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1. Introduction

There are two important notions in triangulated categories which are deeply studied in the represen-
tation theory.

The first one is t-structure, which is introduced by Beilinson, Bernstein and Deligne [BBD] in their
study of perverse sheaves on an algebraic varieties. One of the important properties is that

(*) The heart of a t-structure is an abelian category.

A t-structure also provides a homological functor H with values in the heart from the original triangulated
category. A typical example of a t-structure, which we call the standard t-structure, is a pair (T ≤0, T ≥0)
for the derived category D(A) of an abelian category A, where T ≤0 consists of complexes with vanishing
cohomologies in positive degrees, and T ≥0 consists of complexes with vanishing cohomologies in negative
degrees. Moreover, if we have a derived equivalence between two algebra A and B, the we have a t-
structure in standard t-structure of A by this equivalence. Therefore, t-structure is important to study
the derived equivalence.

The second one are cluster tilting subcategories. They were introduced in [BMRRT] as a generalization
of tilting theory for hereditary algebras, in order to categorify Fomin-Zelevinsky’s cluster algebras [FZ]. It
was proved that cluster tilting subcategories always exist in certain triangulated categories called cluster
categories. Also cluster tilting subcategories of module categories were studied by Iyama in [I1] By Koenig
and Zhu [KZ]

(**) The quotient of a triangulated category by a cluster tilting subcategory is abelian.

Moreover, this quotient is Iwanaga-Gorenstein of dimension at most one (see [KZ, Theorem 4.3]).
These two structures can be unified to the notion of torsion pairs on triangulated categories, which is

a pair on a triangulated category D is a pair (U ,V) of full subcategories such that

• HomD(U ,V) = 0.
• Any object D ∈ D admits a triangle U → D → V → U [1] such that U ∈ U and V ∈ V.

The notion is classical, going back to the example of torsion and torsion free abelian groups. Now the
concept has been widely used in the representation theory, since it is also important in the study of the
algebraic structure of triangulated categories.

By a technical reason, we consider a cotorsion pair instead of torsion pair. The notion of cotorsion
pair is just an analog of torsion pair on triangulated category: a pair (U ,V) on T is called a cotorsion
pair if (U ,V[1]) is a torsion pair. Nakaoka introduced the notion of hearts of cotorsion pairs on triangu-
lated categories , as a generalizatoin of the heart of t-structure, and showed that the hearts are abelian
categories [N]. His construction of hearts generalizes the above results (*) and (**) for t-structure and
cluster tilting subcategory. Moreover, he generalized these results to a more general setting called twin
cotorsion pair [N1].

Motivated by Nakaoka’s results of cotorsion pairs on triangulated category, in this paper, we consider
cotorsion pairs on Quillen’s exact category, which is a generalization of abelian categories and there are
many important examples of it. The cotorsion pairs on abelian categories goes back to Salce in [S], and
it has been deeply studied in the representation theory during these years, especially in tilting theory
and Cohen-Macaulay modules [AR] and [AB] (see [EJ, GT, HuI, Ri] for more examples).

By Happel [H, Theorem 2.6], the stable category of a Frobenius category (which is a specail case of
exact category) has a structure of a triangulated category. Most triangulated categories appearing in
representation theory turn out to be in fact algebraic (i.e. stable categories of Frobenius categories).
Moreover, if we have a cotorsion pair on a Frobenius category, then it is still a cotorsion pair on the
stable category of this Frobenius category.

In this article, we introduce the heart H of a cotorsion pair (U ,V) on the exact category B with enough
projectives enough injectives (see subsection 2.1 for more details). We first prove that H is abelian. We
will apply this result to the case of cluster tilting subcategory. A more general setting, which is called
twin cotorsion pair, is also discussed. We show several results for the hearts of twin cotorsion pairs.
Then we construct a half exact functor from B to H, and as an application, we give a sufficient condition
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when two hearts are equivalent to each other. At last, by using this functor, we show that the heart is
equivalent to functor category over the coheart of (U ,V).

1.1. Hearts of twin cotorsion pairs. We begin with the central concept of our results: a cotorsion
pair in an Krull-Schmidt exact category B with enough projectives and enough injectives (see for example
[KS, A.1]).

Let U and V be full additive subcategories of B which are closed under direct summands. We call
(U ,V) a cotorsion pair if it satisfies the following conditions:

(a) Ext1
B(U ,V) = 0.

(b) For any object B ∈ B, there exits two short exact sequences

VB � UB � B, B � V B � UB

satisfying UB , U
B ∈ U and VB , V

B ∈ V.

Since B has enough projectives and injectives, we always have two cotorsion pairs (P,B) and (B, I).
Now let us define the heart of a cotorsion pair.

Definition 1.1. Let

B+ := {B ∈ B | UB ∈ V}, B− := {B ∈ B | V B ∈ U}.

Let H = B+ ∩ B−, we define the heart of (U ,V) as the quotient category

H := (B+ ∩ B−)/(U ∩ V).

Now we introduce the following main theorem in Section 2.

Theorem 1.2. Let (U ,V) be a cotorsion pair on an exact category B with enough projectives and injec-
tives. Then H is abelian.

Now we apply this theorem to the cluster tilting subcategory M of B. In our words, M is cluster
tilting if and only if (M,M) is a cotorsion pair. In this case, the heart of (M,M) is B/M. Therefore,
we have the following corollary which is an analog of the result in [KZ] for triangulated category (see
Proposition 2.56 for details)..

Corollary 1.3. [DL] Let M be a cluster tiling subcategory on B, The quotient category B/M is abelian.

We also prove more general results for twin cotorsion pairs defined as follows.

Definition 1.4. A pair of cotorsion pairs (S, T ), (U ,V) is called a twin cotorsion pair if S ⊆ U .

The notion of semi-abelian category (see Definition 2.27) was introduced by Rump [R], as a special
class of preabelian categories. In this setting, we still have the following results.

Theorem 1.5. Let (S, T ), (U ,V) be a twin cotorsion pair on B. Then H is semi-abelian.

There are two nice classes of semi-abelian categories called integral (see [R, §2] for examples) and
almost abelian (any torsion class associated with a tilting module is almost abelian [CF]). We give
sufficient conditions for hearts to be integral (see Theorem 2.34) or almost abelian (see Theorem 2.38).

Finally, we consider a special twin cotorsion pair (S, T ), (T ,V), note that this is an analog of TTF the-
ory and recollement. Then we have a theorem (see Theorem 2.49) which gives a more explicit description
of the heart and can be regarded as an analog of [BM, Theorem 5.7].

1.2. Associated half exact functors. It is natural to ask whether we can find the relationship between
the hearts and the original exact categories. For t-structures, there is a natural cohomological functor
from triangulated category to the hearts. For cluster tilting subcategories, we have natural functors from
triangulated category to the quotient category over them. Abe and Nakaoka unified these two functor by
constructing a cohomological functor from triangulated categories to the hearts of cotorsion pairs [AN].
The main result of Section 3 is to answer this question by constructing an associated half exact functor
H from the exact category B to the heart H.

we recall the definition of the half exact functor on B (also see [O, p.24]).
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Definition 1.6. A covariant functor F from B to an abelian category A is called half exact if for any

short exact sequence A //
f // B

g // // C in B, the sequence F (A)
F (f)−−−→ F (B)

F (g)−−−→ F (C) is exact in A.

Denote add(U ∗V) by K, We will prove the following theorem (see Theorem 3.11 and Proposition 3.12
for details).

Theorem 1.7. For any cotorsion pair (U ,V) on B, there exists an associated half exact functor H : B →
H such that

(a) H|H = π|H where π : B → B/(U ∩ V) is the natural functor.
(b) H(B) = 0 if and only if B ∈ K.

We denote by Ω : B/P → B/P the syzygy functor and by Ω− : B/I → B/I the cosyzygy functor. We
will prove that any half exact functor F which satisfies F (P) = 0 and F (I) = 0 has a similar property
as cohomological functors on triangulated categories.

In particular, as an application, we have the following corollary (see Corollary 3.16 for details).

