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Chapter 1

Introduction

The studies of invariant subrings under the action of linearly reductive groups have been
investigated in terms of commutative algebra, algebraic geometry, homological algebra
etc. The typical property of an invariant subring is the Cohen-Macaulayness. It comes
from Hochster and Roberts’s theorem.

Theorem 1.0.1. ([HR], see also [HE, HO]) Let G be a linearly reductive group over an
algebraically closed field k. Suppose V is a G-module, and S B k[V] is the symmetric
algebra of V. Then the invariant subring S G is Cohen-Macaulay.

The point is a linearly reductive group G has the “Reynolds operator”, and the invari-
ant subring R = S G becomes a pure subring of S via this operator. Also, Boutot’s theorem
is important.

Theorem 1.0.2. ([Bou]) Let S and R be essentially of finite type over a field of character-
istic zero, and R is a pure subring of S . If S has only rational singularities, then R also
has only rational singularities.

On the other hand, M. Hochster and C. Huneke introduced the notion of tight closure,
and several classes of rings in positive characteristic. After that, commutative algebra in
positive characteristic has developed rapidly. In particular, the class so-called “(strongly)
F-regular” (see Section 2.2) behave well in the above context. Namely, if S is an F-regular
ring and R is a pure subring of S , then R is also F-regular (see Proposition 2.2.8 (3)).
Moreover, the F-regularity implies Cohen-Macaulay under mild conditions. Thus, we
can recover Hochster and Roberts’s theorem in positive characteristic. We remark that the
F-rationality (see Definition 2.2.9) is considered as the analogue of a rational singularity
by [Har, Smi]. However, if we replace the condition “rational” in Theorem 1.0.2 by “F-
rational”, then it is no longer true [Wat2].

In this way, the methods used in positive characteristic commutative algebra give us
other aspects of studies of invariant subrings. In this thesis, we will investigate invariant
subrings in the context of positive characteristic.

For a Noetherian ring R of positive characteristic p > 0, we can define the Frobenius
morphism F : R→ R (r 7→ rp). Also, we define the e-times iterated Frobenius morphism
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Fe : R→ R (r 7→ rpe
) for each e ∈ N. By using this morphism Fe, we define the R-module

eR (see Section 2.1). In positive characteristic commutative algebra, we investigate the
properties of R through the structure of eR. However, it is difficult to describe such a
structure explicitly. For example,

(Q1) What kind of R-module appears in eR as a direct summand ?
(Q2) Can we understand the asymptotic behavior of eR ?

These kinds of problems are difficult in general. Therefore we will consider these prob-
lems for the case of quotient singularities in this thesis. That is, let G be a finite sub-
group of GL(d, k) which contains no pseudo-reflections except the identity and S B
k[x1, · · · , xd] be a polynomial ring or S B k[[x1, · · · , xd]] be a power series ring. We
assume that the order of G is coprime to p = char k. We denote the invariant subring of
S under the action of G by R B S G. In the rest of this thesis, we mainly consider this
quotient singularity R (or Spec R). In the process of investigating the structure of eR and
determining some numerical invariants, the theory of Cohen-Macaulay representations
(especially Auslander-Reiten theory) plays the crucial role.

Let V0 = k,V1, · · · ,Vn be the complete set of irreducible representations of G, and
we set Mt B (S ⊗k Vt)G (t = 0, 1, · · · , n). Then each Mi is an indecomposable maximal
Cohen-Macaulay (=MCM) module and Mi � M j if i , j.

K. Smith and M. Van den Bergh [SVdB] showed that eR decomposes as follows (see
Proposition 3.2.1).

eR � R⊕c0,e ⊕ M⊕c1,e
1 ⊕ · · · ⊕ M⊕cn,e

n .

From these observations, we could understand (Q1). Thus, we will move to the prob-
lem (Q2). Namely, we will consider the asymptotic behavior of each multiplicity ci,e. In
this situation, it is known the limit lim

e→∞

ci,e

ped (i = 0, 1, · · · , n) exists and it is a positive ra-

tional number [SVdB, Yao1] (see Proposition 2.5.2). Especially, for the case where i = 0,
this limit is also known as the F-signature of R and is denoted by s(R) = lim

e→∞

c0,e

ped [HL].

Also, this numerical invariant characterizes some singularities (see Theorem 2.3.4). The
explicit value of the F-signature of the invariant subring R was determined by K. Watan-

abe and K. Yoshida [WY2], that is s(R) =
1
|G| . One of the purpose in this thesis is to

generalize this result for each non-free direct summand. Therefore, we will consider the
limit of each multiplicity ci,e on the order of ped: s(R,Mi) = lim

e→∞

ci,e

ped and call it the gener-

alized F-signature of Mi with respect to R (see Section 2.5). We can determine the explicit
values as follows, and this is the answer for the problem (Q2).

Theorem 1.0.3. (=Theorem 3.3.1 ) Let the notation be as above. Then for all i = 0, · · · , n
one has

s(Mi,R) =
dimk Vi

|G| =
rankR Mi

|G| .

As a corollary, we can also consider the asymptotic behavior of decomposition of eMi.
Since eMi decomposes as

eM j � M⊕d0, j,e

0 ⊕ M⊕d1, j,e

1 ⊕ · · · ⊕ M⊕dn, j,e
n ,
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for e ∈ N (see Section 2.5), we consider the limit

s(Mi,M j) B lim
e→∞

di, j,e

ped (i, j = 0, 1, · · · , n),

and call this limit the generalized F-signature of Mi with respect to M j. Then we have the
following result.

Corollary 1.0.4. (= Corollary 3.3.6) Let the notation be as above. Then for all i, j =
0, · · · , n one has

s(Mi,M j) = (dimk V j) · s(Mi,R) =
(dimk Vi) · (dimk V j)

|G| =
(rankR Mi) · (rankR M j)

|G| .

By this corollary, we see that each MCM R-module Mi actually appears in eM j as a di-
rect summand for some MCM module M j and sufficiently large e ≫ 0. In dimension two,
it is known that an invariant subring R is of finite CM representation type, that is, it has
only finitely many non-isomorphic indecomposable MCM R-modules {R,M1, · · · ,Mn}
(see Chapter 4). Thus, the additive closure addR(eMi) coincides with the category of
MCM R-modules CM(R). So we use several results so-called Auslander-Reiten theory
to addR(eMi). Especially, the Auslander-Reiten quiver of R visualize the relationship be-
tween MCM modules. By using this idea, we can investigate some numerical invariants
in positive characteristic.

In this thesis, we focus on the notion of the dual F-signature defined by A. Sannai
[San] (see Definition 2.6.1). As this name shows, this is also a kind of generalization of
the F-signature. This invariant is defined for each finitely generated R-module M, and
we denote the dual F-signature of M by s(M). Notice that the dual F-signature of R
coincides with the F-signature of R (see Remark 2.6.2). Thus, we use the same notation.
Just like the F-signature, the value of the dual F-signature of the canonical module ωR

also characterizes some singularities (see Theorem 2.6.3). How about the value of other
R-modules? Namely, let M be a finitely generated R-module which may not be R or ωR.
Then

· Does the value of s(M) have any information about singularities ?
· What does the explicit value of s(M) mean ?
· Is there any connection between s(M) and other numerical invariants ?

However, the computation of the dual F-signature is difficult for now, and we don’t have
effective method for determining it except in only a few cases. Thus, as the first step to
understand this invariant, we will consider the dual F-signature for some MCM modules
over quotient surface singularities. In particular, by paying attention to a certain MCM
R-module so-called a special CM module (see subsection 5.2.1) and its Auslander-Reiten
translation (see Section 4.2), we characterize the Gorensteiness.

Theorem 1.0.5. (= Theorem 5.2.6) Let R be a quotient surface singularity. Suppose M is
an indecomposable special CM R-module. Then we have

s(M) ≤ s(τ(M)).

where τ(M) stands for the Auslander-Reiten translation of M. Moreover, R is Gorenstein
if and only if s(M) = s(τ(M)).
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For a cyclic quotient surface singularity, a special CM module takes a simple form as
follows, and we can determine the explicit value of the dual F-signature for each special
CM module. (For more details on terminologies, see Section 5.3.)

Suppose R is the invariant subring of S = k[[x, y]] under the action of a cyclic group
1
n (1, a). In this situation, a non-free indecomposable special CM R-module is described
as Mit = Rxit + Ry jt (i.e., it is minimally 2-generated). Then we have the value of the dual
F-signature as follows.

Theorem 1.0.6. (= Theorem 5.3.11) Let the notation be the same as above, then for any
non-free special CM R-module Mit one has

s(Mit) =


min(it, jt) + 1

n
(if it , jt)

2it + 1
2n

(if it = jt).

As the special case of this theorem, we have the value of the dual F-signature for all
indecomposable MCM modules over the rational double point corresponding to Dynkin
type An−1 (see Example 5.3.14). Also, we determine the dual F-signature of each inde-
composable MCM module for other Dynkin types (Dn, E6, E7 and E8) in Section 5.4, and
collect their values in subsection 5.4.8.

On the process to determine the value of the dual F-signature, we also consider the
number of minimal generators for each indecomposable MCM module. As an application,
we also investigate the notion of Ulrich modules and the Hilbert-Kunz multiplicities (see
Chapter 6).

Ulrich modules are a certain class of MCM modules, and their properties have been
investigated in several contexts. However, even the existence of an Ulrich module for a
given CM local ring is still not known. Also, even if a given ring R has an Ulrich mod-
ule, we don’t know the shape of such modules for many cases. Thus, in this thesis, we
investigate Ulrich modules over cyclic quotient surface singularities, and give the char-
acterization of Ulrich modules. As we mentioned before, this singularity is of finite CM
representation type. Therefore, the number of indecomposable Ulrich modules is finite.
So we will also consider the number of them. In this problem, special CM modules play
the crucial role again. Since the number of minimal generators of a special CM module
is small, special CM modules are the opposite of Ulrich modules in that sense. However,
those give us the simple description of Ulrich modules. In particular, the number of in-
decomposable special CM modules coincides with that of irreducible exceptional curves
in the minimal resolution of a cyclic quotient surface singularity (see Theorem 5.2.4), and
this geometric information determines boundaries of the number of Ulrich modules.

Theorem 1.0.7 (= Theorem 6.1.23). Suppose R is a cyclic quotient surface singularity
whose number of irreducible exceptional curves (= that of non-free indecomposable spe-
cial CM modules) is r. Then the number of Ulrich modules N satisfies r ≤ N ≤ 2r−1.
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This thesis is organized as follows. In Chapter 2, we prepare some basic facts on sin-
gularities and numerical invariants in positive characteristic. Especially, we see that quo-
tient singularities are strongly F-regular and have finite F-representation type. For such
rings, we can define the generalized F-signature, and this invariant is a positive rational
number. In Chapter 3, we determine the value of the generalized F-signature explicitly
for quotient singularities. By using this result and the Auslander-Reiten quiver, we can
investigate the dual F-signature. Therefore, we review some results of Auslander-Reiten
theory in Chapter 4. In particular, we define the Auslander-Reiten quiver. In Chapter 5,
we will pay attention to special CM modules, and determine the value of the dual F-
signature of such modules. Especially, we give the complete list of the dual F-signature
of MCM modules over rational double points. Since the methods for determining the dual
F-signature is also valid for investigating Ulrich modules and the Hilbert-Kunz multiplic-
ities, we discuss them in Chapter 6.

This thesis is based on papers [HN, Nak1, Nak2, NY].

Conventions and Notations
Throughout this thesis, we suppose that k is an algebraically closed field and R is a
Noetherian ring unless otherwise noted. We denote the set of elements in R which are
not in any minimal prime of R by R◦. For example, if R is a domain, then R◦ = R \ {0}.

For a Noetherian local ring (R,m, k) and a finitely generated R-module M, µR(M)
stands for the number of minimal generators (i.e. µR(M) = dimk M/mM) and e0

m(M) is
the multiplicity of M with respect to m. If situation is clear, we denote it by e(M). We
denote the length of a finitely generated Artinian R-module N by ℓR(N).

For a finitely generated R-module M, we define the depth of M as

depthR M B inf{i ≥ 0 | Exti
R(R/m,M) , 0}.

We say M is a maximal Cohen-Macaulay (= MCM) R-module if depthR M = dim R.
When R is non-local, we say M is an MCM module if Mp is an MCM module for all
p ∈ Spec R. Furthermore, we say that R is a Cohen-Macaulay (= CM) ring if R is an
MCM R-module.

For a Noetherian local ring (R,m, k), we will denote the canonical module of R by
ωR. We denote the R-dual (resp. the canonical dual) functor by (−)∗ B HomR(−,R) (resp.
(−)∨ B HomR(−, ωR)). We say that a finitely generated R-module M is reflexive if the
natural morphism M → M∗∗ is an isomorphism. Also, we denote the n-th syzygy functor
by Ωn(−). Namely, take the minimal free resolution of R-module M:

· · · → Fi
φi−→ · · · φ2−→ F1

φ1−→ F0 → M → 0,

then Ωn(M) is defined as Kerφn.

We denote CM(R) to be the category of MCM modules and addR(M) to be the full
subcategory consisting of direct summands of finite direct sums of some copies of M. We
say M is a generator if R ∈ addR(M).
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When we discuss a composition of morphisms f g, it means f is followed by g, that
is, f g = g◦ f . Similarly, for quivers an arrow ab means a is followed by b. That is,

• a−→ • b−→ •. (Although this notation seems to be opposite to the usual one, when we chase
a path, this notation is convenient.)

Sometimes we use freely basic facts of commutative ring theory as in [Mat, BH].
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Chapter 2

F-singularities and F-invariants

2.1 Frobenius morphism
Let R be a Noetherian ring of prime characteristic p > 0, then we can define the Frobenius
morphism F : R → R (r 7→ rp). For e ∈ N, we also define the e-times iterated Frobenius
morphism Fe : R→ R (r 7→ rpe

).
For any R-module M, we define the R-module eM (or Fe

∗M) via Fe as follows. That
is, eM is just M as an abelian group, and for m ∈ M we denote the corresponding element
of eM by em then its R-module structure is defined by r(em) B e(Fe(r)m) = e(rpe

m) for
r ∈ R. Note that eR is isomorphic to R as a ring and eM is naturally an eR-module. In such
a situation, we can view eR as an R-algebra via the morphism Fe : R → eR (r 7→ e(rpe

)),
and this is an R-linear map. Moreover, if R is reduced, we can identify eR with the R-
module R1/pe

(the R-algebra consisting of pe-th root of elements in R) by associating er
and r1/pe

for any r ∈ R. From this viewpoint, the e-times iterated Frobenius morphism
Fe is identified with the inclusion R ↪→ R1/pe

. We will switch these notations from each
other depending on the situation.

For an ideal I of R, we set

I[pe] B (ape | a ∈ I) ⊂ R.

Definition 2.1.1. We say R is F-finite if 1R (and hence every eR) is a finitely generated
R-module.

Remark 2.1.2. If R is F-finite, then R is excellent [Kun2] and has a dualizing complex
[Gab].

For example, if R is an essentially of finite type over a perfect field or complete
Noetherian local ring with a perfect residue field k, then R is F-finite. In this thesis,
we only discuss such rings, thus the F-finiteness is always satisfied.

2.2 F-singularities
In positive characteristic commutative algebra, we investigate the properties of R through
the structure of eR or eM. A typical result is the following.
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Theorem 2.2.1 ([Kun1]). Let (R,m, k) be a d-dimensional F-finite local ring. Then the
following conditions are equivalent.

(1) R is regular,
(2) eR is a free R-module of rank ped for any e ∈ N,
(3) eR is a free R-module of rank ped for a natural number e ∈ N,
(4) ℓR(R/m[pe]) = ped for any e ∈ N,
(5) ℓR(R/m[pe]) = ped for a natural number e ∈ N.

In this subsection, we will introduce some classes of rings in positive characteristic
and discuss their properties. For more details, we refer the reader to [Hoc, Sch, TW]
etc. Originally, some of these classes were defined in terms of tight closure introduced in
[HH1]. But we can also characterize them by using the Frobenius splittings. Thus, we
don’t refer to the tight closure theory in this thesis. For readers who are interested in such
a theory, there are some good references e.g. [BH, Hoc, Hun1].

Definition 2.2.2. Let R be an F-finite ring of char R = p > 0. We say R is F-pure if
the Frobenius morphism F : R → 1R splits as an R-linear map. Namely, there exists
φ ∈ HomR(1R,R) such that φ ◦ F = idR. Thus, R is a direct summand of 1R.

Remark 2.2.3. More precisely, this kind of ring is called F-split. On the other hand, the F-
purity is originally defined by the purity of the Frobenius morphism (i.e. M → 1R⊗R M is
injective for every R-module M). These notions coincide with each other if R is F-finite.
Thus we will use the terminology “F-pure”.

Lemma 2.2.4. Let R be an F-finite Noetherian ring. If R is F-pure, then it is reduced.

In order to investigate the F-purity, the following criterion is convenient.

Lemma 2.2.5. ([Fed, Theorem 1.12]) If (S , n) is a F-finite regular local ring and I is an
ideal of S , then R B S/I is F-pure if and only if I[p] : I 1 m[p].

In particular, if I = ( f ) is a principal ideal, then I[p] : I = ( f p−1). Thus, S/( f ) is
F-pure if and only if f p−1 < m[p].

Next, we define the strong F-regularity.

Definition 2.2.6. Let R be an F-finite ring of char R = p > 0. We say R is strongly F-
regular if for every c ∈ R◦ there exists e ∈ N such that the following morphism splits as
an R-linear map,

R
Fe

−→ eR
×ec−→ eR (x 7→ e(xpe

) 7→ e(cxpe
)).

Roughly, a strongly F-regular ring has many splittings. It is easy to see that the
strongly F-regularity implies the F-purity if we take c = 1 in Definition 2.2.6.

Remark 2.2.7. Also, there are notions of “F-regular ring” and “weakly F-regular ring”.
They are defined in terms of tight closure theory [HH1] and as the name implies, we have
the following (cf. [HH1, HH2]).

strongly F-regular⇒ F-regular⇒ weakly F-regular

11



These notions are equivalent if a ring is Q-Gorenstein [AM] or a ring has finite F-
representation type (see definition 2.4.1) [Yao1, Remark 4.3]. Thus, we will use just the
terminology “F-regular” in such situations. In general, it is still open whether these no-
tions coincide or not.

It is known that a weakly F-regular ring is normal. If a ring is excellent (e.g. an
F-finite ring) then the weakly F-regularity implies Cohen-Macaulay [HH2].

Here, we collect some properties of strongly F-regular rings.

Proposition 2.2.8. (cf. [HH2, Theorem 3.1]) Let R be an F-finite Noetherian ring with
char p > 0.

(1) R is strongly F-regular if and only if Rp is strongly F-regular for every prime (or
for every maximal) ideal p of R.

(2) If R is regular, then it is strongly F-regular.
(3) If S is strongly F-regular (e.g. regular ring) and R is a direct summand of S as an

R-module, then R is also strongly F-regular.

By using these properties, we can recover the Hochster-Roberts theorem (see Theo-
rem 1.0.1) in positive characteristic.

Next, we consider the Frobenius action on local cohomology and define some sin-
gularities via this action. We will use freely a basic knowledge about local cohomology
from [BH, BS, Iye et al.]. In order to make a situation clear, we consider a general ring
homomorphism φ : R → S . For an ideal a = (a1, · · · , an), the local cohomology Hi

a(R)
is obtained as the cohomology of the Čech complex Č•(a ; R). We consider the morphism
of complexes

Č
•
(a ; R)→ S ⊗R Č

•
(a ; R) = Č

•
(φ(a) ; S )

induced via φ. Then we have a morphism of R-modules Hi
a(R) → Hi

φ(a)S (S ) for each i.
Here, we consider Hi

φ(a)S (S ) as an R-module via φ.

We switch the situation to a d-dimensional F-finite Noetherian local ring (R,m). Then
the Frobenius morphism F : R → R induces Hi

m(R) → Hi
F(m)R(R) � Hi

m(R). Note that the
last isomorphism follows from F(m)R = m[p],

√
m[p] = m. By abuse of notation, we use

the same letter F to express this morphism. In particular, in the case of i = d, we have
Hd
m(R) � lim−−→R/(xn

1, · · · , xn
d) where x1, · · · , xn is a system of parameters of R. Thus, we

can describe F as

F : Hd
m(R)→ Hd

m(R)
(
ξ = [z mod(xn

1, · · · , xn
d)] 7→ ξp = [zp mod(xnp

1 , · · · , x
np
d )]

)
.

By using this action on the local cohomology, we will introduce some classes of sin-
gularity in positive characteristic.

Definition 2.2.9 (F-rationality). Let (R,m) be a d-dimensional F-finite local ring, we say
R is F-rational if R is CM and if for any c ∈ R◦, there is a natural number e ∈ N such that

Hd
m(R)

Fe

−−→ Hd
m(R)

·c−→ Hd
m(R) (ξ 7→ cξpe

)

12



is injective.
In the case when R is not local, we say R is F-rational if the local ring Rp is F-rational

for any p ∈ Spec(R).

Remark 2.2.10. Originally, the F-rationality was defined via tight closure. Since we will
not refer to it, in this thesis, we consider the above condition as the definition of the
F-rationality.

Definition 2.2.11 (F-injectivity). Let (R,m) be a d-dimensional F-finite local ring, we
say R is F-injective if F : Hi

m(R)→ Hi
m(R) is injective for all i.

When R is not local, we say R is F-injective if the local ring Rp is F-injective for any
p ∈ Spec(R).

From this definition, we see that the F-rationality implies the F-injectivity.

Next, we will give another description of the F-rationality and the F-injectivity by
using the trace map. When R is CM, we have the following isomorphism from the local
duality.

Extd−i
R (R, ωR) � DHi

m(R),

where D(−) stands for the Matlis dual, and we remark that DHd
m(R) � ωR. By applying

the canonical dual (−)∨ to the Frobenius morphism F : R→ 1R, we obtain the following.

Tr : 1ωR � (1R)∨ −→ R∨ � ωR.

This morphism is called the trace map of R. For each e ∈ N we also define the e-times
iterated trace map Tre : eωR → ωR as the canonical dual of the e-times iterated Frobenius
morphism Fe. The next proposition immediately follows from the local duality. That is,
F-rationality and F-injectivity are characterized by the surjectivity of the trace map. In the
future, this viewpoint leads us to the definition of the dual F-signature (see Section 2.6).

Proposition 2.2.12. Let R be an F-finite local ring. Then

(1) R is F-rational if and only if R is CM and for c ∈ R◦, there is e ∈ N such that

eωR
×ec−−→ eωR

Tre

−−→ ωR (er 7→ e(cr) 7→ Tre(e(cr))).

is surjective.

(2) If R is F-injective, then Tr : 1ωR → ωR is surjective. The converse holds if R is CM.

In this way, these classes are defined by using the Frobenius morphism. Surprisingly,
these singularities are closely related with singularities in minimal model program (in
characteristic 0 ) via the reduction modulo p > 0. Although, that is one of the important
reason to study singularities in positive characteristic, we entrust details to other litera-
tures.
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For F-finite Noetherian rings, we collect the relationship between each class of singu-
larities in positive characteristic:

Regular strongly F-regular F-rational Cohen-Macaulay, normal

F-pure F-injective

if quasi-Gorenstein (i.e. R � ωR)

if quasi-Gorenstein

2.3 F-invariants
In this section, we suppose that (R,m, k) is a d-dimensional F-finite Noetherian local ring
with char R = p > 0 and k is an algebraically closed field. We will introduce some
numerical invariants in positive characteristic.

2.3.1 F-signature
As we showed in 2.2.1, 2.2.2, 2.2.6, the number of free direct summands in eR is very
important. In order to measure such a number, we introduce the notion of F-signature
defined by C. Huneke and G. Leuschke. This numerical invariant is defined as the asymp-
totic behavior of free direct summands in eR on the order of rankR

eR = ped.

Definition 2.3.1 ([HL]). Let (R,m, k) be a d-dimensional reduced F-finite Noetherian
local ring of prime characteristic p > 0. For each e ∈ N, we decompose eR as follows

eR � R⊕ae ⊕ Me,

where Me has no free direct summands. We call ae the e-th F-splitting number of R. Then,
we call the limit

s(R) B lim
e→∞

ae

ped ,

the F-signature of R.

Remark 2.3.2. Let R̂ be the m-adic completion of R. Since e(R̂) � R̂ ⊗R
eR, the e-th F-

splitting number of R coincides with that of R̂. Since the Krull-Schmidt condition holds
for R̂, the decomposition of e(R̂) as in Definition 2.3.1 is unique up to isomorphism.

Also, we may drop the condition “R is reduced ”. In that case, R is not F-pure (see
Lemma 2.2.4). Thus, we have ae = 0.

14



Remark 2.3.3. Even if k is not an algebraically closed field, we can obtain similar results
appearing in the following section, after an appropriate modification. That is, since the
rank of eR is pe(d+α(R)) where α(R) = logp[k : kp], we replace ped by pe(d+α(R)). Note that if
k is a perfect field (e.g. an algebraically closed field), then α(R) = 0.

The existence of the F-signature was shown by K. Tucker [Tuc]. Roughly speaking,
the F-signature s(R) measures the deviation from regularity by Kunz’s theorem 2.2.1. The
next theorem confirms this intuition.

Theorem 2.3.4 ([HL], [Yao2], [AL]). Let (R,m, k) be a d-dimensional reduced F-finite
Noetherian local ring with char R = p > 0. Then we have

(1) R is regular if and only if s(R) = 1,
(2) R is strongly F-regular if and only if s(R) > 0.

Also, there are some computations of the value of the F-signature. For example, the
following result is important in Chapter 3. For more computations, see the survey article
[Hun2] and the references therein.

