin-fluctuation
strength and Tc seems to depend on compounds.

Considering these difficulties in the s±-wave scenario, the orbital-
fluctuation-mediated s++-wave state had been proposed [6, 13]. The phase
diagram explained in sec. 1.2 indicate the development of orbital fluctuations.
In Refs. [6, 40, 41, 42, 43] the authors have shown that small quadrupole
interaction induced by Fe-ion oscillations gives rise to the large antiferro-
and ferro-orbital fluctuations. Also, in Refs. [13, 14], the authors had devel-
oped the spin+orbital fluctuation theory in multiorbital Hubbard model by
including the VCs to the susceptibilities, which are neglected in the RPA.
It was found that the Aslamazov-Larkin type VC due to Coulomb interac-
tion produces large effective quadrupole interaction. The emergence of the
orbital fluctuations due to the VC is also recognized in a simple two-orbital
model, using the self-consistent VC method [44] as well as newly developed
two-dimensional renormalization group method (RG+cRPA method) [45].

1.6 Orbital-spin fluctuation theory

In this subsection, we introduce the orbital fluctuation theory to avoid the
difficulties in the s±-wave scenario described in previous subsection.

1.6.1 Interaction terms

We intoroduce both the coulomb interaction and quadrupole interaction.
Coulomb interaction is comprised of intraorbital Coulomb U , interorbital
Coulomb U ′, Hund’s coupling J , and pair hopping J ′; [5]

HCoulomb =
site∑
a

(
U
∑
l

nal↑nal↓ + U ′
∑
l>m

∑
σσ′

nalσnamσ′

−J
∑
l ̸=m

Sal · Sam + J ′
∑
l ̸=m

c†al↑c
†
al↓cam↓cam↑

)
, (1)
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where a denotes the site, and l,m are the five d-orbitals.
In addition to the Coulomb interaction, we introduce quadrupole inter-

action. Quadrupole interaction is induced by the electron-phonon (e-ph)
interaction due to Fe ion oscillations as follows, [6]

Vquad = −g1(ωl)
site∑
a

(
Ôa

yz · Ôa
yz + Ôa

xz · Ôa
xz

)
− g2(ωl)

site∑
a

(
Ôa

xy · Ôa
xy

)
, (2)

where gi(ωl) = giω
2
0/(ω

2
l +ω2

0), and gi = gi(0) is the quadrupole interaction at
ωl = 0. ω0 is the cutoff energy of the quadrupole interaction. The operator
Ôa

Γ (Γ = xz, yz, xy) is given as

Ôa
Γ =

∑
l,m

ol,mΓ m̂a
l,m, (3)

(m̂a
l,m =

∑
σ c

†
lσ(Ra)cmσ(Ra)) is the quadrupole operator at site Ra. The

coefficient is defined as ol,mxz = 7⟨l|x̂ẑ|m⟩ for Γ = xz, where x̂ = x/r and so
on. [40] The non-zero coefficients of ol,mΓ = om,l

Γ are given as [40]

o2,5xz = o3,4xz =
√
3o1,2xz = 1, (4)

−o3,5yz = o2,4yz =
√
3o1,3yz = 1, (5)

−o2,3xy = −
√
3o1,4xy = 1. (6)

Thus, V̂quad has many non-zero inter-orbital elements. As explained in Ref.
[6], g1 (g2) is induced by in-plane (out-plane) Fe-ion oscillations. Also, the
Aslamazov-Larkin type VC (AL-VC) due to Coulomb interaction produces
large effective quadrupole interaction g1 [13]. Thus, the quadrupole interac-
tion in eq. (2) is derived from both the VC and e-ph interaction.

1.6.2 Spin and orbital fluctuations

In this section, we perform the RPA for the model given in sec. 1.4 by using
64× 64 k meshes and 2048 Matsubara frequencies. We fix the temperature
at T = 0.02 eV, and set the filling of each Fe-site as n = 6.0. Hereafter, the
unit of energy as eV. The irreducible susceptibility in the five-orbital model
is given by

χ0
ll′,mm′ (q) = − T

N

∑
k

G0
l,m (k + q)G0

m′,l′ (k) , (7)
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where q = (q, ωl) and k = (k, ϵn). ϵn = (2n + 1)πT and ωl = 2lπT are the
fermion and boson Matsubara frequencies. Ĝ0(k) = [iϵn + µ − ĥ0

k]
−1 is the

Green function in the orbital basis, where ĥ0
k is the matrix representation of

Ĥ0 and µ is the chemical potential. In the RPA, the susceptibilities for spin
and charge sectors are given by [46]

χ̂s (q) =
χ̂0 (q)

1̂− Γ̂sχ̂0 (q)
, (8)

χ̂c (q) =
χ̂0 (q)

1̂− Γ̂c
g(ωl)χ̂0 (q)

, (9)

where

(Γs)l1l2,l3l4 =



U, l1 = l2 = l3 = l4,

U ′, l1 = l3 ̸= l2 = l4,

J, l1 = l2 ̸= l3 = l4,

J ′, l1 = l4 ̸= l2 = l3,

0, otherwise

(10)

Γ̂c
g(ωl) = Γ̂c − 2V̂quad(ωl), (11)

(Γ̂c)l1l2,l3l4 =



−U, l1 = l2 = l3 = l4,

U ′ − 2J, l1 = l3 ̸= l2 = l4,

−2U ′ + J, l1 = l2 ̸= l3 = l4,

−J ′, l1 = l4 ̸= l2 = l3,

0. otherwise

(12)

Hereafter, we assume J = J ′ and U = U ′ + 2J and fix the ratio J/U = 1/6.
In the RPA, the enhancement of the spin susceptibility χ̂s is mainly caused

by the intra-orbital Coulomb interaction U , using the “intra-orbital nesting”
of the FSs. On the other hand, the enhancement of χ̂c in the present model
is caused by the quadrupole-quadrupole interaction in eq. (2), utilizing the
“inter-orbital nesting” of the FSs. Figure 4 shows the U -g(0) phase diagram
for n = 6.1. αs(c) is the spin (charge) Stoner factor, which is given the

maximum eigenvalue of Γ̂sχ̂0(q, 0) (Γ̂c
g(0)χ̂

0(q, 0)). The magnetic (orbital)
order is realized when the spin (charge) Stoner factor is unity. For n = 6.1,
the critical value of U is Ucr = 1.27 eV, and the critical value of g is gcr = 0.23
eV for U = 0.
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Figure 4: Obtained U -g(0) phase diagram for n = 6.1. Near the orbital-
density-wave boundary, s++-wave SC state is realized by orbital fluctuations.
Reprinted from Ref.[41]. c⃝2010 by the American Physical Society.
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0
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Figure 5: Obtained (a) χs(q, 0) and (b) χQ
yz(q, 0), for n = 6.1, U = 1,

g1 = g2 = 0.216, and T = 0.02. Note that χQ
xz(q

′, 0) = χQ
yz(q

′, 0), where q′ is
given by the rotation of q by π/2.

Figure 5 (a) shows the obtained spin susceptibility

χs(q, 0) ≡
∑
l,m

χs
l,l:m,m(q, 0), (13)
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given by the RPA for U = 1 and g1 = g2 = 0.216. The spin Stoner factor
is αs = 0.79. The spin susceptibility has peaks around (π, 0), (0, π) due to
the intra-dxz,yz-orbital nesting between h-FS1,2 and e-FS1,2, and also has a
rigidlike structure (π, π/2) to (π/2, π) caused by the intra-dxy-orbital nesting
between h-FS3 and e-FS1,2.

Figure 5 (b) shows the quadrupole susceptibility

χQ
Γ (q, 0) =

∑
l,l′,m,m′

ol,l
′

Γ χc
l,l′:m,m′(q, 0)o

m′,m
Γ , (14)

for the channel Γ = yz. given by the RPA for U = 1 and g1 = g2 =
0.216. The charge Stoner factor is αc = 0.98. In this model, both χQ

yz(0, π)
and χQ

xz(π, 0) are the most divergent channels. For Γ = yz, the dominant
contribution comes from χc

2,4;4,2(0, π) ≈ χc
2,4;2,4(0, π), due to the inter-orbital

nesting (orbital 2 and 4) between h-FS1,2 and e-FS2. Its second largest peak
near (0, 0) originate from forward scattering in the e-FS1 that composed of
dxz and dxy.

1.7 s++ and s±-wave superconducting gap fanctions

In this subsection, we analyze the following linearized Eliashberg equation
using the RPA by taking account of both the spin and orbital fluctuations
on the equal footing [46]:

λE∆ll′(k) =
T

N

∑
k′,mi

Wlm1,m4l′(k − k′)G0
m1m2

(k′)∆m2m3(k
′)G0

m4m3
(−k′), (15)

where,

Ŵ (q) = −3

2
Γ̂sχ̂sΓ̂s +

1

2
Γ̂cχ̂cΓ̂c − 1

2
(Γ̂s − Γ̂c), (16)

for the singlet states. λE is the eigenvalue of the gap equation, which ap-
proaches unity as T → Tc. Hereafter, we use 64

2 k meshes, and 2048 Matsub-
ara frequencies. We perform the calculation at relativity high temperatures
(T ≥ 0.02) since the number of meshes is not enough for T < 0.02.

Figure 6 (a) and (b) show the SC gap on the FSs in the band represen-
tation for U = 1.09 and U = 1.10, respectively. We put n = 6.1, T = 0.02,
ωD = 0.02, and g1 = g2 = 0.21, which correspond to αc = 0.98. The horizon-
tal axis is the azimuth angle for k point with the origin at Γ (Y) point for
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Figure 6: (a) (b) Obtained SC gap functions for (a)U = 1.09 and (b)U =
1.10, respectively. We put g1 = g2 = 0.21 (αc = 0.98), T = 0.02, and
ωD = 0.02. They are normalized as N−1

∑
k,lm |∆lm(k)|2 = 1. We use 2048

Matsubara frequencies. (c) FSs in the unfolded Brillouin zone for n = 6.1
Note that h-FS3 disappears for n = 6.1. Reprinted from Ref.[41]. c⃝2010 by
the American Physical Society.

h-FS1,2 (e-FS2). For U = 1.09, the s++ state is realized by orbital fluctua-
tions [6]. On the other hand, the s± state is realized for U = 1.10 since the
spin fluctuations dominate the orbital fluctuations.

1.8 The contents of this thesis

In the study of the pairing mechanism, the k-dependence of gap function of-
fers us very useful information. Up to now, detailed gap structures of various
iron based superconductors are measured by angle resolved photoemission
spectroscopy (ARPES). In this thesis, we studied the various iron pnictides
of gap functions theoretically in order to obtain a significant information of
pairing mechanism.

In sec. 2, we study the iron-selenium 122-structure compound KFe2Se2
with Tc ∼ 30K. In this heavily electron doped system, h-FSs disappear and
isotropic SC gap is observed by both ARPES[47, 48, 49] and specific heat
measurements [50]. Thus, the study of gap structure of KFe2Se2 will give us
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important information to reveal the pairing mechanism of iron pnictides.
In sec. 3, we study LiFeAs. For studying the pairing mechanism, LiFeAs

is favorable since very clean single crystals can be synthesized and intrin-
sic gap structure free from the impurity effect can be obtained. Recently,
ARPES measurements show the spin-orbit interaction (SOI) is very impor-
tant in LiFeAs. [51, 52] Therefore, we also calculate the gap structures
considering SOI.

In sec. 4, we study the origin of the nodal gap structure obeseved by
experiments [53, 54] for BaFe2(As,P)2. When either spin or orbital fluctua-
tions develop alone, full gap s-wave state is realized. Therefore, the nodal
gap structure cannot be reproduced. However, by considering combination
of orbital and spin fluctuations, we reproduce the nodal gap structures of
BaFe2(As,P)2.
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2 Heavily electron doped compound

(KFe2Se2)

2.1 Introduction for KFe2Se2

Recently, iron-selenium 122-structure compound AxFe2Se2 (A= K, Rb, Cs)
with Tc ∼ 30 K was discovered [55]. This heavily electron-doped supercon-
ductor has been attracting great attention since both the band calculations
[56, 57] and ARPES measurements [47, 48, 49] indicate the absence of h-FSs.
NMR measurements report the weakness of spin fluctuations [58], and both
ARPES [47, 48, 49] and specific heat measurements [50] indicate the isotropic
SC gap. Thus, study of AxFe2Se2 will give us important information to reveal
the pairing mechanism of iron pnictides.

The unit-cell of iron-based superconductors contains two Fe atoms. How-
ever, except for 122-systems, one can construct a simple “single-Fe model”
from the original “two-Fe model” by applying the gauge transformation on
d-orbitals [22]. By this procedure, the original Brillouin zone (BZ) is en-
larged to the “unfolded BZ”. Based on the single-Fe model, spin-fluctuation-
mediated d-wave state (B1g representation) “without nodes” had been pro-
posed [59, 60, 61], by paying attention to the nesting between e-FSs. How-
ever, we cannot construct a “single-Fe model” for 122 systems since finite
hybridization between e-FSs prevents the unfolding procedure [22]. There-
fore, theoretical study based on the original two-Fe model is highly desired
to conclude the gap structure.