Corollary 1.8. For any short exact sequence

A //
f // B

g // // C

in B, there exist morphisms h : C → Ω−A and h′ : ΩC → A such that the sequence

· · · H(Ωh′)−−−−−→ H(ΩA)
H(Ωf)−−−−→ H(ΩB)

H(Ωg)−−−−→ H(ΩC)
H(h′)−−−−→ H(A)

H(f)−−−→ H(B)

H(g)−−−→ H(C)
H(h)−−−→ H(Ω−A)

H(Ω−f)−−−−−→ H(Ω−B)
H(Ω−g)−−−−−→ H(Ω−C)

H(Ω−h)−−−−−→ · · ·

is exact in H.

The half exact functor we construct gives us a way to find out the relationship between different
hearts. Let k ∈ {1, 2}, (Uk,Vk) be a cotorsion pair on B and Wk = Uk ∩ Vk. Let Hk/Wk be the
heart of (Uk,Vk) and Hk be the associated half exact functor. If W1 ⊆ K2, then H2 induces a functor
β12 : H1/W1 → H2/W2, and we have the following proposition (see Proposition 3.21, 3.20 and Theorem
3.23 for details).

Theorem 1.9. Let (U1,V1), (U2,V2) be cotorsion pairs on B. If W1 ⊆ K2 ⊆ K1, then

(a) We have a natural isomorphism β21β12 ' idH1/W1
of functors.

(b) (H2 ∩ K1)/W2 is a Serre subcategory.
(c) Let H2 be the localization of H2/W2 by (H2∩K1)/W2, then we have an equivalence H1/W1 ' H2.

This implies the following corollary which gives a sufficient condition when two different hearts (see
Corollary 3.22).

Corollary 1.10. If K1 = K2, then we have an equivalence H1/W1 ' H2/W2 between two hearts.

1.3. Hearts are equivalent to functor categories. By using the half exact functor, we give an
equivalence between hearts and the functor categories over cohearts. For the details of functor category,
see [A] and also [IY, Definition 2.9].

Let T be a triangulated category. For any cotorsion pair (U ,V) on T , We denote by ⊥U the subcategory
such that X ∈ ⊥U if HomT (X,U) = 0. We introduce the notion of cohearts of a cotorsion pair, denote
by

C = U [−1] ∩ ⊥U .
This is a generalization of coheart of a co-t-structure, which plays an important role in [KY]. We have
the following theorem in triangulated category.

Theorem 1.11. Let (U ,V) be a cotorsion pair on a triangulated category T . If U [−1] ⊆ C ∗ U , then the
heart of (U ,V) has enough projectives H(C), and moreover it is equivalent to the functor category mod C.



5

This generalizes [BR, Theorem 3.4] which is for t-structure. One standard example of this theorem is
the following: let A be a Noetherian ring with finite global dimension, then the standard t-structure of
Db(modA) has a heart modA with coheart projA, and we have an equivalence modA ' mod(projA) in
this case.

For any cotorsion pair (U ,V) on an exact category B, We denote by ⊥1U the subcategory such that
X ∈ ⊥1U if Ext1

B(X,U) = 0. We denote by

C = U ∩ ⊥1U

the coheart of (U ,V). We have the following theorem in exact category.

Theorem 1.12. Let (U ,V) be a cotorsion pair on an exact category B with enough projectives and
injectives, if for any any object U ∈ U , there exists an exact sequence U ′ � C � U where U ′ ∈ U and
C ∈ C, then the heart of (U ,V) has enough projectives H(ΩC), and moreover it is equivalent to the functor
category mod(C/P), where P is the subcategory of projetive objects on B.

We also show that the condition U [−1] ⊆ C ∗U on triangulated category is satisfied in many cases, for
example, when U is covariantly finite in a Krull-Schmidt triangulated category. And for exact category
case, see Examples 4.18 and 4.19.

2. Hearts of twin cotorsion pairs on exact categories

2.1. Preliminaries. First we briefly review the important properties of exact categories. For more
details, we refer to [B]. Let A be an additive category, we call a pair of morphisms (i, d) a weak short
exact sequence if i is the kernel of d and d is the cokernel of i. Let E be a class of weak short exact
sequences of A, stable under isomorphisms, direct sums and direct summands. If a weak short exact
sequence (i, d) is in E , we call it a short exact sequence and denote it by

X // i // Y
d // // Z.

We call i an inflation and d a deflation. The pair (A, E) (or simply A) is said to be an exact category if
it satisfies the following properties:

(a) Identity morphisms are inflations and deflations.
(b) The composition of two inflations (resp. deflations) is an inflation (resp. deflation).

(c) If X // i // Y
d // // Z is a short exact sequence, for any morphisms f : Z ′ → Z and g : X → X ′,

there are commutative diagrams

Y ′

f ′

��

d′ // //

PB

Z ′

f

��
Y

d
// // Z

X

g

��
PO

// i // Y

g′

��
X ′ //

i′
// Y ′

where d′ is a deflation and i′ is an inflation, the left square being a pull-back and the right being
a push-out.

We introduce the following properties of exact category, the proofs of which can be find in [B, §2]:

Proposition 2.1. Consider a commutative square

A //
i //

f

��

B

f ′

��
A′ //

i′
// B′

in which i and i′ are inflations. The following conditions are equivalent:

(a) The square is a push-out.
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(b) The sequence A //

(
i
−f
)
// B ⊕A′

( f ′ i′ )// // B′ is short exact.
(c) The square is both a push-out and a pull-back.
(d) The square is a part of a commutative diagram

A //
i //

f

��

B

f ′

��

// // C

A′ //
i′
// B′ // // C

with short exact rows.

Proposition 2.2. (a) If X // i // Y
d // // Z and N // g // M

f // // Y are two short exact se-
quences, then there is a commutative diagram of short exact sequences

N
��

��

N
��
g

��
Q

����

// // M

f
����

// // Z

X //
i
// Y

d
// // Z

where the lower-left square is both a push-out and a pull-back.

(b) If X // i // Y
d // // Z and Y //

g // K
f // // L are two short exact sequences, then there is a

commutative diagram of short exact sequences

X // i // Y
��
g

��

d // // Z
��

��
X // // K // //

f
����

R

����
L L

where the upper-right square is both a push-out and a pull-back.

Let A be an exact category, an object P is called projective in A if for any deflation f : X → Y and
any morphism g : P → Y , there exists a morphism h : P → X such that g = fh. A is said to have
enough projectives if for any object X ∈ A, there is an object P which is projective in A and a deflation
p : P → X. Injective objects and having enough injectives are defined dually.

Throughout this paper, let B be a Krull-Schmidt exact category with enough projectives and injectives.
Let P (resp. I) be the full subcategory of projectives (resp. injectives) of B.

Definition 2.3. Let U and V be full additive subcategories of B which are closed under direct summands.
We call (U ,V) a cotorsion pair if it satisfies the following conditions:

(a) Ext1
B(U ,V) = 0.

(b) For any object B ∈ B, there exits two short exact sequences

VB � UB � B, B � V B � UB

satisfying UB , U
B ∈ U and VB , V

B ∈ V.

Definition 2.4. A pair of cotorsion pairs (S, T ), (U ,V) on B is called a twin cotorsion pair if it satisfies:

S ⊆ U .
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By definition and Lemma 2.6 this condition is equivalent to Ext1
B(S,V) = 0, and also to V ⊆ T .

Remark 2.5. (a) We also regard a cotorsion pair (U ,V) as a degenerated case of a twin cotorsion pair
(U ,V), (U ,V).

(b) If (S, T ), (U ,V) is a twin cotorsion pair on B, then (Vop,Uop), (T op,Sop) is a twin cotorsion pair
on Bop.

By definition of a cotorsion pair, we can immediately conclude:

Lemma 2.6. Let (U ,V) be a cotorsion pair of B, then

(a) B belongs to U if and only if Ext1
B(B,V) = 0.

(b) B belongs to V if and only if Ext1
B(U , B) = 0.

(c) U and V are closed under extension.
(d) P ⊆ U and I ⊆ V.

Definition 2.7. For any twin cotorsion pair (S, T ), (U ,V), put

W := T ∩ U .
(a) B+ is defined to be the full subcategory of B, consisting of objects B which admits a short exact

sequence
VB � UB � B

where UB ∈ W and VB ∈ V.
(b) B− is defined to be the full subcategory of B, consisting of objects B which admits a short exact

sequence
B � TB � SB

where TB ∈ W and SB ∈ S.