Theorem 2.3.5. ([WY2, Theorem 4.2]) Let G be a finite subgroup of GL(d, k) which con-
tains no pseudo-reflections and assume that the order of G is coprime to p = char k.
Suppose that S is the power series ring k[[x1, · · · , xd]]. We denote the invariant subring
of S under the action of G by R B S G. Then

s(R) =
1
|G| .

Next we consider the decomposition of eM and the asymptotic behavior.

Theorem 2.3.6. ([Tuc, Theorem 4.11]) Let (R,m, k) be a d-dimensional reduced F-finite
Noetherian local ring of prime characteristic p > 0 and M be a finitely generated R-
module. We denote the maximal rank of a free direct summand appearing in the decom-
position of eM by ae(M). Then we have the following:

s(R,M) B lim
e→∞

ae(M)
ped = rankR(M)s(R). (2.3.1)

Remark 2.3.7. With this terminology, the F-signature is nothing but s(R,R). For simplic-
ity, we will denote it by s(R) unless it causes confusion.

Proposition 2.3.8. Suppose R is a strongly F-regular ring, and R is not quasi Gorenstein
(i.e. R � ωR). Then

(1) We have ωR ∈ addR(eR) for sufficiently large e ≫ 0.
(2) Suppose eR decomposes as

eR � R⊕ae ⊕ ω⊕be
R ⊕ Me (2.3.2)

where R, ωR < addR(Me). Then lim
e→∞

be

ped = lim
e→∞

ae

ped (= s(R)).
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Proof. (1) By Theorem 2.3.4 and 2.3.6, we have s(R, ωR) > 0. Especially, we have
ae(ωR) > 0. Thus, R appears in eωR as a direct summand for sufficiently large
e ≫ 0. Taking the canonical dual (−)∨,

eR � (eωR)∨ � (R⊕ae(ωR) ⊕ Ne)∨ � ω
⊕ae(ωR)
R ⊕ N∨e ,

where Ne has no free direct summands. So we come to the conclusion.
(2) Suppose eωR decomposes as

eωR � R⊕ce ⊕ ω⊕de
R ⊕ Ne, (2.3.3)

where R, ωR < addR(Ne). By applying (−)∨ to (2.3.2), we have

eωR � R⊕be ⊕ ω⊕ae
R ⊕ M∨e .

Thus, this implies ce ≥ be. Similarly, we apply (−)∨ to (2.3.3) and have be ≥ ce.
Thus,

lim
e→∞

be

ped = lim
e→∞

ce

ped = rankR(ωR)s(R) = s(R).

The second equation follows from Theorem 2.3.6.
□

Remark 2.3.9. As the following example shows, ae , be in general. Suppose G =⟨
diag(−1,−1,−1)

⟩
is a cyclic group of order 2 and consider the natural action on S =

k[[x, y, z]] where char k > 2. Then the invariant subring R = S G is strongly F-regular (see
Proposition 2.2.8 (3)) and eR is decomposed as eR � R⊕ae ⊕ ω⊕be

R where ae =
p3e+1

2 and

be =
p3e−1

2 (see [Sei, Example 5.2]). Thus, lim
e→∞

ae

p3e = lim
e→∞

be

p3e =
1
2

but ae , be.

The next proposition is convenient to understand the structure of eR.

Proposition 2.3.10. Let R be a strongly F-regular ring. For a finitely generated R-module
M, we have

M ∈ addR(eR)⇔ M∨ ∈ addR(e′R),

for some e, e′ ∈ N.

Proof. By the duality, we may show the “only if” part. Thus, we assume M ∈ addR(eR).
By applying the canonical dual, we have M∨ ∈ addR(eωR). From Proposition 2.3.8 (1),
ωR ∈ addR( f R) for some f ∈ N. Therefore we have M∨ ∈ addR(e+ f R) immediately. □

2.3.2 Hilbert-Kunz multiplicity
Next, we will review the Hilbert-Kunz multiplicity. The study of this numerical invariant
in positive characteristic was started in [Kun2] and its existence was shown by P. Monsky
[Mon].
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Theorem-Definition 2.3.11 (Hilbert-Kunz multiplicity). Let (R,m, k) be a Noetherian
local ring of characteristic p > 0 and I be an m-primary ideal of R. Then the limit

eHK(I,R) B lim
e→∞

1
ped ℓR

(
R/I[pe])

exists [Mon]. Sometimes, we simply denote eHK(I,R) by eHK(I). We call this limit the
Hilbert-Kunz multiplicity of R with respect to I. In particular, eHK(m,R) B eHK(R) is
called the Hilbert-Kunz multiplicity of R.

The Hilbert-Kunz multiplicity is an analogue of the usual multiplicity in positive char-
acteristic, and we have the inequality

e(I)
d!
≤ eHK(I) ≤ e(I)

where I is an m-primary ideal of R, dim R = d (cf. [Hun1, Chapter 6]). In particular, if
R is a one dimensional ring, we have eHK(I) = e(I). Also, if I is a parameter ideal, then
eHK(I) = e(I). This invariant plays an important role to investigate singularities in positive
characteristic. For example, Kunz proved the inequality ℓR(R/m[pe]) ≥ ped holds for any
local ring R and for all e ∈ N [Kun1]. Therefore, we have eHK(R) ≥ 1. Especially, if
R is regular, then eHK(R) = 1 (see Thorem 2.2.1). Under mild conditions, we have the
converse.

Theorem 2.3.12. ([WY1], see also [HY]) Let R be an unmixed local ring with char R =
p > 0. If eHK(R) = 1, then R is regular.

Also, the following is an improved version.

Theorem 2.3.13. ([BE]) Let R be an unmixed local ring with char R = p > 0.

(1) If eHK(R) < 1 + 1
pdd! , then R is regular.

(2) If eHK(R) < 1 + 1
d! , then R is F-rational and Cohen-Macaulay.

In this way, we can check the properties of a ring with positive characteristic via this
numerical invariant. Therefore this invariant was observed in many articles (for more
details, see the survey article [Hun2] and the references contained therein). However,
in the spite of its importance, it is difficult to determine the explicit value of eHK(R) in
general.

In Chapter 6, we will give some computation of this invariant as the application of
series of our results.

2.4 Finite F-representation type
Throughout this section, we assume that the Krull-Schmidt condition holds for R, that is,
every R-module decomposes into the direct sum of indecomposable modules uniquely up
to isomorphism. For example, this condition holds for a complete local ring (cf. [LW,
Chapter 1], [CYZ, Appendix]).

For understanding the structure of eR, we introduce the notion of finite F-representation
type defined by K. Smith and M. Van den Bergh [SVdB] as follows (see also [Yao1]).
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Definition 2.4.1 ([SVdB, Yao1]). We say R has finite F-representation type (= FFRT
for short) by S if there is a finite set S B {M0,M1, · · · ,Mn} of isomorphism classes of
indecomposable finitely generated R-modules such that for any e ∈ N, the R-module eR is
isomorphic to a finite direct sum of these modules:

eR � M⊕c0,e
0 ⊕ M⊕c1,e

1 ⊕ · · · ⊕ M⊕cn,e
n ( for some ci,e ≥ 0 ).

Moreover, we say a finite set S = {M0, · · · ,Mn} is the FFRT system of R if every R-module
Mi appears non-trivially in eR as a direct summand for some e ∈ N.

In addition, when R has FFRT by the FFRT system {M0,M1, · · · ,Mn}, we call M B
M0⊕M1⊕· · ·⊕Mn the FFRT module of R. Especially the FFRT module is basic (i.e. Mi’s
are mutually non-isomorphic). Sometimes we say R has FFRT by the FFRT module M in
such a situation. In particular, we say M = M0 ⊕ M1 ⊕ · · · ⊕ Mn is the FFRT generator of
R if M is the FFRT module and R is a member of the FFRT system.

Lemma 2.4.2. We suppose that R has FFRT by the FFRT module M. Then

(1) R is F-pure if and only if M is the FFRT generator of R.
(2) If M is the FFRT generator of R, then we have addR(eR) = add(M) for sufficiently

large e ≫ 0.
(3) EndR(eR) and EndR(M) are Morita equivalent for e ≫ 0.

Proof. (1) If R is F-pure, we have R ∈ addR(M). Conversely if R ∈ addR(M), then we
have a split morphism R→ eR for some e ∈ N, and it factors through R→ 1R→ eR.
Thus, we have the assertion.

(2) Since M is the FFRT generator (equivalently R is F-pure), f R is a direct summand
of eR for e ≥ f . Thus, by the definition of FFRT, there exists sufficiently large
e ≫ 0 such that addR(eR) = addR(M).

(3) The statement (2) induces the Morita equivalence via the progenerator HomR(eR,M).
□

In the case where R is (strongly) F-regular, we obtain better consequences.

Lemma 2.4.3. We suppose that R is (strongly) F-regular and has FFRT by the FFRT
module M. (Especially M is a generator.) Then

(1) For any R-module N ∈ addR(M), we have addR(eN) = add(M) for sufficiently large
e ≫ 0.

(2) EndR(eN) and EndR(M) are Morita equivalent for e ≫ 0.

Proof. (1) From Lemma 2.4.2 (2), there exists sufficiently large e ≫ 0 such that N ∈
addR(eR) = addR(M). (In particular, N ∈ addR( f R) = addR(M) for f ≥ e.) Thus,
e′N ∈ addR(e+e′R) = addR(M). On the other hand, we have R ∈ addR(eN) for e ≫ 0
by Theorem 2.3.6. So if we take sufficiently large e′ ∈ N, then M ∈ addR(e′R) ⊆
addR(e+e′N).

(2) This is the same as Lemma 2.4.2 (3).
□
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Example 2.4.4. We collect some examples about a ring with FFRT.

(1) From Kunz’s theorem (see Theorem 2.2.1), we see that an F-finite regular local ring
R has FFRT by the FFRT module R.

(2) Suppose R is a CM local ring with char R = p > 0. Then eR is an MCM R-module.
Thus, if R is of finite CM representation type (i.e. it has only finitely many non-
isomorphic indecomposable MCM modules), then R has FFRT. Here, we remark
that even if R is of finite CM representation type, every MCM R-module doesn’t nec-
essarily appear in eR as a direct summand. For example, let G =

⟨
diag(−1,−1,−1)

⟩
be a cyclic group of order 2. We consider the natural action of G on S = k[[x, y, z]]
where char k > 2. Then the invariant subring R = S G is of finite CM representation
type and finitely many MCM modules are R, ωR and ΩωR (cf. [LW, Yos]). However
ΩωR never appears in eR (see Remark 2.3.9 or Proposition 3.2.1).

(3) (cf. [SVdB, Proposition 3.1.4]) Let R ↪→ S be an inclusion of rings of characteristic
p > 0 such that S is a finite R-module and R is a direct summand of S as an R-
module. Then if S has FFRT, R also has FFRT.
For example, the invariant subring of a regular ring under the action of a finite
group G such that (|G|, p) = 1 has FFRT.

(4) (cf. [SVdB, Proposition 3.1.6]) Let R = k ⊕
⊕

n≥1 Rn ↪→ S = k ⊕
⊕

n≥1 S n be an
inclusion of graded rings of characteristic p > 0 such that R is an R-module direct
summand of S . Then if S has FFRT, R also has FFRT.
Especially, normal semigroup rings (or toric rings) and ring of invariants of regular
ring under the action of linearly reductive groups have FFRT.

(5) Every one dimensional complete local orN-graded domain with algebraically closed
or finite residue field has FFRT [Shi].

(6) For now, the relation between a ring with FFRT and singularities introduced in
Section 2.2 is unknown. Indeed, let R B k[[x, y, z]]/(x3+y5+ x2y3+z2) be the simple
singularity of type E1

8 where k is an algebraically closed field of characteristic three.
Then we can see that R is not F-pure by using Fedder’s lemma 2.2.5. However, R is
of finite CM representation type [GK, Theorem 1.4], so R has FFRT.
On the other hand, by combining [TT, Corollary 3.3] and [SS, Theorem 5.1], we
can see the following hypersurface is strongly F-regular but doesn’t have FFRT:

k[[s, t, u, v,w, x, y, z]]/(su2x2 + sv2y2 + tuxvy + tw2z2)

where k is a field of positive characteristic.
(7) For more examples, see [TT, Example 1.3].

2.5 Generalized F-signature
Let R be a ring which has FFRT by the FFRT system {M0,M1, · · · ,Mn}. Next, we consider
the decomposition of eM j. Since each MCM R-module M j appears in e′R for some e′ ∈ N
as a direct summand, we suppose that eM j decomposes as

eM j � M⊕d0, j,e

0 ⊕ M⊕d1, j,e

1 ⊕ · · · ⊕ M⊕dn, j,e
n . (2.5.1)
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for e ∈ N. In order to grasp the asymptotic behavior of multiplicities of each direct
summand, we will extend the notion of the F-signature and name it the generalized F-
signature after [HN]. As we will show in Proposition 2.5.2 and 2.5.4 , this numerical
invariant makes sense and has good properties.

Definition 2.5.1. For each multiplicity di, j,e, we consider the limit

s(Mi,M j) B lim
e→∞

di, j,e

ped (i, j = 0, 1, · · · , n).

We call this limit the generalized F-signature of Mi with respect to M j.

Clearly, the generalized F-signature of R with respect to R is the same as the F-
signature (see Definition 2.3.1). As the next proposition shows, this limit exists and has
good properties.

Proposition 2.5.2. ([SVdB, Proposition 3.3.1], [Yao1, Theorem 3.11]) If R has FFRT by
the FFRT system {M0,M1, · · · ,Mn}, then the generalized F-signature s(Mi,M j) exists for
i, j = 0, 1, · · · , n. In addition, if R is (strongly) F-regular, then s(Mi,M j) is a positive
rational number.

Remark 2.5.3. In [SVdB], this proposition is proved under the assumption “R is strongly
F-regular and has FFRT”. After that, Y. Yao showed the condition of strongly F-regular
is unnecessary for proving the existence of it [Yao1]. Note that the existence of the limit
for free direct summands (i.e. F-signature) is proved under more general settings as we
mentioned before.

More precisely, we establish the following formula.

Theorem 2.5.4. Let R be a (strongly) F-regular ring which has FFRT by the FFRT system
{M0 � R,M1, · · · , Mn}. For e ∈ N and j = 0, 1, · · · , n, we suppose that eM j decomposes
as (2.5.1). Then we obtain

s(Mi,M j) = (rankR M j)s(Mi,R)

for i, j = 0, 1, · · · , n.

Proof. Although the idea is the same as [SVdB, Proposition 3.3.1 and Lemma 3.3.2], we
provide a proof for the sake of completeness.

Set the (n + 1) × (n + 1) matrix D B (di, j,1)1≤i, j≤n. We can see that di, j,e = (De)i, j by
the induction on e. Indeed, the case of e = 1 is trivial. We suppose e > 1 and have the
following.

eM j � e−1

 n⊕
l=0

M⊕dl, j,1

l

 � n⊕
l=0

(e−1Ml)⊕dl, j,1 �
n⊕

l=0

 n⊕
i=0

M⊕di,l,e−1
i

⊕dl, j,1

(♣)
�

n⊕
i=0

M⊕
∑n

l=0(De−1)i,l·dl, j,1

i =

n⊕
i=0

M⊕(De)i, j

i .
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Here, we used the hypothesis of induction at (♣).
Set the diagonal matrix Q B diag(rankR M0, · · · , rankR Mn), then we see the follow-

ing.

(1, 1, · · · , 1)QD =

 n∑
i=0

(rankR Mi)di,0,1,

n∑
i=0

(rankR Mi)di,1,1, · · · ,
n∑

i=0

(rankR Mi)di,n,1


= (rankR

1M0, rankR
1M1, · · · , rankR

1Mn)

= pd(rankR M0, rankR M1, · · · , rankR Mn) = pd(1, 1, · · · , 1)Q.

Thus, the matrix E B 1
pd QDQ−1 satisfies (1, 1, · · · , 1)E = (1, 1, · · · , 1) and each entry of

E is contained in R≥0. This means that E is a stochastic matrix. From Lemma 2.4.3, there
exists sufficiently large e ≫ 0 such that every entry of Ee is strictly positive. In this case,
Ee is also a stochastic matrix. From the Perron-Frobenius theorem, there is the unique
eigenvector v0 of Ee whose eigenvalue is 1 such that

lim
e→∞

Eev = v0

for any stochastic vector v. Since we can consider the vector e j =
t(0, · · · , 0, 1, 0, · · · , 0)

as a stochastic vector, we have v0 = lime→∞ Eee j = lime→∞ Eee0 for j = 0, 1, · · · , n,
Finally, we obtain the following formula.

t(s(M0,M j), · · · , s(Mn,M j)) = lim
e→∞

1
ped Dee j = lim

e→∞
Q−1EeQe j = lim

e→∞
Q−1Ee(rankR M j)e j

= (rankR M j) lim
e→∞

Q−1Eee j = (rankR M j) lim
e→∞

Q−1Eee0

= (rankR M j)(rankR M0)−1 lim
e→∞

1
ped Dee0 = (rankR M j) · t(s(M0,M0), · · · , s(Mn,M0)).

□

By Proposition 2.2.8 and Example 2.4.4, a certain invariant subring (quotient singu-
larity) is strongly F-regular and has FFRT. Thus, we will consider the explicit value of
the generalized F-signature for such a singularity in Chapter 3.

2.6 Dual F-signature
In this subsection, we introduce another generalization of the F-signature. As we men-
tioned, the F-signature s(R) characterizes some singularities. In particular, its positivity
characterizes the strong F-regularity. Therefore, s(R) = 0 whenever R is not strongly
F-regular. Therefore, this invariant can’t grasp worse singularities. Is there a good in-
variant to characterize the F-rationality ? Recall that a strongly F-regular ring is defined
via a splitting of a certain map R → R1/pe

(see Definition 2.2.6). On the other hand,
an F-rational ring is characterized by the surjectivity of a certain map ω1/pe

R → ωR (see
Proposition 2.2.12). From these observations, A. Sannai formulated the notion of the dual
F-signature as follows.
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Definition 2.6.1 ([San]). Let (R,m, k) be a d-dimensional reduced F-finite Noetherian
local ring with char R = p > 0. For a finitely generated R-module M and e ∈ N, set

be(M) B max{n | ∃φ : eM ↠ M⊕n},

and call it the e-th F-surjective number of M. Then we call the limit

s(M) B lim
e→∞

be(M)
ped

the dual F-signature of M if it exists.

Remark 2.6.2. Since the morphism eR ↠ R⊕be(R) splits, if M is isomorphic to the base
ring R, then the dual F-signature of R in sense of Definition 2.6.1 coincides with the F-
signature of R. Thus, we use the same notation unless it causes confusion.

Just like the F-signature, the dual F-signature also characterizes some singularities.

Theorem 2.6.3 ([San]). Let (R,m, k) be a d-dimensional reduced F-finite Cohen-Macaulay
local ring with char R = p > 0. Then we have

(1) R is F-rational if and only if s(ωR) > 0,
(2) s(R) ≤ s(ωR),
(3) s(R) = s(ωR) if and only if R is Gorenstein.

In this way, the value of s(R) and s(ωR) characterize some singularities. However, the
value of the dual F-signature is not known except in only a few cases. For example, the
case of two-dimensional Veronese subrings is studied in [San, Example 3.17]. We don’t
have an effective method for determining it for now. Thus, we will consider this numerical
invariant for the case where quotient surface singularities in Chapter 5 as the first step to
understand it.
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Chapter 3

Generalized F-signature of invariant
subrings

In Section 2.5, we introduced the notion of the generalized F-signature as a kind of gen-
eralization of the F-signature. In this section, we will determine the explicit value of this
invariant for quotient singularities. This chapter is based on [HN].

Therefore, in the rest of this chapter, let G be a finite subgroup of GL(d, k) which
contains no pseudo-reflections (see Remark 3.0.4) except the identity, and assume that the
order of G is coprime to p = char k. Suppose that S is the polynomial ring k[x1, · · · , xd]
or the power series ring k[[x1, · · · , xd]]. We denote the invariant subring of S under the
action of G by R B S G.
Remark 3.0.4. We say g ∈ G is a pseudo-reflection if it has an eigenvalue 1 of multiplicity
d − 1 and another eigenvalue α of multiplicity 1. In this thesis, we don’t consider the
identity as a pseudo-reflection. If G contains no pseudo-reflections, sometimes we say G
is small.

3.1 Skew group algebras
Let S ∗ G be the skew group algebra of S and G. That is, as an S -module, S ∗ G =⊕

g∈G S · g is free whose basis is elements in G. The multiplication is given by

(s · g)(s′ · g′) = s(gs′) · (gg′)

for s, s′ ∈ S and g, g′ ∈ G. Note that an S ∗G-module M is an S -module with a compatible
G-action. Namely, g(sm) = g(s)g(m) for s ∈ S ,m ∈ M, g ∈ G. So a (G, S )-module and an
S ∗G-module are the same thing.

Also, f : M → N is an S ∗G-linear map if and only if f is an S -homomorphism as well
as G-homomorphism (i.e. f (gm) = g( f (m))). For S ∗G-modules M and N, HomS (M,N)
has an S ∗G-module structure as follows.

(g f )(m) = g f (g−1m), g ∈ G, m ∈ M, f ∈ HomS (M,N).

Note that f ∈ HomS (M,N) is G-invariant if and only if it is an S ∗G-homomorphism. It
follows that

HomS ∗G(M,N) = HomS (M,N)G.
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Since |G| is coprime to char k, the functor (−)G is exact. Therefore, the derived functors
of HomS ∗G(−,−) are given by

Exti
S ∗G(M,N) = Exti

S (M,N)G (i ≥ 0).

Thus, we have the following.

Proposition 3.1.1. An S ∗G-module M is projective if and only if it is projective S -module.

Furthermore, the multiplication on S ∗G gives a ring homomorphism

ϕ : S ∗G → EndR(S ) (s · g 7→ (s′ 7→ sg(s′))).

The next theorem plays a crucial role in the future. This was first shown in [Aus1].
The precise proof is in [IT, Theorem 4.2], [LW, Theorem 5.12] or [Yos, (for d = 2)].

Theorem 3.1.2. Suppose that G ⊂ GL(d, k) contains no pseudo-reflections. Then the
morphism ϕ : S ∗G → EndR(S ) is an isomorphism.

The next theorem plays an important role. This was proved by M. Auslander in [Aus2]
for the two dimensional case. This kind of equivalence holds in more general situation.

Theorem 3.1.3. If G contains no pseudo-reflections, then the functor Ref(G, S )→ Ref(R)
(M 7→ MG) is an equivalence, where Ref(G, S ) is the category of reflexive (G, S )-modules
and Ref(R) is the category of reflexive R-modules. The quasi-inverse is N 7→ (S ⊗R N)∗∗.

The same functors give an equivalence ∗ Ref(G, S ) → ∗ Ref(R), where ∗ Ref(G, S ) is
the category of Z[1/p]-graded reflexive (G, S )-modules and ∗ Ref(R) is the category of
Z[1/p]-graded reflexive R-modules.

Proof. A (G, S )-module and an S ∗ G-module are one and the same thing. As a (G, S )-
module, S ∗ G and S ⊗k kG are the same thing, where kG is the group algebra (the left
regular representation) of G over k. So HomS (S ∗G, S ) � S ⊗k k[G] � S ⊗k kG � S ∗G,
where k[G] = (kG)∗ is the k-dual of kG (the left regular representation).

Let us denote by S ′ the R-module S with the trivial G-module structure. Note that
S ′ → (S ⊗k k[G])G given by s 7→ ∑

g∈G gs ⊗ eg is an isomorphism, where {eg | g ∈ G} is
the dual basis of k[G], dual to G, which is a basis of kG. Note that g′eg = eg′g.

For M ∈ Ref(G, S ), MG is certainly reflexive. Indeed, there is a presentation

(S ∗G)u → (S ∗G)v → M∗ → 0. (3.1.1)

Applying (−)G ◦ HomS (−, S ),

0→ MG → (S ′)v → (S ′)u

is exact. As it is easy to see that S ′ satisfies the (S 2)-condition as an R-module (that is,
for P ∈ Spec R, if depthRP

(S ′P) < 2, then S ′P is a maximal Cohen–Macaulay RP-module),
so is MG, and it is reflexive.

On the other hand, it is obvious that (S ⊗R N)∗∗ is a reflexive (G, S )-module, since it
is a dual of some S -finite (G, S )-module.
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Let u : N → ((S ⊗R N)∗∗)G be the map given by u(n) = λ(1 ⊗ n), where λ : S ⊗R N →
(S ⊗R N)∗∗ is the canonical map. We show that u is an isomorphism. To verify this, since
both N and ((S ⊗R N)∗∗)G are reflexive, it suffices to show that

uP : NP → (((S ⊗R N)∗∗)G)P � ((S P ⊗RP NP)∗∗)G

is an isomorphism for P ∈ Spec R with dim RP ≤ 1 (cf. [LW, Lemma 5.11]). Then NP is
a free module, and we may assume that NP = RP by additivity. This case is trivial.

Let ε : (S ⊗R MG)∗∗ → M be the composite

(S ⊗R MG)∗∗
a∗∗−−→ M∗∗

λ−1

−−→ M,

where a : S ⊗R MG → M is given by a(s ⊗ m) = sm. We show that ε is an isomorphism.
Since (S ⊗R MG)∗ and M are reflexive, it suffices to show that a∗ : M∗ → (S ⊗R MG)∗ is an
isomorphism. By the five lemma and the existence of the presentation of the form (3.1.1),
we may assume that M = S ⊗k k[G]. Then a∗ is identified with the map

S ∗G � (S ⊗k k[G])∗
a∗−→ (S ⊗R (S ⊗k k[G])G)∗ � (S ⊗R S ′)∗ � HomR(S ′, S ).