In this section, we study the ten-orbital (two Fe atoms) for KFe2Se2 by
considering both the Coulomb interaction and quadrupole interaction using
the RPA. When the Coulomb interaction is large, we obtain the d-wave SC
state due to the spin fluctuations, as predicted by the recent theoretical stud-
ies in the single-Fe Hubbard models [59, 60, 61]. However, the gap function
on the FSs inevitably has “nodal structure” in the two-Fe model, due to the
symmetry requirement of the body-centered tetragonal lattice. On the other
hand, orbital-fluctuation-mediated s++-wave state is realized by quadrupole
interaction; Since the nodal SC state is fragile against randomness, study of
impurity effect will be useful to distinguish these SC states.
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2.2 Tight binding model of KFe2Se2

We perform the local-density-approximation (LDA) band calculation for
KFe2Se2 using Wien2k code based on the experimental crystal structure
[55]. Next, we derive the ten-orbital tight-binding model that reproduces
the LDA band structure and its orbital character using Wannier90 code and
Wien2Wannier interface [62]. The dispersion of the model and the primitive
BZ are shown in Figs. 7 (a) and (b).

In Fig. 7, we show the FSs of KFe2Se2 for (c) kz = 0 and (d) kz = π/2
planes when the electron number per Fe-ion is n = 6.5: On each plane, there
are four large and heavy e-FSs around X and Y points, and one small and
light e-FSs around Z point. For n = 6.5, the energy of the h-band at Γ
point from the Fermi level, Eh, is about −0.07 eV. Since the obtained FS
topology and the value of Eh are consistent with recent reports by ARPES
measurements [47, 48, 49], we study the case n = 6.5 hereafter. In the present
BZ in (b), Γ and Z points and X and Y points in (c) are not equivalent, and
kz = π plane is given by shifting (c) by (π, π). As for (d), T and T’ points
and P and P’ points are equivalent. Therefore the reciprocal wave vector on
the kz = π/2 plane is (π, π) and (π,−π). The diamond-shaped shadows in
the kz = π/2 plane indicates the sign of basis function for B1g (x

2− y2-type)
representation, which has nodes on the P-P’ line on both FS1 (inner FS) and
FS2 (outer FS).

To confirm the existence of nodes, we verify that FS1 and FS2 in KFe2Se2
are largely hybridized. In fact, the weights of d-orbitals on FS1,2 given in
Fig. 7 (e) are smooth functions of θ, which is the strong evidence for the
hybridization in wide momentum space. This hybridization disappears when
inter-layer hoppings are neglected: Then, both xy(FS1) and xy(FS2) show
cusps at θ = π/4, and xz(FS2) suddenly drops to almost zero for θ ≥ π/4
In Fig. 7 (f), we explain the origin of nodal gap based on the fully-gapped
d-wave solution in the single-Fe model [59, 60, 61]: By introducing inter-layer
hoppings, two elliptical e-FSs with positive and negative ∆ in the unfolded
BZ are hybridized to form FS1 and 2 with four-fold symmetry. As a result,
nodal lines inevitably emerge on FS1 and 2, at least near the |kz| = π/2
plane.
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/2

/2

Figure 7: (a) Dispersion of the present ten-orbital model for KFe2Se2. Γ, X,
and Z points are on the kz = 0 plane. (b) Primitive BZ for body-centered
tetragonal lattice. (c)(d) FSs on the kz = 0 plane and kz = π/2 plane. The
green, red, and blue lines correspond to xz, yz, and xy orbitals, respectively.
The diamond-shaped shadows in (d) indicates the sign of basis function for
B1g representation. (e) Weight of each orbital on the inter FS (FS1) and the
outer FS (FS2) as function of θ; θ is shown in (d). (f) Hybridization between
two e-pockets in 122 systems should create the nodal d-wave gap. Reprinted
from Ref.[42]. c⃝2011 by the American Physical Society.

2.3 Random phase approximation

In this section, we perform the RPA for the present model as described in
sec. 1.6, by using 64× 64 k meshes and 512 Matsubara frequencies.
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In the RPA, the enhancement of the spin susceptibility χ̂s is mainly caused
by the intra-orbital Coulomb interaction U , using the “intra-orbital nesting”
of the FSs. On the other hand, the enhancement of χ̂c in the present model
is caused by the quadrupole-quadrupole interaction in eq. (2), utilizing the
“inter-orbital nesting” of the FSs. In this section, we set g1 = g2 = g.
The magnetic (orbital) order is realized when the spin (charge) Stoner factor
αs(c), which is the maximum eigenvalue of Γ̂sχ̂0(q, 0) (Γ̂c

g(0)χ̂
0(q, 0)), is unity.

For n = 6.5 and kz = 0, the critical value of U is Ucr = 1.18 eV, and the
critical value of g is gcr = 0.23 eV for U = 0. These values change only
∼ 2% for different kz. The obtained U -g phase diagram is very similar to
Fig. 4, irrespective of the absence of h-FSs in KFe2Se2. The reason would
be (i) the density-of-states (DOS) in KFe2Se2 is about 1eV−1 per Fe, which
is comparable with other iron pnictides, and (ii) the nesting between e-FSs
is rather strong because of their square-like shape.

Figure 8 (a) shows the total spin susceptibility χs(q, 0) at U = 1.1 eV
and g1 = g2 = 0 for kz = 0 plane. χs is given by the intra-orbital nesting,
and its peak position is q ≈ (π, 0.4π), consistently with previous studies
[59, 60, 61]. The obtained incommensurate spin correlation is the origin of
the d-wave SC gap. Figure 8 (b) shows the off-diagonal orbital susceptibility
χc
yz,xy;yz,xy(q, 0) for the kz = 0 plane at U = 0 and g1 = g2 = 0.22 eV. It

is derived from the inter-orbital nesting between xz and xy, and its peak
position is q ≈ (0.7π, 0.4π). Note that the peak position of χc

xz,xy;xz,xy is
q ≈ (0.4π, 0.7π). The obtained strong spin- and orbital-correlations are the
origin of the d-wave and s++-wave SC states.

Figure 8: (a) χs(q, 0) for U = 1.1 eV and g1 = g2 = 0, and (b) χc
yz,xy;yz,xy(q, 0)

for U = 0 and g1 = g2 = 0.22 eV. Reprinted from Ref.[42]. c⃝2011 by the
American Physical Society.
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2.4 Eliashberg gap equation

In this section, we analyze the linearized Eliashberg equation eq. (15). In the
actual calculation results shown below, we take 64× 64 k-point meshes and
512 Matsubara frequencies. First, we study the spin-fluctuation-mediated SC
state for U ≲ Uc by putting g = 0. Figures 9 (a)-(c) show the gap functions
of the d-wave solution at T = 0.03 eV for kz = 0, π/4, and π/2, respectively.
In case of U = 1.1 eV, the eigenvalue λE is 0.61 for (a), 0.63 for (b), and 0.62
for (c); the relation λE ≥ 1 corresponds to the SC state. They are relatively
small since the SC condensation energy becomes small when the SC gap has
complicated nodal line structure. On the (c) kz = π/2 plane, the nodal lines
are along θ = π/4 and 3π/4 directions, consistently with the basis of B1g

representation in Fig. 7 (d). These nodes move to near the BZ boundary,
θ = 0 and π, on the (b) kz = π/4 plane, and they deviate from the FSs on the
(a) kz = 0 plane. As results, the nodal gap appears for π/4 < |kz| < 3π/4 in
the whole BZ |kz| ≤ π.

We also obtain the s±-wave state, with the sign reversal of the SC gap
between e-FS and the “hidden h-FS below the Fermi level” given by the
valence bands 5,6. The obtained solution is shown in Fig. 9 (d) for kz = π/2.
Interestingly, the obtained eigenvalue is λE = 0.99 for U = 1.1 eV, which is
larger than λE for d-wave state in Fig. 9 (a)-(c). Such large λE originates
from the scattering of Cooper pairs between e-FSs and the “hidden h-FS”,
which was discussed as the “valence-band Suhl-Kondo (VBSK) effect” in the
study of NaxCoO2 in Ref. [63].

Here, we analyze the T -dependence of λE based on a simple two-band
model with inter-band repulsion: The set of gap equations is given by [63]
λE∆h = −V NeLe∆e and λE∆e = −V NhLh∆h, where V > 0 is the re-
pulsive interaction between e- and h-FSs, and Ne,h is the DOS near the
Fermi level. When (i) the top of the h-FS is well above the Fermi level,
Le = Lh = ln(1.13ωc/T ), where ωc is the cutoff energy. Thus, the eigen-
value is given as λE = V

√
NeNh ln(1.13ωc/T ) ∝ − lnT , similar to single-

band BCS superconductors. On the other hand, when (ii) h-pocket is
slightly below the Fermi level, Lh = (1/2) ln(ωc/|Eh|), where Eh < 0 is
the energy of the top of h-band [63]. Thus, the eigenvalue is given as
λE = V

√
NeNhLh

√
ln(1.13ωc/T ) ∝

√
− lnT . Therefore, in case (ii), the

T -dependence of λE is much moderate. In fact, as shown in Fig. 10 (a),
λE for d-wave state increases monotonically with decreasing T , while λE for
s±-wave state saturates at low temperatures. This result suggests that the d-
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π/4

π/2

π/2

Figure 9: SC gap functions for outer FS (FS2) on band 7 and inner FS (FS1)
on band 8: d-wave gap functions on the (a) kz = 0, (b) kz = π/4, and (c)
kz = π/2 planes. Black and green lines represent the FSs and gap nodes.
(d) s±-wave gap function on the kz = π/2 plane. Reprinted from Ref.[42].
c⃝2011 by the American Physical Society.
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wave state overcomes the s±-wave state at Tc ∼ 30K in KxFe2Se2. Although
Tc in the s±-wave state is ∼ 0.06 eV in Fig. 10 (a), it is greatly reduced by
the self-energy correction that is absent in the RPA [64].

/2

Figure 10: (a) T -dependence of λE for d- and s±-wave states. λE at T = 0.01
eV is underestimated because of the shortage of k- and Matsubara-meshes.
(b) αs- (αc-) dependence of λE for d-wave (s++-wave) state at T = 0.03 eV.
(c) SC gap functions for s++-wave state. Reprinted from Ref.[42]. c⃝2011 by
the American Physical Society.

We discuss the VBSK effect for s± wave state in more detail: According
to inelastic neutron scattering measurement of Ba(Fe,Co)2As2 [34, 35, 36],
the characteristic spin-fluctuation energy is ωsf ∼ 100K just above Tc ∼
30K. If we assume a similar ωsf in KFe2Se2 since Tc is close, we obtain the
relation ωc ∼ ωsf ≪ |Eh| in KFe2Se2. Since Lh is a monotonic decrease
function of |Eh|/ωc and Lh < 1 for −Eh/ωc > 0.15, we consider that d-wave
state overcomes the s±-wave state in KFe2Se2, as far as the spin-fluctuation-
mediated superconductivity is considered. Although high-Tc s±-wave state
mighe be realized for |Eh|/ωc < 0.1, then the realized Tc will be very sensitive
to Eh or the filling n [63].
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Now, we study the s++-wave state due to orbital fluctuations on the
kz = 0 plane with n = 6.5. In Fig. 10 (b), we show the αc-dependence of
λE at T = 0.03 for the s++-wave state with U = 0, and the αs-dependence
of λE for the d-wave state with g1 = g2 = 0. In calculating the s++-wave
state, we use rather larger phonon energy; ωD = 0.15 eV, considering that
the calculating temperature is about ten times larger than the real Tc. The
SC gap functions for s++-wave state are rather isotropic, as shown in Fig.
10 (c). However, the obtained SC gap becomes more anisotropic in case of
U > 0 [64].

We stress that the RPA is insufficient for quantitative study of λE since
the self-energy correction Σ is dropped: In Ref. [64], we have studied the
present model based on ther FLEX approximation, and found that the critical
region with αc ≳ 0.95 is enlarged by the inelastic scattering γ = ImΣ. Also,
the γ-induced suppression in λE for d- or s±-wave states is more prominent
than that for s++-wave state, since γ due to spin fluctuations is larger than
that due to orbital fluctuations [64].

We found the paper by Mazin [65], in which the kz dependence of the
nodal d-wave gap in Fig. 4 corresponds to Figs. 9 (a)-(c) in this section.