By this definition we get S ⊆ U ⊆ B− and V ⊆ T ⊆ B+.

Definition 2.8. Let (S, T ), (U ,V) be a twin cotorsion pair of B, we denote the quotient of B by W as
B := B/W. For any morphism f ∈ HomB(X,Y ), we denote its image in HomB(X,Y ) by f . And for any
subcategory C of B, we denote by C the subcategory of B consisting of the same objects as C. Put

H := B+ ∩ B−.
Since H ⊇ W, we have an additive full quotient subcategory

H := H/W
which we call the heart of twin cotorsion pair (S, T ), (U ,V).
The heart of a cotorsion pair (U ,V) is defined to be the heart of twin cotorsion pair (U ,V), (U ,V).

We prove some useful lemmas for a twin cotorsion pair (S, T ), (U ,V) in the following:

Lemma 2.9. Let (S, T ), (U ,V) be a twin cotorsion pair on B, then

(a) B− is closed under direct summands. Moreover, if X ∈ B− admits a short exact sequence

X �W � U

where W ∈ W and U ∈ U , then any direct summand X1 of X admits a short exact sequence

X1 �W � Y

where Y ∈ U .
(b) B+ is closed under direct summands. Moreover, if X ∈ B+ admits a short exact sequence

V �W ′ � X

where W ∈ W and V ∈ V, then any direct summand X2 of X admits a short exact sequence

Z �W ′ � X2

where Z ∈ V.
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Proof. We only show (a), (b) is by dual.
Suppose X1 ⊕X2 admits a short exact sequence

X1 ⊕X2
// ( x1 x2 ) // W // // U

where U ∈ U and W ∈ W. Then x1 : X1 → W is also an inflation by the properties of exact category.
Let x1 admit a short exact sequence

X1
// x1 // W // // Y.

For any morphism f : X1 → V0 where V0 ∈ V, consider a morphism ( f 0 ) : X1 ⊕ X2 → V0. Since
Ext1

B(U, V0) = 0, ( x1 x2 ) is a left V-approximation of W , there exists a morphism g : W → V0 such that
( f 0 ) = ( gx1 gx2 ).

X1
// x1 //

f

��

( 1
0 )
��

W // // Y

��
X1 ⊕X2

// ( x1 x2 ) //

( f 0 )zzvvvvvvvvv
W // //

gnn

U

V0

Hence HomB(x1, V0) : HomB(W,V0)→ HomB(X1, V0) is surjective. By the following exact sequence

HomB(W,V0)
HomB(x1,V0)−−−−−−−−→ HomB(X1, V0)

0−→ Ext1
B(Y, V0)→ Ext1

B(W,V0) = 0

we have Ext1
B(Y, V0) = 0, which implies Y ∈ U . �

Lemma 2.10. (a) If A //
f // B

g // // U is a short exact sequence in B with U ∈ U , then A ∈ B−
implies B ∈ B−.

(b) If A //
f // B

g // // S is a short exact sequence in B with S ∈ S, then B ∈ B− implies A ∈ B−.

Proof. (b) Since B ∈ B−, by definition, there exists a short exact sequence

B //
wB
// WB // // SB .

Take a push-out of g and wB , by Proposition 2.2, we get a commutative diagram of short exact sequences

A //
f // B

��

wB

��

g // // S
��

��
A // // WB // //

����

X

����
SB SB .

We thus get X ∈ S since S is closed under extension. This gives A ∈ B−.
(a) Since A ∈ B−, it admits a short exact sequence

A //
wA
// WA // // SA.
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where WA ∈ W and SA ∈ S. Since Ext1
B(S, T ) = 0, wA is a left T -approximation of A. Thus there

exists a commutative diagram of two short exact sequences

A // //

f

��

WA // //

��

SA

��
B //

tB
// TB // // SB .

It suffices to show TB ∈ U .
Apply Ext1

B(−,V) to the following commutative diagram

A //
f //

wA

��

B // //

tB

��

U

WA // TB

since Ext1
B(U ,V) = 0, we obtain the following commutative diagram

Ext1
B(TB ,V)

Ext1B(tB ,V)

��zz

// Ext1
B(WA,V) = 0

��
0 = Ext1

B(U,V) // Ext1
B(B,V)

Ext1B(f,V)

// Ext1
B(A,V).

It follows that Ext1
B(tB ,V) = 0. Then from the following exact sequence

0 = Ext1
B(SB ,V)→ Ext1

B(TB ,V)
Ext1B(tB ,V)=0−−−−−−−−−→ Ext1

B(B,V)

we get that Ext1
B(TB ,V) = 0, which implies that TB ∈ U . Thus TB ∈ W and B ∈ B−. �

Dually, the following holds.

Lemma 2.11. (a) If T // // A
f // // B is a short exact sequence in B with T ∈ T , then B ∈ B+

implies A ∈ B+.

(b) If V // // A
f // // B is a short exact sequence in B with V ∈ V, then A ∈ B+ implies B ∈ B+.

Now we give a proposition which is similar with [AR, Proposition 1.10] and useful in our article.

Proposition 2.12. Let T be a subcategory of B satisfying

(a) P ⊆ T .
(b) T is contravariantly finite.
(c) T is closed under extension.

Then we get a cotorsion pair (T ,V) where

V = {X ∈ B | Ext1
B(T , X) = 0}.

Proof. For any object B ∈ B, it admits a short exact sequence

B // // I
f // // X

where I ∈ I. By (a) and (b), we can take two short exact sequences

VX // // TX
tX // // X, VB // // TB

tB // // B
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where tX (resp. tB) is a minimal right T -approximation of X (resp. B). Since T is closed under
extension, by Wakamatsu’s Lemma, we obtain VX ∈ V (resp. VB ∈ V). Take a pull-back of f and tX , we
get the following commutative diagram

VX
��

��

VX
��

��
B // // Y // //

����

TX

tX
����

B // // I
f
// // X.

Since I, V ∈ V and V is extension closed, we get Y ∈ V. Thus B admits two short exact sequence

VB � TB � B, B � Y � TX

satisfying VB , Y ∈ V and TB , TX ∈ T . Hence by definition (T ,V) is a cotorsion pair. �

2.2. H is preabelian. In this section, we fix a twin cotorsion pair (S, T ), (U ,V), we will show that the
heart H of a twin cotorsion pair is preabelian.

Definition 2.13. For any B ∈ B, define B+ and b+ : B → B+ as follows:
Take two short exact sequences:

VB � UB � B, UB � TU � SU

where UB ∈ U , VB ∈ V, TU ∈ T and SU ∈ S. By Proposition 2.2, we get the following commutative
diagram

VB // // UB
��
u

��

// // B
��

b+

��
VB // // TU

t // //

����

B+

����
SU SU

(1)

where the upper-right square is both a push-out and a pull-back.

We can easily get the following Lemma.

Lemma 2.14. By Definition 2.13, B+ ∈ B+. Moreover, if B ∈ B−, then B+ ∈ H.

Proof. Since U is closed under extension, we get TU ∈ U ∩ T = W. Hence by definition B+ ∈ B+. If
B ∈ B−, by Lemma 2.10, B+ also lies in B−. Thus B+ ∈ H. �

We give an important property of b+ in the following proposition.

Proposition 2.15. For any B ∈ B and Y ∈ B+, HomB(b+, Y ) : HomB(B+, Y ) → HomB(B, Y ) is
surjective and HomB(b+, Y ) : HomB(B+, Y )→ HomB(B, Y ) is bijective.

Proof. Let y ∈ HomB(B, Y ) be any morphism. By definition, there exists a short exact sequence

VY // // WY
wY // // Y.
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Since Ext1
B(UB , VY ) = 0, wY is a right U-approximation of Y . Thus any f ∈ HomB(UB , Y ) factors

through WY .