It is easy to see that this map is given by sg 7→ (s′ 7→ s(gs′)). This is an isomorphism by
Theorem 3.1.2.

As u and ε are isomorphisms, M 7→ MG and N 7→ (S ⊗R N)∗∗ are quasi-inverse each
other, and hence they are category equivalences.

The graded version is proved similarly.
□

3.2 Decomposition of Frobenius push-forward
As we saw in Example 2.4.4, an invariant subring R has FFRT. More precisely, we have
the following proposition.

Proposition 3.2.1 ([SVdB], Proposition 3.2.1). Let V0 = k,V1, · · · ,Vn be the full set
of non-isomorphic irreducible representations of G. We set Mi B (S ⊗k Vi)G (i =
0, 1, · · · , n). Then we see that R has finite F-representation type by the finite set {M0 �
R,M1, · · · , Mn}.

From this proposition, we can describe eR as follows.

eR � R⊕c0,e ⊕ M⊕c1,e
1 ⊕ · · · ⊕ M⊕cn,e

n . (3.2.1)

In this section, we show the uniqueness of the multiplicities. Firstly, we introduce the
notion of Frobenius twist (e.g. [Jan]).

Definition 3.2.2. For k-vector space V and e ∈ Z, we define k-vector space eV as follows

• eV is the same as V as an additive group;
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• the action of α ∈ k on eV is α · v = αpe
v.

An element v ∈ V, viewed as an element of eV, is sometimes denoted by ev. Thus α · ev =
e(αpe

v). By the composition G ↪→ GL(V)
ϕ→ GL(eV), eV is also a representation of G,

where ϕ is given by ϕ(g)(ev) = e(gv) for g ∈ G and v ∈ V. We call this representation the
Frobenius twist of V. Sometimes we denote this representation by V (−e).

Let v1, · · · , vd be a basis of V . For this basis, we suppose that a representation of G is
defined by

g · v j =

d∑
i=1

fi j(g)vi (g ∈ G, fi j : G → k).

Namely, a matrix representation of V is described by
(
fi j(g)

)
. Since k is an algebraically

closed field, the basis v1, · · · , vd also form a basis of eV , and the action of G on eV is
described as follows

g · ev j =
e(g · v j) = e(

d∑
i=1

fi j(g)vi) =
d∑

i=1

fi j(g)p−e
(evi).

From this observation, a matrix representation of the Frobenius twist eV is described by(
( fi j(g))p−e)

, that is, each component of the matrix representation of eV is the p−e-th power
of the original one.

In order to show the uniqueness of the multiplicities, we prove the following.

Proposition 3.2.3. For e ≥ 1, c0,e, · · · , cn,e ≥ 0, the following decompositions are equiv-
alent

(1) eR � M⊕c0,e
0 ⊕ M⊕c1,e

1 ⊕ · · · ⊕ M⊕cn,e
n as R-modules;

(2) eS � (S ⊗k V0)⊕c0,e ⊕ (S ⊗k V1)⊕c1,e ⊕ · · · ⊕ (S ⊗k Vn)⊕cn,e as (G, S )-modules;

(3) eS/meS � V⊕c0,e
0 ⊕ V⊕c1,e

1 ⊕ · · · ⊕ V⊕cn,e
n as G-modules;

(4) there exist αi j ∈ 1
qZ≥0 such that eS �

n⊕
i=0

ci,e⊕
j=1

(S ⊗k Vi)(−αi j)

as 1
qZ-graded (G, S )-modules;

(5) there exist αi j ∈ 1
qZ≥0 such that eR �

n⊕
i=0

ci,e⊕
j=1

Mi(−αi j)

as 1
qZ-graded R-modules.

Remark 3.2.4. A similar correspondence holds for more general situation up to the action
of the e-th Frobenius kernel of a group scheme [Has]. For the case of a finite group G, the
e-th Frobenius kernel of G is trivial. Thus, we may ignore it in our context.
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Proof of Proposition 3.2.3. The equivalence of (1) and (2), (4) and (5) follow from The-
orem 3.1.3, and (3) is obtained by applying (− ⊗S k) to (2). If we forget the grading from
(4), then we obtain (2).

(1)
3.1.3⇐⇒ (2)

⊗S k
=⇒ (3)~wwwww forget

grading

(4) ⇐⇒
3.1.3

(5)

So we will show (3) ⇒ (4). If we consider eS/meS as a 1
qZ-graded G-module, then

we can write
eS/meS �

n⊕
i=0

ci,e⊕
j=1

Vi(−αi j)

for some αi j ∈ 1
qZ≥0. Then as in the proof of [SVdB, Proposition 3.2.1], we have eS �

S ⊗k (eS/meS ), and (4) follows. □

Especially, the decomposition (3) appears in Proposition 3.2.3 is unique. Thus, we
obtain the next statement as a corollary.

Corollary 3.2.5. Each Mi is indecomposable and the multiplicities ci,e are determined
uniquely, and Mi � M j if i , j.

In Proposition 3.2.3 and Corollary 3.2.5, the condition “G contains no pseudo-reflections”
is essential. If G contains a pseudo-reflection, then there is a counter-example as follows.

Example 3.2.6. Let S = k[x, y] be a polynomial ring, where (char k, |G|) = 1. Set G =⟨
σ =

(
0 1
1 0

) ⟩
, that is G is a symmetric group S2, and, V0 = k,V1 = sgn are irreducible

representations of G. (Note that σ is a pseudo-reflection.) Then, R B S G � k[x + y, xy].
Since R is a polynomial ring, eR � R⊕p2e

. On the other hand,

M1 B (S ⊗k V1)G = { f ∈ S | σ · f = (sgn σ) f } = (x − y)R � R.

So eR also decompose as eR � M⊕p2e

1 . Therefore, the uniqueness doesn’t hold in this case.

3.3 Generalized F-signature of invariant subrings
For now, we considered the decomposition

eR � R⊕c0,e ⊕ M⊕c1,e
1 ⊕ · · · ⊕ M⊕cn,e

n ,

and showed the uniqueness of the multiplicity ci,e. Next we will consider the generalized
F-signature of Mi (with respect to R). Since an invariant subring R is strongly F-regular
and has FFRT, the limit s(Mi,R) = lim

e→∞

ci,e

pde exists and it is a positive rational number (see

Proposition 2.5.2). Especially, we can determine the explicit value of it as follows.
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Theorem 3.3.1. Let the notation be as above. Then for all i = 0, · · · , n one has

s(Mi,R) =
dimk Vi

|G| =
rankR Mi

|G| .

Remark 3.3.2. The second equation follows from dimk Vi = rankR Mi clearly.
The case that i = 0 is due to K. Watanabe and K. Yoshida (see Theorem 2.3.5). A

similar result holds for finite subgroup scheme of SL2 [HS, Lemma 4.10].

Remark 3.3.3. From this theorem, we can see that each indecomposable MCM R-modules
in the finite set {R,M1, · · · ,Mn} actually appear in eR as a direct summand for sufficiently
large e (see also [TY, Proposition 2.5]). In particular, {R,M1, · · · ,Mn} is the FFRT system
of R.

In order to prove this theorem, we introduce the notion of the Brauer character. In the
representation theory of finite groups over C, the character gives us very effective method
to distinguish each representation. But now, we are in a positive characteristic field k,
not in C. So the character in the original sense doesn’t work well. Therefore we have to
modify it for applying to our context. For this purpose, we introduce the Brauer character
(for more details, refer to some textbooks e.g. [CR], [Wei]).

As we assume that m := |G| is not divisible by p, there is a primitive mth root of unity
in k, and thus both µm(k) = {ω ∈ k× | ωm = 1} and µm(C) = {ω ∈ C× | ωm = 1} are the
cyclic groups of order m. Fix a group isomorphism Φ : µm(k)→ µm(C).

Definition 3.3.4. For a kG-module V, the Brauer character χV of V is the function χV :
G → C given by

χV(g) B
d∑

i=1

Φ(ωi) ∈ C (g ∈ G),

where ω1, · · · , ωd are the eigenvalues of g.

The following proposition is well-known for the original character over C. This kind
of formula also holds for the Brauer character.

Proposition 3.3.5. Let V,W be kG-modules and g ∈ G, then

(1) χV⊗W(g) = χV(g) · χW(g).
(2) χV⊕W(g) = χV(g) + χW(g).
(3) χV∗(g) = χV(g), where the bar denotes the conjugate of a complex number.
(4) χV(1G) = dimk V.

(5) dimk VG =
1
|G|

∑
g∈G

χV(g).

(6) dimk HomG(V,W) =
1
|G|

∑
g∈G

χV(g) · χW(g).
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Proof. The statements (1)–(4) follow easily from the definition. (6) follows from (1), (3),
and (5). So we only prove (5). If we show (5) for a particular choice of Φ, then (5) is
true for arbitrary choice, say Φ′, because we can write Φ′ = α ◦ Φ, where α is some
automorphism of Q(ω) over Q, where ω is a primitive mth root of unity in C. Let R be
the ring of Witt vectors over k. Note that R is a complete DVR (discrete valuation ring).
Let t be its uniformizing parameter. We identify R/tR with k. Let ω̄ be a fixed primitive
mth root of unity in k. By Hensel’s lemma, it is easy to see that ω̄ lifts to a primitive mth
root of unity in R uniquely, say to ω. Note that V is a kG-module, and hence is an RG-
module. Let VR → V be the projective cover as an RG-module, which exists (note that
RG is semiperfect). Note that VR/tVR = V , and VR is an R-free module of rank dimk V .

Let R0 = Z[ω] be the subring of R generated by ω. Then regarding R0 as a subring
of C, we have that χ̃V is a Brauer character of V , where χ̃V(g) = traceVR(g) (the trace

makes sense, since VR is a finite free R-module). Let γ =
1
|G|

∑
g∈G

g ∈ RG. Then it

is easy to see that γ is a projector from any RG-module M to MG. In particular, the
G-invariance (−)G is an exact functor on the category of RG-modules. It follows that
VG = (VR/tVR)G � VG

R /tV
G
R = k⊗R VG

R . Let U := (1−γ)VR. Then VR = VG
R ⊕U, and γ is the

identity map on VG
R and zero on U. So

1
|G|

∑
g∈G

χ̃V(g) = traceVR(γ) = rankR VG
R = dimk VG.

This is what we wanted to prove. □

So we are now ready to prove Theorem 3.3.1.

Proof of Theorem 3.3.1. Firstly, there is e0 ≥ 1 such that the group ring Fq0G is isomor-
phic to the direct product of total matrix rings over Fq0 , where q0 = pe0 . Namely,

Fq0G � Matr1(Fq0) × · · · ×Matrm(Fq0), (r1, · · · , rm ∈ N).

Since the component of matrix representation of the Frobenius twist is p−e-th power of
the original one, so if we take an appropriate basis, then any component of matrix repre-
sentation is in the finite field Fq0 . Thus, if e = e0t, then we can consider eM � M for any
G-module M.

Since we know the existence of the limit, it suffices to show the subsequence { ci,e0t

pde0t }t∈N
converge on (dimk Vi)/|G|. So we prove

lim
t→∞

ci,e0t

pde0t =
dimk Vi

|G| .

For e = e0t, we obtain eS/meS � e(S/m[q]) � S/m[q], and eS/meS is also isomorphic
to the finite direct sum of irreducible representations (cf. Proposition 3.2.3). By Proposi-
tion 3.3.5 (6), the multiplicity ci,e is described as follows.

ci,e = dimk HomG(Vi, S/m[q]) =
1
|G|

∑
g∈G

χVi(g) · χS/m[q](g).

Set g ∈ G and suppose that the order of g is m. Then there is a basis {x1, · · · , xd} of V
such that each xi is an eigenvector of g and we can write g · xi = ωixi with ωi = ω

δi for
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some 0 ≤ δi < m, where ω is a primitive m-th root of unity. In this situation

{xλ1
1 · · · x

λd
d | 0 ≤ λ1, . . . , λd < q} ⊂

(q−1)d⊕
l=0

Syml V

is a basis of S/m[q]. As each xλ1
1 · · · x

λd
d is an eigenvector of g with the eigenvalueωλ1

1 · · ·ω
λd
d ,

we have

χS/m[q](g) =
∑

0≤λ1,...,λd<q

Φ(ωλ1
1 · · ·ω

λd
d ) =

d∏
i=1

(1 + θi + · · · + θq−1
i ),

where θi B Φ(ωi).

(i) In case g = 1, by Proposition 3.3.5 (4),

χVi(g) · χS/m[q](g)
qd =

dimk Vi · qd

qd = dimk Vi.

(ii) In case g , 1, we may assume θd , 1. Then

∣∣∣∣∣∣ χVi(g) · χS/m[q](g)
qd

∣∣∣∣∣∣ ≤
∣∣∣χVi(g)

∣∣∣
qd

d−1∏
i=1

(|1| + |θi| + · · · + |θi|q−1) ·
∣∣∣∣∣∣1 − θq

d

1 − θd

∣∣∣∣∣∣
≤ dimk Vi

q
· 2
|1 − θd|

t→∞−−−→ 0.

The first inequation is obtained by applying the triangle inequality. Since |θi| ≤ 1, we can
obtain the second inequation.

From previous arguments, we may only discuss in case g = 1. Thus, we conclude

lim
e→∞

ci,e

qd = lim
e→∞

1
qd ·

1
|G|

∑
g∈G

χVi(g) · χS/m[q](g) =
dimk Vi

|G| .

□

The next corollary immediately follows from Theorem 2.5.4 and 3.3.1.

Corollary 3.3.6. Let the notation be as above. Then for all i, j = 0, · · · , n one has

s(Mi,M j) = (dimk V j) · s(Mi,R) =
(dimk Vi) · (dimk V j)

|G| =
(rankR Mi) · (rankR M j)

|G| .

30



Chapter 4

Auslander-Reiten theory

In this chapter, we restrict the case to d = 2. Thus, in the rest of this chapter, R is the
invariant subring of S = k[[x, y]] under the action of a finite subgroup G ⊂ GL(2, k) which
contains no pseudo-reflections and (|G|, char k) = 1. In this situation, R has a typical
property. Namely, R is of finite CM representation type (i.e. it has only finitely many
non-isomorphic indecomposable MCM modules) as we will see below. For more details,
see original papers [Aus2, Aus3, AR1, AR2] or some textbooks (e.g. [LW], [Yos]).

4.1 McKay correspondence
We start this section with the following theorem.

Theorem 4.1.1 ([Her]). Every indecomposable MCM R-module is a direct summand of
the R-module S . In particular, we have CM(R) = addR(S ) and R is of finite CM represen-
tation type.

By combining this theorem and Theorem 3.1.3, we have the following equivalence.
Note that a reflexive R-module is an MCM R-module because R is a two dimensional
normal domain.

Corollary 4.1.2 ([Aus2]). For an S ∗ G-module (= (G, S )-module) M, we consider the
functor proj S ∗ G → CM(R) (M 7→ MG). Then this functor gives an equivalence of
categories:

CM(R) � proj S ∗G.

Also, we note the relation between these objects and representations of G (see also
Proposition 3.2.3). Let V be a kG-module. Then we can define the functor mod(kG) →
proj S ∗G (V 7→ S ⊗k V) and this one has the left adjoint functor S/n ⊗S − where n is the
maximal ideal of S . Moreover these functors give a one to one correspondence between
the set of isomorphism classes of objects in mod(kG) and that of proj S ∗G. From these
results, we can see every indecomposable MCM R-module takes the form Mt B (S ⊗k Vt)G

where Vt is an irreducible representation of G.

Collectively, we could obtain the following correspondence.
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Corollary 4.1.3. Let G, S and R be the same as above. Then we have one to one corre-
spondences between

· indecomposable MCM R-modules;
· indecomposable projective S ∗G-modules;
· indecomposable projective EndR(S )-modules;
· irreducible representations of G.

Next, we restrict the case to a finite subgroup G ⊂ SL(2, k) and |G| is invertible in
k. Note that G automatically contains no pseudo-reflections in this situation. It is well
known that a finite subgroup of SL(2, k) is conjugate to one of the following finite groups
(e.g. [Yos, Chapter 10]):

(An) : the cyclic group of order n + 1 (n ≥ 1)

Cn+1 B ⟨
(
ζn+1 0

0 ζ−1
n+1

)
⟩

(Dn) : the binary dihedral group of order 4(n − 2) (n ≥ 4)

Dn−2 B ⟨ C2(n−2),

(
0 ζ4

ζ4 0

)
⟩

(E6) : the binary tetrahedral group of order 24

T B ⟨ 1
√

2

(
ζ8 ζ3

8
ζ8 ζ7

8

)
, D2 ⟩

(E7) : the binary octahedral group of order 48

O B ⟨
(
ζ3

8 0
0 ζ5

8

)
, T ⟩

(E8) : the binary icosahedral group of order 120

I B ⟨ 1
√

5

(
ζ4

5 − ζ5 ζ2
5 − ζ3

5
ζ2

5 − ζ3
5 ζ5 − ζ4

5

)
,

1
√

5

(
ζ2

5 − ζ4
5 ζ4

5 − 1
1 − ζ5 ζ3

5 − ζ5

)
⟩

(4.1.1)

where ζn is a primitive n-th root of unity.

Then an invariant subring R is Gorenstein [Wat1] and called a rational double point
(or Du Val singularity, Kleinian singularity, ADE singularity and so on). In this situation,
we can see the connection between the above objects and geometric objects. Namely, let
π : X → Spec R be the minimal resolution of singularities and E B π−1(m) be the excep-
tional divisor where m is the maximal ideal of R. We decompose E =

∪r
i=1 Ei into irre-

ducible components. Then there exists a one to one correspondence between irreducible
exceptional curves and non-trivial irreducible representations. Thus, we also have a one
to one correspondence between irreducible exceptional curves and non-free indecompos-
able objects in Corollary 4.1.3. This beautiful phenomenon was first observed in [McK]
and after that many mathematician contributed to understand this kind of correspondence
(e.g. [GSV, AV, Esn, Knö]).

In order to mention more precise connections, we introduce the notion of the McKay
quiver.
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Definition 4.1.4 (McKay quiver). The McKay quiver of a finite subgroup G ⊂ GL(d, k) is
an oriented graph whose vertices are irreducible representations of G: {V0 � k,V1, · · · ,Vn}
and draw mi j arrows from Vi to V j. Here, mi j is the multiplicity of Vi in the decomposition
of V ⊗k V j into irreducible representations. Note that V is a natural representation of G.

Theorem 4.1.5. Let R = S G be a rational double point. Then the McKay quiver of
G ⊂ SL(2, k) coincides with the dual graph of the minimal resolution of singularity π :
X → Spec R after deleting the trivial vertex and replacing double arrows ⇆ by edges.
Furthermore, it takes a form of Dynkin diagrams of type ADE. (That is, the McKay quiver
of G takes a form of extended Dynkin diagrams.)