2.5 Summary

In this section, we studied the mechanism of superconductivity in KFe2Se2
based on the ten-orbital HH model without h-FSs. Similar to iron-pnictide
superconductors, orbital-fluctuation-mediated s++-wave state is realized by
quadrupole interaction. We also studied the spin-fluctuation-mediated d-
wave state, and confirmed that nodal lines appear on the large e-pockets,
due to the hybridization between two e-FSs that is inherent in 122 systems.
Therefore, careful measurements on the SC gap anisotropy is useful to dis-
tinguish these different pairing mechanisms. Study of impurity effect on Tc

is also useful since d-wave (and s±-wave) state is fragile against impurities.
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3 Reproduction of experimental gap struc-

ture in LiFeAs

3.1 Introduction for LiFeAs

LiFeAs (Tc = 18K) is favorable for the study of pairing mechanism since very
clean single crystals can be synthesized. For this reason, the intrinsic gap
structure free from the impurity effect can be obtained in the case of LiFeAs.
The detailed gap structure of LiFeAs had been obtained by ARPES [66, 67].
The FSs given in Ref. [66] are shown in Fig. 11 (a), which are reproduced by
the ten-orbital tight-binding model (two-Fe unit cell). Figure 11 (b) shows
the FSs in the five-orbital model (single Fe unit cell) obtained by unfolding
the original ten-orbital model. Both models are equivalent mathematically,
and the unfolding is performed by following the procedure in Ref. [22].

The bad nesting in LiFeAs between h-FSs and e-FSs attracts great atten-
tion, as an important hint to understand the variety and commonness of the
pairing mechanism in Fe-based superconductors. Consistently, the observed
spin fluctuations are moderate according to NMR measurements [12] and
neutron scattering measurements [68, 69, 70].

In Ref. [71], the spin fluctuation mediated s±-wave state had been studied
by using the ten-orbital model for LiFeAs. The obtained gap functions on
the tiny hole-pockets h-FS1 and h-FS2 in Fig. 11 (b) are very small when the
filling of electrons per Fe-site is n = 6.0, although they are the largest in the
ARPES measurement [66, 67] and the Scanning Tunneling Microscopy (STM)
measurement [72]. Thus, it is an important challenge to verify to what extent
the experimental gap structure is reproduced based on the orbital fluctuation
theories.

In this section, we study the five-orbital model of LiFeAs based on the
recently-developed orbital-spin fluctuation theories [6, 13]. When only the
orbital fluctuations develop, the anisotropic s++-wave state without sign-
reversal is obtained. In this case, experimentally observed gap structure of
LiFeAs, especially the largest gap experimentally observed on h-FS1 and
h-FS2, is quantitatively reproduced. This is a hallmark of the orbital-
fluctuation-mediated superconductivity since the spin fluctuation scenario
predicts the smallest gap on h-FS1 and h-FS2. When orbital and spin fluctua-
tions coexist, we can obtain the “hole-s±-wave state”, in which the gap struc-
ture with “sign-reversal between h-FSs”is realized. This exotic gap structure
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had been discussed in (Ba,K)Fe2As2 experimentally, [74, 75] and it might be
realized in other Fe-based superconductors.

3.2 Formalism
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Figure 11: The FSs in the kz = π plane of the three-dimensional ten-orbital
model (a) and five-orbital model (b) for LiFeAs. The green, red, and blue
colors correspond to dxz, dyz, and dxy orbitals, respectively. In (b), h-FS1,2,3
are hole-like, and e-FS1,2 are electron-like. (c) The dispersion of the band
structure of the five-orbital model. (d) The three-dimensional shape of the
FSs of the five-orbital model. Reprinted from Ref.[76]. c⃝2014 by the Amer-
ican Physical Society.

The three-dimensional ten-orbital tight-binding model had been obtained
in Ref. [71] by fitting the experimentally observed dispersion reported in Ref.
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[66], and its FSs are shown in Fig. 11 (a). In this model, the band renormal-
ization due to the mass enhancement m∗/mb ∼ 2 is taken into account. To
simplify the numerical calculation, we derive the five-orbital model by un-
folding the original ten-orbital model [22]. The FSs and the band dispersion
of the five-orbital model are shown in Fig. 11 (b) and (c), respectively. The
three-dimensional FSs of the five-orbital model are shown in Fig. 11 (d).

The kinetic term of the five orbital model is given as

Ĥ0 =
∑
ablmσ

tl,m(Ra −Rb)c
†
lσ(Ra)cmσ(Rb)

=
∑
klmσ

{∑
a

tl,m(Ra)e
ik·Ra

}
c†lσ(k)cmσ(k), (17)

where a, b represent the Fe-sites, l,m = 1 − 5 represent the d orbital, and
σ = ±1 is the spin index. Ra is the position of Fe-site, c†lσ(Ra) is the creation
operator of the d electron, and tl,m(Ra) is the hopping integral. The values
of tl,m(R) are shown in Appendix A.

Figure 12 (a) and (b) show the inverse of the Fermi velocity on the i-th
FS, 1/viF(k), in kz = 0 and kz = π planes, respectively. The horizontal axis is
θ = tan−1(k̄y/k̄x), where (k̄x, k̄y) is the momentum on the FS with the origin
at the center of each pocket. Figure 12 (c)-(f) show the l-orbital weight on
the i-th FS, given by |Ul,i(k)|2 = |⟨k, l|k, i⟩|2 at the Fermi momentum.

As for the interaction term, we introduce both the Coulomb interaction
(U , U ′, J = (U −U ′)/2) and quadrupole interaction, as described in sec 1.6.
In this section, we set g1 = g and g2 = 0 in eq. (2).

Now, we perform the RPA for the present model by applying the eqs. (7)
- (9) in sec. 1.6.2, by using 64× 64× 16 k meshes. We fix the temperature
at T = 0.01, and set the filling of each Fe-site as n = 6.0.

In the RPA, the enhancement of the spin susceptibility χ̂s is mainly caused
by the intra-orbital Coulomb interaction U , using the “intra-orbital nesting”
of the FSs. On the other hand, the enhancement of χ̂c in the present model
is caused by the quadrupole-quadrupole interaction in eq. (2), utilizing the
“inter-orbital nesting” of the FSs. The magnetic (orbital) order is realized
when the spin (charge) Stoner factor αs (αc), which is the maximum eigen-
value of Γ̂sχ̂0(q, 0), (Γ̂c

g(0)χ̂
0(q, 0)), is unity. Here, the critical value of U is

Ucr = 0.448 eV, and the critical value of g1 is gcr = 0.132 eV for U = 0.
(We note again that the band renormalization due to the mass enhancement
m∗/mb ∼ 2 is taken into account in the present tight-binding model.)
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Figure 12: (a,b) Inverse of the Fermi velocity on the i-th FS 1/viF(k). The
horizontal axis is θ = tan−1(ky/kx). (c-f) The weight of each d-orbital on the
i-th FS. Reprinted from Ref.[76]. c⃝2014 by the American Physical Society.

Figure 13 (a) shows the obtained spin susceptibility χs(q, 0) ≡∑
l,m χs

l,l:m,m(q, 0) in the qz = 0 plane given by the RPA for U = 0.439
and g = 0. The spin Stoner factor is αs = 0.98. At T = 0.01, the ob-
tained peak is incommensurate at (π, δ) with δ ≈ 0.1π, consistently with
the recent neutron scattering experiment [69]. The relation χs

4,4;4,4(q, 0) ≫
χs
2,2;2,2(q, 0), χ

s
3,3;3,3(q, 0) holds in the present model, due to the intra dxy-

orbital nesting between h-FS3 and e-FS. That is, the spin fluctuations de-
velop mainly on the dxy-orbital.

Figure 13 (b) shows the quadrupole susceptibility χQ
Γ (q, 0) =∑

l,l′,m,m′ o
l,l′

Γ χc
l,l′:m,m′(q, 0)o

m′,m
Γ for the channel Γ = xz in the qz = 0 plane.

The charge Stoner factor is αc = 0.98. In this model, both χQ
xz(q, 0) and

χQ
yz(q, 0) are the most divergent channels. For Γ = xz, the dominant con-

tribution comes from χc
3,4;4,3(q, 0) ≈ χc

3,4;3,4(q, 0), due to the inter-orbital
nesting (orbital 3 and 4) between h-FS1,2 and e-FS1. The obtained χQ

xz(q, 0)
shows broad peak around (π, δ) with |δ| ≲ 0.2π.

We note that both χQ
xz(q, 0) and χs(q, 0) are almost independent of qz.
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That is, both the orbital and spin fluctuations are almost two-dimensional.

(a)χ (q ,q ,q =0,ω =0)s
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Figure 13: (a) Obtained spin susceptibility χs(q, 0) for U = 0.98Ucr and g1 =
g2 = 0. The spin fluctuations develop mainly on the dxy-orbital. (b) Obtained
Oxz-channel quadrupole susceptibility χQ

xz(q, 0) for U = 0 and g1 = 0.98gcr,
developed among the dxz/dyz-orbitals. Reprinted from Ref.[76]. c⃝2014 by
the American Physical Society.

Next, we solve the linearized Eliashberg equation based on the three-
dimensional model of LiFeAs. In order to obtain the fine momentum depen-
dence of the SC gap, we concentrate on the gap functions only on the FSs
as done in Ref. [73]: We used 80× 16 k points for each Fermi surface sheet.
Without impurities, the linearized Eliashberg equation is given as [73]

λE∆
i(k, ϵn) =

πT

(2π)3

∑
ϵm

FS∑
j

∫
FSj

dk′
FSj

vj(k′)
V ij(k,k′, ϵn − ϵm)

∆j(k′, ϵm)

|ϵm|
, (18)

where λE is the eigenvalue that reaches unity at T = Tc. i and j denote the
FSs, and ∆i(k, ϵn) is the gap function on the i-th FS at the Fermi momentum
k. The integral in eq. (18) means the surface integral on the j-th FS. The
paring interaction V in eq. (18) is

V ij(k,k′, ϵn − ϵm) =
∑
li

U∗
l1,i

(k)Ul4,i(k)

× Vl1l2,l3l4(k − k′, ϵn − ϵm)Ul2,j(k
′)U∗

l3,j
(k′), (19)
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V̂ = V̂ c + V̂ s + V̂ (0), (20)

V̂ c =
1

2
Γ̂c
gχ̂

cΓ̂c
g, V̂ s = −3

2
Γ̂sχ̂sΓ̂s, (21)

V̂ (0) =
1

2
(Γ̂c

g − Γ̂s), (22)

where Ul,i(k) = ⟨k; l|k; i⟩ is the transformation unitary matrix between the
band and the orbital representations.

In this calculation, we simplify the energy dependence of V̂ . We assume
that V̂ ξ (ξ = c, s) can be separated into the momentum and orbital dependent
part V̂ ξ(k, ωl = 0) and energy dependent part gξ(ωl):

V̂ ξ(k, ωl) = V̂ ξ(k, ωl = 0)× gξ(ωl). (23)

We calculated V̂ ξ(k, ωl = 0) without approximation. On the other hand,
gξ(ωl) is determined as

gξ(ωl) = Re

[
V ξ
max(ωl)

V ξ
max(ωl = 0)

]
, (24)

where V ξ
max(0) is the largest value of V ξ

l1l2,l3l4
(k, ωl = 0) for any {li} and

k. It is verified that this simplification affects the momentum dependence
of the SC gap functions only quantitatively, although the obtained λE is
slightly underestimated. Thus, this approximation would be appropriate for
the present purpose, that is, the analysis of the anisotropy of the SC gap.

3.3 SC gap functions

In this section, we analyze the linearized Eliashberg equation, eq.(18), and
obtain the three-dimensional gap function ∆i(θ, kz), defined on the Fermi
surface sheet i. Here, we divide the valiables θ = [0, 2π] and kz = [−π, π]
into 80 and 16 meshes, respectively, and use 512 Matsubara frequencies. The
pairing interaction in eq. (20) is given by the RPA, assuming that J = J ′

and U = U ′ + 2J , and fix the ratio J/U = 1/6. The used parameters are
T = 0.01 and ωD = 0.02.

3.3.1 Orbital-fluctuation-mediated s++-wave state

We first discuss the s++-wave state realized by orbital fluctuations: Figure
14 (a) shows the obtained gap functions in the case of g1 = 0.129 and U = 0
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(αc = 0.98) in the kz = π-plane. As for the hole-pockets, the gap functions
on the h-FS1,2 composed of (dxz, dyz)-orbitals are the largest, while the gap
on the h-FS3 composed of dxy-orbital is the smallest. These results are quan-
titatively consistent with the experimental data [66] shown in dotted lines.
(We adjust the magnitude of gap functions since it cannot be determined by
solving the linearized gap equation.)

As for the electron-pockets, the gap function has the local maxima at
θ = 0, and the minimum point is θ ≈ 0.4π. This result is also consistent
with the experimental data [66]. We found that the gap structure is essen-
tially independent of the strength of orbital fluctuations. Therefore, overall
experimental data are quantitatively reproduced by the orbital fluctuation
theory. In Fig. 14 (b), we show the three-dimensional gap structure. The
gap function on each FS is almost independent of kz. Note that h-FS1 and
h-FS2 appear only for kz ≈ ±π; see Fig. 11 (d).