UB

f

��

g

}}
VY // // WY wY

// // Y

As Ext1
B(S, T ) = 0, u is a left T -approximation of UB , we get the following commutative diagram:

UB

g

��

// u // TU

}}

// // SU

WY

wY

��
Y

which implies that HomB(u, Y ) : HomB(TU , Y ) → HomB(UB , Y ) is epimorphic. Hence when we apply
HomB(−, Y ) to the diagram (1), we obtain the following exact sequence

HomB(B+, Y )
HomB(b+,Y ) // HomB(B, Y ) //

��

Ext1
B(S, Y ) // Ext1

B(B+, Y )

��
HomB(TU , Y )

HomB(u,Y ) // HomB(UB , Y )
0 // Ext1

B(SU , Y ) // Ext1
B(TU , Y )

which implies that HomB(b+, Y ) is an epimorphism. In particular, HomB(b+, Y ) is an epimorphism.
It remains to show that HomB(b+, Y ) is monomorphic. Suppose q ∈ HomB(B+, Y ) satisfies qb+ = 0,

it follows that qb+ factors through W. Since wY is a right U-approximation, there exists a morphism
a : B → WY such that wY a = qb+. Take a push-out of b+ and a, we get the following commutative
diagram of short exact sequences

B //
b+ //

a

��
PO

B+

c′

��

// // SU

WY
//
c
// Q // // SU .

There exists a morphism d : Q → Y such that dc = wY and dc′ = q by the definition of push-out. But
Q ∈ U by Lemma 2.6, and wY is a right U-approximation, we have that d factors through WY . Thus
q = dc′ also factors through WY , and q = 0. �

We give an equivalent condition for a special case when B+ = 0 in B.

Lemma 2.16. For any B ∈ B, the following are equivalent.

(a) B+ ∈ W.
(b) B ∈ U .
(c) b+ = 0 in B.

Proof. Consider the diagram (1) in Definition 2.13. We first prove that (b) implies (a).
Suppose (b) holds. Since B ∈ U , we get B+ ∈ U . Thus Ext1

B(B+, VB) = 0, and then t splits. Hence B+

is a direct summand of TU ∈ W, which implies that B+ ∈ W.
Obviously (a) implies (c), now it suffices to show that (c) implies (b).
Since b+ factors through W, and t is a right U-approximation of B+, we get that b+ factors through t.
Hence by the definition of pull-back, the first row of diagram (1) splits, which implies that B ∈ U . �

Now we give a dual construction.
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Definition 2.17. For any object B ∈ B, we define b− : B− → B as follows Take the following two short
exact sequences

B � TB � SB , VT � UT � TB

where UT ∈ U , VT ∈ V, TB ∈ T and SB ∈ S. By Proposition 2.2, we get the following commutative
diagram:

VT
��

��

VT
��

��
B−

b−

����

// // UT

����

// // SB

B // // TB // // SB .

By duality, we get:

Proposition 2.18. For any B ∈ B, B− ∈ B− and B ∈ B+ implies B− ∈ H. For any X ∈
B−, HomB(X, b−) : HomB(X,B−) → HomB(X,B) is surjective and HomB(X, b−) : HomB(X,B−) →
HomB(X,B) is bijective.

Definition 2.19. For any morphism f : A→ B with A ∈ B−, define Cf and cf : B → Cf as follows:
By definition, there exists a short exact sequence

A //
wA
// WA // // SA.

Take a push-out of f and wA, we get the following commutative diagram of short exact sequences

A //
wA
//

f

��
PO

WA // //

��

SA

B //
cf
// Cf s

// // SA.

(2)

By Lemma 2.10, B ∈ B− implies Cf ∈ B−.
Dually, we have the following:

Definition 2.20. For any morphism f : A → B in B with B ∈ B+, define Kf and kf : Kf → A as
follows:
By definition, there exists a short exact sequence

VB // // WB
wB // // B.

Take a pull-back of f and wB , we get the following commutative diagram of short exact sequences

VB // // Kf

PB

kf // //

��

A

f

��
VB // // WB wB

// // B

(3)

By Lemma 2.11, A ∈ B+ implies Kf ∈ B+.
The following lemma gives an important property of cf :
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Lemma 2.21. Let f : A→ B be any morphism in B with A ∈ B−, take the notation of Definition 2.19,
then cf : B → Cf satisfies the following properties:
For any C ∈ B and any morphism g ∈ HomB(B,C) satisfying gf = 0, there exists a morphism c : Cf → C
such that ccf = g.

A
f // B

g //

cf   AAAAAAAA C

Cf

c

>>

Moreover if C ∈ B+, then c is unique in B. The dual statement also holds for kf in Definition 2.20.

Proof. Since gf = 0, gf factors through W. As Ext1
B(SA,W

A) = 0, wA is a left W-approximation of

A. Hence there exists b : WA → C such that gf = bwA. Then by the definition of push-out, we get the
following commutative diagram

A

f

��

wA
// WA

�� b

��

B
cf //

g
,,

Cf
c

!!
C.

Now assume that C ∈ B+ and there exists c′ : Cf → C such that c′cf = g. Since (c′ − c)cf = 0, there
exists a morphism d : SA → C such that c′ − c = ds. As C admits a short exact sequence

VC // // WC
wC // // C

and wC is a right U-approximation of C, we obtain that there exists a morphism e : SA →WC such that
wCe = d. Hence c′ − c factors through WC , and c = c′. �

Theorem 2.22. For any twin cotorsion pair (S, T ), (U ,V), its heart H is preabelian.

Proof. We only show the construction of the cokernel. For any A,B ∈ H and any morphism f : A→ B,
by Definition 2.19, since A,B ∈ B−, it follows cff = 0 and Cf ∈ B−. By Proposition 2.15, there exists

cf
+ : Cf → Cf

+ where Cf
+ ∈ H by Lemma 2.14. We claim that cf

+cf : B → Cf
+ is the cokernel of f .

Let Q be any object in H, and let r : B → Q be any morphism satisfying rf = 0, then by Lemma 2.21
and Proposition 2.15, there exists a commutative diagram

Q

A

0

@@��������

f
// B

r

OO

cf
// Cf

cf
+

//

a

__

Cf
+.

b

kk

The uniqueness of b follows from Lemma 2.21 and Proposition 2.15. �

Corollary 2.23. Let f : A→ B be a morphism in H, the the followings are equivalent:

(a) f is epimorphic in H.

(b) Cf
+ ∈ W.

(c) Cf ∈ U .

Proof. The equivalence of (b) and (c) is given by Lemma 2.16.
By Theorem 2.22, cf

+cf is the cokernel of f in H. The equivalence of (a) and (b) follows immediately

by this argument. �
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2.3. Abelianess of the hearts of cotorsion pairs. In this section we fix a cotorsion pair (U ,V). We
will prove that the heart H = B+ ∩ B−/U ∩ V of a cotorsion pair is abelian.

Lemma 2.24. Let A,B ∈ H, and let

C //
g // A

f // // B

be a short exact sequence in B. If f is epimorphic in H, then C belongs to B−.

Proof. As f is epimorphic in H, we get Cf ∈ U by Corollary 2.23. By Definition 2.19, we get following
commutative diagram

C
��

g

��

C
��
h
��

A //
wA
//

f

��
PO

WA // //

��

UA

B //
cf
// Cf // // UA.

(4)

The middle column shows that C ∈ B−. �

We need the following lemma to prove our theorem.

Lemma 2.25. (a) Let f : A → B be a morphism in B with B ∈ B+, then there exists a deflation
α = ( f −wB ) : A⊕WB � B in B such that α = f .

(b) Let f : A → B be a morphism in B with A ∈ B−, then there exists an inflation α =
(

f

−wA

)
:

A� B ⊕WA in B such that α′ = f .

Proof. We only show the first one, the second is dual.
As B ∈ B+, it admits a short exact sequence

VB // // WB
wB // // B.

Take a pull-back of f and wB , we get a commutative diagram

VB // // C

��

// // A

f

��
VB // // WB wB

// // B.

By dual of Proposition 2.1, we get a short exact sequence

C // // A⊕WB

α=( f −wB ) // // B

and consequently α is a deflation and α = f . �

Theorem 2.26. For any cotorsion pair (U ,V) on B, its heart H is an abelian category.

Proof. Since H is preabelian, it remains to show the following:

(a) If f is epimorphic in H, then f is a cokernel of some morphism in H.
(b) If f is monomorphic in H, then f is a kernel of some morphism in H.
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We only show (a), since (b) is dual.
For any morphism f : A → B which is epimorphic in H, by Lemma 2.25, it is enough to consider the
case that f is a deflation.
Let f admit a short exact sequence:

C //
g // A

f // // B.