(An) • • • • •

•

(Dn) • • • •
~~~~

@@
@@

•

•

(E6) • • • • •

•

(E7) • • • • • •

•

(E8) • • • • • • •

We remark that this correspondence is no longer true if we consider a finite subgroup
G ⊂ GL(2, k), because the number of non-trivial irreducible representations (= that of
indecomposable MCM modules) is greater than or equal to that of irreducible exceptional
curves. But if we consider a part of irreducible representations (resp. indecomposable
MCM modules) so-called irreducible special representations (resp. indecomposable spe-
cial CM modules), then we again have a one to one correspondence. This one is called
the special McKay correspondence and we will discuss it in subsection 5.2.1.

4.2 Auslander-Reiten quiver
Let V0 = k,V1, · · · ,Vn be the full set of non-isomorphic irreducible representations of G.
In the previous section, we showed that an invariant subring R is of finite CM represen-
tation type and finitely many indecomposable MCM R-modules are Mt = (S ⊗k Vt)G for
t = 0, 1, · · · , n. That is,

CM(R) = addR(R ⊕ M1 ⊕ · · · ⊕ Mn).

In this chapter, we investigate the structure of this category CM(R).
So keeping the above notations.
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Definition 4.2.1 (Auslander-Reiten sequence). Let R be the same as above and M,N be
indecomposable MCM R-modules. We call a non split short exact sequence

0→ N
f→ L

g→ M → 0

the Auslander-Reiten (= AR) sequence (or almost split sequence) ending in M (or starting
at N) if for all MCM modules X and for any morphism φ : X → M which is not a split
surjection there exists ϕ : X → L such that φ = g ◦ ϕ.

Since R is an isolated singularity, the AR sequence ending in Mt = (S ⊗k Vt)G (t , 0)
actually exists where Mt is a non-free indecomposable MCM R-module [Aus2]. It is
unique up to isomorphism. In our situation, the AR sequence constructed by the Koszul
complex over S and a natural representation V of G as follows. Firstly, let

0 −→ S ⊗k ∧2V −→ S ⊗k V −→ S −→ k −→ 0,

be the the Koszul complex over S . This is also an exact sequence of S ∗G-modules. By
applying − ⊗k Vt, we have

0 −→ S ⊗k (∧2V ⊗k Vt) −→ S ⊗k (V ⊗k Vt) −→ S ⊗k Vt −→ Vt −→ 0.

Furthermore, we apply the functor (−)G. (Note that this functor is exact in our situation.)
Then we obtain the following sequence and this is just the AR sequence ending in Mt

In the case of t , 0, the AR sequence ending in Mt is

0 −→ (S ⊗k (∧2V ⊗k Vt))G −→ (S ⊗k (V ⊗k Vt))G −→ Mt = (S ⊗k Vt)G −→ 0.

In the case of t = 0, there exists the following sequence

0 −→ ωR = (S ⊗k ∧2V)G −→ (S ⊗k V)G −→ R = S G −→ k −→ 0.

This sequence is called the fundamental sequence of R.
We call the left term of these sequences the Auslander-Reiten translation and denote

by τ(Mt). On the other hand, we denote the right term of the AR sequence starting at
Mt by τ−1Mt. In general, the AR translation is obtained be the following fashion. Take

a presentation of Mt by free modules: R⊕b f−→ R⊕a → Mt → 0. We define Tr Mt B
Coker HomR( f ,R). Then we have

τ(Mt) � HomR(Ωd Tr Mt, ωR).

Since dim R = 2 in our situation, it is easy to see M∗t � Ω
2 Tr Mt. Thus, the AR translation

τ is obtained via the functors

τ : CM(R)
(−)∗−→ CM(R)

(−)∨−→ CM(R).

On the other hand, we also have τ(Mt) � (Mt ⊗R ωR)∗∗ (see [Aus2]).

Next, we introduce the notion of irreducible morphism.
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Definition 4.2.2 (Irreducible morphism). Suppose M and N are MCM R-modules. We
decompose M and N into indecomposable modules as M = ⊕iMi, N = ⊕ jN j. Also, we
decompose ψ ∈ HomR(M,N) along the above decomposition as ψ = (ψi j : Mi → N j)i j.
Then we define submodule radR(M,N) ⊂ HomR(M,N) as

ψ ∈ radR(M,N)⇐⇒ no ψi j is an isomorphism.

Furthermore, we define submodule rad2
R(M,N) ⊂ HomR(M,N). The submodule rad2

R(M,N)
consists of morphisms ψ : M → N such that ψ decomposes as ψ = f g,

M
ψ //

f   A
AA

N

X
g
??~~~

where X is an MCM R-module, f ∈ radR(M, X), g ∈ radR(X,N). We say that a morphism
ψ : M → N is irreducible if ψ ∈ radR(M,N) \ rad2

R(M,N). In this setting, we define the
k-vector space IrrR(M,N) as

IrrR(M,N) B radR(M,N)
/

rad2
R(M,N).

We are now ready to define the AR quiver.

Definition 4.2.3 (Auslander-Reiten quiver). The AR quiver of R is an oriented graph
whose vertices are indecomposable MCM R-modules {R,M1, · · · ,Mn} and draw dimk IrrR(Ms,Mt)
arrows from Ms to Mt (s, t = 0, 1, · · · , n).

Remark 4.2.4. Sometimes we connect the vertex Mt to τ(Mt) by a dotted line. In this
thesis, we don’t use this manner.

Let EMt be the middle term of the AR sequence ending in Mt for t = 1, · · · , n. Then it
is known that dimk IrrR(Ms,Mt) is equal to the multiplicity of Ms in the indecomposable
decomposition of EMt . So we describe the AR quiver from the structure of AR sequences.
From the construction of the AR sequence and a one to one correspondences in the previ-
ous section, we have the following.

Theorem 4.2.5 ([Aus2]). Let G and R be as above. Then the AR quiver of R coincides
with the McKay quiver of G.

So we can describe the AR quiver of R from representations of G. Note that finite
subgroups of GL(2, k) which contain no pseudo-reflections are classified in [Bri] and their
McKay quiver (equivalently AR quiver) are described in [AR1]. As we mentioned, if G
is a finite subgroup of SL(2, k), then the associated quivers take the form of extended
Dynkin diagrams (see also the beginning of Section 5.4). In the next chapter, we will give
many examples of these quivers.
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Chapter 5

Dual F-signature of Cohen-Macaulay
modules

From now, we investigate the notion of the dual F-signature (see Section 2.6). As we saw
in Theorem 2.6.3, the value of s(R) and s(ωR) characterize some singularities. Now we
have some questions. Let M be a finitely generated R-module which may not be R or ωR.
Then

· Does the value of s(M) contain any information about singularities ?
· What does the explicit value of s(M) mean ?
· Is there any connection between s(M) and other numerical invariants ?

It is difficult to answer these questions for now, because the value of the dual F-
signature is not known and we don’t have effective method for determining it except in
only a few cases. In this chapter, we will determine the value of the dual F-signature
for certain MCM modules over quotient surface singularity. Therefore, in the rest of this
chapter, we suppose that G is a finite subgroup of GL(2, k) which contains no pseudo-
reflections and S B k[[x, y]] be the power series ring. We assume that the order of G is
coprime to p = char k. We denote the invariant subring of S under the action of G by
R B S G. Let V0 = k,V1, · · · ,Vn be the complete set of irreducible representations of G
and set the indecomposable MCM R-modules Mt B (S ⊗k Vt)G (t = 0, 1, · · · , n) as in
Chapter 4. We will consider the dual F-signature of Mt.

By the definition of the dual F-signature, we should understand the following topics:

(1) The structure of eMt, namely

· What kind of MCM appears in eMt as a direct summand?
· The asymptotic behavior of eMt on the order of p2e.

(2) How do we construct a surjection eMt ↠ M⊕be
t efficiently ?

We could understand (1) by Theorem 3.3.1 and Corollary 3.3.6. As we saw in the
previous chapter, it is well known that R is of finite CM representation type, that is, it has
only finitely many non-isomorphic indecomposable MCM R-modules {R,M1, · · · ,Mn}.
As Corollary 3.3.6 shows, every indecomposable MCM R-modules appear in eMt as a
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direct summand for sufficiently large e ≫ 0. Therefore, the additive closure addR(eMt)
coincides with the category of MCM R-modules CM(R). So we can apply Auslander-
Reiten theory to addR(eMt). Especially, we will use the AR quiver to construct a surjection
eMt ↠ M⊕be

t . By using it, we visualize relations among MCM R-modules and construct
a surjection efficiently and can determine the value of the dual F-signature for a certain
MCM module. This chapter is based on [Nak1] and [Nak2].

5.1 Counting argument of Auslander-Reiten quiver
From Nakayama’s lemma, when we discuss the surjectivity of eMt → M⊕b

t , we may
consider an MCM module Mt as a vector space after tensoring by the residue field k.
Thus, we investigate a basis of Mt/mMt, equivalently a set of minimal generators of Mt.

Let M be a non-free indecomposable MCM R-module. The number of minimal gen-
erator µR(M) is equal to dimk M/mM and

M � HomR(R,M)
∪

mM � {R
non split
→ R⊕m → M}

for some m ∈ N. From this observation, we identify a minimal generator of M with a
morphism from R to M which doesn’t factor through free modules except the starting
point. We will use this idea in sections below. We spend the rest of this section describing
such morphisms.

In order to find such morphisms, we define the stable category CM(R) as follows. The
objects of CM(R) are same as those of CM(R) and the morphism set is given by

HomR(X,Y) B HomR(X,Y)
/P(X,Y), X,Y ∈ CM(R)

where P(X,Y) is the submodule of HomR(X,Y) consisting of morphisms which factor
through a free R-module.

Assume that R is not isomorphic to ωR (� τR), that is, R is not Gorenstein. Let

0 −→ R
g−→ E

f−→ τ−1R −→ 0 (5.1.1)

be the AR sequence ending in τ−1R. For the morphism of functor category

HomR(τ−1R,−)
f ·−−→ HomR(E,−),

we define the covariant additive functor F : CM(R)→ A as the cokernel of ( f · −)

HomR(τ−1R,−)
f ·−−→ HomR(E,−) −→ F −→ 0,
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whereA is the category of abelian groups. It is easy to see Ker( f · −) = 0. By properties
of the AR sequence (5.3.1), any morphism R → M factors through E and g f = 0. Thus,
on the short exact sequence

HomR(τ−1R,M)
f ·−−→ HomR(E,M) −→ F(M) −→ 0,

the composition morphisms of R
g→ E and non-zero elements of F(M) are exactly what

we wanted.
Remark 5.1.1. In the case when R is Gorenstein, we use the fundamental sequence

0 −→ R −→ E
f−→ R −→ k −→ 0

instead of the AR sequence (5.3.1), and we obtain F(M) � HomR(E,M) by similar argu-
ments.

In order to find non-zero elements of F(M), we compute dimk F(M) = dimk HomR(E,M)−
dimk HomR(τ−1R, M). More precisely, we will find a k-basis of F(M). For this purpose,
the counting arguments of AR quiver plays a crucial role. This method first appeared in
the work of Gabriel [Gab] and it was also used for classifying special CM modules over
quotient surface singularities [IW]. For more details about the counting arguments of AR
quiver, see e.g. [Gab, Iya, IW, Wem2]. For simplicity, we give a brief review of this kind
of arguments in the form of algorithm as follows (cf. [Wem2, Section 4]).

1. In the AR quiver Q, we write a 1 (resp. −1) at the position corresponding to E (resp.
τ−1R). For every MCM R-module N, we define the following number

ν(0)
N B λ(0)

N B


1 if N = E,
−1 if N = τ−1R,
0 otherwise.

2. Next, we consider all arrows out of E in Q and call the head of these arrows the
first-step vertices of E. For every MCM R-module N, we set

λ(1)
N B

1 + ν(0)
N if N is a first-step vertex,

0 otherwise.

Then we define

ν(1)
N B

0 if N = R,
λ(1)

N otherwise.

For every first-step vertex N1, we put the number λ(1)
N1

on the corresponding vertex.

3. We consider all arrows out of the first-step vertices and call the head of these arrows
the second-step vertices. For every MCM R-module N, we set

λ(2)
N B


−ν(0)

τ(N) +
∑

L1→N

ν(1)
L1

if N is a second-step vertex,

0 otherwise.
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where L1 runs over all first-step vertices. Then we define

ν(2)
N B

0 if N = R,
λ(2)

N otherwise.

For every second-step vertex N2, we write the corresponding number λ(2)
N2

.

4. Then we consider all arrows out of the second-step vertices, and we call the head
of these arrows the third-step vertices. For every MCM R-module N, we set

λ(3)
N B


−ν(1)

τ(N) +
∑

L2→N

ν(2)
L2

if N is a third-step vertex,

0 otherwise.

where L2 runs over all second-step vertices. We set

ν(3)
N B

0 if N = R,
λ(3)

N otherwise.

For every third-step vertex N3, we write the corresponding number λ(3)
N3

.

5. Continuing with this process, we record the number λ(i)
N on each vertex N. Since R

is of finite CM representation type, we have λ(i)
N = 0 for some i ∈ N sooner or later.

Thus, we will stop there.

The number λ(i)
N means that there are λ(i)

N non-zero morphisms in F(N) for each
corresponding vertex N, and such morphisms consist a k-basis of F(N). Note that
we have dimk F(N) =

∑
i≥0 λ

(i)
N .

Example 5.1.2. Let G be the following finite group

G B ⟨
(
i 0
0 −i

)
,

(
0 i
i 0

)
,

(
ζ6 0
0 ζ6

)
⟩ ⊂ GL(2, k),

where ζ6 is a primitive 6-th root of unity. This group is isomorphic toD2 × Z3 where Z3 is
generated by the scalar matrix diag(ζ3, ζ3) and D2 is the binary dihedral group of order
8 (see also the beginning of Section 5.4). Note that this group is denoted by D5,2 in [Rie].
Then we have finitely many irreducible representations

Vi, j B Vi ⊗W j (i = 0, 1, · · · , 4, j = 0, 1, 2)

where W j is a irreducible representation of Z3 which represents diag(ζ3, ζ3) 7→ ζ
j
3 and Vi

is a that ofD2 associated to the extended Dynkin diagram
0 GG 3

2
ww
GG

1
ww

4

and set the indecom-

posable MCM module Mi, j B (S ⊗k Vi, j)G. The AR quiver of k[[x, y]]G is the following
(for simplicity we only describe subscripts as vertices);
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where the left and right hand sides are identified and the vertex (0, 0) represents R (for
more details, see [AR1]). In this case, we can see that E = M2,2, τ

−1R = M0,1. (Check the
notation used in the above algorithm.) By applying the counting argument to this quiver,
we have the following.
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Continuing with this process, finally we get to the following picture.
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By extracting non-zero paths from the above quiver, we have the Figure 5.1 where the
exponent of each vertex implies the multiplicity.

Thus, we can identify minimal generators of Mi, j with non-zero paths from R to Mi, j

on Figure5.1. For example, M1,1 has two minimal generators associated to the following
two paths.
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Figure 5.1: The composition R→ M2,2 and non-zero elements of Hom(M2,2,−)
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In other words, a minimal generator of R (i.e. a unit of R) generates those of M1

by chasing the above paths. Of course, there are several paths from R to M1,1 not only
the above ones. Since the AR quiver has relations originated from AR sequences, they
generate the same minimal generator up to modulo radical. Furthermore, composing
the irreducible morphism M1,1 → M2,0 and the above paths, we have a part of minimal
generators of M2,0.

We will use this technique in Section 5.3 and 5.4.

5.2 Dual F-signature of special Cohen-Macaulay mod-
ules

In order to investigate properties of the dual F-signature for the case where quotient sur-
face singularities. We will introduce a certain class of MCM modules “so-called special
CM modules”. As we will mention below, special CM modules are compatible with
geometry as the special McKay correspondence. In the this section, we will compare
the dual F-signature of special CM modules with its AR translation. It will give us a
characterization of Gorensteiness (see Proposition 5.2.6). This is an analogue of Theo-
rem 2.6.3 (2), (3).

5.2.1 Special McKay correspondence
Special CM modules appear when we try to extend the classical McKay correspondence
to a finite subgroup G ⊂ GL(2, k). For a finite subgroup G ⊂ SL(2, k), the original McKay
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correspondence says that there is a one-to-one correspondence between non-free inde-
composable MCM R-modules (equivalently, non-trivial irreducible representations of G)
and irreducible exceptional curves on the minimal resolution of Spec R (see Chapter 4).
This brilliant correspondence collapse if we consider a finite subgroup G ⊂ GL(2, k). In-
deed, we have more indecomposable MCM modules than exceptional curves. So J. Wun-
ram introduced the notion of special CM modules. By choosing indecomposable spe-
cial ones from all MCM modules, we again have a one-to-one correspondence between
non-free indecomposable “special” MCM R-modules and irreducible exceptional curves
[Wun2] (see Theorem 5.2.4). For more details, see also [Wun1, Wun2, Ish, Ito, Rie] etc.
Let us recall the definition of special CM modules.

Definition 5.2.1 ([Wun2]). For an MCM R-module M, we say M is special if (M ⊗R

ωR)
/

tor is also an MCM R-module.

Remark 5.2.2. From the definition, if R is Gorenstein (i.e. G ⊂ SL(2, k) [Wat1]), then
every MCM module is special. Thus, the original McKay correspondence is recovered
from the special one.

Definition 5.2.1 is the original one. There are now several characterizations of special
CM modules. For example, the following conditions are manageable in our context.

Proposition 5.2.3. ([IW, 2.7 and 3.6]) Suppose that M is an MCM R-module. Then the
following are equivalent.

(a) M is a special CM module,
(b) Ext1

R(M,R) = 0,
(c) (ΩM)∗ � M.

Suppose M is a special CM R-module, then we have the following exact sequence by
the condition (c).

0→ M∗ � ΩM → R⊕µR(M) → M → 0.

Thus, we have µR(M) = 2 rankR M. The converse is true if rankR M = 1 (cf. [Wun2,
Theorem 2.1] [GOTWY2, Lemma 4.6]). If rankR M > 1, the converse is no longer true
(cf. Example 6.2.5 and [IW]). As we will see later, every MCM modules over cyclic
quotient surface singularities has rank one. Thus, the structure of a special CM module is
quite simple. (More precise description is given in Theorem 5.3.3.)

As we mentioned, special CM modules are compatible with the geometry. Thus we
will introduce terminologies in the geometric side and show the relationship between
special CM modules and geometrical objects.

Let π : X → Spec R be the minimal resolution of singularities and E B π−1(m) be the
exceptional divisor. We decompose E =

∪r
i=1 Ei into irreducible components and define

the set of cycles supported on E:

C =
 r∑

i=1

aiEi | ai ∈ Z
 .

Also, we can impose a partial order ≤ on C. That is, Z ≤ Z′ if every coefficient of Ei

in Z′ − Z is non-negative (Z,Z′ ∈ C). We say a cycle Z =
∑r

i=1 aiEi is positive if Z ≥ 0
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and Z , 0. (So we denote it by Z > 0.) We call a positive cycle Z =
∑r

i=1 aiEi anti-nef
if Z · Ei ≤ 0 for all i = 1, · · · , r. Here, Z · Z′ means the intersection number of Z and
Z′ (Z,Z′ ∈ C). If Z = Z′, the self-intersection number of Z is denoted by Z2. We define
the fundamental cycle Z0 as the unique smallest element of anti-nef cycles. There is an
algorithm to determine Z0 by [Lau].

The following is famous as the special McKay correspondence.

Theorem 5.2.4 ([Wun2]). For any i, there is a unique indecomposable MCM R-module
Mi (up to isomorphism) such that H1(M̃i

†
) = 0 and c1(M̃i) · E j = δi j for 1 ≤ i, j ≤ r

where M̃i = π∗(Mi)/ tor and c1(M̃i) stands for the first Chern class of M̃i and (−)† =
HomOX (−,OX). These MCM modules M1, · · · ,Mr are precisely indecomposable non-free
special CM modules in the sense of Definition 5.2.1 and rankR Mi = c1(M̃i) · Z0.

5.2.2 Comparing with Auslander-Reiten translation
Before moving to the comparison between the dual F-signature of a special CM module
and that of its AR translation, we prepare the following lemma.

Lemma 5.2.5. Let Mt be an MCM R-module as in the beginning of this chapter. Then we
have

eMt ≈ (R⊕d0,t ⊕ M⊕d1,t
1 ⊕ · · · ⊕ M⊕dn,t

n )⊕
p2e
n ≈ eτ(Mt) (5.2.1)

on the order of p2e, where di,t = (rankR Mt)·(rankR Mi) and τ stands for the AR translation.
Furthermore, we have

R⊕d0,t ⊕ M⊕d1,t
1 ⊕ · · · ⊕ M⊕dn,t

n � τ(R)⊕d0,t ⊕ τ(M1)⊕d1,t ⊕ · · · ⊕ τ(Mn)⊕dn,t .

Proof. From Corollary 3.3.6, we may consider as

eMt ≈ (R⊕d0,t ⊕ M⊕d1,t
1 ⊕ · · · ⊕ M⊕dn,t

n )⊕
p2e
n ,

eτ(Mt) ≈ (R⊕d′0,t ⊕ M
⊕d′1,t
1 ⊕ · · · ⊕ M

⊕d′n,t
n )⊕

p2e
n ,

where d′i,t = (rankR τ(Mt)) · (rankR Mi). Since rankR Mt = rankR τ(Mt), it follows that
di,t = d′i,t (i = 0, 1, · · · , n). This implies (5.2.1).

Since the AR translation τ gives a bijection from the set of finitely many indecom-
posable MCM R-modules to itself, we set τ(Mi) = Mσ(i) (i = 0, 1, · · · , n), where σ is an
element of symmetric group Sn+1. Then we have

R⊕d0,t ⊕ M⊕d1,t
1 ⊕ · · · ⊕ M⊕dn,t

n � M⊕dσ(0),t

σ(0) ⊕ M⊕dσ(1),t

σ(1) ⊕ · · · ⊕ M⊕dσ(n),t

σ(n) ,

and

dσ(i),t = (rankR Mt) · (rankR Mσ(i)) = (rankR Mt) · (rankR τ(Mi))
= (rankR Mt) · (rankR Mi) = di,t.

Thus,

M⊕dσ(0),t

σ(0) ⊕ M⊕dσ(1),t

σ(1) ⊕ · · · ⊕ M⊕dσ(n),t

σ(n) = τ(R)⊕d0,t ⊕ τ(M1)⊕d1,t ⊕ · · · ⊕ τ(Mn)⊕dn,t .

□
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Theorem 5.2.6. Suppose Mt is an indecomposable special CM R-module. Then we have

s(Mt) ≤ s(τ(Mt)).

Moreover, R is Gorenstein if and only if s(Mt) = s(τ(Mt)).

Remark 5.2.7. Since τ(R) � ωR in our situation, this theorem is an analogue of Theo-
rem 2.6.3 (2), (3). But it says that this characterization is obtained by not only the com-
parison between R and ωR but also the comparison between a special CM module and its
AR translation.

Proof. From Lemma 5.2.5, we may consider as

eMt ≈ eτ(Mt) ≈ (R⊕d0,t ⊕ M⊕d1,t
1 ⊕ · · · ⊕ M⊕dn,t

n )⊕
p2e
n

when we discuss the asymptotic behavior on the order of p2e, where di,t = (rankR Mt) ·
(rankR Mi). In the rest of this proof, we discuss on this setting and for simplicity we
identify eMt ≈ eτ(Mt) with R⊕d0,t ⊕ M⊕d1,t

1 ⊕ · · · ⊕ M⊕dn,t
n .

Since Mt is special, the morphism φ : Mt ⊗R ωR → (Mt ⊗R ωR)∗∗ is surjective. Let