In Fig. 14 (c), we discuss the origin of the orbital- and FS-dependences of
the gap functions: The broad peak of the quadruple susceptibility χQ

xz(q, 0)
at q ≈ (π, δ) with |δ| ≲ 0.2π in Fig. 13 (b) is mainly given by the inter-
orbital nesting between h-FS1,2 (orbital 2,3) and e-FS1 (orbital 4). For this
reason, the maximum gap is realized on h-FS1 (∆h

1), h-FS2 (∆h
2), and e-FS1

(∆e
1) at θ = 0. The gap size of h-FS3 (∆h

3) is the smallest, and its maximum
is located at θ = π/4, Therefore, the experimentally observed gap functions
are understood based on the orbital fluctuation theory very well.

3.3.2 Spin-fluctuation-mediated s±-wave state

Next, we discuss the s±-wave state realized by spin fluctuations: Figure 15
(a) shows the obtained gap structure in the case of g1 = g2 = 0 and U = 0.439
(αs = 0.98) in the kz = π-plane. The gap functions are almost independent
of kz, except that h-FS1,2 exist only for kz ∼ π. The obtained gap structure
is essentially independent even if smaller U is used. Similarly to the previous
study in Ref. [71], the gap functions on the h-FS1,2 are very small. However,
this result is opposite to the experimental data shown by dotted lines. The
kz-dependence of the gap functions for θ = π/4 are shown in Fig. 15 (b). All
gaps depend on kz only slightly.

In addition, the obtained θ-dependence of the gap on the e-FS1 is very
different from the experimental data. Both ∆h

3 and ∆e
1 show the maximum

values at θ ≈ π/4, because of the reason that they are connected by the
wave vector of the spin fluctuations Q ≈ (π, 0), (0, π) shown in Fig. 15 (c).
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Figure 14: (a) Obtained s++-wave gap functions for U = 0 and g1 = 0.129
in the kz = π-plane. The eigenvalue is λE = 0.64. The dotted lines represent
the experimental data given by the ARPES measurement in Ref. [66]. (b) kz-
dependence of the gap functions. (c) Explanation for the orbital dependence
of the gap functions due to orbital fluctuations. Reprinted from Ref.[76].
c⃝2014 by the American Physical Society.

In addition, the gap function of h-FS3 has eight nodes inconsistently with
experiments. We verified these eight nodes disappear by using larger value
of J/U ∼ 0.4 (U ′ = U − 2J ∼ 0.2U) as used in Ref. [71].

We found the s±-wave gap for smaller U (αs = 0.90). In this case, the
magnitude of ∆h

1,2 becomes relatively large. On the other hand, the nodal
gap appears on the e-FSs, inconsistently with experiments. Thus, the overall
experimental data is difficult to be explained by the spin fluctuation theory.

3.3.3 Coexistence of orbital and spin fluctuations: s++-wave and
hole-s±-wave states

Now, we discuss the superconducting state when the orbital and spin fluctu-
ations coexist. In the present model for LiFeAs, we find that the coexistence
of orbital and spin fluctuations leads to a very exotic s-wave state, since the
band structure of LiFeAs is very different from that of BaFe2(As,P)2.
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Figure 15: (a) Obtained s±-wave gap functions for U = 0.439 and g1 = g2 = 0
in the kz = π-plane. The eigenvalue is λE = 0.79. (b) kz-dependence of
the gap functions. (c) Explanation for the orbital dependence of the gap
functions due to spin fluctuations. Reprinted from Ref.[76]. c⃝2014 by the
American Physical Society.

Figure 16 (a) shows the obtained gap functions in the case of g1 = 0.125
and U = 0.200. The obtained Stoner factors are αc = 0.98 and αs = 0.45. In
this case, the orbital fluctuations are much larger than the spin fluctuations,
and therefore we obtain the s++-wave state. Except for h-FS3, the obtained
gap structures are similar to those of the “pure s++-wave state” without U
in Fig. 14. Due to the moderate spin fluctuations on the dxy-orbital, the
anisotropy of ∆h

3 is enlarged, consistently with experimental results.
If we increase the value of U further, we obtain a highly nontrivial gap

structure with sign-reversal within the h-FSs: Figure 16 (b) shows the ob-
tained gap functions in the case of g1 = 0.122 and U = 0.380 (αc = 0.98
and αs = 0.85). Here, only ∆h

3 is negative. In this “hole-s±-wave state” with
“sign-reversal within hole-pockets”, the obtained gap structures of ∆h

1,2 and
∆e

1,2 are qualitatively similar to those in the s++-wave state in Fig. 14. On
the other hand, ∆h

3 becomes very anisotropic, similarly to ∆h
3 in the s±-wave

state in Fig. 15.
We discuss the reason why hole-s±-wave is realized by the coexistence of
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orbital and spin fluctuations: In the present hole-s±-wave state, as shown in
Fig. 16 (c), ∆h

1,2 ·∆e
1,2 is positive due to orbital fluctuations, whereas ∆h

3 ·∆e
1,2

is negative due to spin fluctuations. The obtained gap structure is qualita-
tively consistent with ARPES measurement in Ref. [66], although the gap
structures of the s++-wave state in Fig. 14 are more consistent with experi-
ments. The present mechanism of the “sign-reversal within hole-pockets” due
to orbital+spin fluctuations would be realized in other Fe-based supercon-
ductors. In fact, the hole-s±-wave state was first discussed in Ba1−xKxFe2As2
based on the thermal conductivity and penetration depth measurements [74],
in addition to the recent ARPES study [75]. In Appendix B, We report the
calculated hole-s± state by using the tight binding model of BaFe2As2.

Finally, we discuss on other theoretical works which predict the sign-
reversal within hole-pockets. The hole-s±-wave state was first discussed by
the authors in Ref. [77], assuming the repulsive interaction between h-FSs
and e-FSs in addition to the repulsive pairing interaction within the h-FSs.
For LiFeAs, similar scenario was discussed in Ref. [78], by introducing com-
peting repulsive interactions, although the repulsive interaction within the
h-FSs is much weaker within the RPA because of the ill-nesting. Also, the
authors in Ref. [79] discussed the orbital antiphase s+− state, in which the
sign-reversal within hole-pocket is realized due to the strong repulsion be-
tween dxy and dxz,yz orbitals. In this state, the gap on e-FS is nodal in the
unfolding picture, whereas it is fully-gapped in the present hole-s± state in
Fig. 16 (b).

References [77, 78, 79] considered the competition between two kinds
of repulsive interactions. In contrast, in the present paper, the hole-s±-
wave state is explained in terms of the cooperation between the “attractive
interaction among (dxz, dyz)- and dxy-orbitals” and “repulsive interaction on
the dxy-orbital”.

3.4 Spin-orbit interaction

Recent ARPES study shows spin-orbit interaction (SOI) is important in
LiFeAs[51, 52]. For example, it was found that the dxz/yz hole bands at
Γ-Z line, which must be degenerated when SOI is not considered, was split.
Also, detailed gap structure was observed. The ARPES study by Miao, et
al. shows only the outer band of the two dxz/yz orbital hole bands at Z point
crosses the Fermi level. [52] Although, another ARPES study by Borisenko
et al. shows only the inner band of the two bands crosses the Fermi level. [51]
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Figure 16: Obtained gap functions in the case where U ̸= 0 and g1 ̸= 0:
(a) The s++-wave state for U = 0.200 and g1 = 0.125 in the kz = π-plane.
The eigenvalue is λE = 0.47. (b) The hole-s±-wave state for U = 0.380 and
g1 = 0.122 in the kz = π-plane, in which only the gap function on the h-
FS3 is negative. The eigenvalue is λE = 0.20. (c) Origin of the hole-s±-wave
state due to the coexistence of the “orbital-fluctuations among (dxz, dyz)- and
dxy-orbitals” and the “spin-fluctuations on the dxy-orbital”. Reprinted from
Ref.[76]. c⃝2014 by the American Physical Society.

In addition, the strongly dispersing band with minimum in Z point is newly
discovered. [51] Therefore, theoretical study with the band structures which
reproduce the ARPES measurements and include the SOI is highly required.
In this section, we introduce the Eliashberg gap equation including SOI. In
addition, we construct the tight binding models which reproduce the ARPES
measurements by Miao, et al. and that by Borisenko et al. and calculate the
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gap structures by using the constructed models.

3.4.1 Hamiltonian including SOI

When we consider the SOI, we have to use ten orbital model. In the presence
of SOI for d electron, total Hamiltonian is given by

Ĥ =

(
Ĥ0 + λl̂z/2 λ(l̂x − il̂y)/2

λ(l̂x + il̂y)/2 Ĥ0 − λl̂z/2

)
(25)

where the first and the second rows (columns) correspond to ↑-spin and ↓-
spin. λ is coupling constant of SOI. The matrix elements for l̂ for d-orbital
are given by[80]

l̂x =


0 0

√
3i 0 0

0 0 0 i 0

−
√
3i 0 0 0 −i

0 −i 0 0 0
0 0 i 0 0

 , (26)

l̂y =


0 −

√
3i 0 0 0√

3i 0 0 0 −i
0 0 0 −i 0
0 0 i 0 0
0 i 0 0 0

 , (27)

l̂z =


0 0 0 0 0
0 0 −i 0 0
0 i 0 0 0
0 0 0 0 2i
0 0 0 −2i 0

 , (28)

where the first to fifth rows (columns) correspond to d orbitals
z2, xz, yz, xy, x2 − y2, respectively.

Red (Blue) lines of Fig. 17 (a) shows the band structure of LiFeAs for
λ = 0.05 (0), respectively. A and B points are shown in Fig. 17 (b). When
λ = 0, the band near the Fermi level at Z point is degenerated, however, this
degenerated band is splited by SOI. Figure 17 (b) and (c) show the FSs of
LiFeAs for λ = 0.05 and 0, respectively. This model is consistent with the
ARPES measurement by Miao et al. in the way that only outer band of two
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dxz/yz-orbital hole band at Z point crosses the Fermi level. [52] In sec. 3.4.4,
we construct the tight binding model which reproduces the recent ARPES
measurement by Borisenko et al.
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Figure 17: (a) The dispersion of the band structure between A and B points
for λ = 0.05 (red lines) and 0 (blue lines), respectively. A and B points
are shown in (b). Fermi surfaces of LiFeAs on the plain of kz = π for (b)
λ = 0.05 and (c) 0, respectively. Green, red, and blue colors correspond to
dxz, dyz, and dxy orbitals, respectively.
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3.4.2 Eliashberg gap equation with SOI

Here, we explain the linearized Eliashberg equation with SOI. The linearized
Eliashberg equation is given as

λE∆
L
ΣΣ̄(k, ϵn) =

πT

(2π)3

∑
ϵm

FS∑
M

U,D∑
Λ

∫
FSM

dk′
FSM

vM(k′)

× V LM
ΣΣ̄ΛΛ̄(k,k

′, ϵn − ϵm)
∆M

ΛΛ̄
(k′, ϵm)

|ϵm|
, (29)

where λE is the eigenvalue that reaches unity at T = Tc. L and M denote the
FSs, and Σ and Λ (= +1(U),−1(D)) denote the pseudo-spin. Here, Σ = −Σ̄.
∆L

ΣΣ̄
(k, ϵn) is the gap function on the L-th FS and pseudo-spin Σ and Σ̄ at

the Fermi momentum k. The integral in eq. (29) means the surface integral
on the M -th FS. The paring interaction V in eq. (29) is given by

V LM
ΣΣ̄ΛΛ̄(k,k

′, ϵn − ϵm) =
∑

lmm′l′

∑
σλλ′σ′

UσΣ∗
lL (k)Uσ′Σ̄∗

l′L′ (−k)

× V σλλ′σ′

lmm′l′ (k − k′, ϵn − ϵm)U
λ′Λ̄
m′M ′(−k′)UλΛ

mM(k′), (30)

where σ, λ(=↑ (u), ↓ (d)) mean real spin and UσΣ
lL (k) = ⟨k; lσ|k;LΣ⟩ is the

transformation unitary matrix between the band and the orbital representa-
tions. V σλλ′σ′

lmm′l′ is given by

V σλλ′σ′

lmm′l′ = V c
lmm′l′δσλδσ′λ′ + V s

lmm′l′σσλ · σσ′λ′

=


V c
lmm′l′ + V s

lmm′l′ , σ = λ = λ′ = σ′,

V c
lmm′l′ − V s

lmm′l′ , σ = λ ̸= λ′ = σ′,

2V s
lmm′l′ , σ = λ′ ̸= λ = σ′,

0, otherwise,

(31)

V̂ c =
1

2
Γ̂cχ̂cΓ̂c, V̂ s =

1

2
Γ̂sχ̂sΓ̂s. (32)

Here, V̂ ξ(ξ = c, s) is calculated without SOI.
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Now, we derive the relation which connect UσΣ
lL (k) to U σ̄Σ̄

lL (−k). The
Hamiltonian including SOI is given by

Ĥ(k) =

(
Ĥ0(k) + λl̂z/2 λ(l̂x − il̂y)/2

λ(l̂x + il̂y)/2 Ĥ0(k)− λl̂z/2

)
=

(
Ĥuu(k) Ĥud(k)

Ĥdu(k) Ĥdd(k)

)
. (33)

Ĥ∗(−k) is given by

Ĥ∗(−k) =

(
Ĥ∗

0 (−k) + λl̂∗z/2 λ(l̂∗x − il̂y)/2

λ(l̂∗x + il̂y)/2 Ĥ∗
0 (−k)− λl̂∗z/2

)
=

(
Ĥ0(k)− λl̂z/2 −λ(l̂x + il̂y)/2

−λ(l̂x − il̂y)/2 Ĥ0(k) + λl̂z/2

)
=

(
Ĥdd(k) −Ĥdu(k)

−Ĥud(k) Ĥuu(k)

)
. (34)

We define Û(k) =
( ÛuU(k) ÛuD(k)

ÛdU(k) ÛdD(k)

)
as matrix which diagonalize Ĥ(k). That is

Û †(k)Ĥ(k)Û(k) =

(
Ê(k) 0̂

0̂ Ê(k)

)
, (35)

where Ê(k) is diagonal matrix. When we use the eqs. (34) and (35),(
ÛdD†(k) −ÛuD†(k)

−ÛdU†(k) ÛuU†(k)

)
Ĥ∗(−k)

(
ÛdD(k) −ÛdU(k)

−ÛuD(k) ÛuU(k)

)
=

(
Ê(k) 0̂

0̂ Ê(k)

)
.