By Lemma 2.24, we have C ∈ B−. By Proposition 2.15, there exists

c+ : C → C+

where C+ lies in H by Lemma 2.14. As A ∈ B+, there exists a : C+ → A such that ac+ = g.

C

c+ !!CCCCCCCC
g // A

C+.

a

=={{{{{{{{

Since fac+ = fg = 0, we have fa = 0 by Proposition 2.15. We claim that f is the cokernel of a.
Let Q be any object in H and r : A → Q be any morphism. By Proposition 2.15, rg = 0 if and only if
ra = 0.
So it is enough to show that any r satisfying rg = 0 factors through f .
If rg = 0, rg factors through W. Consider the second column of diagram (4), since h is a left V-

approximation of C, there exists a morphism c : WA → Q such that rg = ch. Since h = wAg, we get
that (r − cwA)g = 0. Thus r − cwA factors through f , which implies that r factors through f . �

2.4. H is semi-abelian. In the following sections, we fix a twin cotorsion pair (S, T ), (U ,V).

Definition 2.27. A preabelian category A is called left semi-abelian if in any pull-back diagram

A
α //

β

��

B

γ

��
C

δ
// D

in A, α is an epimorphism whenever δ is a cokernel. Right semi-abelian is defined dually. A is called
semi-abelian if it is both left and right semi-abelian. In this section we will prove that the heart H of a
twin cotorsion pair is semi-ableian.

Lemma 2.28. If morphism β ∈ HomH(B,C) is a cokernel of a morphism f ∈ HomH(A,B), then B
admits a short exact sequence

B � C ′ � S

where C ′ ∈ H, C ' C ′ in H and S ∈ S.

Proof. Let β be the cokernel of f : A → B. By Theorem 2.22, the cokernel of f is given by cf
+cf .

Therefore Cf
+ ' C in H. Consider diagram (4) and the diagram which induces (Cf )+ by Definition

2.13:

V // // U // //
��

��

Cf
��
cf

+

��
V // // T ′ // //

����

Cf
+

����
S′ S′
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By Proposition 2.2, we obtain the following commutative diagram of short exact sequences

B //
cf // Cf

��
cf

+

��

// // SA
��

��
B // // Cf

+ // //

����

Q

����
S′ S′.

From the third column we get Q ∈ S. Hence we get the required short exact sequence. �

Proposition 2.29. Let A //
f // B

g // // C be a short exact sequence in B with f in H. If g factors
through U , then f is epimorphic in H.

Proof. By Corollary 2.23, it suffices to show that Cf ∈ U .
By definition of cf : B → Cf , there is a commutative diagram of short exact sequences

A //
wA
//

��

f

��
PO

WA // //
��

��

SA

B //
cf
//

g
����

Cf // //

����

SA

C C.

Since Ext1
B(W,V) = 0, we get the following commutative diagram of exact sequence

Ext1
B(C,V) // Ext1

B(Cf ,V)

Ext1B(cf ,V)

��

// Ext1
B(WA,V) = 0

��
Ext1

B(C,V)
Ext1B(g,V)

// Ext1
B(B,V)

Ext1B(f,V)

// Ext1
B(A,V).

Then Ext1
B(cf ,V) factors through Ext1

B(g,V). We have Ext1
B(g,V) = 0 since g factors through U , thus

we get Ext1
B(cf ,V) = 0. Then from the following exact sequence

0 = Ext1
B(SA,V)→ Ext1

B(Cf ,V)
Ext1B(cf ,V)=0−−−−−−−−−→ Ext1

B(B,V)

we obtain that Ext1
B(Cf ,V) = 0, which implies Cf ∈ U .

�

Lemma 2.30. Suppose X ∈ B− admits a short exact sequence

X // x // B // // U

where B ∈ H and U ∈ U . Then the unique morphism b ∈ HomH(X+, B) given by Proposition 2.15 which
satisfies bx+ = x is epimorphic.

Proof. By Definition 2.13, there exists a short exact sequence

X // x
+
// X+ // // S

where S ∈ S. By Proposition 2.15, there exits b : X+ → B such that bx+ = x. Since X ∈ B−, we obtain
X+ ∈ H by Lemma 2.14. Hence X+ admits a short exact sequence

X+ // a // W // // S′
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where W ∈ W and S′ ∈ S. Take a push-out of a and b, we get the following commutative diagram

X+ // a //

b

��

W // //

��

S′

B // // C // // S′

which induces a short exact sequence

X+ //

(
b
−a
)
// B ⊕W // // C

by Proposition 2.1. By Proposition 2.2, we obtain the following commutative diagram

X // x
+
// X+ // //
��
a

��

S
��

��
X //

c
// W // //

����

Q

����
S′ S′.

Take a push-out of x and c

X // c //
��

x

��

W // //
��

��

Q

B // //

����

C ′ // //

����

Q

U U

from the second column we obtain that C ′ ∈ U and we get the following short exact sequence

X //
( x
−c )
// B ⊕W // // C ′

by Proposition 2.1. Thus we get the following commutative diagram

X ##
( x
−c )

##GGGGGGGG

�
x+

}}||||||||

X+ // (
b
−a
) // B ⊕W // //

## ##GGGGGGGGG C.

C ′

>>

Hence by Proposition 2.29, b is epimorphic. �

We introduce the following lemma which is an analogue of [N1, Lemma 5.3].

Lemma 2.31. Let

A
α //

β

��

B

γ

��
C

δ
// D

be a pull-back diagram in H. If there exists an object X ∈ B− and morphisms xB : X → B, xC : X → C
which satisfy the following conditions, then α is epimorphic in H.
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(a) The following diagram is commutative.

X
xB //

xC

��

B

γ

��
C

δ
// D

(b) There exists a short exact sequence X // xB // B // // U with U ∈ U .

Proof. Take x+ : X → X+ as in Definition 2.13. Then by Proposition 2.15, there exist fB : X+ → B
and fC : X+ → C such that fBx

+ = xB and fCx
+ = xC . By Lemma 2.30, fB is epimorphic in H. As

γxB = δxC , we get γfBx
+ = δfCx

+, it follows by Proposition 2.15 that γfB = δfC . By the definition of

pull-back, there exists a morphism η : X+ → A in H which makes the following diagram commute.

X+
fB

##
fC

��

η

!!
A

α //

β

��

B

γ

��
C

δ
// D

Since fB is epimorphic, we obtain that α is also epimorphic. �

Theorem 2.32. For any twin cotorsion pair (S, T ), (U ,V), its heart H is semi-abelian.

Proof. By duality, we only show H is left semi-abelian. Assume we are given a pull-back diagram

A
α //

β

��

B

γ

��
C

δ
// D

in H where δ is a cokernel. It suffices to show that α becomes epimorphic.
By Lemma 2.28, replacing D by an isomorphic one if necessary, we can assume that there exists an
inflation d : C � D satisfying δ = d, which admits a short exact sequence

C //
d // D // // S

where S ∈ S. As D ∈ B+, by Lemma 2.25 we can also assume that there exists an deflation c : B � D
such that γ = c. By Proposition 2.2, we get the following commutative diagram of short exact sequences

X // xB //

xC
����

B

c
����

// // S

C //
d
// D // // S.

it follows by Lemma 2.10 that X ∈ B−. Hence by Lemma 2.31 α is epimorphic in H. �

2.5. The case where H becomes integral. In this section we give a sufficient condition where the
heart H becomes integral.
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Definition 2.33. A preabelian category A is called left integral if in any pull-back diagram

A
α //

β

��

B

γ

��
C

δ
// D

in A, α is an epimorphism whenever δ is an epimorphic. Right integral is defined dually. A is called
integral if it is both left and right integral.

Let C be a subcategory of B, denote by ΩC (resp. Ω−C) the subcateogy of B consisting of objects ΩC
(resp. Ω−C) such that there exists a short exact sequence

ΩC � PC � C (P ∈ P, C ∈ C)
(resp. C � IC � Ω−C (I ∈ I, C ∈ C)).