be B be(Mt) be the e-th F-surjective number of Mt. Then there exists the surjection
eMt ↠ M⊕be

t . Applying the functor (− ⊗R ωR) and combining with φ, we obtain the
surjection

eMt ⊗R ωR −↠ (Mt ⊗R ωR)⊕be
φ⊕be

−↠ ((Mt ⊗R ωR)∗∗)⊕be � τ(Mt)⊕be . (5.2.2)

Since we consider as eMt � R⊕d0,t ⊕ M⊕d1,t
1 ⊕ · · · ⊕ M⊕dn,t

n , it follows that eMt ⊗R ωR �⊕n
i=0(Mi⊗RωR)⊕di,t and the surjection (5.2.2) induces the following commutative diagram.⊕n

i=0(Mi ⊗R ωR)⊕di,t // //

��

τ(Mt)⊕be

�
��(⊕n

i=0(Mi ⊗R ωR)⊕di,t
)∗∗

// (τ(Mt)⊕be
)∗∗

Thus, the morphism( n⊕
i=0

(Mi ⊗R ωR)⊕di,t
)∗∗
�

n⊕
i=0

τ(Mi)⊕di,t −↠ τ(Mt)⊕be

is also surjective. From Lemma 5.2.5, we obtain eτ(Mt) ≈
⊕n

i=0 τ(Mi)⊕di,t . Thus, there
exists the surjection eτ(Mt)↠ τ(Mt)⊕be . This implies s(Mt) ≤ s(τ(Mt)).

If R is Gorenstein, then Mt � τ(Mt). Thus s(Mt) = s(τ(Mt)) holds. So we shall show
the opposite direction. Assume that R is not Gorenstein. Since Mt is special, the number
of minimal generators of Mt is equal to u B 2 rankR Mt. Thus, there exists the surjection
R⊕beu ↠ M⊕be

t and induces the following commutative diagram.

eMt
// // M⊕be

t

R⊕beu

OO ;; ;;vvvvv
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Applying the functor (− ⊗R ωR)∗∗ to this commutative diagram, then we obtain the com-
mutative diagram.

eτ(Mt) ≈ (eMt ⊗R ωR)∗∗
ψ2 // τ(Mt)⊕be

ω⊕beu
R

OO

ψ1

44jjjjjjjjjjjjjj

Note that the morphism ψ1 is surjective because the surjection R⊕beu ↠ M⊕be
t induces

ω⊕beu
R

// //

�
��

(Mt ⊗R ωR)⊕be

⊕φ
����

((ωR)∗∗)⊕beu
ψ1

// ((Mt ⊗R ωR)∗∗)⊕be

and φ : Mt ⊗R ωR → (Mt ⊗R ωR)∗∗ is surjective, and this implies ψ2 is also surjective. On
the surjection

ω⊕beu
R −→ eτ(Mt) �

n⊕
i=0

τ(Mi)⊕di,t
ψ2−↠ τ(Mt)⊕be ,

the morphisms which go through R don’t contribute to construct a surjection by Nakayama’s
lemma. Thus,

n⊕
i=0

τ(Mi)⊕di,t
/
R⊕d0,t −↠ τ(Mt)⊕be

is also surjective. In addition to this surjection, we can construct the surjection

R⊕d0,t −↠ τ(Mt)⊕
d0,t

v ,

where v is the number of minimal generators of τ(Mt). This implies

be(τ(Mt)) ≥ be +
d0,t

v
> be,

where be(τ(Mt)) is the e-th F-surjective number of τ(Mt). Thus, s(τ(Mt)) > s(Mt). □

5.3 Dual F-signature for cyclic quotient singularities
Until now, we considered a special CM module in general situation and showed that the
dual F-signature of special CM modules has a typical property (see Theorem 5.2.6). In
this section, we focus on the case of cyclic quotient surface singularities. Especially we
will determine the explicit value of the dual F-signature for special CM modules.

Thus, we suppose that G is a cyclic group as follows.

G B ⟨ σ =
(
ζn 0
0 ζa

n

)
⟩,

where ζn is a primitive n-th root of unity, 1 ≤ a ≤ n − 1, and gcd(a, n) = 1 and assume
that n is invertible in k. This cyclic group G is denoted by 1

n (1, a). We will consider the
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invariant subring R = k[[x, y]]G under the action of this cyclic group G. Since G is an
abelian group, every irreducible representation of G is one dimensional and described as

Vt : σ 7→ ζ−t
n (t = 0, 1, · · · , n − 1).

We set,

Mt B (S ⊗k Vt)G =
⟨
xiy j

∣∣∣∣ i + ja ≡ t (mod n)
⟩
, (t = 0, 1, · · · , n − 1).

Then, these Mt are MCM modules over R and rank Mt = 1. Note that R is of finite CM

representation type and CM(R) = addR(R ⊕
n−1⊕
t=1

Mt) (see Chapter 4).

For a cyclic group G = 1
n (1, a), we can determine special CM modules by using

the following combinatorial data. As the first step, we consider the Hirzebruch-Jung
continued fraction expansion of n/a, that is,

n
a
= α1 −

1

α2 −
1

· · · − 1
αr

B [α1, α2, · · · , αr],

and then we define the notion of i-series and j-series (cf. [Wem1], [Wun1]).

Definition 5.3.1. For n/a = [α1, α2, · · · , αr], the i-series and the j-series are defined as
follows.

i0 = n, i1 = a, it = αt−1it−1 − it−2 (t = 2, · · · , r + 1),
j0 = 0, j1 = 1, jt = αt−1 jt−1 − jt−2 (t = 2, · · · , r + 1).

Remark 5.3.2. From the construction method, it is easy to see

· it ≡ jta (mod n),
· i0 = n > i1 = a > i2 > · · · > ir = 1 > ir+1 = 0,
· j0 = 0 < j1 = 1 < j2 = α1 < · · · < jr < jr+1 = n.

By using the i-series and the j-series, we can characterize special CM R-modules.

Theorem 5.3.3 ([Wun1]). For a cyclic group G = 1
n (1, a) with n/a = [α1, α2, · · · , αr],

Mit (t = 1, · · · , r) and R are precisely special CM modules over R. Furthermore, the
minimal generators of Mit are xit and y jt for t = 1, · · · , r.

From Theorem 5.2.4, there is a one-to-one correspondence between non-free inde-
composable special CM modules and irreducible exceptional curves. The dual graph of
the minimal resolution of singularity X → Spec(R) is also obtained by the Hirzebruch-
Jung continued fraction expansion:

Ei1 Ei2 EirGFED@ABC−α1 GFED@ABC−α2 · · · · · · GFED@ABC−αr

Here, an including number in each circle is the self-intersection number of the corre-
sponding exceptional curve. The fundamental cycle is Z0 =

∑r
t=1 Eit .
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Example 5.3.4. Let G = 1
7 (1, 3) be a cyclic group of order 7. The Hirzebruch-Jung

continued fraction expansion of 7/3 is

7
3
= 3 −

1
2 − 1/2

= [3, 2, 2],

and the i-series and the j-series are described as follows.

i0 = 7, i1 = 3, i2 = 2, i3 = 1, i4 = 0,
j0 = 0, j1 = 1, j2 = 3, j3 = 5, j4 = 7.

Thus, the special CM modules are R,M1,M2,M3 and these are described explicitly

R = k[[x7, x4y, xy2, y7]], M1 = Rx + Ry5, M2 = Rx2 + Ry3, and M3 = Rx3 + Ry.

Example 5.3.5. Suppose G = 1
n (1, n−1) ⊂ SL(2, k) is a cyclic group of order n (= Dynkin

type An−1). The Hirzebruch-Jung continued fraction expansion of n/(n − 1) is

n
n − 1

= 2 −
1

2 −
1

· · · − 1/2

= [2, 2, · · · , 2︸      ︷︷      ︸
n−1

],

and the i-series and the j-series are

i0 = n, i1 = n − 1, i2 = n − 2, · · · , in−1 = 1, in = 0,
j0 = 0, j1 = 1, j2 = 2, · · · , jn−1 = n − 1, jn = n.

Therefore, every MCM module is special (cf. Remark 5.2.2).

Also, we consider the AR quiver for the cyclic cases. For a cyclic quotient surface
singularity R, the AR sequence ending in Mt (t , 0) is

0 −→ Mt−a−1 −→ Mt−1 ⊕ Mt−a −→ Mt −→ 0. (5.3.1)

For the case where t = 0, we have the fundamental sequence of R;

0 −→ ωR −→ M−1 ⊕ M−a −→ R −→ k −→ 0. (5.3.2)

Thus, EMt = Mt−1 ⊕ Mt−a and τ(Mt) = Mt−a−1 for t = 0, 1, · · · , n − 1.

Remark 5.3.6. It is known that dimk IrrR(Ms,Mt) is equal to the multiplicity of Ms in the
decomposition of EMt . From (5.3.1) and (5.3.2), we have dimk IrrR(Mt−1,Mt) = 1 and
dimk IrrR(Mt−a,Mt) = 1 for t = 0, 1, · · · , n − 1. We can take a morphism ·x (resp. ·y) as a
basis of IrrR(Mt−1, Mt) (resp. IrrR(Mt−a,Mt)).

Mt−1 =
{

f ∈ S | σ · f = ζ t−1
n f

} ·x−→ Mt =
{

f ∈ S | σ · f = ζ t
n f

}
Mt−a =

{
f ∈ S | σ · f = ζ t−a

n f
} ·y−→ Mt =

{
f ∈ S | σ · f = ζ t

n f
}
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Example 5.3.7. Let G = 1
7 (1, 3) be a cyclic group of order 7. The irreducible representa-

tions of G are
Vt : σ 7→ ζ−t

7 (t = 0, · · · , 6),

where ζ7 is a primitive 7-th root of unity. Then the AR quiver of R = S G is the left figure
below. For simplicity, we only describe subscripts as vertices. We can rewrite the left one
as the form of the right one. (Here, the left and right columns are identified, moreover the
top and bottom row are identified.)

0

1

2

34

5

6

x

x

x

x

x

x

x
y

y

y

y
y

y

y

0 // 3 // 6 // · · · // 1 // 4 // 0

6

OO

// 2

OO

// 5

OO

// · · · // 0

OO

// 3

OO

// 6

OO

5

OO

// 1

OO

// 4

OO

// · · · // 6

OO

// 2

OO

// 5

OO

...

OO

...

OO

...

OO

...
...

OO

...

OO

...

OO

2

OO

// 5

OO

// 1

OO

// · · · // 3

OO

// 6

OO

// 2

OO

1

OO

// 4

OO

// 0

OO

// · · · // 2

OO

// 5

OO

// 1

OO

0

OO

// 3

OO

// 6

OO

// · · · // 1

OO

// 4

OO

// 0

OO

Remark 5.3.8. For each diagram
a // b

c

OO
// d

OO , if b , 0 then 0→ Mc → Ma⊕Md → Mb → 0 is

the AR sequence ending in Mb, and any diagram commutes
a

y //
⟲

b

c

x
OO

y
// d

x
OO from Remark 5.3.6.

Next, we will determine the explicit value of the dual F-signature for a special CM
module Mit . As we mentioned in the beginning of this chapter, we have to construct a
surjection eMit ↠ M⊕be

it
efficiently. For this purpose, we will pay attention to minimal

generators of each MCM modules. As we saw in Section 5.1, we identify a minimal
generator of Mit with a morphism from R to Mit which doesn’t factor through free modules
except the starting point. We can find such a path through the counting argument of the
AR quiver. Since the number of minimal generators of special CM R-module Mit is two
and minimal generators take a form like xit , y jt (cf. Theorem 5.3.3), we can see the
corresponding paths are of the form as in Figure 5.2. Here, there is no “0” in dotted
vertices area. By the above arguments, in order to construct the surjection eMit ↠ M⊕be

it
,

we may only discuss horizontal direction arrows from R to Mit and vertical direction
arrows from R to Mit . We consider sets of subscripts of vertices Ft = {0, 1, · · · , it − 1} and
Gt = {it − a, · · · , it − jta ≡ 0}. It is easy to see that |Ft| = it, |Gt| = jt.

To determine the dual F-signature of special CM R-modules, we prepare some nota-
tions and lemmas.

For the i-series (i1, · · · , ir) associated with 1
n (1, a) and any t ∈ Z≥0 with 0 ≤ t ≤ n − 1,
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GF EDGt

0 ≡ it − jta
y // it − ( jt − 1)a

y // · · · y // it − 2a
y // it − a

y // it

•

OO

// •

OO

// · · · // •

OO

// •

OO

// it − 1
x
OO

...

OO

...

OO

...
...

OO

...

OO

...

x
OO

•

OO

// •

OO

// · · · // •

OO

// •

OO

// 1
x

OO

•

OO

// •

OO

// · · · // •

OO

// •

OO

// 0
x
OO BC

ED
Ft

Figure 5.2

there are unique non-negative integers d1,t, · · · , dr,t ∈ Z≥0 such that

t = d1,ti1 + h1, h1 ∈ Z≥0, 0 ≤ h1 < i1;
hu = du+1iu+1 + hu+1, hu+1 ∈ Z≥0, 0 ≤ hu+1 < iu+1, (u = 1, · · · , r − 1);

hr = 0.

Thus, we can describe t as follows,

t = d1,ti1 + d2,ti2 + · · · + dr,tir,

and if a situation is clear, then we simply denote du,t by du. For such t, there is the unique
integer t̃ ∈ Z≥0 such that ãt ≡ t (mod n), 0 ≤ t̃ ≤ n − 1.

Lemma 5.3.9 ([Wun1]). Let t̃ be same as above. Then t̃ is described as

t̃ = d1,t j1 + d2,t j2 + · · · + dr,t jr,

where ( j1, · · · , jr) is the j-series associated with 1
n (1, a).

Lemma 5.3.10. Let the notation be same as above, then Ft∩Gt = {0} as a set of subscripts
of vertices.

Proof. It is trivial that 0 ∈ Ft ∩Gt by the definition of Ft and Gt. Thus, it suffices to show
there is no pair (m1,m2) ∈ Z2

>0 such that m1 ≡ m2a (mod n), where 1 ≤ m1 ≤ it − 1 and
1 ≤ m2 ≤ jt−1. Assume that there exists such a pair (m1,m2). Then there are non-negative
integers d1, · · · , dr such that m1 = d1i1+d2i2+ · · ·+drir. Since 1 ≤ m1 ≤ it−1 and it > it+1

(cf. Remark 5.3.2), d1 = · · · = dt = 0 and there exists λ such that t+ 1 ≤ λ ≤ r and dλ , 0.
From Lemma 5.3.9 we obtain m2 = d1 j1 + d2 j2 + · · · + dr jr. Thus,

m2 = dt+1 jt+1 + · · · + dr jr ≥ jλ > jt.

This contradicts m2 ≤ jt − 1. □
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So we are now ready to state the theorem.

Theorem 5.3.11. Let the notation be the same as above, then for any non-free special
CM R-module Mit one has

s(Mit) =


min(it, jt) + 1

n
(if it , jt)

2it + 1
2n

(if it = jt).

Proof. From Corollary 3.3.6, we may consider as

eMit ≈ (R ⊕ M1 ⊕ · · · ⊕ Mn−1)⊕
p2e
n .

Firstly, we shall show in the case of it > jt. If Gt \ {0} , ∅, then we choose an
element from Ft \ {0} (named it f ) and also choose an element from Gt \ {0} (named it g).
Note that f , g, from Lemma 5.3.10. By using the corresponding indecomposable MCM
R-modules M f and Mg, we construct a surjection M f ⊕ Mg ↠ Mit .

0 // · · · // g // · · · // it

...

OO

f

OO

...

OO

0

OO

Then we replace the set Ft \ {0, f } (resp. Gt \ {0, g}) by the set Ft \ {0} (resp. Gt \ {0}).
If Gt \ {0} , ∅, then we repeat a similar process for the sets Ft \ {0} and Gt \ {0}.
If Gt \ {0} = ∅, then we construct a surjection by combining 0 ∈ Gt and an element of

Ft \ {0}. Thus, we can obtain the total of |Gt| = jt surjections through these processes, and

there is the trivial surjection Mit ↠ Mit . So the dual F-signature of Mit is s(Mit) =
jt

n
+

1
n

.

Similarly, we obtain s(Mit) =
it

n
+

1
n

in the case of it < jt.
In the case of it = jt, we can obtain the total of it − 1 surjections by using a similar

process as above. We also obtain Ft \{0} = ∅ and Gt \{0} = ∅ at the same time. In addition
to these surjections, we construct

Mit ↠ Mit and R1/2 ⊕ R1/2 ↠ M1/2
it

Thus, the dual F-signature of Mit is

s(Mit) =
it − 1

n
+

1
n
+

1
2n
=

2it + 1
2n

.

□
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Example 5.3.12. Let the notation be as in Example 5.3.4. Then, the dual F-signature of
special CM modules are

s(M1) =
2
7
, s(M2) =

3
7
, s(M3) =

2
7
.

Next, we give an example in the case it = jt.

Example 5.3.13. Let G = 1
8 (1, 5) be a cyclic group of order 8. The Hirzebruch-Jung

continued fraction expansion of 8/5 is

8
5
= 2 −

1
3 − 1/2

= [2, 3, 2],

and the i-series and the j-series are described as follows.

i0 = 8, i1 = 5, i2 = 2, i3 = 1, i4 = 0,
j0 = 0, j1 = 1, j2 = 2, j3 = 5, j4 = 8.

Thus, special CM modules are R,M1,M2,M5. In this case, we have i2 = j2 and there
exists the surjection as follows.

0
y // 5

y // 2

1
x
OO

0
x
OO

M2 ↠ M2

M1 ⊕ M5 ↠ M2

R⊕1/2 ⊕ R⊕1/2 ↠ M⊕1/2
2

Thus, the dual F-signature of M2 is

s(M2) =
1
8
+

1
8
+

1
16
=

5
16
.

Example 5.3.14. Let G = 1
n (1, n − 1) ⊂ SL(2, k) be a cyclic group of order n, that is,

Dynkin type An−1. The Hirzebruch-Jung continued fraction expansion of n/(n − 1) is

n
n − 1

= 2 −
1

2 −
1

2 − · · ·

= [2, 2, · · · , 2︸      ︷︷      ︸
n−1

],

and the i-series and the j-series are described as follows,

i0 = n, i1 = n − 1, i2 = n − 2, · · · , in−1 = 1, in = 0,
j0 = 0, j1 = 1, j2 = 2, · · · , jn−1 = n − 1, jn = n.

Namely, it = n − t, jt = t (t = 1, 2, · · · , n − 1). As we mentioned in Remark 5.2.2, any Mt

is a special CM module and the dual F-signature of Mt is obtained by Theorem 5.3.11.

s(Mit) =



1
n
+

jt

n
=

t + 1
n

(if t < n
2 )

1
n
+

t − 1
n
+

1
2n
=

2t + 1
2n

(if t = n
2 )

1
n
+

it

n
=

n − t + 1
n

(if t > n
2 ).

About other Dynkin types (i.e. Dn, E6, E7, E8), see the next section.
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5.4 Dual F-signature for rational double points
In the previous section, we could obtain the value of the dual F-signature of each MCM
module over the rational double point corresponding to Dynkin type An−1 (Example 5.3.14).
In this section, we will determine the dual F-signature for other Dynkin types. Firstly, we
recall some well-known facts about two-dimensional rational double points (see Chap-
ter 4). We suppose that G is a finite subgroup of SL(2, k) and the order of G is coprime
to p = char k. Moreover, we can see that G contains no pseudo-reflections in this situa-
tion. As before, we denote the invariant subring of S B k[[x, y]] under the action of G
by R B S G and the maximal ideal of R by m. In this situation, an invariant subring R is
Gorenstein by [Wat1]. We call R (or equivalently Spec R) rational double points (or Du
Val singularities, Kleinian singularities, ADE singularities in the literature).

Then the AR quiver of R (= the McKay quiver of G) coincides with the extended
Dynkin diagram corresponding to the types of classification of G ⊂ SL(2, k) after replac-
ing each edges “ − ” by arrows “ ⇆ ”. Therefore the AR quiver of R is the left hand side
of the following:

0

''PP
PPP

PPP
PPP

PPP
PPP

PPP

wwooo
ooo

ooo
ooo

ooo
ooo

o 1

II
II

II
II

II
II

II
I

ooo
ooo

ooo
ooo

ooo
ooo

o

(An)

1 //

77ooooooooooooooooooo
2oo // 3 //oo oo // n − 2 //oo n − 1 //oo noo

ggPPPPPPPPPPPPPPPPPPPP
1 1 1 1 1 1

0
��>

>>
> n − 1

yysss
ss

1
>>

>>
1

��
��

(Dn) 2 //

__>>>>

����
��

3 //oo oo // n − 2oo

99sssss

%%LL
LLL

L 2 2 2

1

??����
n

eeLLLLLL
1

����
1

>>>>

0
��

1

(E6) 1

OO

��

2

5 // 3 //oo 2 //

OO

oo 4 //oo 6oo 1 2 3 2 1

7
��

2

(E7) 0 // 1 //oo 2 //oo 3 //

OO

oo 4 //oo 5 //oo 6oo 1 2 3 4 3 2 1

8
��

3

(E8) 0 // 1 //oo 2 //oo 3 //oo 4 //oo 5 //

OO

oo 6 //oo 7oo 1 2 3 4 5 6 4 2

where a vertex t corresponds the MCM R-module Mt and the right hand side of the
figure means rankR Mt. In this chapter, we will determine the value of the dual F-signature
for each MCM R-module Mt.

5.4.1 Key lemma for determining the dual F-signature
In order to investigate a surjection from eMt to a finite direct sum of some copies of
Mt, we will prepare a technical lemma. As we noted in the beginning of subsection 5.1,
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we may consider an MCM R-module Mt as a vector space. More precisely, let Mi,M j be
indecomposable MCM modules and suppose a morphism φi : Mi → M j is a non-zero path
appearing in the AR quiver after applying the counting argument. Then, Imφi constructs
part of minimal generators of M j. Therefore in the commutative diagram

Mi
φi //

��

M j

π

��
Vi B Im(φiπ) �

� // V j B M j/mM j,

we may consider Vi as a vector subspace of V j and take a injective morphism

Xi · 1Vi : Vi ↪→ V j (Xi ∈ k).

Now we prove the key lemma related to these vector spaces in more general settings
(Lemma 5.4.1). Let V be a d-dimensional k-vector space and fix a basis {v1, · · · , vd}.
Suppose W1, · · · ,Wr are subspaces of V (admit repetition) where dimk Wi = di ≤ d and
the basis of Wi is the part of {v1, · · · , vd}. Namely, we choose di elements from {v1, · · · , vd}
as the basis of Wi. Define the d × r table [ai j] associated with Wi’s as follows,

ai j =

1 (if vi is a basis of W j)
0 (if vi is not a basis of W j)

where i = 1, · · · , d and j = 1, · · · , r.

Lemma 5.4.1. Set n B min{∑r
j=1 ai j | i = 1, · · · , d } ≤ r, then there exists a surjection

W1 ⊕ · · · ⊕Wr −↠ V⊕n.

Proof. Firstly, we define a (dn) × (dr) matrix

C =


A(1)

1 A(1)
2 · · · A(1)

r

A(2)
1 A(2)

2 · · · A(2)
r

. . . . . . . . . . . . . . . . . . . . .

A(n)
1 A(n)

2 · · · A(n)
r


where A(α)

j (1 ≤ α ≤ n, 1 ≤ j ≤ n) is a d × d diagonal matrix as follows.

A(α)
j = X(α)

j


a1 j

a2 j
. . .

an j

 , where X(α)
j ∈ k.

Especially, we can take X(α)
j (1 ≤ α ≤ n, 1 ≤ j ≤ n) as algebraically independent

variables. Note that for the vector space V⊕n = V (1) ⊕ · · · ⊕ V (n) where V (α) � V and

linear morphisms W j

·X(α)
j
↪→ V (α), the matrix C = (cst) is a representation matrix of φ :
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W1⊕ · · · ⊕Wr −→ V⊕n. Thus, φ is surjective if and only if there exists a nonzero dn-minor
of C. From now on, we construct such a dn-minor.

For this purpose, we choose dn columns which are distinct from each other from C
and consider a sequence (t1, t2, · · · , tdn) where 1 ≤ t1, · · · , tdn ≤ dn are column numbers.
From a sequence (t1, t2, · · · , tdn) of C, we obtain the monomial in a natural fashion,

(t1, t2, · · · , tdn) 7→
dn∏
s=1

cs,ts ∈ Mon(X(α)
j | 1 ≤ j ≤ r, 1 ≤ α ≤ n)

where Mon(X(α)
j ) is the monomial set of k[X(α)

j ]. We say a sequence (t1, t2, · · · , tdn) is chain
if the corresponding monomial is not zero, and we impose the lexicographic order

X(1)
1 > · · · > X(1)

r > X(2)
1 > · · · > X(2)

r > · · · > X(n)
1 > · · · > X(n)

r (5.4.1)

on Mon(X(α)
j ).

From now on, we consider the chain of C constructed from the following algorithm.

(Step1) For the d × r table [ai j], if there is a number i such that ai j = 0 for all j = 1, · · · , r,
then we stop this operation (Namely, if n = 0 then we stop here). Otherwise, we set

j(1)
1 B min{ j | a1 j = 1} and t1 B 1 + ( j(1)

1 − 1)d.

After that, we replace the number a1, j(1)
1
= 1 by 0.

Similarly, we set

j(1)
2 B min{ j | a2 j = 1} and t2 B 2 + ( j(1)

2 − 1)d,

and replace a2, j(1)
2
= 1 by 0.

...

We set
j(1)
d B min{ j | ad j = 1} and td B d + ( j(1)

d − 1)d,

and replace ad, j(1)
d
= 1 by 0, then we stop (Step1) here.

•
•
•

(Step α) For the d × r table [ai j], if there is a number i such that ai j = 0 for all j = 1, · · · , r,
then we stop this operation (Namely, if α > n, then we stop here). Otherwise, we
set

j(α)
1 B min{ j | a1 j = 1} and td(α−1)+1 B 1 + ( j(α)

1 − 1)d.

replace a1, j(α)
1
= 1 by 0.
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...

We set
j(α)
d B min{ j | ad j = 1} and td(α−1)+d B d + ( j(α)

d − 1)d,

and replace ad, j(α)
d
= 1 by 0, then we stop (Step α) here.

•
•
•

(repeat this process up to Step n)

By the definition of the number n, we can repeat this process up to (Step n). After
that, we have ai1 = · · · = air = 0 for some i. Therefore, we stop this algorithm.

From the above operation, we obtain the sequence (t1, t2, · · · , tdn) and this sequence is
clearly a chain by the construction method. Finally, we prove the following Claim 5.4.2
and complete the proof of Lemma 5.4.1. □

Claim 5.4.2. The dn-minor [t1, t2, · · · , tdn] of C is non-zero.

Proof. Define dn × dn-matrix D = (dst) by choosing the columns t1, t2, · · · , tdn from C.
By the definition of determinant

[t1, t2, · · · , tdn] = det D =
∑
σ∈Sdn

(sgnσ)d1,σ(1) · · · ddn,σ(dn),

where Sdn is a symmetric group of degree dn. From the selecting method of t1, · · · , tdn,
the monomial 0 ,

∏dn
s=1 cs,ts appears in the monomial set {d1,σ(1) · · · ddn,σ(dn)}σ∈Sdn and it is

the unique maximal element with respect to the lexicographic order (5.4.1). Furthermore,
the algebraically independence of X(α)

j s implies det D , 0. □

Example 5.4.3. Let V be a 3-dimensional vector space over k and fix a basis {v1, v2, v3}.
Consider subspaces of V ;

W1 =< v1, v2 >, W2 =< v2, v3 >, W3 =< v1 >, W4 =< v1, v3 > .

[ai j] =
W1 W2 W3 W4

v1 1 0 1 1
v2 1 1 0 0
v3 0 1 0 1