(36)
Then, Û(−k) is given as

Û(−k) =

(
ÛdD∗(k) −ÛdU∗(k)

−ÛuD∗(k) ÛuU∗(k)

)
. (37)

The relations which connect UσΣ
lL (k) to U σ̄Σ̄

lL (−k) are given by

UuU
lL (−k) = UdD∗

lL (k), UdD
lL (−k) = UuU∗

lL (k),

UuD
lL (−k) = −UdU∗

lL (k), UdU
lL (−k) = −UuD∗

lL (k). (38)
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Next, we transform the gap equation (29). When we set Σ = U(Σ̄ = D)
and resolve the summation of Λ, gap equation is calculated as

λE∆
L
UD(k, ϵn) =

πT

(2π)3

∑
ϵm

FS∑
M

∫
FSM

dk′
FSM

vM(k′)

×
{
V LM
UDUD(k,k

′, ϵn − ϵm)
∆M

UD(k
′, ϵm)

|ϵm|

+ V LM
UDDU(k,k

′, ϵn − ϵm)
∆M

DU(k
′, ϵm)

|ϵm|

}
(39)

When we use the relation ∆L
UD(k) = −∆L

DU(k),

λE∆
L(k, ϵn) =

πT

(2π)3

∑
ϵm

FS∑
M

∫
FSM

dk′
FSM

vM(k′)

×
{
V LM
UDUD(k,k

′, ϵn − ϵm)− V LM
UDDU(k,k

′, ϵn − ϵm)
} ∆M(k′, ϵm)

|ϵm|
(40)

where ∆L(k, ϵn) = ∆L
UD(k, ϵn).

3.4.3 Gap structure in the case where only the outer dxz/yz-orbital
hole band at Z point crosses the Fermi level

In this section, we analyze the linearized Eliashberg equation, Eq. (40) by
using the tight binding model constructed in sec. 3.4.1. This model is con-
sistent with the ARPES measurement by Miao et al. [52] Here, we divide the
valuables θ = [0 : 2π] and kz = [−π : π] into 48 and 16 meshes, respectively.
The used parameters are T = 0.01, ωD = 0.02, and λ = 0.05.

We first discuss the s++-wave state realized by orbital fluctuations: Figure
18 (a) shows the obtained gap functions in the case of g1 = 0.129 and U = 0
(αc = 0.98) (same as sec. 3.3.1) in the kz = π plane. As for the hole pockets,
the gap functions on the h-FS2 composed of (dxz, dyz) orbitals are the largest,
while the gap on the h-FS3 composed of the dxy orbital is the smallest. These
results are quantitatively consistent with the experimental data [66] shown
by dotted lines (We adjust the magnitude of gap functions since it cannot be
determined by solving the linearized gap equation.) and very similar to our
previous results without SOI, except that h-FS1 exists only when we do not
consider SOI as sec. 3.3.1 [76].
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As for the electron pockets, the gap of inner e-FS is larger than that of
outer e-FS, and has the local maxima at θ = 0 and π/2 and the minima at
θ = π/4. These results are also consistent with the experimental data [66]
and very similar to our previous results without SOI as sec. 3.3.1 [76]. These
results are essentially independent of strength of smaller g. Obtained gap
function is almost independent of kz.
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Figure 18: Obtained gap functions for (a) g1 = 0.129 and U = 0 (s++-
wave state) (b) U = 0.349 and g1 = g2 = 0 (s±-wave state) in the kz = π-
plane. The dotted lines represent the experimental data given by the ARPES
measurement in Ref. [66].

Next, we discuss the s±-wave state realized by spin fluctuations: Figure
18 (b) shows the obtained gap structure in the case of g1 = g2 = 0 and
U = 0.439 (αs = 0.98) (same as sec. 3.3.2) in the kz = π plane. The gap
functions are almost independent of kz, except that h-FS2 exists only for
kz = π. The obtained gap structure is essentially independent even if smaller
U is used. The gap functions on the h-FS2 are very small. However, this
result is opposite to the experimental data [66] shown by dotted lines.

In addition, the obtained θ dependence of the gap on the e-FSs and h-FS3
is very different from the experimental data [66]. Both the gap on the h-FS3
and e-FSs show the maximum values at θ = π/4, since they are connected by
the wave vector of spin fluctuations Q ∼ (π, 0), (0, π). In addition the gap
function on h-FS3 has eight nodes, which is inconsistent with experiments
[66]. These results are very similar to our previous results without SOI as
sec. 3.3.2 [76].
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We note that almost same gap structure as sec. 3.3.3 is obtained when
orbital and spin fluctuations coexist.

3.4.4 Gap structure in the case where only the inner dxz/yz-orbital
hole band at Z point crosses the Fermi level

Recently, detailed gap structure of LiFeAs is measured by ARPES. [51] The
strongly dispersing band with minimum in Z point is newly discovered and
only the inner band of two dxz/yz hole band at Z point crosses the Fermi level
In this section, we construct the tight binding model which reproduces the
band structure observed by Borisenko et al. and calculate the gap structure
by using the model.

In order to reproduce the observed band structure, we add the following
corrections of the hopping integrals of dxy orbital,

∆txy,xy(0, 0, 0) = ∆Exy/8, ∆txy,xy(±a, 0, 0) = −∆Exy/16,

∆txy,xy(0,±a, 0) = −∆Exy/16, ∆txy,xy(±a,±a, 0) = ∆Exy/32,

∆txy,xy(0, 0,±c) = −∆Exy/16, ∆txy,xy(±a, 0,±c) = ∆Exy/32,

∆txy,xy(0,±a,±c) = ∆Exy/32, ∆txy,xy(±a,±a,±c) = −∆Exy/64, (41)

where a (c) is the lattice constant between nearest Fe sites (nearest conduct-
ing layer). These corrections raise the dxy orbital electron band at Z point by
∆Exy. Here, we set ∆Exy = −0.8 and spin-orbit coupling constant λ = 0.05.

Figure 19 (a) shows the obtained FSs for ky = 0 plane of the three
dimensional ten orbital model. There are tiny dxz/yz orbital h-FSs at |kz| ∼
π/4, in adding to the h-FS1,3 and two e-FSs. Figure 19 (b) shows the
dispersion of the band structure of ten orbital model. There is a strongly
dispersing band on the Γ-Z line. Additionally, the h-FS near the Z point is
comprised of inner band of the two dxz/yz orbital hole band, although, the
h-FS of the model constructed in sec. 3.4.1 is comprised of outer band.

Next, we analyze the linearized Eliashberg equation, Eq. (40). Here, we
divide the valuables θ = [0 : 2π] and kz = [−π : π] into 48 and 16 meshes,
respectively.

We first discuss the s++-wave state realized by orbital fluctuations: Figure
19 (c) shows the obtained gap functions in the case of g1 = 0.123 and U = 0
(αc = 0.98) in the kz = π plane. As for the hole pockets, the gap functions
on the h-FS1 composed of (dxz, dyz) orbitals are the largest, while the gap
on the h-FS3 composed of the dxy orbital is the smallest. These results are
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Figure 19: (a) The obtained FS in the ky = 0 plane of the three dimensional
ten orbital model. We set ∆Exy = 0.8 and λ = 0.05. The green, red, and
blue colors correspond to dxz, dyz, and dxy orbitals, respectively. (b) The
dispersion of the band structure of the ten orbital model. Obtained gap
functions for (c) g1 = 0.123 and U = 0 (s++-wave state) (d) U = 0.424 and
g1 = g2 = 0 (s±−wavestate) in the kz = π-plane. The dotted lines represent
the experimental date given by ARPES measurement in Ref. [66].

quantitatively consistent with the experimental data [66] shown by dotted
lines and very similar to previous results in sec. 3.3.1 [76] and 3.4.3 except
that the number of h-FSs near the Z point depend on the models.

As for the electron pockets, the gap of inner e-FS is larger than that of
outer e-FS. However, the θ dependence of gap function on e-FSs is different
from experimental gap structure [66]. This result is inconsistent with the
previous results in sec. 3.3.1 [76] and 3.4.3. This difference may be caused
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by the fact that the θ dependence of the weight of d-orbitals in this model is
different from that in the models used in the previous sections.

Next, we discuss the s±-wave state realized by spin fluctuations: Figure
18 (d) shows the obtained gap structure in the case of g1 = g2 = 0 and
U = 0.424 (αs = 0.98) in the kz = π plane. The gap functions on the h-FS1
are very small. However, this result is opposite to the experimental data [66]
shown by dotted lines.

In addition, the obtained θ dependence of the gap on the e-FSs and h-FS3
is very different from the experimental data [66]. Both the gaps on the h-FS3
and e-FSs show the maximum values at θ = π/4, since they are connected
by the wave vector of spin fluctuations Q ∼ (π, 0), (0, π). These results are
rather similar to our previous results in sec. 3.3.2 [76] and 3.4.3.

3.5 Summary

In this section, we studied the three-dimensional five-orbital model of LiFeAs
based on the recently-developed orbital-spin fluctuation theories [6, 13]. It is
found that the experimentally observed gap structure of LiFeAs in Ref. [66]
is quantitatively reproduced in terms of the orbital-fluctuation mechanism.
Especially, the largest gap on h-FS1 and h-FS2 in Fig. 11 (b) is naturally
reproduced by the inter-orbital fluctuations, as demonstrated in Figs. 14 (a),
whereas it is unable to be explained by the spin fluctuation scenario. There-
fore, the largest gap on h-FS1,2 is the hallmark of the orbital-fluctuation-
mediated superconductivity in LiFeAs.

When orbital and spin fluctuations coexist, the “hole-s±-wave state” is
obtained, in which only the gap of the largest dxy-orbital hole-pocket is sign-
reversed. We expect that the present mechanism of the “sign-reversal within
hole-pockets” due to orbital+spin fluctuations would be realized in other Fe-
based superconductors, although LiFeAs might not be the case. In fact, the
realization of the hole-s±-wave state was first discussed in Ba1−xKxFe2As2
based on the thermal conductivity and penetration depth measurements
[74]. The hole-s±-wave is naturally realized under the coexistence of the
“spin-fluctuations on the dxy-orbital” and the “orbital-fluctuations among
the (dxz, dyz)- and dxy-orbitals”.

Figure 20 shows the obtained αc-αs phase diagram of the gap structure in
LiFeAs. As expected, the s±-wave state (s++-wave state) is realized for wide
region of αs > αc (αc > αs). When both αs and αc are close to unity, we
obtain the hole-s±-wave gap in a wide region. The gap structure at each point
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Figure 20: αc-αs phase diagram of the gap structure in LiFeAs. The gap
structure at each point a∼d is shown in the figure. Each s±-wave, s++-wave,
and hole-s±-wave state is realized in wide parameter region. In the region
“∆h

3 ∼ 0, the gaps on other FSs have the same sign, so nearly s++-wave state
is realized. In the “hole-s′±-wave gap” state at point b, ∆h

1 ·∆h
2 is negative,

and both |∆h
1| and |∆h

2| are very small. Reprinted from Ref.[76]. c⃝2014 by
the American Physical Society.

a∼d is shown in the figure. In the region “∆h
3 ∼ 0”, obtained ∆h

3(θ) is nodal
and very small in magnitude, and it is close to the s++-wave state in that
other gaps are positive and large. In the “hole-s′±-state” at point b, ∆h

1 and
∆h

2 are opposite in sign, and both |∆h
1| and |∆h

2| are very small. Therefore,
various types of s-wave gap structure are realized due to the cooperation of
orbital and spin fluctuations.