By definition we get P ⊆ ΩC and I ⊆ Ω−C. By Lemma 2.9 we get that for any cotorsion pair (U ,V) on
B, ΩU and Ω−V are closed under direct summands.

Let B1 B2 be two subcategories of B, recall that B1 ∗ B2 is subcategory of B consisting of objects X
such that there exists a short exact sequence

B1 � X � B2

where B1 ∈ B1 and B2 ∈ B2.

Theorem 2.34. If a twin cotorsion pair (S, T ), (U ,V) satisfies

U ⊆ S ∗ T , P ⊆ W or T ⊆ U ∗ V, I ⊆ W

then H becomes integral.

Proof. According to [R, Proposition 6], a semi-abelian category is left integral if and only if it is right
integral. By duality, it suffices to show that U ⊆ S ∗ T ,P ⊆ W implies that H is left integral. Assume
we are given a pull-back diagram

A
α //

β

��

B

γ

��
C

δ
// D

in H where δ is an epimorphism. It is sufficient to show that α is epimorphic.
Let d : C → D and c : B → D be morphisms satisfying δ = d and γ = c. Since δ is epimorphic, if we
take cd : D → Cd as in Definition 2.19

C //
wC
//

d

��
PO

WC // //

��

SC

D //
cd
// Cd r

// // SC

then Cd ∈ U by Corollary 2.23. By assumption U ⊆ S ∗ T , Cd admits a short exact sequence

S0
// s0 // Cd

t0 // // T0

with S0 ∈ S, T0 ∈ T . Since B ∈ B− admits a short exact sequence

B �WB � SB

and SB admits a short exact sequence

ΩSB
p // PSB

s // // SB
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there exists a commutative diagram

ΩSB

sB

��

// p // PSB
s // //

��

SB

B // // WB // // SB .

(5)

As Ext1
B(SB , T0) = 0, p is a left T -approximation of ΩSB . Therefore there exists a morphism f : PSB →

T0 such that t0cdcsB = fp. As PSB ∈ P, there is a morphism h : PSB → Cd such that f = t0h. Since
t0(cdcsB − hp) = 0, there exists a morphism g : ΩSB → S0 such that cdcsB − hp = s0g. Then we get the
following diagram

ΩSB

sB

��

g

""

// p // PSB

f

��

h

��

s // // SB

B

c

��

S0
��

s0

��
D

cd // Cd

t0
����

T0.

Take a push-out of p and g, we get the following commutative diagram

ΩSB //
p //

g

��

PSB
s // //

��

SB

S0
// // Q // // SB

and a short exact sequence

ΩSB //

( p
−g
)
// PSB ⊕ S0

// // Q

by Proposition 2.1 where Q ∈ S. As Q admits a short exact sequence

ΩQ //
kQ // PQ

lQ // // Q

we get the following commutative diagram of short exact sequences

ΩQ

qB

��

// kQ // PQ
lQ // //

��

Q

ΩSB //( p
−g
) // PSB ⊕ S0

// // Q.

(6)
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Since cdcsB = hp+ s0g, we obtain the following commutative diagram of short exact sequences.

ΩSB

csB

��

//

( p
−g
)
// PSB ⊕ S0

// //

(h −s0 )

��

Q

��
D //

cd
// Cd r

// // SC

Thus we get the following commutative diagram

ΩQ

csBqB

��

// kQ // PQ
lQ // //

nQ

��

Q

��
D //

cd
// Cd r

// // SC .

As P ⊆ W, we conclude that ΩQ ∈ B−. Since SC admits a short exact sequence

ΩSC //
kSC // PSC

lSC // // SC

where PSC ∈ P, hence we get the following commutative diagram of short exact sequence

ΩSC

qC

��

//
kSC // PSC

lSC // //

��

SC

C //
wC
//

d

��

WC // //

��

SC

D //
cd
// Cd r

// // SC

which induces the following diagram

ΩSC

dqC

��

//
kSC // PSC

lSC // //

nSC

��

SC

D //
cd
// Cd r

// // SC .

As PQ is projective, there exists a morphism t : PQ → PSC
such that lSC

t = rnQ.

PQ
nQ //

t

��

Cd

r

��
ΩSC //

kSC

// PSC
lSC

// // SC

Now it follows that lSC tkQ = rnQkQ = rcdcsBqB = 0, thus there exists a morphism x : ΩQ→ ΩSC such
that kSCx = tkQ.

ΩQ
kQ //

x

��

PQ

t

��
ΩSC //

kSC

// PSC
lSC

// // SC .

As rnSC t = lSC t = rnQ, there exists a morphism y : PQ → D such that nSC t− nQ = cdy. Therefore

cddqCx = nSCkSCx = nSC tkQ = (cdy + nQ)kQ = cd(ykQ + csBqB).
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Then dqCx = ykQ + csBqB , since cd is monomorphic. Hence there exists a commutative diagram in B

ΩQ
sBqB //

qCx

��

B

c

��
C

d
// D.

By Proposition 2.1, we get the following short exact sequences from (5) and (6):

ΩQ //

( qB
−kQ

)
// ΩSB ⊕ PQ // // PSB

⊕ S0, ΩSB //

( sB
−p
)
// B ⊕ PSB // // WB .

Then by Proposition 2.2, we get the following commutative diagram of short exact sequences

ΩQ //

( qB
−kQ

)
// ΩSB ⊕ PQ // //

�� (
sB 0
−p 0
0 1

)
��

PSB ⊕ S0
��

��
ΩQ //

η
// B ⊕ PSB ⊕ PQ // //

����

M

����
WB WB

where η = sBqB . From the third column we get that M ∈ U . By Lemma 2.31, we obtain that α is
epimorphic. �

2.6. The case where H becomes almost abelian. In this section we give a sufficient condition when
H becomes almost abelian.

Definition 2.35. A preabelian category A is called left almost abelian if in any pull-back diagram

A
α //

β

��

B

γ

��
C

δ
// D

in A, α is a cokernel whenever δ is a cokernel. Right almost abelian is defined dually. A is called almost
abelian if it is both left and right almost abelian.

We need the following proposition to show our result.

Proposition 2.36. [R, Proposition 2] Let A
f−→ B

g−→ C be morphisms in a right (resp. left) semi-abelian
category. If f and g are (co-)kernels, then gf is a (co-)kernel. If gf is a (co-)kernel, then f (resp. g) is
a (co-)kernel.

Use this proposition, we can prove the following lemma, which is an analogue of Lemma 2.31.

Lemma 2.37. Let

A
α //

β

��

B

γ

��
C

δ
// D
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be a pull-back diagram in H. Let X ∈ B− and xB : X → B, xC : X → C be morphisms which satisfy
that xB is a cokernel in the following commutative diagram

X
xB //

xC

��

B

γ

��
C

δ
// D.

Then if U ⊆ T , we obtain α is a cokernel in H.

Proof. Since U ⊆ T , we get H = B−. Take x+ : X → X+ as in Definition 2.13. Then by Proposition
2.15, there exist fB : X+ → B and fC : X+ → C such that fBx

+ = xB and fCx
+ = xC . Since xB is a

cokernel, by Proposition 2.36, fB is also a cokernel in H. As γxB = δxC , it follows by Proposition 2.15

that γfB = δfC . By the definition of pull-back, there exists a morphism η : X+ → A in H which makes
the following diagram commute.

X+
fB

##
fC

��

η

!!
A

α //

β

��

B

γ

��
C

δ
// D

Since fB is a cokernel, we obtain that α is also a cokernel by Proposition 2.36. �

Theorem 2.38. Let (S, T ), (U ,V) be a twin cotorsion pair on B satisfying

U ⊆ T or T ⊆ U

then H is almost abelian.

Proof. By [R, Proposition 3], a semi-abelian category is left almost abelian if and only if it is right almost
abelian. By duality, it is enough to show that U ⊆ T implies H is left almost abelian.
Assume we are given a pull-back diagram

A
α //

β

��

B

γ

��
C

δ
// D

in H where δ is a cokernel. It suffices to show that α becomes a cokernel.
Repeat the same argument as in Theorem 2.32, we get the following diagram

X // xB //

xC

��

B

c

��

// // S

C //
d
// D // // S

where X ∈ B−, d = δ and c = γ. According to Lemma 2.37, it suffices to show that xB is a cokernel in
H.
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By Definition 2.20 and Proposition 2.2, we get the following commutative diagram

VB // // KxB
��
a

��

kxB // // X
��
xB

��
VB // // WB

// //

����

B

����
S S.