By Lemma 5.4.1, we have a surjection W1 ⊕W2 ⊕W3 ⊕W4 ↠ V⊕2.
Note that (t1, · · · , t6) = (1, 2, 6, 7, 5, 12) and

∏6
s=1 cs,ts is just the product of underlined

entries of C.

C =



X(1)
1 0 X(1)

3 X(1)
4

X(1)
1 X(1)

2 0 0

0 X(1)
2 0 X(1)

4

X(2)
1 0 X(2)

3 X(2)
4

X(2)
1 X(2)

2 0 0

0 X(2)
2 0 X(2)

4


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5.4.2 Computations of the dual F-signature
From Corollary 3.3.6, we may consider as

eMt ≈ (R⊕d0,t ⊕ M⊕d1,t
1 ⊕ · · · ⊕ M⊕dn,t

n )⊕
p2e
|G| ,

where di,t = (rankR Mt) · (rankR Mi). When we try to determine the dual F-signature, the
part of o(p2e) is harmless. Therefore, we identify eMt with R⊕d0,t/|G| ⊕ M⊕d1,t/|G|

1 ⊕ · · · ⊕
M⊕dn,t/|G|

n and sometimes omit |G|−1 for simplicity.
For reasons of showing the ratio of s(Mt) to |G| clearly, we don’t reduce a fraction.
In order to determine the value of the dual F-signature, we need understand the paths

which generate minimal generators by applying the counting argument of AR quiver. As
the counting argument written below shows, the number of minimal generators of Mt is
equal to mt B 2 rankR Mt (see also [Wun2, Theorem 1.2]). We denote minimal generators
of Mt by gt,1, gt,2, · · · , gt,mt and assume deg gt,1 ≤ deg gt,2 ≤ · · · ≤ deg gt,mt .

5.4.3 Type An

We saw the dual F-signature of An type in Example 5.3.14 as follows.

s(Mt) =



t + 1
n + 1

(if t < n+1
2 )

2t + 1
2(n + 1)

(if t = n+1
2 )

n − t + 2
n + 1

(if t > n+1
2 ).

5.4.4 Type Dn

Firstly, we show a method for determining the dual F-signatures in the case of type D5 as
an example. This method also applied to other cases afterward.

Example 5.4.4. The binary dihedral group G B D3 = ⟨
(
ζ6 0
0 ζ−1

6

)
,

(
0 ζ4
ζ4 0

)
⟩ is the type

D5 in the list (4.1.1) and |G| = 12. For the invariant subring under the action of G, the
AR quiver takes the form as follows:

0
a

!!B
BB

BB
B 4

D}}||
||
||

2
C //A

aaBBBBBB

B~~||
||
||

3
c

oo

d
==||||||

e

  B
BB

BB
B

1

b
>>||||||

5
E

``BBBBBB

and it has the relations:
aA = 0, cC + dD + eE = 0,
bB = 0, Dd = 0,
Aa + Bb +Cc = 0, Ee = 0.

(5.4.2)
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Rewriting this quiver as a repetition of the original one shown in dotted areas. Namely,
we associate the translation quiver ZD5. (The meaning of ZD5, see [Gab].)

0
a
��=

==
==

0

��=
==

==
0

��=
==

==
0

��=
==

==
0

1 b // 2

A
@@�����B //

C
��=

==
==

1 // 2

@@�����
//

��=
==

==
1 // 2

@@�����
//

��=
==

==
1 // 2

@@�����
//

��=
==

==
1

3

c
@@�����

d
//

e ��=
==

==
4

D
// 3

@@�����
//

��=
==

==
4 // 3

@@�����
//

��=
==

==
4 // 3

@@�����
//

��=
==

==
4 // 3

5
E

@@�����
5

@@�����
5

@@�����
5

@@�����

After applying the counting argument (cf. subsection 5.1), we have

0

��=
==

==

2 //

��<
<<

<<
1 // 2

��>
>>

>>
2 //

��<
<<

<<
1 // 2

3

AA�����
//

��<
<<

<<
4 // 32

??�����
//

��>
>>

>>
4 // 3

AA�����

5

??�����
5

AA�����

(5.4.3)

Thus, we identify paths on this quiver with minimal generators of each MCM module
Mt.

By using this one, we will determine the dual F-signature of M1 and M3 as an example.

· the case of M1 in D5

Since rankR M1 = 1, the multiplicity dt,1 of Mt in eM1 is the following. Note that we
consider them on the order of p2e and omit p2e/|G| times for simplicity.

Mt R M1 M2 M3 M4 M5

dt,1 1 1 2 2 1 1
(5.4.4)

Firstly, R generates a minimal generator g1,1 through the path (R
aB−−→ M1) on the

quiver (5.4.3). Similarly, the paths (M1
1M1−−→ M1) and (M2

B−→ M1)× 2 also generate
g1,1 (Since d2,1 = 2, we double the last one) and we have no other such a path.
Thus, the dual F-signature of M1 can take s(M1) ≤ 1

12 +
1
12 +

2
12 =

4
12 . So we obtain

the upper bound of s(M1). Next, we will show that we can actually construct a
surjection

R ⊕ M1 ⊕ M⊕2
2 ⊕ M⊕2

3 ⊕ M4 ⊕ M5 ↠ M⊕4
1 .

So if there exists such a surjection, then we can conclude s(M1) =
4

12
.

From the quiver (5.4.3), we read off that (M2
B−→ M1) × 2 and (M3

cB−−→ M1) × 2 gen-
erate g1,2. Thus, we have the following table. As a consequence, we have the above
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surjection by Lemma 5.4.1 and conclude s(M1) =
4
12

. Note that a construction
method of a surjection is not unique. It depends on a choice of paths.

Mt R M1 M2 M3 M4 M5 Total
Path a 1M1 B cB 0 0
g1,1 1 1 2 0 0 0 4
g1,2 0 1 2 2 0 0 5

· the case of M3 in D5

The strategy for determining s(M3) is the same as the case of M1. But we need to pay
attention to the central vertex “32”. As the multiplicity 2 shows, paths from R to this
vertex could generate two kinds of minimal generator. Suppose that α (resp. β, γ) is

a minimal generator of M3 generated by a path which factor through 2
C−→ 32 (resp.

4
D−→ 32, 5

E−→ 32). By the relations (5.4.2), they satisfy α + β + γ ∈ m and we can
take two of them as minimal generators associated to the vertex 32. Thus, we fix
g3,2 B α, g3,3 B β. Since γ is equivalent to α + β up to modulo radical, we use it
freely as one of {α, β}. Note that when we continue chasing a path after this vertex,
we must not choose the following three paths, because the relations (5.4.2) force
them to be zero.

C
%%JJ

JJ 32
e
%%JJ

JJ

32
c 99tttt D // 32 d //

E 99tttt

Since rankR M3 = 2, the multiplicity dt,3 of Mt in eM3 is the following.
Mt R M1 M2 M3 M4 M5

dt,3 2 2 4 4 2 2
(5.4.5)

In order to estimate the upper bounds of s(M3), we consider paths which can be
identified with g3,1 or g3,3. Then we classify each MCM modules as follows.

(I) { M3 × 4 } (II) { R × 2,M2 × 4 } (III) { M4 × 2,M5 × 2 }
The MCM modules in the class of (I) generate the both g3,1 and g3,3 at the same time

by (M3
1M3−−→ M3) and those of (II) generate either g3,1 or g3,3. Also, those of (III)

only generate g3,3. For constructing a surjection as many as possible, we should
combine MCM modules in (II) and (III), that is, we use (II)’s for g3,1 and (III)’s for
g3,3. After making an appropriate pair of them (we can make four pairs), we have
two remaining MCM modules in (II). We can use a one of remainders for g3,1 and
the other for g3,3.

Thus, the dual F-signature of M3 can take s(M3) ≤ 4
12 +

4
12 +

1
12 =

9
12 and the

following table and Lemma 5.4.1 asserts equality (in this table, we use 5
E−→ 32 for

generating g3,3 ).
Mt R R M1 M2 M3 M4 M5 Total

Path aC aCdD bC C 1M3 D E
g3,1 1 0 0 4 4 0 0 9
g3,2 0 0 2 4 4 0 0 10
g3,3 0 1 0 0 4 2 2 9
g3,4 0 0 0 4 4 2 2 12
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By using a similar method, we have the dual F-signature of other MCM modules. The
following is the value of the dual F-signature corresponding to the Dynkin diagram D5.

4
6

12

(D5) : 1 2 3

�����

<<
<<

<
4
12

6
12

9
12

{{{{

CC
CC

5
6

12

Now, we move to the case of type Dn while referring to the type D5. Since the basic
idea of determining the dual F-signature is the same as above, we only mention an outline
for the case of Dn and also for E6, E7 and E8 (see subsection 5.4.5, 5.4.6 and 5.4.7).

The AR quiver of type Dn is the following.

0
  B

BB
BB n − 1

xxqqq
qq

(Dn) 2 //

``BBBBB

~~|||
||

3 //oo oo // moo //oo // n − 2oo

88qqqqq

&&MM
MMM

MM

1

>>|||||
n

ffMMMMMMM

Rewriting it as a repetition of the original one (i.e. a translation quiver ZDn), we have

n : even (n = 2r) n : odd (n = 2r − 1)
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Also, this quiver has the relations.

n : even (n = 2r) n : odd (n = 2r − 1)



aA = 0, bB = 0,
Aa + Bb + ψ3φ3 = 0, cC = 0,
ψn−2φn−2 +Cc + Dd = 0, dD = 0,
φ2l−1ψ2l−1 + φ2lψ2l = 0 (l = 2, · · · , r − 1),
ψ2lφ2l + ψ2l+1φ2l+1 = 0 (l = 2, · · · , r − 2).



aA = 0, bB = 0,
Aa + Bb + ψ3φ3 = 0, cC = 0,
φn−2ψn−2 +Cc + Dd = 0, dD = 0,
φ2l−1ψ2l−1 + φ2lψ2l = 0 (l = 2, · · · , r − 2),
ψ2lφ2l + ψ2l+1φ2l+1 = 0 (l = 2, · · · , r − 2).
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Applying the counting argument, we have the following picture.
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Since there is no big differences between an even number case and an odd number
case, we will explain the former case. Thus, in the rest of this subsection, we suppose
n = 2r.

· the case of M1 in Dn

Since rankR M1 = 1, the multiplicity dt,1 of Mt in eM1 is the following.

Mt R M1 M2 · · · Mm · · · Mn−2 Mn−1 Mn

dt,1 1 1 2 · · · 2 · · · 2 1 1
(5.4.6)

The paths which generate g1,1 are only (R
aB−−→ M1), (M1

1M1−−→ M1) and (M2
B−→ M1)×

2. Thus, the dual F-signature of M1 can take s(M1) ≤ 1
4(n−2) +

1
4(n−2) +

2
4(n−2) =

4
4(n−2) .

The following table and Lemma 5.4.1 shows s(M1) =
4

4(n − 2)
.

Mt R M1 M2 M3 M4 · · · Mm · · · Mn−2 Mn−1 Mn Total
Path aB 1M1 B φ3B 0 · · · 0 · · · 0 0 0
g1,1 1 1 2 0 0 · · · 0 · · · 0 0 0 4
g1,2 0 1 2 2 0 · · · 0 · · · 0 0 0 5

· the case of Mm ( 2 ≤ m ≤ n/2 ) in Dn

Since rankR Mm = 2, the multiplicity dt,m of Mt in eMm is the following.

Mt R M1 M2 · · · Mm · · · Mn−2 Mn−1 Mn

dt,m 2 2 4 · · · 4 · · · 4 2 2
(5.4.7)

In the same way as the previous example, we can see that the MCM R-modules
R × 2, M2 × 4, · · · ,Mm × 4 can generate gm,1, and we have no other such MCMs.
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Thus, the dual F-signature of Mm can take s(Mm) ≤ 2
4(n−2) +

4(m−1)
4(n−2) =

4m−2
4(n−2) . By

Lemma 5.4.1 and the following table, we conclude s(Mm) =
4m − 2
4(n − 2)

.

Mt R M1 M2 · · · Mm−1 Mm Mm+1 · · · Mn−2 Mn−1 Mn Total
Path aΓ2

m bΓ2
m Γ2

m φm 1Mm φm+1 Λn−2
m cΛn−2

m 0
gm,1 2 0 4 · · · 4 4 0 · · · 0 0 0 4m − 2
gm,2 0 2 4 · · · 4 4 0 · · · 0 0 0 4m − 2
gm,3 0 0 0 · · · 0 4 4 · · · 4 2 0 4n − 4m − 2
gm,4 0 0 0 · · · 0 4 4 · · · 4 2 0 4n − 4m − 2

Here, we set Γi
m B ψi+1φi+2 · · ·ψm−1φm, Λ

i
m B ψiφi−1 · · ·ψm+2φm+1. In this table, we

suppose that m is an even number. Although the notation is slightly different, we
obtain a similar table for an odd number case.

· the case of Mm ( n/2 < m ≤ n − 2 ) in Dn

The multiplicity dt,m of Mt in eMm is the same as the table (5.4.7). In order to obtain
the upper bounds of s(Mm), we classify the MCM R-modules in eMm as follows;

(I) { Mm × 4 } (II) { R × 2,M2 × 4, · · · ,Mm−1 × 4 }
(III) { Mm+1 × 4, · · · ,Mn−2 × 4,Mn−1 × 2,Mn × 2 }

where the class (I) (resp. (II), (III)) is the set of MCM R-modules which generate
gm,1 and gm,3 at the same time (resp. either gm,1 or gm,3, only gm,3 ). For constructing
a surjection as many as possible, we should combine MCM modules in (II) and
(III), that is, we use (II)’s for gm,1 and (III)’s for gm,3. After making an appropriate
pair of them (we obtain 4(n−m−1)pairs), we have 2(4m−2n−1) remaining MCM
modules in (II). We can use a half of remainders for gm,1 and the others for gm,3.
Thus, we have the upper bounds s(Mm) ≤ 4

4(n−2)+
4(n−m−1)

4(n−2) +
4m−2n−1

4(n−2) =
2n−1

4(n−2) . We have
the following table. (In this table, we suppose that m is an even number. Although
the notation is slightly different, we obtain a similar table for an odd number case.)

Mt R R M1 M1 M2 · · · M2m−n M2 · · · M2m−n

Path aΓ2
m aΓ2

n−2DdΛn−2
m bΓ2

m bΓ2
n−2DdΛn−2

m Γ2
m Γ2m−n

m Γ2
n−2DdΛn−2

m Γ2m−n
n−2 DdΛn−2

m
gm,1 1 0 0 0 2 · · · 2 0 · · · 0
gm,2 0 0 1 0 2 · · · 2 0 · · · 0
gm,3 0 1 0 0 0 · · · 0 2 · · · 2
gm,4 0 0 0 1 0 · · · 0 2 · · · 2

M2m−n+1 · · · Mm−1 Mm Mm+1 · · · Mn−2 Mn−1 Mn Total
φ2m−n+2Γ

2m−n+2
m φm 1Mm φm+2Γ

m+2
n−2 DdΛn−2

m Λn−2
m cΛn−2

m dΛn−2
m

4 · · · 4 4 0 · · · 0 0 0 2n − 1
4 · · · 4 4 0 · · · 0 0 0 2n − 1
0 · · · 0 4 4 · · · 4 2 2 2n − 1
0 · · · 0 4 4 · · · 4 2 2 2n − 1

Thus, we conclude s(Mm) =
2n − 1

4(n − 2)
by Lemma 5.4.1.
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· the case of Mn−1 in Dn

The multiplicity dt,n−1 of Mt in eMn−1 is the same as the table (5.4.6). Similarly, we
have the upper bounds s(Mn−1) ≤ 2(n−2)

4(n−2) by selecting paths which generate gn−1,1, and
we have the following table. (In this table, we suppose that m is an even number,
the same as the previous case.)

Mt R M1 M2 · · · Mm · · · Mn−2 Mn−1 Mn Total
Path aΓ2

n−2C bΓ2
n−2C Γ2

n−2C Γm
n−2C C 1Mn−1 0

gn−1,1 1 0 2 · · · 2 · · · 2 1 0 2(n-2)
gn−1,2 0 1 2 · · · 2 · · · 2 1 0 2(n-2)

Thus, we conclude s(Mn−1) =
2(n − 2)
4(n − 2)

by Lemma 5.4.1.

· the case of Mn in Dn

The AR quiver of Dn is symmetric with respect to Mn−1 and Mn, and rankR Mn−1 =

rankR Mn. So we have s(Mn) =
2(n − 2)
4(n − 2)

in the same way.

5.4.5 Type E6

The AR quiver of type E6 (as the form of ZE6) is
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with relations 
aA = 0, bB + cC + dD = 0,
eE = 0, f F = 0,
Aa + Bb = 0, Cc + Ee = 0,
Dd + F f = 0.

After applying the counting argument, we have the following quiver.
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· the case of M1 in E6

Since rankR M1 = 2, the multiplicity dt,1 of Mt in eM1 is the following.

Mt R M1 M2 M3 M4 M5 M6

dt,1 2 4 6 4 4 2 2
(5.4.8)

Since the paths which generate g1,1 are only (R
e−→ M1)×2 and (M1

1M1−−→ M1)×4, the
dual F-signature of M1 can take s(M1) ≤ 6

24 . The following table and Lemma 5.4.1

assert s(M1) =
6

24
.

Mt R M1 M2 M3 M4 M5 M6 Total
Path e 1M1 c 0 0 0 0
g1,1 2 4 0 0 0 0 0 6
g1,2 0 4 6 0 0 0 0 10
g1,3 0 4 6 0 0 0 0 10
g1,4 0 4 6 0 0 0 0 10

· the case of M2 in E6

Since rankR M2 = 3, the multiplicity dt,2 of Mt in eM2 is the following.

Mt R M1 M2 M3 M4 M5 M6

dt,2 3 6 9 6 6 3 3
(5.4.9)

Similarly, we have the upper bounds s(M2) ≤ 18
24 by selecting paths which generate

g2,1. Suppose that g2,3 (resp. g2,4) is generated through a path which factor through

1
C−→ 22 (resp. 4

D−→ 22). So we can use paths which factor through 3
B−→ 22 for either

g2,3 or g2,4 (see the arguments in the case of M3 in D5). Then we have the following
table.

Mt R M1 M2 M3 M4 M5 M6 Total
Path eC C 1M2 B D 0 f D
g2,1 3 6 9 0 0 0 0 18
g2,2 0 0 9 6 6 0 0 21
g2,3 0 6 9 6 0 0 0 21
g2,4 0 0 9 0 6 0 3 18
g2,5 0 6 9 6 6 0 0 27
g2,6 0 0 9 6 6 0 3 24

Thus, we conclude s(M2) =
18
24

by Lemma 5.4.1.
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· the case of M3 in E6

Since rankR M3 = 2, the multiplicity dt,3 of Mt in eM3 is the same as the table (5.4.8)
and we have the upper bounds s(M3) ≤ 16

24 by selecting paths which generate g3,1.
The equality follows from the following table and Lemma 5.4.1.

Mt R M1 M2 M3 M4 M5 M6 Total
Path eCb Cb b 1M3 Db a f Db
g3,1 2 4 6 4 0 0 0 16
g3,2 0 0 6 4 4 2 0 16
g3,3 0 4 6 4 4 0 2 20
g3,4 0 4 6 4 4 2 0 20

· the case of M4 in E6

The AR quiver of E6 is symmetric with respect to M3 and M4, and rankR M3 =

rankR M4. So we have s(M4) =
16
24

in the same way.

· the case of M5 in E6

Since rankR M5 = 1, the multiplicity dt,5 of Mt in eM5 is the following.

Mt R M1 M2 M3 M4 M5 M6

dt,5 1 2 3 2 2 1 1 (5.4.10)

We have the upper bounds s(M5) ≤ 9
24 by selecting paths which generate g5,1. The

following table and Lemma 5.4.1 assert the equality.

Mt R M1 M2 M3 M4 M5 M6 Total
Path eCbA CbA bA A DbA 1M5 0
g5,1 1 2 3 2 0 1 0 9
g5,2 0 2 3 2 2 1 0 10

· the case of M6 in E6

The AR quiver of E6 is symmetric with respect to M5 and M6, and rankR M5 =

rankR M6. So we have s(M6) =
9

24
in the same way.
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5.4.6 Type E7

The AR quiver of type E7 (as the form of ZE7) is
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with relations 
aA = 0, bB + cC = 0,
dD = 0, eE + f F = 0,
gG = 0, Aa + Bb = 0,
Cc + Dd + Ee = 0, F f +Gg = 0.

After applying the counting argument, we have the following quiver.
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· the case of M1 in E7

Since rankR M1 = 2, the multiplicity dt,1 of Mt in eM1 is the following.

Mt R M1 M2 M3 M4 M5 M6 M7

dt,1 2 4 6 8 6 4 2 4
(5.4.11)

Since the paths which generate g1,1 are only (R
a−→ M1) × 2, (M1

1M1−−→ M1) × 4, we
have the upper bounds s(M1) ≤ 6

48 .
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Mt R M1 M2 M3 M4 M5 M6 M7 Total
Path a 1M1 b 0 0 0 0 0
g1,1 2 4 0 0 0 0 0 0 6
g1,2 0 4 6 0 0 0 0 0 10
g1,3 0 4 6 0 0 0 0 0 10
g1,4 0 4 6 0 0 0 0 0 10

We conclude s(M1) =
6

48
by Lemma 5.4.1 and the above table.

· the case of M2 in E7

Since rankR M2 = 3, the multiplicity dt,2 of Mt in eM2 is the following.

Mt R M1 M2 M3 M4 M5 M6 M7

dt,2 3 6 9 12 9 6 3 6 (5.4.12)

Similarly, we have the upper bounds s(M2) ≤ 18
48 by selecting paths which generate

g2,1. The following table and Lemma 5.4.1 assert the equality.

Mt R M1 M2 M3 M4 M5 M6 M7 Total
Path aB B 1M2 0 eC 0 0 0
g2,1 3 6 9 0 0 0 0 0 18
g2,2 0 0 9 0 9 0 0 0 18
g2,3 0 6 9 0 9 0 0 0 24
g2,4 0 0 9 0 9 0 0 0 18
g2,5 0 6 9 0 9 0 0 0 24
g2,6 0 0 9 0 9 0 0 0 18

· the case of M3 in E7

Since rankR M3 = 4, the multiplicity dt,3 of Mt in eM3 is the following.

Mt R M1 M2 M3 M4 M5 M6 M7

dt,3 4 8 12 16 12 8 4 8
(5.4.13)

In this case, we need to pay attention for determining the upper bounds. The MCM

R-module M3 can generate both g3,1 and g3,2 through the path (M3
1M3−−→ M3). Simi-

larly, we can read off that R,M1,M2 generate either g3,1 or g3,2 and M4,M7 generate
g3,2 but don’t generate g3,1. Collectively, we classify the MCM R-modules in eM3

as follows;

(I) { M3 × 16 } (II) { R × 4,M1 × 8,M2 × 12 } (III) { M4 × 12,M7 × 8 }

where the class(I) (resp. (II), (III)) is the set of MCM R-modules which generate
g3,1 and g3,2 at the same time (resp. either g3,1 or g3,2, only g3,2 ). For constructing a
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surjection as many as possible, we should combine MCM modules in (II) and (III),
that is, we use (II)’s for g3,1 and (III)’s for g3,2. After making an appropriate pair of
them, we have four remaining MCM modules in (II). We can use half of remainders
for g3,1 and others for g3,2. Thus, we have the upper bounds s(M3) ≤ 16

48+
20
48+

2
48 =

38
48 .

Mt R M1 M2 M2 M3 M4 M5 M6 M7 Total
Path aBc Bc c cDd 1M3 e Fe gFe d
g3,1 4 8 10 0 16 0 0 0 0 38
g3,2 0 0 0 2 16 12 0 0 8 38
g3,3 0 0 10 0 16 12 8 0 0 46
g3,4 0 8 10 0 16 0 8 0 0 42
g3,5 0 0 0 2 16 12 0 4 8 42
g3,6 0 0 10 2 16 12 0 0 8 48
g3,7 0 8 10 0 16 12 8 0 0 54
g3,8 0 0 0 2 16 12 8 4 8 50

By the above table and Lemma 5.4.1, we conclude s(M3) =
38
48

. In this table, we
fix that g3,4 (resp. g3,5) is a minimal generator identified with a path which factor

through 2
c−→ 32 (resp. 7

d−→ 32). We can use paths which factor through 4
e−→ 32 for

generating either g3,4 or g3,5.

· the case of M4 in E7

Since rankR M4 = 3, the multiplicity dt,4 of Mt in eM4 is the same as the table
(5.4.12). In the same way as M3, we classify the MCM R-modules in eM4 as

(I) { M3 × 12,M4 × 9 } (II) { R × 3,M1 × 6,M2 × 9 } (III) { M5 × 6,M7 × 6 }

where the class(I) (resp. (II), (III)) is the set of MCM R-modules which generate
g4,1 and g4,2 at the same time (resp. either g4,1 or g4,2, only g4,2 ) and obtain the
upper bound s(M4) ≤ 21

48 +
12
48 +

3
48 =

36
48 in the same way as the case of M3.

Mt R M1 M2 M3 M4 M5 M6 M7 Total
Path aBcDdE BcE cE E 1M4 F 0 dE
g4,1 0 6 9 12 9 0 0 0 36
g4,2 3 0 0 12 9 6 0 6 36
g4,3 0 0 9 12 9 6 0 0 36
g4,4 0 6 9 12 9 0 0 6 42
g4,5 0 0 9 12 9 6 0 6 42
g4,6 0 6 9 12 9 6 0 0 42

Thus, we conclude s(M4) =
36
48

by Lemma 5.4.1 and the above table.

· the case of M5 in E7

Since rankR M5 = 2, the multiplicity dt,5 of Mt in eM5 is the same as the table
(5.4.11). In the same as before, we can classify the MCM R-modules in eM5 as

(I) { M3×8,M4×6,M5×4 } (II) { R×2,M1×4,M2×6 } (III) { M6×2,M7×4 }
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where the class(I) (resp. (II), (III)) is the set of MCM R-modules which generate
g5,1 and g5,2 at the same time (resp. either g5,1 or g5,2, only g5,2 ) and obtain the
upper bound s(M5) ≤ 18

48 +
6
48 +

3
48 =

27
48 . By Lemma 5.4.1 and the following table,

we have s(M5) =
27
48

.

Mt R M1 M2 M2 M3 M4 M5 M6 M7 Total
Path aBcE f BcE f cE f cDdE f E f f 1M5 g dE f
g5,1 2 4 3 0 8 6 4 0 0 27
g5,2 0 0 0 3 8 6 4 2 4 27
g5,3 0 4 3 3 8 6 4 0 4 32
g5,4 0 0 3 3 8 6 4 2 4 30

· the case of M6 in E7

Since rankR M6 = 1, the multiplicity dt,6 of Mt in eM6 is the following.

Mt R M1 M2 M3 M4 M5 M6 M7

dt,6 1 2 3 4 3 2 1 2
(5.4.14)

We have s(M6) ≤ 16
48 by selecting paths which generate g6,1. We conclude s(M6) =

16
48

by Lemma 5.4.1 and the following table.

Mt R M1 M2 M3 M4 M5 M6 M7 Total
Path aBcE fG BcE fG cE fG E fG fG G 1M6 dE fG
g6,1 1 2 3 4 3 2 1 0 16
g6,2 0 2 3 4 3 2 1 2 17

· the case of M7 in E7

Since rankR M7 = 2, the multiplicity dt,7 of Mt in eM7 is the same as the table
(5.4.11). By selecting paths which generate g7,1, we have s(M7) ≤ 24

48 .

Mt R M1 M2 M3 M4 M5 M6 M7 Total
Path aBcD BcD cD D eD FeD 0 1M7

g7,1 2 4 6 8 0 0 0 4 24
g7,2 0 0 6 8 6 4 0 4 28
g7,3 0 4 6 8 6 4 0 4 32
g7,4 0 4 6 8 6 4 0 4 32

Similarly, we conclude s(M7) =
24
48

.
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5.4.7 Type E8

The AR quiver of type E8 (as the form of ZE8) is
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where the right side of upper part and the left side of lower part are identified.

· the case of M1 in E8

Since rankR M1 = 2, the multiplicity dt,1 of Mt in eM1 is the following.

Mt R M1 M2 M3 M4 M5 M6 M7 M8

dt,1 2 4 6 8 10 12 8 4 6
(5.4.15)

In a similar way to the other cases, we have the upper bounds s(M1) ≤ 6
120 by

selecting paths which generate g1,1. The following table and Lemma 5.4.1 assert
the equality.

Mt R M1 M2 M3 M4 M5 M6 M7 M8 Total
Path a 1M1 b 0 0 0 0 0 0
g1,1 2 4 0 0 0 0 0 0 0 6
g1,2 0 4 6 0 0 0 0 0 0 10
g1,3 0 4 6 0 0 0 0 0 0 10
g1,4 0 4 6 0 0 0 0 0 0 10

· the case of M2 in E8

Since rankR M2 = 3, the multiplicity dt,2 of Mt in eM2 is the following.

Mt R M1 M2 M3 M4 M5 M6 M7 M8

dt,2 3 6 9 12 15 18 12 6 9 (5.4.16)

We have the upper bounds s(M2) ≤ 18
120 by selecting paths which generate g2,1.

Thus, we conclude s(M2) =
18

120
by the following table and Lemma 5.4.1.

Mt R M1 M2 M3 M4 M5 M6 M7 M8 Total
Path aB B 1M2 C 0 0 0 0 0
g2,1 3 6 9 0 0 0 0 0 0 18