In sec. 3.4, We constructed two three-dimensional ten orbital models of
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LiFeAs including SOI, which are consistent with ARPES measurements [51,
52] and studied the three-dimensional gap structure. When SOI is considered,
degenerated band that consists of dxz and dyz orbital at Γ-Z line is split and
one of the tiny h-FSs around Z point disappears. However, gap structure is
not affected by SOI. Especially, the gap function on the tiny h-FS at Z point
is large when g is large and s++-wave state is realized.
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4 Loop nodes on the e-FSs of BaFe2(As,P)2

4.1 Introduction for BaFe2(As,P)2

Very interestingly, in optimally-doped BaFe2(As,P)2, nodal gap structure
with high-Tc (∼ 30K) is realized. The SC gaps on the three h-FSs are fully-
gapped and almost orbital-independent both in the kz = π plane [81] and
in the kz = 0 plane [54], consistently with the orbital fluctuation scenario in
Ref. [41]. Also, loop-shape nodes on the e-FSs are observed by angle-resolved
thermal conductivity measurement in the vortex state [53] and ARPES mea-
surements [54, 81]. These results indicate the existence of competing pairing
interactions, and the study of these facts would be significant to understand
the mechanism of high-Tc superconductivity.

On the other hand, the ARPES measurement by Ref. [82] reported the
horizontal node on the z2-orbital e-FS around the Z point in BaFe2(As,P)2,
contrary to the reports by Refs. [54, 81]. This result is consistent with the
prediction of the theory of the spin-fluctuation-mediated s±-wave state in
Ref. [83]. However, the existence of the horizontal node would be inconsistent
with the large in-plane field angle dependence of the thermal conductivity
reported in Ref. [53]. Also, very small T -linear term in the specific heat
in the SC state would not be compatible to the presence of nodes on heavy
h-FSs [84, 85].

In this section, we theoretically study the origin of the nodal gap struc-
ture in BaFe2(As,P)2, in order to obtain a significant information of the pair-
ing mechanism of Fe-based superconductors. For this purpose, we construct
the three-dimensional (3D) ten-orbital tight-binding model for BaFe2(As,P)2,
and calculate the dynamical spin and orbital susceptibilities due to the com-
bination of Coulomb and quadrupole interactions. By solving the Eliash-
berg gap equation, we obtain the fully-gapped s±-wave (s++-wave) state due
to strong spin (orbital) fluctuations. When both spin and orbital fluctua-
tions strongly develop, which will be realized near the orthorhombic phase,
nodal s-wave state with loop-shape nodes on the e-FSs is realized due to
the competition between attractive and repulsive interactions. It is realized
during a smooth crossover between s++- and s±-wave states [6, 86]. In con-
trast, the SC gaps on the h-FSs are fully-gapped due to orbital fluctuations.
Thus, the present study explains the main characters of the gap structure in
BaFe2(As,P)2.

In Sec. 4.2, we introduce the three-dimensional ten-orbital tight-binding
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model, which contains two Fe-sites in each unit cell. We analyze this model
based on the RPA, by taking both the Coulomb and quadrupole interactions
into account. The latter interaction originates from the Coulomb interac-
tion beyond the RPA, described by the vertex corrections. In Sec. 4.3, we
analyze the SC gap equation for various model parameters, and derive the
loop-shape nodes on e-FSs due to the competition between orbital and spin
fluctuations. Some discussion and the summary are presented in Secs. 4.4
and 4.5, respectively.

4.2 Formulation
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Figure 21: The Fermi surfaces in the (a)kz = 0 plane and (b)ky = 0 plane
of the present ten orbital model for the filling n = 6.0. The green, red, blue
and black lines correspond to xz, yz, xy and z2 orbitals, respectively. In (b),
there are three h-FSs (FS1, FS2 and FS3) and four e-FSs (FS4 and FS5).
Reprinted from Ref.[16]. c⃝2013 by the American Physical Society.

First, we perform the local-density-approximation (LDA) band calcula-
tion for BaFe2As2 and BaFe2P2 using WIEN2K code based on the experi-
enced crystal structure. Next, we derive the ten-orbital tight-binding model
that reproduces the LDA band structure and its orbital character using
WANNIER90 code and WIEN2WANNIER interface. [62] Using the obtained
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two sets of tight-binding parameters (hopping integrals and on-site energies),
the parameters of BaFe2(As1−xPx)2 are well approximated by making a lin-
ear combination of them with a ratio of 1−x : x [83]. In this section, we use
the tight-binding parameters for x = 0.30 otherwise noted. The kinetic term
is given as eq. (17).

However, the xy-orbital h-FS given by the LDA is too small compared
to the experimental results by ARPES measurements. In order to increase
the size of xy-orbital h-FS, we introduce the following orbital-dependent
potential term around the Γ-point:

Ĥkin = Ĥ0 +
∑
lα,σ

∑
k

el

[
cos kx cos ky + 1

2

]
c†lα,σ(k)clα,σ(k), (42)

where el is the energy shift of the orbital-l at Γ-point. We put exy = 0.02
eV, exz = eyz = −0.01 eV and the others are 0. The FSs in this model
are composed of three h-FSs around Γ-point and four e-FSs around X- and
Y -points. Figure 21 shows the obtained FSs in the (a) kz = 0 and (b) ky = 0
planes, respectively. The electron filling per Fe-site is n = 6.0. In Fig. 21
(b), there are three h-FSs (FS1, FS2 and FS3) and two e-FSs (FS4 and FS5).
We call FS4 (FS5) the outer (inner) e-FS.
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Figure 22: Obtained Oxz-channel quadrupole fluctuations χQ
xz(q, 0) for n =

6.0 and αc = 0.98, in the (a) qz = 0 plane and (b) qz = π plane. The obtained
qz dependence of χQ

xz(q, 0) is rather weak. Reprinted from Ref.[16]. c⃝2013
by the American Physical Society.

Next, we apply the RPA for this model. As for the interaction term,
we introduce both the Coulomb interaction (U , U ′, J = (U − U ′)/2) and
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quadrupole interaction, as described in sec 1.6. In this section, we set g1 =
g2 = g in eq. (2) otherwise noted. In the presence of quadrupole interaction
in eq. (2), χQ

Γ (q) given in eq. (14) is strongly enhanced. In the present
study, the channel Γ = xz, yz is the most strongly enhanced, due to the good
inter-orbital nesting in Fe-based superconductors [6]. Figure 22 shows the
obtained χ̂Q

xz(q, 0) in the (a)qz = 0 and (b)qz = π planes [40]. The large peak
at q ≈ (0, π) originates from the interorbital (yz ↔ xy) nesting between e-FS
and h-FS, and the small peak at q ≈ (π, π) originates from the interorbital
(xz ↔ z2) nesting between two h-FSs. Therefore, the obtained development
of χQ

xz(q) and χQ
yz(q) means the existence of strong orbital fluctuations on the

xz-, yz-, xy- and z2-orbitals, of which the FSs of BaFe2(As,P)2 are composed.
Next, we explain linearized Eliashberg equation. In this section, we

present the numerical results in the presence of impurities just to make the
SC gap functions smoother. In the presence of dilute impurities (nimp ≪ 1),
the linearized Eliashberg equation is given as [73]

Zi(k, ϵn)λE∆
i(k, ϵn)

=
πT

(2π)3

∑
ϵm

FS∑
j

∫
FSj

dk′
FSj

vj(k′)
V ij(k,k′, ϵn − ϵm)

∆j(k′, ϵm)

|ϵm|
+ δΣi

a(k, ϵn), (43)

where λE is the eigenvalue that reaches unity at T = Tc. i and j denote
the FSs, and ∆i(k, ϵn) is the gap function on the i-th FS (FSi) at the Fermi
momentum k. The integral in eq. (43) means the surface integral on FSj.
The paring interaction V in eq. (43) is given as eq. (19).

In eq. (43), Z is given as

Zi(k, ϵn) = 1 +
γi(k, ϵn)

|ϵn|
, (44)

where γi is the impurity induced quasiparticle damping rate. Here, we cal-
culate the damping rate using T -matrix approximation. We consider the
case of Fe-site substitution, where the impurity potential I is diagonal in the
d-orbital basis. The T -matrix for an impurity at α(= A or B) site is given
as

T̂α(ϵn) =
[
1̂− ÎαĜα

loc(ϵn)
]−1

Îα, (45)

which is k-independent in the orbital basis. Here, Iαl,l′ = Iδl,l′ is the impurity
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potential, and Ĝα
loc is the local Green function given as

[Gloc]
α
ll′(ϵn) =

1

N

∑
k′

Gα
ll′(k

′, ϵn)

= −sn
iπ

(2π)3

∑
j

∫
FSj

dk′
FSj

vj(k′)
Ulα,j(k

′)U∗
l′α,j(k

′),

(46)

where sn = sgn(ϵn).
In the T -matrix approximation, which is exact for nimp ≪ 1, the normal

self-energy in the band diagonal basis is given as

δΣi
n(k, ϵn) = nimp

∑
ll′α

U∗
lα,i(k)T

α
ll′(ϵn)Ul′α,i(k), (47)

where nimp is the impurity concentration ratio. Then, the quasiparticle damp-
ing rate is given as

γi(k, ϵn) = −ImδΣi
n(k, ϵn)sn. (48)

Also, δΣi
a is the impurity-induced anomalous self-energy given as

δΣi
a(k, ϵn) = nimp

∑
ll′α

U∗
lα,i(k)Ul′α,i(k)

∑
mm′

Tα
lm(ϵn)X

α
mm′(ϵn)T

α
l′m′(−ϵn), (49)

where

Xα
mm′(iϵn) =

π

(2π)3

∑
j

∫
FSj

dk′
FSj

vj(k′)
Umα,j(k

′)U∗
m′α,j(k

′)
∆j(k′, ϵn)

|ϵn|
. (50)

In this section, we simplify the energy dependence of V̂ as explained as
eqs. (23) and (24) at the end of sec. 3.2.

4.3 SC gap structures

In this section, we analyze the linearized Eliashberg equation, eq. (43), using
the 3D model of BaFe2(As,P)2 for n = 6.0. Hereafter, we use 32× 32× 16k
meshes for calculating charge and spin susceptibilities. We assume that J =
J ′ and U = U ′ + 2J , and fix the ratio J/U = 1/6. In solving the Eliashberg
equation, Here, we divide the variables θ = [0, 2π] and kz = [−π, π] into 40
and 16 meshes, respectively, and 512 Matsubara frequencies. In this section,
we perform the calculation T = 0.005 and ωD = 0.02.
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Figure 23: Obtained SC gap functions for U = 1.15 and g1 = g2 = 0. (a),(b)
SC gap functions on the h-FSs in kz = 0 and kz = π planes. The green, red,
blue and black lines correspond to xz, yz, xy and z2 orbitals, respectively.
(c) kz dependence of the SC gaps on the h-FSs in ky = 0 planes. Horizontal
node appears on the FS3 around kz = ±π. (d),(e) SC gap functions on the
e-FSs in kz = 0 and kz = π planes. (f),(g) 3D gap functions on the outer
and inner e-FSs. Reprinted from Ref.[16]. c⃝2013 by the American Physical
Society.

4.3.1 s±-wave SC gap mediated by spin fluctuations

First, we study the spin-fluctuation-mediated s±-wave superconducting state
for U ≲ Ucr by putting g1 = g2 = 0 and nimp = 0. Here, we put U = 1.15
(αs = 0.98), and the obtained eigenvalue is λE = 1.01. The obtained gap
structure is almost independent of αs. First, we discuss the SC gaps on the
h-FSs. Figures 23(a) and (b) show the obtained gap functions on the h-FSs
in the kz = 0 and π planes, respectively. The definitions of θ and FS1-5 are
shown in Fig. 21. In the kz = 0 plane, the SC gap size weakly depends on the
orbital character of the FSs. However, in the kz = π plane, the SC gap size
strongly depends on the d-orbital. Especially, the SC gap on the z2-orbital
FS is almost zero and negative, reflecting the small spin fluctuations in the
z2-orbital because of the absence of the intra z2-orbital nesting. (Note that
z2-orbital is absent on the e-FSs.) The horizontal node is clearly recognized
in the SC gap in the ky = 0 plane shown in Fig. 23 (c). The obtained
horizontal node on FS3 near kz = π is consistent with the previous RPA
calculation by Suzuki et al [83].
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The obtained horizontal node would contradict to the four-fold symme-
try of the thermal conductivity [53] and the small Volovik effect in the spe-
cific heat measurement [84, 85]. According to ARPES measurements, the
horizontal-node was reported in Ref. [82], whereas it was not observed in
Refs. [54, 81].