It follows that KxB
∈ B− = H and kxB

xB = 0. Now let r : X → Q be any morphism in H such that

rkxB
= 0, then rkxB

factors through W. Since Ext1
B(S, T ) = 0, a is a left T -approximation of KxB

, thus
there exists a morphism b : WB → Q such that ab = rkB . By the definition of push-out, we get the
following commutative diagram

KxB

a

��

kxB // X

xB

��
r

��

WB
//

b ++

B

  
Q.

Since xB is epimorphic in H by Proposition 2.29, the above diagram implies that xB is the cokernel of
kxB

. �

By Theorem 2.34, in the case of the above theorem, the heart H also becomes integral. Then by [R,
Theorem 2], H is equivalent to a torsionfree class of a hereditary torsion theory in an abelian category
induced by H. For more details, one can see [R, §4].

2.7. Existence of enough projectives/injectives. We call an object P ∈ H (proper-)projective if for
any epimorphism (resp. cokernel) α : X → Y in H, there exists an exact sequence

HomH(P,X)
HomH(P,α)
−−−−−−−→ HomH(P, Y )→ 0.

An (proper-)injective object is defined dually.
H is said to have enough projectives if for any object X ∈ H, there is a cokernel δ : P → X such that P
is proper-projective. Having enough injectives is defined dually.

In this section we give sufficient conditions that the heart H of a twin cotorsion pair has enough
projectives and has enough injectives.

Lemma 2.39. If a twin cotorsion pair (S, T ), (U ,V) satisfies U ⊆ T , then we have ΩS ⊆ H.

Proof. We first have P ⊆ U = W, then by definition ΩS ⊆ B−. But we observe that U ⊆ T implies
B+ = B, hence ΩS ⊆ H. �

Proposition 2.40. Let (S, T ), (U ,V) be a twin cotorsion pair satisfying U ⊆ T , then any object in ΩS
is projective in H.

Proof. Let B and C be any objects in H and let p : ΩS → C be any morphism.
Let g : B → C be a morphism which is epimorphic in H, by Lemma 2.25 we can assume that it admits
a short exact sequence

A //
f // B

g // // C.
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Since B ∈ H admits a short exact sequence B � WB � SB , then according to Proposition 2.2, there
exists a commutative diagram

A //
f // B

g // //

��

C

q

��
A // // WB r // //

����

D

����
SB SB .

By Lemma 2.10, we obtain D ∈ B− = H. Since qg = 0 and g is epimorphic in H, we have q = 0. By
definition ΩS admits a short exact sequence

ΩS //
a // P // // S (P ∈ P, S ∈ S).

Since qp = 0, qp factors through W. As Ext1
B(S, T ) = 0, a is a left T -approximation of ΩS. Thus

there exists a morphism s : P → D such that qp = sa. Since P is projective, there exists a morphism
t : P → WB such that s = rt. Hence by the definition of pull-back, we get the following commutative
diagram

ΩS
p

$$

h

""

ta

��

B
g
//

��

C

q

��
WB

r
// D

which implies that ΩS is projective in H. �

Proposition 2.41. Let (S, T ), (U ,V) be a twin cotorsion pair satisfying U ⊆ T , then any object B ∈ H
admits an epimorphism α : ΩS → B in H.

Proof. Let B be any object in H, consider commutative diagram (5). By Proposition 2.1, the left square
is a push-out. Now it suffices to show sB is epimorphic in H.
Let c : B → C be any morphism in H such that csB = 0, then csB factors through W. Since p is a left
T -approximation of ΩS, there exits a morphism d : PSB → C such that csB = dp. Thus by the definition
of push-out we have a commutative diagram

ΩSB
p //

sB

��

PSB

��
d

��

B //

c
,,

WB

!!
C

which implies c = 0. Hence sB is epimorphic in H. �

Moreover, we have

Proposition 2.42. Let (S, T ), (U ,V) be a twin cotorsion pair satisfying U ⊆ T , then an object B is
projective in H implies that B ∈ ΩS.

Proof. Suppose B is projective in H, consider the commutative diagram (5). By Proposition 2.41, sB is

epimorphic in H, thus B is a direct summand of ΩSB in H. Hence by Lemma 2.9 B lies in ΩS. �

From the following proposition we can get that in the case U ⊆ T when the projectives in H is enough.
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Proposition 2.43. Let (S, T ), (U ,V) be a twin cotorsion pair satisfying U ⊆ T , then H has enough
projectives if and only if any indecomposable object B ∈ H − U admits a short exact sequence

B � S1 � S2

where S1, S2 ∈ S.

Proof. We prove the ”if” part first.
Since an object B ∈ H isomorphic to an object B′ ∈ H in H such that B′ does not have any direct
summand in U , we can only consider the obejct B ∈ H not having any direct summand in U . Thus by
assumption, B admits a short exact sequence

B � S1 � S2

where S1, S2 ∈ S. As S2 admits a short exact sequence

ΩS2 // b // PS2 // // S2.

We have the following commutative diagram

ΩS2 // b //

a

��

PS2 // //

��

S2

B // // S1 // // S2.

Then we get a short exact sequence

ΩS2 //
( a
−b )
// B ⊕ PS2 // // S1

by Proposition 2.1. Since B ⊕ PS2 admits a short exact sequence

V � U � B ⊕ PS2

where V ∈ V and U ∈ U =W, we obtain the following commutative diagram by Proposition 2.2

V // // Q
c // //

��
d

��

ΩS2

��

( a
−b )
��

V // // U

����

// // B ⊕ PS2

����
S1 S1.

Thus Q ∈ B− = H and ca = 0. We claim that a is the cokernel of c in H.
If r : ΩS2 → M is a morphism in H such that rc factors through W, then there exists e : U → M such
that cr = ed, since d is a left T -approximation of Q. Hence by definition of push-out, we get the following
commutative diagram

Q
c //

��

ΩS2

( a
−b )
�� r

��

U //

e
,,

B ⊕ PS2

$$
M

which implies that r factors through a. Since a is epimorphic in H by Proposition 2.41, we get that a is
the cokernel of c.
Now we assume that H has enough projectives.
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By Proposition 2.42, all the projective objects in H lie in ΩS. Let B be any indecomposable object in
H− U and β : ΩS → B be a cokernel in H. Then by Lemma 2.28, we get a short exact sequence

ΩS //
f // B′ // // S′

where B′ ∈ H and B′ ' B in H and S′ ∈ S. Since ΩS admits a short exact sequence

ΩS //
p // PS // // S

we take a push-out of f and p, then we get the following commutative diagram

ΩS //
f //

��
p

��

B′
��

��

// // S′

PS // //

����

Q′ // //

����

S′

S S.

From the second row we get Q′ ∈ S. Since B is indecomposable, it is a direct summand of B′. Hence by
Lemma 2.9, B admits a short exact sequence

B � Q′ � S′′

where S′′ ∈ S. �

By duality, we have

Proposition 2.44. Let (S, T ), (U ,V) be a twin cotorsion pair satisfying T ⊆ U , then any object in H is
injective if and only if it lies in Ω−V.

Proposition 2.45. Let (S, T ), (U ,V) be a twin cotorsion pair satisfying T ⊆ U , then any object B ∈ H
admits a monomorphism β : B → Ω−V in H where Ω−V ∈ Ω−V.

Proposition 2.46. Let (S, T ), (U ,V) be a twin cotorsion pair satisfying T ⊆ U , then the heart has
enough injectives if and only if any object B ∈ H − T admits a short exact sequence

V2 � V1 � B

where V1, V2 ∈ V.

2.8. Localisation on the heart of a special twin cotorsion pair. Let (S, T ), (U ,V) be a twin
cotorsion pair on B such that T = U , in this case we get B+ = B− = B and W = T , hence H = B/T .
According to Theorem 2.34, B/T is integral. Moreover, By Proposition 2.40 (resp. Proposition 2.44), we
obtain that any object in ΩS (resp. Ω−V) is projective (resp. injective) in B/T .
Let R be the class of regular morphisms in B/T , then by Theorem [R, p173], the localisation (B/T )R (if
it exists) is abelian.