g2,2 0 0 9 12 0 0 0 0 0 21
g2,3 0 6 9 12 0 0 0 0 0 27
g2,4 0 0 9 12 0 0 0 0 0 21
g2,5 0 6 9 12 0 0 0 0 0 27
g2,6 0 0 9 12 0 0 0 0 0 21

· the case of M3 in E8

Since rankR M3 = 4, the multiplicity dt,3 of Mt in eM3 is the following.

Mt R M1 M2 M3 M4 M5 M6 M7 M8

dt,3 4 8 12 16 20 24 16 8 12 (5.4.17)
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We have the upper bounds s(M3) ≤ 40
120 by selecting paths which generate g3,1.

Thus, we conclude s(M3) =
40

120
by the following table and Lemma 5.4.1.

Mt R M1 M2 M3 M4 M5 M6 M7 M8 Total
Path aBc Bc c 1M3 0 Ed 0 0 0
g3,1 4 8 12 16 0 0 0 0 0 40
g3,2 0 0 0 16 0 24 0 0 0 40
g3,3 0 0 12 16 0 24 0 0 0 52
g3,4 0 8 12 16 0 24 0 0 0 60
g3,5 0 0 0 16 0 24 0 0 0 40
g3,6 0 0 12 16 0 24 0 0 0 52
g3,7 0 8 12 16 0 24 0 0 0 60
g3,8 0 0 0 16 0 24 0 0 0 40

· the case of M4 in E8

Since rankR M4 = 5, the multiplicity dt,4 of Mt in eM4 is the following.

Mt R M1 M2 M3 M4 M5 M6 M7 M8

dt,4 5 10 15 20 25 30 20 10 15 (5.4.18)

Similarly, we have s(M4) ≤ 75
120 . The following table and Lemma 5.4.1 assert the

equality.

Mt R M1 M2 M3 M4 M5 M6 M7 M8 Total
Path aBcD BcD cD D 1M4 E gE 0 0
g4,1 5 10 15 20 25 0 0 0 0 75
g4,2 0 0 0 0 25 30 20 0 0 75
g4,3 0 0 0 20 25 30 20 0 0 95
g4,4 0 0 15 20 25 30 0 0 0 90
g4,5 0 10 15 20 25 30 20 0 0 120
g4,6 0 0 0 0 25 30 20 0 0 75
g4,7 0 0 0 20 25 30 20 0 0 95
g4,8 0 0 15 20 25 30 20 0 0 110
g4,9 0 10 15 20 25 30 0 0 0 100
g4,10 0 0 0 0 25 30 20 0 0 75

· the case of M5 in E8

Since rankR M5 = 6, the multiplicity dt,5 of Mt in eM5 is the following.

Mt R M1 M2 M3 M4 M5 M6 M7 M8

dt,5 6 12 18 24 30 36 24 12 18
(5.4.19)

71



In the same way as before, we can classify the MCM R-modules appear in eM5 as

(I) { M5×36 } (II) { R×6,M1×12,M2×18,M3×24,M4×30 } (III) { M6×24,M8×18 }

where the class(I) (resp. (II), (III)) is the set of MCM R-modules which generate
g5,1 and g5,2 at the same time (resp. either g5,1 or g5,2, only g5,2 ) and obtain the
upper bound s(M5) ≤ 36

120 +
42
120 +

24
120 =

102
120 . By Lemma 5.4.1 and the following

table, we have s(M5) =
102
120

. In this table, we fix that g5,6 (resp. g5,7) is a minimal

generator identified with a path which factor through 4
e−→ 52 (resp. 8

f−→ 52). We
can use paths which factor through 6

g−→ 52 for generating either g5,6 or g5,7.

Mt R M1 M2 M3 M4 M5 M6 M7 M8 Total
Path aBcDeF f BcDe cDeF f De e 1M5 g Hg f
g5,1 0 12 0 24 30 36 0 0 0 102
g5,2 6 0 18 0 0 36 24 0 18 102
g5,3 0 0 0 0 30 36 24 12 0 102
g5,4 0 0 0 24 30 36 0 0 18 108
g5,5 0 0 0 24 20 36 24 0 0 114
g5,6 0 12 0 24 30 36 0 0 0 102
g5,7 0 0 18 0 0 36 24 12 18 108
g5,8 0 0 18 0 30 36 24 0 18 126
g5,9 0 0 0 24 30 36 24 12 0 126
g5,10 0 0 0 24 30 36 0 0 18 108
g5,11 0 12 18 24 30 36 24 0 0 144
g5,12 0 0 18 0 0 36 24 12 18 108

· the case of M6 in E8

Since rankR M6 = 4, the multiplicity dt,6 of Mt in eM6 is the same as the table
(5.4.17). In the same way as before, we can classify the MCM R-modules appear
in eM6 as

(I) { M5×24, M6×16 } (II) { R×4,M1×8,M2×12,M3×16,M4×20 } (III) { M7×8,M8×12 }

where the class(I) (resp. (II), (III)) is the set of MCM R-modules which generate
g6,1 and g6,2 at the same time (resp. either g6,1 or g6,2, only g6,2 ) and obtain the
upper bound s(M6) ≤ 40

120 +
20
120 +

20
120 =

80
120 . The following table and Lemma 5.4.1

assert the equality.

Mt R M1 M2 M3 M4 M4 M5 M6 M7 M8 Total
Path aBcDeF fG BcDeF fG cDeG DeG eG eF fG G 1M6 H fG
g6,1 0 0 12 16 12 0 24 16 0 0 80
g6,2 4 8 0 0 0 8 24 16 8 12 80
g6,3 0 0 0 16 12 8 24 16 0 12 88
g6,4 0 0 12 16 12 0 24 16 8 0 88
g6,5 0 0 12 16 12 8 24 16 0 12 100
g6,6 0 8 0 0 12 8 24 16 8 12 88
g6,7 0 0 12 16 12 8 24 16 0 12 100
g6,8 0 0 12 16 12 0 24 16 8 0 88
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· the case of M7 in E8

Since rankR M7 = 2, the multiplicity dt,7 of Mt in eM7 is the same as the table
(5.4.15). In the same way as before, we can classify the MCM R-modules appear
in eM7 as

(I) { M3×8,M4×10,M5×12,M6×8,M7×4 } (II) { R×2,M1×4,M2×6 } (III) { M8×6 }

where the class(I) (resp. (II), (III)) is the set of MCM R-modules which generate
g7,1 and g7,2 at the same time (resp. either g7,1 or g7,2, only g7,2 ) and obtain the
upper bound s(M7) ≤ 42

120 +
6

120 +
3

120 =
51
120 . The following table and Lemma 5.4.1

assert the equality.

Mt R M1 M2 M2 M3 M4 M5 M6 M7 M8 Total
Path aBcDeGh BcDeGh cDeGh cDeF · · ·Gh DeGh eGh Gh h 1M7 fGh
g7,1 2 4 3 0 8 10 12 8 4 0 51
g7,2 0 0 0 3 8 10 12 8 4 6 51
g7,3 0 4 3 0 8 10 12 8 4 6 55
g7,4 0 0 3 3 8 10 12 8 4 6 54

· the case of M8 in E8

Since rankR M8 = 3, the multiplicity dt,8 of Mt in eM8 is the same as the table
(5.4.16). In the same way as before, we can classify the MCM R-modules appear
in eM8 as

(I) { M4×15, M5×18,M8×9 } (II) { R×3,M1×6,M2×9,M3×12 } (III) { M6×12,M7×6 }

where the class(I) (resp. (II), (III)) is the set of MCM R-modules which generate
g8,1 and g8,2 at the same time (resp. either g8,1 or g8,2, only g8,2 ) and obtain the
upper bound s(M8) ≤ 42

120 +
18
120 +

6
120 =

66
120 . The following table and Lemma 5.4.1

assert the equality.

Mt R M1 M2 M3 M4 M5 M6 M7 M8 Total
Path aBcDeF aBcDeF f EeF cDeF DeF eF F gF HgF 1M8

g8,1 3 0 9 12 15 18 0 0 9 66
g8,2 0 6 0 0 15 18 12 6 9 66
g8,3 0 0 9 12 15 18 12 0 9 75
g8,4 0 0 9 12 15 18 12 6 9 81
g8,5 0 6 0 12 15 18 12 6 9 78
g8,6 0 0 9 12 15 18 12 0 9 75
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5.4.8 Summary of the value of the dual F-signature
Theorem 5.4.5. The following is the Dynkin diagram Q and corresponding values of the
dual F-signature (In order to show the ratio of dual F-signature to the order of G clearly,
we don’t reduce fractions).

(1) Type An

• n is an even number (i.e. n = 2r)
An : 1 2 · · · r r + 1 · · · n − 1 n

2
n + 1

3
n + 1

· · · r + 1
n + 1

r + 1
n + 1

· · · 3
n + 1

2
n + 1

• n is an odd number (i.e. n = 2r − 1)
An : 1 2 · · · r − 1 r r + 1 · · · n − 1 n

2
n + 1

3
n + 1

· · · r
n + 1

2r + 1
2(n + 1)

r
n + 1

· · · 3
n + 1

2
n + 1

(2) Type Dn

• n is an even number (i.e. n = 2r)
n − 1

Dn : 1 2 · · · m · · · r r + 1 · · · n − 2
kkkkk

SSSS
SSS

n

2(n − 2)
4(n − 2)

4
4(n − 2)

6
4(n − 2)

· · · 4m − 2
4(n − 2)

· · · 4r − 2
4(n − 2)

4r − 1
4(n − 2)

· · · 4r − 1
4(n − 2)

uu

II

2(n − 2)
4(n − 2)

• n is an odd number (i.e. n = 2r − 1)
n − 1

Dn : 1 2 · · · m · · · r − 1 r · · · n − 2
kkkkk

SSSS
SSS

n

2(n − 2)
4(n − 2)

4
4(n − 2)

6
4(n − 2)

· · · 4m − 2
4(n − 2)

· · · 4r − 6
4(n − 2)

4r − 3
4(n − 2)

· · · 4r − 3
4(n − 2)

uu

II

2(n − 2)
4(n − 2)
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(3) Type E6

1
6
24

E6 : 5 3 2 4 6
9
24

16
24

18
24

16
24

9
24

(4) Type E7

7
24
48

E7 : 1 2 3 4 5 6
6
48

18
48

38
48

36
48

27
48

16
48

(5) Type E8

8
66
120

E8 : 1 2 3 4 5 6 7
6

120
18
120

40
120

75
120

102
120

80
120

51
120

Remark 5.4.6. As these lists show, we have s(Mt) = s(M∗t ). Indeed, each AR quiver is
symmetric with respect to Mt and M∗t , and rankR Mt = rankR M∗t . Thus, it follows from
arguments used in this chapter.
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Chapter 6

Further topics

6.1 Ulrich modules over cyclic quotient surface singular-
ities

In the previous chapter, we explained counting arguments of the AR quiver and by using
such a technique we could determine the number of minimal generators of each MCM
module over quotient surface singularities. By applying this idea, we also investigate
Ulrich modules. This is a certain class of MCM module. In the study of Ulrich modules,
spacial CM modules play the curtail role again. This section is based on [NY].

6.1.1 Ulrich modules
Let (R,m, k) be a CM local ring. For each MCM R-module M, we have µR(M) ≤ e0

m(M).
Note that if R is a domain, then we have e0

m(M) = (rankR M)e0
m(R).

An Ulrich module is defined as a module which has the maximum number of gen-
erators with respect to the above inequality. So we sometimes call it a maximally gen-
erated maximal Cohen-Macaulay (= MGMCM) module after the original terminology
[Ulr, BHU]. The name “Ulrich modules” was introduced in [HK].

Definition 6.1.1 ([Ulr, BHU]). Let M be an MCM R-module. We say M is an Ulrich
module if it satisfies µR(M) = e0

m(M).

We remark that the above conditions are inherited by direct summands and direct
sums. So Ulrich modules are closed under direct summands and direct sums.

The properties of these modules were investigated in the aforementioned references.
More geometrically, they are also studied as Ulrich bundles e.g. [ESW, CH1, CH2,
CKM]. Recently, this notion is generalized for each non-parameter m-primary ideal I
as follows [GOTWY1] and it is studied actively (cf. [GOTWY2, GOTWY3]). Namely,
we say an MCM R-module M is an Ulrich module “ with respect to I ” if it satisfies the
following conditions:

(1) e0
I (M) = ℓR(M/IM), (2) M/IM is an R/I-free module
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where e0
I (M) is the multiplicity of M with respect to I and ℓR(M/IM) stands for the length

of the R-module M/IM. Thus, an Ulrich module with respect to m is nothing else but
an Ulrich module in the sense of Definition 6.1.1. (The condition (2) is automatically
if I = m.) In this thesis, we only discuss Ulrich modules with respect to m. Thus, we
simply denote the multiplicity of M by e(M). Also, Ulrich modules appear in an attempt
to formulate the notion of “almost Gorenstein rings” [GTT]. Therefore, the importance to
understand this module has increased. However, even the existence of an Ulrich module
for a given CM local ring is still not known in general. Another important problem is to
characterize (and to classify) Ulrich modules when a given ring R has an Ulrich module.
For example, we know the existence of such a module for the case where

· a two dimensional domain with the infinite field [BHU],
· a CM local ring which has maximal embedding dimension [BHU],
· a strict complete intersection [HUB],
· a Veronese subring of polynomial ring over field of characteristic 0 [ESW] etc.

But the characterization problem is also not known for many cases. Therefore, we will
consider Ulrich modules over quotient surface singularities. We remark that this singu-
larity is of finite CM representation type. Since the number of indecomposable Ulrich
modules is finite, we will also consider the number of them. The point is to consider
special CM modules (see Definition 5.2.1). Roughly, the number of minimal generators
of a special CM module is small (see subsection 5.2.1). So special CM modules are the
opposite of Ulrich modules in that sense. However, those give us the simple description
of Ulrich modules. For example, by applying several functors to special CM modules, we
have some Ulrich modules.

Proposition 6.1.2. Let R be a quotient surface singularity as in Chapter 5. Suppose M is
a non-free special CM module over R. Then we have

(1) M∗ is an Ulrich R-module,
(2) τ(M) is also an Ulrich R-module where τ is the AR translation.

Proof. (1) By Proposition 5.2.3, M∗ is the syzygy of an MCM R-module. Thus, it is
an Ulrich R-module by similar arguments as in [GOTWY1, Lemma 4.2].

(2) By [GOTWY1, Theorem 5.1], the canonical dual of an Ulrich module is also an
Ulrich module. Combining with (1), we have the conclusion.

□

In this way, we can obtain some Ulrich modules from special ones. However, there
exists Ulrich modules which don’t come from this operation. In the next section, we focus
on the case of cyclic quotient surface singularities and characterize Ulrich modules.

We finish this subsection with the following remark. When we consider Ulrich mod-
ules, the multiplicity e(M) = (rankR M)e(R) is important. It is known that the multiplicity
e(R) is computed by the self-intersection number of the fundamental cycle Z0 as follows
[Art].

Proposition 6.1.3. Let the notations be the same as in subsection 5.2.1. Then we have
e(R) = −Z2

0 .
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6.1.2 Characterizations of Ulrich modules for cyclic case
In this subsection, we will characterize Ulrich modules for the case of cyclic quotient
surface singularities. In order to make the settings clear, we again note that G is a cyclic
group as follows.

G B ⟨ σ =
(
ζn 0
0 ζa

n

)
⟩,

where ζn is a primitive n-th root of unity, 1 ≤ a ≤ n − 1, and gcd(a, n) = 1 and assume
that n is invertible in k. We will denote this cyclic group by G = 1

n (1, a) and consider the
invariant subring R of S = k[[x, y]] under the action of G. Since G is an abelian group,
every irreducible representation of G is one dimensional and described as

Vt : σ 7→ ζ−t
n (t = 0, 1, · · · , n − 1).

Then we set,

Mt B (S ⊗k Vt)G =
⟨
xiy j

∣∣∣∣ i + ja ≡ t (mod n)
⟩
, (t = 0, 1, · · · , n − 1).

Then, these Mt’s are only indecomposable MCM modules over R and rank Mt = 1. Since
special CM module play the crucial role to characterize Ulrich modules, we recall some
facts mentioned in Section 5.3. Firstly, we consider the Hirzebruch-Jung continued frac-
tion expansion of n/a:

n
a
= α1 −

1

α2 −
1

· · · − 1
αr

B [α1, α2, · · · , αr],

and consider the notion of i-series and j-series as follows.

i0 = n, i1 = a, it = αt−1it−1 − it−2 (t = 2, · · · , r + 1),
j0 = 0, j1 = 1, jt = αt−1 jt−1 − jt−2 (t = 2, · · · , r + 1).

In this situation, special CM R-modules are Mit = Rxit + Ry jt for t = 1, · · · , r and
R (see Theorem 5.3.3). Furthermore, there is a one-to-one correspondence between non-
free indecomposable special CM modules and irreducible exceptional curves (see The-
orem 5.2.4). The dual graph of the minimal resolution of singularity X → Spec(R) is
obtained by the Hirzebruch-Jung continued fraction expansion:

Ei1 Ei2 EirGFED@ABC−α1 GFED@ABC−α2 · · · · · · GFED@ABC−αr

and the fundamental cycle is Z0 =
∑r

t=1 Eit . Moreover, we have e(R) = α1+· · ·+αr−2(r−1)
by Proposition 6.1.3.

Example 6.1.4. Let G = 1
12 (1, 7) be a cyclic group of order 12. The Hirzebruch-Jung

continued fraction expansion of 12/7 is

12
7
= 2 −

1
4 − 1/2

= [2, 4, 2],
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and the i-series and the j-series are obtained as follows.

i0 = 12, i1 = 7, i2 = 2, i3 = 1, i4 = 0,
j0 = 0, j1 = 1, j2 = 2, j3 = 7, j4 = 12.

Thus, the special CM modules are M7, M2, M1, R and they take the form

M7 = Rx7 + Ry, M2 = Rx2 + Ry2, M1 = Rx + Ry7.

In this case, the dual graph is
E7 E2 E1GFED@ABC−2 GFED@ABC−4 GFED@ABC−2

and the fundamental cycle is Z0 = E7 + E2 + E1. Thus, we have the multiplicity e(R) =
−Z2

0 = 4.

Example 6.1.5. (= Example 5.3.5) Suppose G = 1
n (1, n − 1) ⊂ SL(2, k) is a cyclic group

of order n (= Dynkin type An−1). The Hirzebruch-Jung continued fraction expansion of
n/(n − 1) is

n
n − 1

= 2 −
1

2 −
1

· · · − 1/2

= [2, 2, · · · , 2︸      ︷︷      ︸
n−1

],

and the i-series and the j-series are

i0 = n, i1 = n − 1, i2 = n − 2, · · · , in−1 = 1, in = 0,
j0 = 0, j1 = 1, j2 = 2, · · · , jn−1 = n − 1, jn = n.

Therefore, every MCM module is special (cf. Remark 5.2.2). Since e(R) = 2, every non-
free MCM R-module is also an Ulrich module. This kind of property holds in more general
situation (cf. [GOTWY2, Theorem 5.2], [HK, Corollary 1.4]).

By applying Proposition 6.1.2, we have the following.

Proposition 6.1.6. Let the notation be the same as above. For a non-free special MCM
R-module Mit , MCM modules Mn−it and Mit−a−1 are Ulrich modules.

Proof. Since M∗it � Mn−it and τ(Mit) � Mit−a−1, it follows from Proposition 6.1.2. □

From this proposition, we can obtain some Ulrich modules. However, there exists
Ulrich modules which don’t take the form as in Proposition 6.1.6. In order to determine
all of them, we will show the relationship between the multiplicity e(Mt) = e(R) and the
number of minimal generators µR(Mt) in terms of the i-series. As a conclusion, we char-
acterize Ulrich R-modules. To state the theorem, we again use the sequence (d1,t, · · · , dr,t)
defined in Section 5.3. Namely, for the i-series (i1, · · · , ir) associated with 1

n (1, a) and for
any t ∈ [0, n − 1], there are unique non-negative integers d1,t, · · · , dr,t ∈ Z≥0 such that

t = d1,ti1 + h1,t, h1,t ∈ Z≥0, 0 ≤ h1,t < i1,

hu,t = du+1,tiu+1 + hu+1,t, hu+1,t ∈ Z≥0, 0 ≤ hu+1,t < iu+1, (u = 1, · · · , r − 1),
hr,t = 0.
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Thus, we describe t as follows.

t = d1,ti1 + d2,ti2 + · · · + dr,tir

= (i1 + · · · + i1︸       ︷︷       ︸
d1,t

) + (i2 + · · · + i2︸       ︷︷       ︸
d2,t

) + · · · + (ir + · · · + ir︸       ︷︷       ︸
dr,t

).

If a situation is clear, we will denote simply du,t by du. This sequence (d1,t, · · · , dr,t) ∈
(Z≥0)r is characterized as follows. We will use this lemma heavily in the future.

Lemma 6.1.7. ([Wun1, Lemma 1]) A sequence (d1, · · · , dr) ∈ (Z≥0)r is obtained from the
description

t = d1i1 + d2i2 + · · · + drir

for some subscript t = 0, 1, · · · , n − 1 if and only if a sequence satisfies the following two
condition.

· 0 ≤ du ≤ αu − 1 for every u = 1, · · · , r.
· If du = αu − 1 and dv = αv − 1 (u < v), then there exists w such that u < w < v and

dw ≤ αw − 3.

So we are now in a position to state the theorem.

Theorem 6.1.8. Let the notation be the same as above. Then we have

µR(Mt) = d1 + d2 + · · · + dr + 1.

To this theorem, we will give two kinds of proofs (geometric one and representation
theoretic one). The geometric proof is quite simple and it says the above formula is a
reinterpretation of special McKay correspondence from the viewpoint of Ulrich modules.
However, the author believe that the method used in another one will give us a new aspect
for this subject (e.g. Remark 6.1.11). Therefore, we note both of them.

Geometric proof of Theorem 6.1.8. From Kato’s Riemann-Roch formula [Kat], we have

µR(Mt) = 1 + c1(M̃t) · (Ei1 + · · · + Eir ).

Also, c1(M̃t) · Eiu = du,t [Wun2]. So we have the conclusion. □

Representation theoretic proof of Theorem 6.1.8. We recall that a minimal generator of
Mt is identified with a path from R to Mt which doesn’t factor through a free module
except the starting point. Thus, we will count such paths on the AR quiver. Firstly, we
write the AR quiver Q as the repetition of the AR quiver, see Figure 6.1 (it is the translation

quiver ZQ). Note that each diagram
a // b

c

OO
// d

OO corresponds to the AR sequence ending in

Mb (b , 0):
0→ Mc → Ma ⊕ Md → Mb → 0,
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· · · // 0 // a // · · · // t − 2a // t − a // t

· · · // n − 1

OO

// a − 1

OO

// · · · // t − 2a − 1

OO

// t − a − 1

OO

// t − 1

OO

· · · // n − 2

OO

// a − 2

OO

// · · · // t − 2a − 2

OO

// t − a − 2

OO

// t − 2

OO

...

OO

...

OO

...
...

OO

...

OO

...

OO

... · · · // 2 − 2a

OO

// 2 − a

OO

// 2

OO

· · · // 1 − 2a

OO

// 1 − a

OO

// 1

OO

· · · // −2a

OO

// −a

OO

// 0

OO

...
...

OO

...

OO

...

OO

Figure 6.1

and the fundamental sequence of R. These diagrams commutes
a

y //
⟲

b

c

x
OO

y
// d

x
OO from Remark 5.3.6

and 5.3.8.
From this quiver, we extract an appropriate part which implies paths from R to Mt

corresponding to minimal generators of Mt. Such paths takes the form like Figure 6.2.
Here, we assume grayed areas don’t contain R(= 0) (otherwise we can divide those areas
into smaller ones). Indeed, a vertex 0 which is located at outside of Figure 6.2 certainly
go through free modules on the way to Mt. Thus, we may only consider the paths from
R(= 0) to Mt(= t) appearing in Figure 6.2. Furthermore, the number of vertex 0 appearing
in Figure 6.2 coincides with µR(Mt) and we see that the rightmost vertical arrows are
divided into µR(Mt) − 1 blocks. We have to remark that vertices described by⋆ and⋆1

are special CM modules because the number of minimal generators of them is two (see
Theorem 5.3.3 and the discussion following Proposition 5.2.3). From now on, we will
show this division corresponds to the integers (d1, d2, · · · , dr).

We set is = max{ iu in i-series | du , 0}, then we can find the vertex is on the right-
most vertical column in Figure 6.2. From this position, we will follow vertices to the left
direction and if we arrive at a vertex 0, then we stop there (see Figure 6.3). Since Mis

is a special CM module, the length of the vertical (resp. horizontal) path from 0 to is in
Figure 6.3 is is (resp. js) by Theorem 5.3.3. From the selecting method of is, we have
⋆1 ≤ is. If ⋆1 < is, we have Figure 6.4 by Remark 5.3.2 and see that a path from the
lower vertex 0 go through the upper one. Thus, this contradicts the choice of⋆1. It fol-
lows that is coincides with ⋆1. After that, we replace ds by ds − 1. If ds , 0, then we
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0 ⋆ t

0 ⋆

t − 1

0

0 ⋆

0 ⋆1

0

µ(Mt) − 1
blocks

Figure 6.2

repeat the same operation to the vertical column starting at the second rightmost vertex
0. Repeating these processes to the other vertical columns in order until ds become 0, we
have ds blocks of length is.

0 a is

1

0

js

is

y y y

x

x

x

Figure 6.3

0 is

0 ⋆1

0

y y

y y y

x

x

x

x

Figure 6.4
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Next, we set i′s = max{ iu in i-series | du , 0, iu < is} and apply the same process to
i′s. Repeating the above processes until we arrive at the top row, we can see the number of
divided blocks in Figure 6.2 is equal to d1 + d2 + · · · + dr. □

Since e(R) = e(Mt) and µR(Mt) ≤ e(Mt), we may set µR(Mt) = e(R) − s where 0 ≤ s ≤
e(R)− 1. The next corollary immediately follows from the theorem. By this corollary, we
can determine which Mt is Ulrich module for a given cyclic quotient surface singularity.

Corollary 6.1.9. Let the notation be the same as above. Then

µR(Mt) = e(R) − s⇐⇒ d1 + d2 + · · · + dr = e(R) − (s + 1)

for s = 0, 1, · · · , e(R) − 1.
In particular, an MCM R-module Mt is Ulrich if and only if d1+d2+ · · ·+dr = e(R)−1.