Next, we discuss the SC gaps on the e-FSs. Figures 23 (d) and (e) show
the obtained gap functions on the e-FSs in the kz = 0 and π planes, respec-
tively. As we can see, line nodes do not appear on the e-FSs. This result
is consistent with the analysis in Ref. [87], that is, the s±-wave gap on the
e-FSs is fully-gapped if the h-FS made of xy-orbital appears. Note that the
SC gaps for kz = π in Fig. 23 (e) are obtained by rotating the gaps in the
kz = 0 plane in (d) by π/2. Also, Fig. 23 (f) and (g) show 3D gap functions
on the outer and inner FSs (FS4 and FS5), respectively. On both e-FSs, the
SC gap on the “flat part” is larger than that on the “high curvature part”.

4.3.2 s++-wave SC gap mediated by orbital fluctuations

Next, we study the orbital-fluctuation-mediated s++-state superconducting
state for g ≲ gcr by putting U = 0 and nimp = 0. Here, we put g1 = g2 = 0.22
(αc = 0.98), and the obtained eigenvalue is λE = 0.59. The obtained gap
structure is almost independent of αc. Figures 24 (a) and (b) show the
obtained gaps on the h-FSs in the kz = 0 and π planes, respectively. In
highly contrast to the spin fluctuation scenario, the gap size on z2-orbital FS
is comparable with that on the other FSs, since strong orbital correlations are
developed in all d-orbitals. Note that the quadrupole interaction possesses
many non-zero interorbital matrix elements. The present numerical result is
consistent with our previous calculation using the 2D 5-orbital model.[41]

Figure 24 (c) shows that the SC gap size of each h-FSs is approximately
independent on kz, which is consistent with the small orbital dependence of
the SC gap in (Ba,K)Fe2As2 and BaFe2(As,P)2 observed in Refs. [54, 81].
Figures 24(d) and (e) show the obtained gaps on the e-FSs in the kz = 0 and
π planes, respectively. Figure 24 (f) and (g) show the 3D SC gap functions on
the outer and inner e-FSs (FS4 and FS5), respectively. Thus, the obtained
SC gaps on the e-FSs is isotropic for any kz.

We also discuss the SC gap functions in the case of g1 = g and g2 = 0
in eq. (2). Figure 25 shows kz dependence of the SC gaps on the h-FSs for
g1 = 0.24 (αc = 0.98) and U = 0. In this case, the gap function on the
z2-orbital h-FS is smaller compared to the case of g1 = g2 = g in Fig. 24.
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Figure 24: Obtained SC gap functions for g1 = g2 = 0.22 and U = 0. (a),(b)
SC gap functions on the h-FSs in kz = 0 and kz = π planes. The green, red,
blue and black lines correspond to xz, yz, xy and z2 orbitals, respectively.
(c) kz dependence of the SC gaps on the h-FSs in ky = 0 plane. Used colors
are same as (a) and (b). (d),(e) SC gap functions on the e-FSs in kz = 0
and kz = π planes. (f),(g) 3D gap functions on the outer and inner e-FSs.
Reprinted from Ref.[16]. c⃝2013 by the American Physical Society.

On the other hand, the obtained SC gaps on the e-FSs are almost isotropic,
similarly to the results of g1 = g2 = g.

4.3.3 Loop-shape nodes due to the competition of spin and orbital
fluctuations

Recently, several measurements observed the nodal gap structure in
BaFe2(As1−xPx)2 [53, 54, 81]. This compound is very clean, and very ac-
curate measurements of gap structure have been performed. They present
a significant challenge for theories to reproduce the observed gap structure.
However, as discussed in Sec. 4.3.1 and 4.3.2, we cannot reproduce the line-
nodes on the electron FSs when either spin or orbital fluctuations solely
develop.

Here, we study the emergence of highly anisotropic s-wave state due
to the strong orbital and spin fluctuations. In the phase diagram of
BaFe2(As1−xPx)2, both TN and TS decrease to zero at almost the same crit-
ical point xc ≈ 0.3. This fact means that both spin and orbital fluctuations
become comparable in magnitude at x ∼ xc. Here, we consider the case that
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Figure 25: Obtained kz dependence of the SC gaps on the h-FSs in ky = 0
plane. Used parameters are g1 = 0.24, g2 = 0 and U = 0. Reprinted from
Ref.[16]. c⃝2013 by the American Physical Society.
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Figure 26: Formation of the nodal s-wave gap (shown in Fig. 27) due to
the competition of orbital fluctuations (=inter-orbital attraction) and spin
fluctuations (=intra-orbital repulsion). Green, red, blue, and black lines cor-
respond to xz, yz, xy, and z2-orbitals, respectively. Reprinted from Ref.[16].
c⃝2013 by the American Physical Society.

the s++-wave state is realized by stronger orbital fluctuations. As increasing
the spin fluctuation with momentum Q, ∆k and ∆k+Q are suppressed when
both k and k+Q are on the FSs with the same orbital character, and finally
the sign change ∆k · ∆k+Q < 0 could be achieved. Such strong anisotropy
originates from the competition between the attractive interaction of V c and
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repulsive interaction of V s in eq. (20) of sec. 3.2. As shown in Fig. 26, strong
spin fluctuations on the xy-orbital (due to intra xy-orbital nesting) produce
the loop-shape node on the e-FS. Similar ”anisotropic s-wave gap modified
by the spin fluctuations” is considered to be realized in (Y,Lu)Ni2B2C.[88]
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Figure 27: Obtained SC gap functions for g1 = g2 = 0.204, U = 1.011 and
nimp = 0.03. (a),(b) SC gap functions on the h-FSs in kz = 0 and kz = π
planes. (c) kz dependence of SC gaps on the hole FSs in ky = 0 plane. (d),(e)
SC gap functions on the e-FSs in kz = 0 and kz = π planes. (f),(g) 3D gap
functions on the outer and inner e-FSs. The green lines represent the gap
nodes. Reprinted from Ref.[16]. c⃝2013 by the American Physical Society.

Hereafter, we present numerical results in the presence of small amount
of impurities (I=1 and nimp = 0.03), just to make the SC gap functions
smoother. Figure 27 shows the results of nearly s++-wave state with nodal
structure on outer e-FS. We put g1 = g2 = 0.204 and U = 1.011, (αc = 0.980,
αs = 0.859), and the eigenvalue is λE = 0.50. Figures 27 (a)-(c) show the
obtained SC gaps on the h-FSs in the kz = 0 plane, kz = π plane, and ky = 0
plane, respectively. The obtained SC gaps on the h-FSs are nearly isotropic
and orbital-independent, similarly to the results in Fig. 24. Especially, the
gap size of the z2-orbital h-FS is large even in the presence of loop-shape
nodes on e-FSs.

Figures 27 (d) and (e) show the obtained SC gaps on the e-FSs in the
kz = 0 and π planes, respectively. The SC gap on the inner e-FS is fully
opened, and its sign is same as that on the h-FSs. On the outer e-FS, in
contrast, the SC gap shows the sign change near θ = 0, π (θ = π/2, 3π/2)
in the kz = 0 plane (kz = π plane). This sign change is caused by strong
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spin fluctuations in the xy-orbital, as we have explained in Fig. 26. In this
case, the SC gaps on the h-FSs remains fully-gapped, due to the fact that
the band-mass of h-FSs is larger than that of the e-FSs. As results, closed
loop-shape nodes appear in the flat part on the outer e-FS, as recognized in
Figs. 27 (f) and (g). This gap structure is consistent with the prediction
given by the angle-resolved thermal conductivity under the magnetic field
[53].
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Figure 28: Obtained SC gap functions for g1 = g2 = 0.204 and U = 1.017.
(a),(b) SC gap functions on the e-FSs in kz = 0 and kz = π planes. (c),(d)
3D gap functions on the outer and inner e-FSs. The green lines represent
the gap nodes. Reprinted from Ref.[16]. c⃝2013 by the American Physical
Society.

As increasing the value of U (or reducing nimp) slightly, the area of the
sign reversed part on the outer e-FS increases, and the SC gap on the inner
e-FS also shows the sign reversal. Figures 28 (a) and (b) show the SC gap
functions on the e-FSs for g1 = g2 = 0.204 and U = 1.017 (αc = 0.980
and αs = 0.864). The obtained eigenvalue is λE = 0.50. The obtained gap
functions are approximately given by shifting the gaps in Figs. 27 (d) and
(e) downwards, and line nodes appear on both the inner and outer e-FSs. As
described in Figs. 28 (c) and (d), closed nodal loops appear in the flat part
on the outer e-FS and in the high curvature part on the inner e-FS. The SC
gaps on the h-FSs are almost the same as those shown in Fig 27 (a)-(c), so
we do not show them.

As increasing the value of U (or reducing nimp) further, the sign of the SC
gap on the outer e-FS is completely reversed, and small closed loop-nodes



4 LOOP NODES ON THE E-FSS OF BAFE2(AS,P)2 58

(c)outer e-FS (FS4)

(d)inner e-FS (FS5)

0

-0.001

0.001

0

-0.001

0

outer e-FS

inner e-FS

0

-0.001

0

outer e-FS

inner e-FS

kxky

kz

/2

/2

=(b)kz

=0(a)kz

Figure 29: Obtained SC gap functions for g1 = g2 = 0.204 and U = 1.023.
(a),(b) SC gap functions in the e-FSs on kz = 0 and kz = π planes. (c),(d)
3D gap functions on the outer and inner e-FSs. The green lines represent
the gap nodes. Reprinted from Ref.[16]. c⃝2013 by the American Physical
Society.

appear only on the inner e-FS. The obtained SC gaps are nearly s±-wave
state. Figures 29 (a) and (b) show the obtained gap functions on the e-FSs
for g1 = g2 = 0.204 and U = 1.023 (αc = 0.980, αs = 0.869). They are
approximately given by shifting the gaps in Figs. 28 (a) and (b) downwards.
The obtained eigenvalue is λE = 0.50. Figures 29 (c) and (d) show the
obtained 3D gap functions on the outer and inner e-FSs, respectively. Ap-
parently, closed nodal loops appear in the high curvature part on the inner
e-FS, whereas no nodes appear on the outer e-FS. This numerical result is
consistent with the recent ARPES measurement by Yoshida et al [54]. On
the other hand, the SC gaps on the h-FSs are similar to those in Figs. 27
(a)-(c).

In Figs. 27-29, we fixed the impurity parameters as nimp = 0.03 and
I = 1. Now, we discuss the SC gap functions for general impurity parameters.
Figure 30 (a) shows the U -nimp phase diagram for both I = 1 and I = 0.3.
The solid (dashed) lines represent the boundaries between s++ wave and
nodal-s wave, or nodal-s wave and s± wave for I = 1 (I = 0.3). As decreasing
αs or increasing αc, the following crossover would be realized: (i) full gap s±-
wave → (ii) nodal s-wave → (iii) full gap s++-wave. When both U and g are
fixed, the same crossover occurs when nimp increases. The residual resistivity
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for I = 1 derived from the linear response theory is about 20 µΩcm per
nimp = 0.01.

We note that, in the present numerical calculation using 3D model, line-
nodes can appear even if nimp = 0 as shown in Fig. 30. In contrast, in the
previous calculation using 2D model [41, 43], we could not obtain the line-
nodes for nimp = 0, since the SC state changes from the s++-wave to s±-wave
discontinuously as U increases.
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Figure 30: U -nimp phase diagram for αc = 0.98 obtained for (a) I = 1 and
0.3 with Λc = 1 and for (b) I = 1 with Λc =

√
2 and

√
3. Reprinted from

Ref.[16]. c⃝2013 by the American Physical Society.

In the present study based on the RPA, the s++ ↔ s± crossover is realized
in case of αs ≪ αc (= 0.98) for nimp ≪ 0.1. One of the main reasons would be
the factor 3 in front of V s in eq. (20), reflecting the SU(2) symmetry of the
spin space. However, this factor 3 might be overestimated since the recent
polarized neutron scattering measurements indicates the relation χs

z(Q) ≫
χs
x,y(Q) above Tc due to the spin-orbit interaction λl · s [89, 90].
Moreover, the RPA is recently improved by including the VC, and it was

found that orbital fluctuations strongly develop in the Hubbard model [13].
Then, the orbital susceptibility is χ̂c(q) = (X̂c(q) + χ̂0(q))(1 − Γ̂c

g(X̂
c(q) +

χ̂0(q))−1, where X̂c(q) is the charge VC for the irreducible susceptibility.
According to Ref. [13], the magnitude of the three-point vertex is estimated
as Λc = 1 + Xc(q)/χ0(q) ∼ 2, and then eq. (21) would be replaced with
V̂ c = 1

2
Λ2

cΓ̂
c
gχ̂

cΓ̂c
g. Figure 30 (b) shows the U -nimp phase diagram for Λc =

√
2

and
√
3, in case of I = 1. We find that the s++-wave region is widely

extended, and the nodal-s-wave region is also widen. The obtained gap
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structure in the crossover regime for Λc > 1 is the loop-shape nodes shown
in Figs. 27-29.