Example 6.1.10. Let G = 1
12 (1, 7) be a cyclic group of order 12 (cf. Example 6.1.4). In

this case, non-free special CM modules are M7,M2,M1 and e(R) = 4.
So we obtain the following division of each subscript into integers appearing in the

i-series.
11 = 7 + 2 + 2 7 = 7 3 = 2 + 1
10 = 7 + 2 + 1 6 = 2 + 2 + 2 2 = 2

9 = 7 + 2 5 = 2 + 2 + 1 1 = 1
8 = 7 + 1 4 = 2 + 2

Therefore, Ulrich modules are M11, M10, M6, and M5. For example, paths in the AR
quiver which correspond to minimal generators of M10 are described as follows:

0 // 7 // · · · // 6 // 1 // 8 // 3 // 10

0

OO

// 7

OO

// 2 //

OO

9

OO

1 //

OO

8

OO

0 //

OO

7

OO

6

OO

...

OO

0

OO

Remark 6.1.11. The method used in the representation theoretic proof enables us to de-
termine Ulrich modules for other quotient surface singularities. For example, see Exam-
ple 5.1.2 and 6.2.5.

In this way, we can check which MCM R-module Mt is an Ulrich one. But if the order
of G is large enough, then a process to obtain the sequence (d1,t, · · · , dr,t) for every t =
0, 1, · · · , n − 1 will be tough (although it is not difficult). Therefore we will show another
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characterization of Ulrich modules in terms of the i-series. Firstly, for each subscript
t = 0, 1, · · · , n − 1, we decompose it as in Lemma 6.1.7,

t = d1,ti1 + d2,ti2 + · · · + dr,tir. (6.1.1)

Then, for each subscript t = 0, 1, · · · , n − 1, we define a subset of the i-series as follows.

It B {is | ds,t , 0 in the decomposition (6.1.1)}.

In order to characterize Ulrich modules, we need In−1. Since we can decompose n − 1 as

n − 1 = α1i1 − i2 − 1
= (α1 − 1)i1 + (i1 − i2) − 1
= (α1 − 1)i1 + (α2 − 1)i2 − i3 − 1
= (α1 − 1)i1 + (α2 − 2)i2 + (i2 − i3) − 1
...
= (α1 − 1)i1 + (α2 − 2)i2 + · · · + (αr−1 − 2)ir−1 + (αr − 1)ir − ir+1 − 1
= (α1 − 1)i1 + (α2 − 2)i2 + · · · + (αr−1 − 2)ir−1 + (αr − 2)ir,

we have
In−1 = {i1} ∪ {is | αs > 2 and 2 ≤ s ≤ r}.

Here, since the sum of coefficient is (α1 − 1) +
∑r

u=2(αu − 2) = α1 + · · · + αr − 2r + 1 =
e(R)− 1, Mn−1 is an Ulrich module. (This also come from Proposition 6.1.6 because from
the definition of the i-series, we have ir = 1.) Then we define pairs of integers appearing
in the i-series:

U B {(is, iu) | is ∈ In−1 and is > iu (equivalently u > s)}. (6.1.2)

We emphasize that the determination method of U is the core of the characterization of
Ulrich modules.

We are now ready to state the theorem.

Theorem 6.1.12. Consider any sequences of pairs
(
ik(1), ik(1)′

)
, · · · , (ik(b), ik(b)′

) ∈ U which

satisfy ik(c)′ > ik(c+1) for any c = 1, 2, · · · , b − 1. If t = n − 1 −
b∑

c=1

(
ik(c) − ik(c)′

)
or t = n − 1,

then Mt is an Ulrich module.

Proof. We already know that Mn−1 is an Ulrich module. Thus, we will consider the other
case.

We take a pair (ik(1), ik(1)′) ∈ U, then n − 1 − (ik(1) − ik(1)′) is deformed as follows.

( if k(1) = 1 ) =
k(1)′−1∑

v=1

(αv − 2)iv + (αk(1)′ − 1)ik(1)′ +

r∑
v=k(1)′+1

(αv − 2)iv.

( if k(1) , 1 ) = (α1 − 1)i1 +

k(1)−1∑
v=2

(αv − 2)iv + (αk(1) − 3)ik(1)

+

k(1)′−1∑
v=k(1)+1

(αv − 2)iv + (αk(1)′ − 1)ik(1)′ +

r∑
v=k(1)′+1

(αv − 2)iv.
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In this decomposition, the coefficients of the i-series satisfy the conditions as in Lemma 6.1.7
and the sum of them is equal to α1+· · ·+αr−2r+1 = e(R)−1. Therefore, Mn−1−(ik(1)−ik(1)′ ) is
an Ulrich module by Corollary 6.1.9. Then we take a pair (ik(2), ik(2)′) ∈ U with ik(1)′ > ik(2).
By the same argument, we can show that Mt is an Ulrich module for t = n − 1 − (ik(1) −
ik(1)′) − (ik(2) − ik(2)′). Repeating these processes, we have the conclusion. □

Theorem 6.1.13. Conversely, if Mt is an Ulrich module (t , n − 1), then we can take
a sequence of pairs

(
ik(1), ik(1)′

)
, · · · , (ik(b), ik(b)′

) ∈ U with ik(c)′ > ik(c+1) for any c =
1, 2, · · · , b − 1 and

t = n − 1 −
b∑

c=1

(
ik(c) − ik(c)′

)
.

Proof. Suppose Mt is an Ulrich module and describe t = d1i1 + d2i2 + · · · + drir as in
Lemma 6.1.7. Recall that n− 1 = (α1 − 1)i1 + (α2 − 2)i2 + · · ·+ (αr − 2)ir. Then we set the
integers

(ε1, ε2, · · · , εr) B (d1 − (α1 − 1), d2 − (α2 − 2), · · · , dr − (αr − 2)).

Since t , n − 1, (ε1, · · · , εr) , (0, · · · , 0). By Lemma 6.1.14 and 6.1.15, we can take
elements of U as in the statement. □

So we have to show the following two lemmas.

Lemma 6.1.14. One has ε1 ∈ {−1, 0} and εu ∈ {−1, 0, 1} for u = 2, · · · , r.

Proof. By Lemma 6.1.7, we have 0 ≤ du ≤ αu − 1 for u ∈ [1, r]. So ε1 ≤ 0 and εu ≤ 1
for u ∈ [2, r]. Since Mn−1 and Mt are Ulrich modules, we have ε1 + · · · + εr = 0 by
Corollary 6.1.9.

Case 1. Assume ε1 ≤ −2. Since ε1 + · · · + εr = 0, there are −ε1(≥ 2) components which
satisfy εu = 1, u ∈ [2, r]. Set k B −ε1 and suppose such components are

εu1 = εu2 = · · · = εuk = 1 (u1 < u2 < · · · < uk).

Here, we may assume that for any j ∈ [1, k − 1] there is no component εu′ = 1
such that u j < u′ < u j+1. Then, by Lemma 6.1.7, there exists a subscript v such
that u1 < v < u2 and εv ≤ −1. So there is a subscript uk+1 with uk < uk+1 such
that εuk+1 = 1 because ε1 + · · · + εr = 0. We again use Lemma 6.1.7 and there is a
subscript v′ such that uk < v′ < uk+1 and εv′ ≤ −1. These processes will continue
infinitely, but the sequence (ε1, · · · , εr) is finite. Thus, we have ε1 ∈ { −1, 0}.

Case 2. Assume that there exists u ∈ [2, r] such that εu ≤ −2. As we did in Case 1, set
k = −εu (≥ 2) and εu1 = εu2 = · · · = εuk = 1.

If ε1 = 0, then d1 = α1 − 1. Thus, the sequence (d1, · · · , dr) is of the form

(α1 − 1, A , αu1 − 1, B , αu2 − 1, · · · ).
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By Lemma 6.1.7, we can find dv’s which satisfy dv ≤ αv − 3 in the both part of A
and B. Even if one is the above du with εu = du − (αu − 2) ≤ −2, the other one leads
us to the conclusion that there is a subscript uk+1 with uk < uk+1 such that εuk+1 = 1.
In the same way as Case 1, we have the contradiction.

If ε1 = −1, then there is a subscript uk+1 with uk < uk+1 such that εuk+1 = 1 as well
because ε1 + · · · + εr = 0. Similarly, we have the contradiction.

As the consequence, εu ∈ {−1, 0, 1} for u ∈ [2, r].

□

Lemma 6.1.15. Let (ε′1, ε
′
2, · · · , ε′ℓ) ∈ {−1, 1}ℓ be the subsequence of (ε1, ε2, · · · , εr) re-

moving every 0 components from (ε1, · · · , εr). Then (ε′1, · · · , ε′ℓ) takes the alternate form
as

(−1,+1,−1,+1, · · · ,−1,+1).

Proof. By the definition, we have ε′1 + · · · + ε′ℓ = 0 and the number of +1 appearing in
(ε′1, · · · , ε′ℓ) coincides with that of −1.

Case 1. If ε1 = −1, then ε1 = ε
′
1 = −1. Assume the sequence (ε′1, · · · , ε′ℓ) is not alternate.

Then we can find a part appearing +1 continuously. This contradicts Lemma 6.1.7.

Case 2. If ε1 = 0, then ε1 , ε′1 and d1 = α1 − 1. So we set εp = ε
′
1 ∈ {−1, 1}.

If εp = ε
′
1 = 1, then there exists a subscript q with 1 < q < p such that εq = −1 by

Lemma 6.1.7. This contradicts the definition of εp. Therefore we have εp = ε
′
1 =

−1.

Assume the sequence (ε′1, · · · , ε′ℓ) is not alternate. Then we will run into the contra-
diction by the same reason as in Case 1.

□

Corollary 6.1.16. We suppose Mt is an Ulrich module. Then we have n − a ≤ t ≤ n − 1.
Furthermore, Mn−1 and Mn−a are actually Ulrich modules.

Proof. By Theorem 6.1.13, we describe t as t = n − 1 −
b∑

c=1

(
ik(c) − ik(c)′

)
where(

ik(1), ik(1)′
)
, · · · , (ik(b), ik(b)′

) ∈ U with ik(c)′ > ik(c+1) for any c = 1, 2, · · · , b − 1. So we have

b∑
c=1

(
ik(c) − ik(c)′

)
= ik(1) − (ik(1)′ − ik(2)) − · · · − (ik(b−1)′ − ik(b)) − ik(b)′ ≤ i1 − ir = a − 1.

Also, Mn−1 and Mn−a are Ulrich modules because M1 and Ma are special CM modules
(see Proposition 6.1.6). □
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Example 6.1.17. Suppose G = 1
158 (1, 57). Then we have 158

57 = [3, 5, 2, 3, 3] and i1 =

57, i2 = 13, i3 = 8, i4 = 3, i5 = 1. Since In−1 = I157 = {i1, i2, i4, i5}, we obtain

U =
{
(i1, i2), (i1, i3), (i1, i4), (i1, i5), (i2, i3), (i2, i4), (i2, i5), (i4, i5)

}
.

By the following table and Theorem 6.1.12 and 6.1.13, we see that Ulrich modules are
only

M101,M103, M106,M108,M111,M113,M145,M147,M150,M152,M155 and M157.

pairs
(
ik(1), ik(1)′

)
, · · · , (ik(b), ik(b)′

)
t = n − 1 −

b∑
c=1

(
ik(c) − ik(c)′

)
(i1, i2) = (57, 13) 157 − (57 − 13) = 113
(i1, i3) = (57, 8) 157 − (57 − 8) = 108
(i1, i4) = (57, 3) 157 − (57 − 3) = 103
(i1, i5) = (57, 1) 157 − (57 − 1) = 101
(i2, i3) = (13, 8) 157 − (13 − 8) = 152
(i2, i4) = (13, 3) 157 − (13 − 3) = 147
(i2, i5) = (13, 1) 157 − (13 − 1) = 145
(i4, i5) = (3, 1) 157 − (3 − 1) = 155
{(i1, i2), (i4, i5)} 157 − (57 − 13) − (3 − 1) = 111
{(i1, i3), (i4, i5)} 157 − (57 − 8) − (3 − 1) = 106
{(i2, i3), (i4, i5)} 157 − (13 − 8) − (3 − 1) = 150

6.1.3 The number of minimal generators for each MCM modules
In this subsection, we will consider the following question.

Question 6.1.18. For a cyclic quotient surface singularity R, fix the integer 1 ≤ m ≤ e(R).
How many indecomposable MCM modules which satisfy µR(Mt) = m are there? In

particular, how many indecomposable Ulrich modules are there ??

For simplicity, we denote the number of indecomposable MCM modules Mt which
satisfies µR(Mt) = m by Nm. Namely,

Nm = #{Mt ∈ CM(R) | µR(Mt) = m}.

Firstly, we show that there actually exists an MCM R-module which satisfies µR(Mt) =
m for any m = 1, · · · , e(R). That is, Nm ≥ 1 for any m = 1, · · · , e(R) (see Proposi-
tion 6.1.20).

Proposition 6.1.19. Fix an integer m = 1, · · · , e(R). Assume there exists an MCM R-
module Mt such that µR(Mt) = m and t is described as t = d1,ti1 + d2,ti2 + · · · + dr,tir. Then
for every ℓ = m,m − 1, · · · , 1, there is an MCM R-module Mt′ such that µR(Mt′) = ℓ

Proof. Taking iu ∈ It, we have µR(Mt−iu) = m − 1 by Theorem 6.1.8. Similarly we take
iv ∈ It−iu and have µR(Mt−iu−iv) = m−2. Since d1,t+d2,t+· · ·+dr,t = m−1 by the hypothesis,
we can repeat the above process m − 1 times. □
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Proposition 6.1.20. For every integer m = 1, · · · , e(R), there is an MCM R-module Mt

such that µR(Mt) = m.

Proof. Since there exists an Ulrich module, we apply Proposition 6.1.19 to m = e(R) and
have the conclusion. □

From these results we have the following relation among some classes of MCM R-
modules.

Corollary 6.1.21. Let R be a cyclic quotient surface singularity. Then

(1) If e(R) = 2, CM(R) = SCM(R) = add(R) ⊔ UCM(R) (cf. Example 5.3.14),
(2) If e(R) = 3, CM(R) = SCM(R) ⊔ UCM(R),
(3) If e(R) > 3, CM(R) ⫌ SCM(R) ⊔ UCM(R).

where SCM(R) (resp. UCM(R) ) is the full subcategory of CM(R) consisting of special
(resp. Ulrich) CM R-modules.

Remark 6.1.22. These are typical results for cyclic quotient surface singularities.

(1) Proposition 6.1.20 doesn’t hold in a higher dimension. For example, we consider
the action of G =

⟨
diag(−1,−1,−1)

⟩
on S = k[[x, y, z]]. Then the invariant sub-

ring R = S G is of finite CM representation type and finitely many indecomposable
MCMs are R, ωR and ΩωR (cf. [Yos, LW]). Also, we have e(R) = 4 but µR(ωR) = 3
and µR(ΩωR) = 8.

(2) Corollary 6.1.21 (2) doesn’t hold for non-cyclic cases. For example, let R be the
invariant subring as in Example 5.1.2. Note that e(R) = 3. We can find some in-
decomposable MCM R-modules which are neither special CM modules nor Ulrich
modules (see Example 6.2.5 and [IW]).

6.1.4 The number of Ulrich modules
In the previous subsection, we investigated the number Nm and showed Nm ≥ 1 for any
m = 1, · · · , e(R). In this subsection, we will focus on Ne(R), that is, the number of Ulrich
modules.

Firstly, we should remark that Corollary 6.1.16 gives an upper bound of Ne(R). Namely,
we have Ne(R) ≤ a. Next, we will give other bounds in terms of the number of irreducible
exceptional curves.

Theorem 6.1.23. Suppose R is a cyclic quotient surface singularity whose number of
irreducible exceptional curves (= that of non-free indecomposable special CM modules)
is r: ONMLHIJK−α1 ONMLHIJK−α2 · · · · · · ONMLHIJK−αr

Then we have r ≤ Ne(R) ≤ 2r−1. Especially, Ne(R) = 2r−1 holds only if αu > 2 for every
u = 2, · · · , r − 1, and Ne(R) = r holds only if α2 = · · · = αr−1 = 2.
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Proof. By Theorem 6.1.12 and 6.1.13, Mt is an Ulrich module if and only if t = n− 1 or t
is described by a sequence of elements which satisfy

(♣)
(
ik(1), ik(1)′

)
, · · · , (ik(b), ik(b)′

) ∈ U with ik(c)′ > ik(c+1) for any c = 1, 2, · · · , b − 1.

Note that if we take different sequences of elements in U which satisfy (♣), then corre-
sponding subscripts are also different, because the sequence (d1,t, · · · , dr,t) as in Lemma 6.1.7
is unique for each subscript t. Thus, Ne(R) − 1 is equal to the number of sequences satis-
fying the condition (♣). Therefore we may show the maximal (resp. minimal) number of
such sequences is equal to 2r−1 − 1 (resp. r − 1). Clearly, we should consider the case
where In−1 = {i1, · · · , ir} to obtain the upper bound of Ne(R). (Notice that the element ir

doesn’t influence the number of elements in U.)
To make the situation clear, we set

Ik B {ik, · · · , ir}, Uk B {(is, iu) | is ∈ Ik and is > iu}.

Furthermore, we denote the set of sequences of Uk which satisfies (♣) by Ur−k and the
number of elements in Ur−k by #Ur−k. In this situation, we may show #Ur−1 = 2r−1 − 1
and the following inductive argument asserts the conclusion.

The case where k = r is easy. (R is a Veronese subring and Ur = ∅.) Assume we have
#Ur−k = 2r−k − 1 for k = 2, · · · , r. Then we can obtain elements inUr−1 as follows.

· (i1, i2), (i1, i3), · · · , (i1, ir),
· elements inUr−2,
· combine (i1, i2) and elements inUr−3,

...
· combine (i1, ir−3) and elements inU2,
· combine (i1, ir−2) and elements inU1 = {(ir−1, ir)}.

By the hypothesis, the number of these elements is less than or equal to

(r − 1) + (2r−2 − 1) + (2r−3 − 1) + · · · + (21 − 1) = 2r−2 + 2r−3 + · · · + 2 + 1 = 2r−1 − 1.

In order to obtain the lower bound, we consider the case where In−1 = {i1}, and it is easy
to see Ne(R) = r. □

Remark 6.1.24. We could obtain two upper bounds Ne(R) ≤ a or 2r−1. But it depends on a
case whether which one is a better bound.

For the case where r is small, we can compute Ne(R) explicitly. (Check the bounds of
Ne(R) for the following examples.)

Example 6.1.25. Suppose R is a cyclic quotient surface singularity whose dual graph of
the following form C.

(1) The case where
C : −α −β (α, β ≥ 2) .

Then we have Ne(R) = 2 .
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(2) The case where
C : −α −β −γ (α, β, γ ≥ 2) .

(2-1) If β = 2, then we have Ne(R) = 3 .

(2-2) If β > 2, then we have Ne(R) = 4 .

(3) The case where

C : −α −β −γ −δ (α, β, γ, δ ≥ 2) .

(3-1) If β = 2, γ = 2, then we have Ne(R) = 4 .

(3-2) If β = 2, γ > 2, then we have Ne(R) = 6 .

(3-3) If β > 2, γ = 2, then we have Ne(R) = 6 .

(3-4) If β > 2, γ > 2, then we have Ne(R) = 8 .

Proof. We only show the case (3-2). The other cases are similar.
Let i1, · · · , i4 be the i-series corresponding to each exceptional curve. Since β = 2 and

γ > 2, we have In−1 = {i1, i3}. The statement follows from Theorem 6.1.12 and 6.1.13 be-
cause we can take the following pairs: {(i1, i2)}, {(i1, i3)}, {(i1, i4)}, {(i3, i4)}, {(i1, i2), (i3, i4)}.

□

6.1.5 Examples
We finish this section with some special examples. In particular, we determine the number
Nm completely. From Theorem 6.1.8, special CM modules behave like a “basis”. Thus,
we can identify each MCM R-module Mt with the lattice point (d1,t, · · · , dr,t) ∈ Zr.

Example 6.1.26. Suppose G = 1
23(1, 6) and R = k[[x, y]]G. Then 23

6 = 4 − 1
6 = [4, 6] and

e(R) = 8. The i-series are i1 = 6, i2 = 1.
In this situation, we identify each subscript t = 0, 1, · · · , 22 with the lattice point

(d1,t, d2,t). For example, since 20 = (1+ 1)+ (6+ 6+ 6), it corresponds to the lattice point
(2, 3).

d2

d1

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22

By the theorem, we have d1,t = −d2,t + µ(Mt)− 1 and suppose µR(Mt) = e(R) = 8, then
an MCM module whose corresponding lattice point is on the line d1,t = −d2,t + 7 is an
Ulrich module. In this case, there are two Ulrich modules (M17 and M22).
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d2

d1

• • • • • •
• • • • • •
• • • • • •
• • • • •

d1 = −d2 + 7

d2

d1

• • • • • •
• • • • • •
• • • • • •
• • • • •

d1 = −d2 + 6

Similarly we suppose µR(Mt) = 7 then the above figure implies N7 = 3.

In this way, we can compute the number Nm. In general, we have the following.

Example 6.1.27. Take integers α, β ≥ 2. Suppose G = 1
n (1, a) which satisfies n/a = α− 1

β
.

Then R = S G is the cyclic quotient surface singularity whose dual graph is

−α −β

and e(R) = α + β − 2. The i-series are i1 = β, i2 = 1.

If α ≤ β, we have

d2

d1

• • • • • • •
•

• • • •
•
•

•
•

α − 1

α − 1
β − α

Nα+β−2 = 2, Nβ−1 = α, Nα−2 = α − 2,

Nα+β−3 = 3,
...

...
... Nα = α, N2 = 2,

Nβ = α, Nα−1 = α − 1, N1 = 1.

The case α ≥ β is similar. (replace α by β and vice versa.)

Proof. By the above figure of lattice points, we easily count the number of desired MCM
modules. □

We can also determine Nm for the following situation.

Example 6.1.28. Consider a cyclic quotient surface singularity R whose dual graph is

−2 −2 −α −2 −2

A − 1 B − 1
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where α ≥ 2 and A, B ≥ 1. Then e(R) = α and we have the following.

Nα = AB, N3 = AB,
Nα−1 = AB, N2 = A + B − 1,

... N1 = 1.
N4 = AB,

Proof. Let i1, · · · , iA−1, iA, iA+1, · · · , iA+B−1 be the i-series corresponding to each excep-
tional curve. Especially, iA corresponds to the exceptional curve whose self-intersection
number is−α. Thus, we have In−1 = {i1, iA} and U = {(i1, i2), · · · , (i1, iA+B−1), (iA, iA+1), · · · , (iA, iA+B−1)}.
It is easy to see iA = B, iA+1 = B − 1, · · · , iA+B−1 = 1. Therefore, we can see an MCM
R-module Mt whose subscript is appearing in the following table is an Ulrich module by
Theorem 6.1.12 and 6.1.13.

n − 1, n − 1 − (i1 − i2), · · · n − 1 − (i1 − iA−1), n − 1 − (i1 − iA),
n − 2 = n − 1 − (iA − iA+1), n − 2 − (i1 − i2), · · · n − 2 − (i1 − iA−1), n − 1 − (i1 − iA+1),
...

...
...

...

n − B = n − 1 − (iA − iA+B−1), n − B − (i1 − i2), · · · n − B − (i1 − iA−1), n − 1 − (i1 − iA+B−1).

Thus, we obtain Nα = AB. By the same arguments as in Proposition 6.1.19, we can
determine Nm for m = 3, 4, · · · , α − 1. The value of N2 follows from the special McKay
correspondence. □

6.2 Hilbert-Kunz multiplicities for quotient surface sin-
gularities

By using arguments similar to those in Chapter 5, we can investigate the Hilbert-Kunz
multiplicity for quotient surface singularities. Again, we suppose G is a finite subgroup
of GL(2, k) which contains no pseudo-reflections and S B k[[x, y]] be the power series
ring. We assume that (|G|, char k) = 1. We will consider an invariant subring R B S G.
Let V0 = k,V1, · · · ,Vn be the complete set of irreducible representations of G and set the
indecomposable MCM R-modules Mt B (S ⊗k Vt)G (t = 0, 1, · · · , n). In this situation,
the Hilbert-Kunz multiplicity is determined by the next formula.

Theorem 6.2.1. (cf. [WY1, Theorem 2.7]) Let the notation be same as above. Then

eHK(R) =
1
|G|ℓS

(
S/mS

)
.

We can deform it as follows. Since S � R⊕d0 ⊕ M⊕d1
1 ⊕ · · · ⊕ M⊕dn

n (dt = rankR Mt =

dimk Vt),

ℓs(S/mS ) = dimk(S ⊗ R/m) = µR(S ) =
n∑

t=0

dt µR(Mt),
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where µR(M) stands for the number of minimal generator of a finitely generated R-module
M. Thus,

eHK(R) =
1
|G|

n∑
t=0

dt µR(Mt).

Note that this formula is also obtained by the isomorphism (3.2.1) and Theorem 3.3.1.
As we showed in subsection 5.1, we can calculate µR(Mt) by using the AR quiver (or the
McKay quiver). Thus, we can determine the value of the Hilbert-Kunz multiplicity by a
relatively easy process.

Example 6.2.2. ([WY1, Theorem 5.4], see also [HL, Corollary 20], [Tuc, Corollary 4.15])
Suppose G is a finite subgroup of ⊂ SL(2, k). Then R is a two-dimensional rational double
point as in Section 5.4. For an indecomposable R-module Mt, we have µR(Mt) = 2dt for
t , 0 and clearly µR(R) = d0 = 1. Thus, we have

eHK(R) =
1
|G|(2

n∑
t=0

d2
t − 1) =

1
|G|(2|G| − 1) = 2 − 1

|G| .

Example 6.2.3. Let G B ⟨ σ =
(
ζ8 0
0 ζ5

8

)
⟩ be a cyclic group of order 8 where ζ8 is a

primitive 8-th root of unity. We consider irreducible representations of G;

Vt : σ 7→ ζ−t
8 (t = 0, 1, · · · , 7).

We consider the invariant subring R B S G and its indecomposable MCM module Mt B
(S ⊗k Vt)G. By the counting argument of AR quiver, we obtain the following (the meaning
of this picture, see Section 5.3).

0

7

OO

6

OO

5

OO

4

OO

3

OO

2

OO
// 7 // 4

1

OO
// 6

OO
// 3

OO

0

OO
// 5

OO
// 2

OO
// 7 // 4 // 1 // 6 // 3 // 0

t 0 1 2 3 4 5 6 7
µ(Mt) 1 2 2 3 3 2 3 3

rank Mt 1 1 1 1 1 1 1 1

So we have eHK(R) =
19
8

.

Example 6.2.4. In Example 6.1.27 and 6.1.28, we could obtain Nm for m = 1, · · · , e(R).
Thus, we can compute the Hilbert-Kunz multiplicity eHK(R).

That is, let R be as in Example 6.1.27 (resp. Example 6.1.28). Then we have eHK(R) =
1
2n {(αβ − 2)(α + β) + 2} (resp. eHK(R) = 1

2n {AB(α − 2)(α + 3) + 4(A + B) − 2}).
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Example 6.2.5. Let the notation be same as Example 5.1.2. By the counting argument of
AR quiver, we have the number of minimal generators as follows.

(i, j) (0, 0) (1, 0) (3, 0) (4, 0) (2, 2) (0, 1) (1, 1) (3, 1)
µ(Mi, j) 1 3 3 3 4 3 2 2

rank Mi, j 1 1 1 1 2 1 1 1

(4, 1) (2, 0) (0, 2) (1, 2) (3, 2) (4, 2) (2, 1)
2 5 2 3 3 3 6
1 2 1 1 1 1 2

Thus, we have eHK(R) =
60
24
=

5
2

.
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