4.4 Discussion

In previous sections, we analyzed the gap equations based on the three-
dimensional ten orbital model for BaFe2(As,P)2. When orbital fluctuations
are solely developed, fully-gapped s++-wave state is realized. On the other
hand, when spin fluctuations are solely developed, we obtain the s±-wave
state with horizontal node on a h-FS. During the crossover between s++-
wave and s±-wave states due to the competition between orbital and spin
fluctuations, the loop-shape nodes appear on the outer (inner) e-FS when the
spin fluctuations are slightly weaker (stronger) than the orbital fluctuations.
The obtained phase-diagram is shown in Fig. 30. We stress that all three h-
FSs are fully-gapped during the crossover, since the SC gap on the z2-orbital
originates from the inter-orbital nesting between different h-FSs.

The crossover from the s±-wave state to the s++-wave state is also in-
duced by increasing the impurity concentration. In this study, we consid-
ered the orbital-diagonal on-site impurity potential at Fe i-site, considering
the Fe-site substitution by other elements. In this case, inter-band impu-
rity scattering is always comparable to intra-band one, as shown by the
T -matrix approximation in Ref. [9]. For this reason, when the spin fluc-
tuations are solely developed, the realized s±-wave state with Tc0 ∼ 30K
is suppressed by small amount of impurities, with small residual resistiv-
ity ρ0 ∼ 5z−1µΩcm (z−1 = m∗/m is the mass-enhancement factor). Since
z−1 ∼ 3, we can safely expect that the SC state in dirty Fe-based super-
conductors (say ρ0 ∼ 100µΩcm) would be the s++-wave state due to orbital
fluctuations.

4.5 Summary

In this section, we studied SC gap structure using ten orbital model for
BaFe2(As,P)2. When the orbital fluctuations due to inter-orbital quadrupole
interaction (2) are strong, the s++-wave state is realized. In contrast, the
s±-wave state is formed by strong spin fluctuations, mainly due to intra-
orbital Coulomb interaction U . Both spin and orbital fluctuations would
strongly develop in the optimally-doped regime near the O phase. In this
case, we find that a smooth crossover between s++- and s±-wave states is
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realized by changing the interactions or impurity concentration, without large
suppression in Tc.

During this s++ ↔ s± crossover, the loop-shape nodes are universally
formed on the e-FSs, as a result of the competition between inter-orbital
attractive interaction and intra-orbital repulsive interaction. This result is
consistent with recent angle-resolved thermal conductivity measurement [53]
and ARPES measurement [54]. During the crossover, the SC gaps on the
h-FSs are fully-gapped and almost orbital independent due to orbital fluctu-
ations, consistently with recent ARPES measurements [54, 81].
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5 Summary

Since the discovery of iron based superconductivity, its superconducting
mechanism had been studied intensively and it is one of the most signifi-
cant research fields of condensed matter physics. Iron based superconduc-
tor is multiorbital system, differently from single orbital cuprate. In the
mother compound, various phases such as the antiferromagnetic order and
the orthorhombic structure phase transition appear, and the superconducting
phase appears after the carrier doping or isovalent doping. While antiferro-
magnetic fluctuations are expected to exist near the antiferromagnetic order,
the strong orbital fluctuations are also expected to develop near the structural
transition. Therefore, the spin-fluctuation-mediated s±-wave superconduc-
tivity [5] and the orbital-fluctuation-mediated s++-wave superconductivity [6]
had been proposed and studied based on the multiorbtial models. In order
to understand the pairing mechanism of iron pnictides, the k-dependence of
superconducting gap structure gives us important information. In this thesis,
we constructed realistic three dimensional multiorbital models of KFe2Se2,
LiFeAs, and BaFe2(As,P)2. Next, we calculated the gap structures when
both the spin fluctuations and orbital fluctuations are developed. Finally, we
compared the numerical results with the experimental results such as ARPES
measurements.

In sec. 2, we study the heavily electron doped compound KFe2Se2. In this
compound, the spin fluctuations favor the d-wave state and gap function in-
evitably has nodes. On the other hand, the orbital fluctuations favor the s++-
wave state, which is consistent with the experiments [47, 48, 49, 50]. There-
fore, the orbital-fluctuation-mediated s++-wave state is realized in KFe2Se2.

In sec. 3, we study the gap structure of LiFeAs in which superconduc-
tivity is realized without doping. In LiFeAs, the largest gap on the small
h-FS is observed in ARPES measurements [66]. When the orbital fluctua-
tions are strong and s++-wave state is realized, the gaps on the small h-FSs
are the largest of all and, therefore, the experimental results are reproduced.
On the other hand, when spin fluctuations are strong and s±-wave state is
realized, the gaps on the small h-FSs are very small, which is inconsistent
with experiments. In addition, we constructed more realistic model with
SOI and calculated the gap structure, we obtained almost same results as
previous results without SOI. Therefore, the orbital-mediated-s++-wave su-
perconducting state is realized in LiFeAs.

In sec. 4, we study the gap structure of BaFe2(As,P)2. The almost
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equally-sized superconducting gaps on three h-FSs are measured in laser
ARPES measurements [81]. When the spin-fluctuation-mediated s±-wave
state is realized, the gap on the h-FS which is composed of the z2-orbital is
very small and the horizontal nodes are formed: The reason is that the e-FSs
are not composed of the z2-orbital and therefore the intra-z2-orbital nesting
is absent. These results are inconsistent with the experimental results. On
the other hand, the orbital-fluctuation-mediated s++-wave state is realized,
the gap sizes on the all h-FSs are almost same since the orbital fluctuations
including z2-orbital are developed by the inter-orbital nesting between the
h-FS and e-FSs. Meanwhile, line nodes are observed on the e-FSs. These
nodes are reproduced when both the orbital and spin fluctuations are strong,
as a result of the competition between different fluctuations. Indeed, the spin
fluctuations and orbital fluctuations may balance in BaFe2(As,P)2 since the
spin and orbital orders are vanished at almost same time.

Thus, the superconductivity is mainly realized by orbital fluctuations
in KFe2Se2, LiFeAs, and BaFe2(As,P)2. In addition, the phase transition
from tetragonal to orthorhombic [14] and the softening of shear modulus
C66 [15] etc. can be explained by orbital fluctuation theory. Therefore, the
development of strong orbital fluctuations is the significant key to understand
the properties of both the superconducting and normal phases of iron based
superconductors.
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A Five orbital tight binding model for

LiFeAs

Here, we explain the five-orbital tight-binding model for LiFeAs, which is
given in unfolding the ten-orbital model given in Ref. [71]. The ten-orbital
model in Ref. [71] is obtained by fitting the experimental band structure
of LiFeAs in Ref. [66] near the Fermi level. The five-orbital model (single
Fe unit cell) is obtained by unfolding the ten-orbital model (two-Fe unit
cell), according to the procedure in Ref. [22]. The FSs of both models are
shown in Fig. 11 (a) and (b), respectively. Both models are equivalent, and
the former model is more convenient for the numerical study. The FSs and
band structure are given in Fig. 11. This experimental FSs of LiFeAs are
very different from the FSs given by the density functional theory (DFT),
in which FS1,2 predicted by the DFT are much larger. Better agreement
between theory and ARPES is achieved by the LDA+DMFT study [91], since
the FS1,2 shrinks due to the orbital-dependent self-energy that is absent in
the LDA. As for the de Haas-van Alphen (dHvA) measurements, Ref. [92]
showed reasonable agreement with the DFT for the e-FSs, and Ref. [93]
reported the presence of very small three-dimensional hole-pockets, which
would corresponds to h-FS1,2 in Fig. 11. The hopping parameters of the
present model, tl,m(Ra) in eq. (17), are listed in Table I.
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Table 1: Hopping integrals for R = (x, y, z) for the present five-orbital model
for LiFeAs. Notations are the same as those introduced in Refs. [5, 22].
σy, I, and σd corresponds to tl,m(x,−y, z), tl,m(−x,−y, z), and tl,m(y, x, z),
respectively. Here, ‘±’ and ‘±(l′,m′)’ in the row of (l,m) mean that the cor-
responding hopping is equal to ±tl,m(x, y, z) and ±tl′,m′(x, y, z), respectively.
Notice also tl,m(R) = tm,l(−R).
PPPPPPPPP(l,m)

R
[0,0,0] [1,0,0] [1,1,0] [2,0,0] [2,1,0] [2,2,0]

(1,1) −0.305
(1,2) −0.101
(1,3) 0.100 −0.101
(1,4) −0.090
(1,5) −0.162
(2,2) −0.008 −0.050 0.152 −0.004 −0.040 −0.005
(2,3) 0.090
(2,4) −0.155 −0.064
(2,5) −0.010
(3,3) −0.008 −0.210 0.152 −0.051 0.053 −0.005
(3,4) −0.064
(3,5) 0.193 0.010
(4,4) 0.020 0.019 0.030 −0.010 −0.004
(4,5)
(5,5) −0.261 0.223 0.070

PPPPPPPPP(l,m)

R
[0,0,1] [1,0,1] [2,0,1] σy I σd

(1,1) + + +
(1,2) − − +(1,3)
(1,3) + − +(1,2)
(1,4) − + +
(1,5) + + −
(2,2) −0.003 −0.012 + + +(3,3)
(2,3) − + +
(2,4) + − +(3,4)
(2,5) − − −(3,5)
(3,3) −0.003 0.011 + + +(2,2)
(3,4) − − +(2,4)
(3,5) + − −(2,5)
(4,4) 0.011 0.004 + + +
(4,5) − + −
(5,5) + + +
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B Hole-s± wave state in Ba122

Here, we show the hole-s±-wave realized in Ba122. First, we perform a local-
density-approximation (LDA) band calculation for BaFe2As2 and using the
WIEN2K code based on the known crystal structure. Next, we derive a ten-
orbital tight-binding model that reproduces the LDA band structure and its
orbital character using the WANNIER90 code and the WIEN2WANNIER
interface[62]. The dxy-orbital h-FS by the LDA is too small compared to the
experimental results from ARPES. In order to increase the size of the dxy-
orbital h-FS, we introduce the orbital-dependent potential term around Γ
point by eq. (42). We put exy = 0.15 eV, and the others are 0. The obtained
FSs in the kz = 0 plane are shown in Fig. 31 (a). Near the Γ point, the h-FS
composing dxy-orbital is largest of three h-FSs. In addition, we present the
results in the presence of small amount of impurity (I = 1 and nimp = 0.04),
just to make the SC gap structures smoother. To consider impurity effect,
we use the T -matrix approximation as calculated in Ref.[16]. Here, we don’t
consider the SOI.

Figure 31 (b) shows the αc-αs diagram of the gap structure in Ba122. In
common with LiFeAs, Each s±, s++, and hole-s± wave state is realized in
wide parameter region. The gap structure on the plain kz = 0 at each point
a ∼ d is shown in the figure. h-FSs are the FSs around Γ point and e-FSs
are the FSs around X point. The horizontal axis is θ = tan(k̄y/k̄x), where
(k̄x, k̄y) is the momentum on the FS with the origin at the center of each
pocket. In the region ”∆h

xy ∼ 0 (∆h
xz/yz ∼ 0)”, the gaps on the other h-FSs

and e-FSs have the same (opposite) sign, so nearly s++ (s±)-wave state is
realized.

When both αc and αs are close to unity, hole-s±-wave state is realized.
At point c, the gap on only outer h-FS, which mainly consists of dxy-orbital,
is sign reversed. In addition, the gap at θ = π/2, kz = 0 on the inner e-FS is
relatively small, which is consistent with ARPES measurements[54].

When αc and αs are not near unity, nodal-s-wave, which has loop nodes
in e-FSs is realized between s++ and s±-wave state. At point b, obtained gap
structure has a loop node at θ = π/2, kz = 0. This gap structure corresponds
to fig. 29. [16] When we set larger g or smaller U , obtained gap structure has
a loop node at θ = 0, kz = 0, which corresponds to fig. 27. [16]. Therefore, a
wide variety of gap structures can be obtained by cooperation of orbital and
spin fluctuations.
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Figure 31: (a)The FSs in the kz = 0 plane of the three dimensional model for
Ba122. The green, red, blue, and black lines correspond to xz, yz, xy, and z2

orbitals, respectively. (b)αc-αs diagram of the gap structure in Ba122. The
gap structure at each point a ∼ d is shown in the figure. h-FSs are the FSs
around Γ point and e-FSs are the FSs around X point. The horizontal axis
is θ = tan(k̄y/k̄x), where (k̄x, k̄y) is the momentum on the FS with the origin
at the center of each pocket. Each s±-wave, s++-wave, and hole-s±-wave is
realized in a wide parameter region. In the region ”∆h

xy ∼ 0 (∆h
xz/yz ∼ 0)”,

the gaps on the other h-FSs and e-FSs have the same (opposite) sign, so
nearly s++ (s±)-wave state is realized.
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