Till the end of this section we assume that B is skeletally small and k-linear over a field k and has a
twin cotorsion pair (S, T ), (T ,V). We denote that by Proposition 2.12 it is equivalent to assume that B
has a cotorsion pair (S, T ) such that S ⊆ T and T is contravariantly finite.

Let D be a category and R′ is a class of morphisms on D. If R′ admits both a calculus of right fractions
and a calculus of left fractions (for details, see [BM, §4]), then the Gabriel-Zisman localisation DR′ at
R′ (if it exists) has a very nice description. The objects in DR′ are the same as the objects in D. The
morphism from X to Y are of the form

X A
f //roo Y

denoted by [r, f ] where r lies in R′.
The localisation functor from D to DR′ takes a morphism f to [id, f ]. We denote this image by [f ]. For
r ∈ R′, [r, id] is the inverse of [r]. We denote it xr. Thus, every morphism has the form [r, f ] = [f ]xr.
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By [BM, Corollary 4.2], R admits both a calculus of right fractions and a calculus of left fractions.
For a subcategory C ⊆ B, we denote by [C] the full subcategory of (B/T )R which has the same objects

as C.

Lemma 2.47. We have ΩS/P = ΩS ' [ΩS].

Proof. We first show that a morphism f : ΩS → B factors through P if and only if it factors through T .
Since P ⊆ U = T , we only need to show f factors through T implies it factors through P. Suppose f
factors through T . By definition ΩS admits the following short exact sequence

ΩS //
q // PS // // S

where PS ∈ P, S ∈ S and B admits the following short exact sequence

VB // // WB
wB // // B.

As wB is a right U-approximation of B, there exists a morphism a : ΩS → WB such that f = wBa.
Since q is a left T -approximation of ΩS, there exists a morphism b : P → WB such that bq = a, hence
f = wBbq. Thus by definition we have ΩS/P = ΩS.
Let L : ΩS → [ΩS] be the location of the localisation functor from B/T to (B/T )R. We claim that it is
an equivalence. Obviously it is dense, it is faithful by [BM, Lemma 4.4] and full by [BM, Lemma 5.4]. �

Denote by Mod C the category of contravariant additive functors from a category C to mod k for any
category C. Let mod C be the full subcategory of Mod C consisting of objects A admitting an exact
sequence:

HomC(−, C1)
β−→ HomC(−, C0)

α−→ A→ 0

where C0, C1 ∈ C.
Since ΩS ' [ΩS], We have mod(ΩS/P) ' mod[ΩS].
We give the following proposition which is an analogue of [BM, Lemma 5.5] (for more details, see [BM,

§5]).

Proposition 2.48. If (S, T ), (T ,V) is a twin cotorsion pair on B which is skeletally small, and let R
denote the class of morphisms which are both monomorphic and epimorphic in B/T , then

(a) The projectives in (B/T )R are exactly the objects in ΩS.
(b) The category (B/T )R has enough projectives.

For convenience, for any objects X,Y ∈ B, we denote Hom[B](X,Y ) by [X,Y ]. For any morphism
f : X → Y , we denote Hom[B](−, [f ]) by − ◦ [f ] and Hom[B]([f ],−) by [f ] ◦ −.

Now we can prove the following theorem.

Theorem 2.49. Let B be a skeletally small, Krull-Schimdt, k-linear exact category with enough pro-
jecitves and injectives, containing a twin cotorsion pair

(S, T ), (T ,V).

Let R denote the class of morphisms which are both monomorphic and epimorphic in B/T and (B/T )R
denote the localisation of B/T at R, then

(B/T )R ' mod(ΩS/P).

Proof. It suffices to show (B/T )R ' mod[ΩS].
From any object B ∈ (B/T )R, there is a projective presentation of B:

ΩS1

[d1]
−−→ ΩS0

[d0]
−−→ B → 0

Let ΩS be any object in [ΩS], we get the following exact sequence:

[ΩS,ΩS1]
ΩS◦[d1]
−−−−−→ [ΩS,ΩS0]

ΩS◦[d0]
−−−−−→ [ΩS,B]→ 0
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which induces a exact sequence in mod[ΩS]:

[−,ΩS1]
−◦[d1]
−−−−→ [−,ΩS0]

−◦[d0]
−−−−→ [−, B]→ 0

Now we can define a functor Φ : (B/T )R → mod[ΩS] as follows:

B 7→ [−, B],

[f ] 7→ − ◦ [f ].

• Let us prove that Φ is faithful.
For any morphism [f ] : B → B′ we have the following commutative diagram

ΩS1

[d1]
//

[f1]

��

ΩS0

[d0]
//

[f0]

��

B //

[f ]

��

0

ΩS′1
[d′1]

// ΩS0
[d′0]

// B // 0

in (B/T )R which induces a commutative diagram in mod[ΩS]

[−,ΩS1]
−◦[d1]

//

−◦[f1]

��

[−,ΩS0]
−◦[d0]

//

−◦[f0]

��

[−, B] //

−◦[f ]

��

0

[−,ΩS′1]
−◦[d′1]

// [−,ΩS′0]
−◦[d′0]

// [−, B′] // 0.

Hence if − ◦ [f ] = 0, we obtain − ◦ [d′0f0] = 0, which implies [d′0f0] = 0. Thus [f ] = 0.
• Let us prove that Φ is full.
For any morphism α : [−, B]→ [−, B′], we have the following commutative diagram

[−,ΩS1]
−◦[d1]

//

α1

��

[−,ΩS0]
−◦[d0]

//

α0

��

[−, B] //

α

��

0

[−,ΩS′1]
−◦[d′1]

// [−,ΩS′0]
−◦[d′0]

// [−, B′] // 0.

in mod[ΩS]. By Yoneda’s Lemma, there exists [fi] : ΩSi → ΩS′i such that αi = − ◦ [fi]. Hence there is a
commutative diagram

[−,ΩS1]
−◦[d1]

//

−◦[f1]

��

[−,ΩS0]
−◦[d0]

//

−◦[f0]

��

[−, B] //

−◦[f ]

��

0

[−,ΩS′1]
−◦[d′1]

// [−,ΩS′0]
−◦[d′0]

// [−, B′] // 0.

in (B/T )R, thus α = − ◦ [f ].
• Let us prove that Φ is dense:
We first show that mod[ΩS] is abelian. It is enough to show that [ΩS] has pseudokernels. Let α : ΩS1 →
ΩS0 be a morphism in [ΩS], then since (B/T )R is abelian, there exists a kernel β : K → ΩS1 in (B/T )R.
By Proposition 2.48, there exists a epimorphism γ : ΩS → K. We observe that βγ is a pseudokernel of
α.
Let F ∈ mod[ΩS] which admits an exact sequence

[−,ΩS1]
−◦γ−−−→ [−,ΩS0]→ F → 0

where γ ∈ [ΩS1,ΩS0]. Let B = Coker γ then we get an exact sequence

ΩS1
γ−→ ΩS0 → B → 0
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in (B/T )R. Hence F ' [−, B]. �

2.9. Examples. In this section we give several examples of twin cotorsion pair, and we also give some
view of the relation between the heart of a cotorsion pair and the hearts of its two components.
First we introduce some notations. Let C be a subcategory of B, we set

(a) C⊥n = {X ∈ B | ExtiB(C, X) = 0, 0 < i ≤ n}.
(b) ⊥nC = {X ∈ B | ExtiB(X, C) = 0, 0 < i ≤ n}.
(c) C⊥ = {X ∈ B | ExtiB(C, X) = 0, ∀i > 0}.
(d) ⊥C = {X ∈ B | ExtiB(X, C) = 0, ∀i > 0}.

According to [HO, §7.2], we give the following definition.

Definition 2.50. A cotorsion pair (U ,V) is called a hereditary cotorsion pair if ExtiB(U ,V) = 0, i > 0.

The following proposition can be easily checked by definition.

Proposition 2.51. For a cotorsion pair (U ,V), the following conditions are equivalent.

(a) (U ,V) is hereditary.
(b) V = U⊥.
(c) U = ⊥V.
(d) ΩU ⊆ U .
(e) Ω−V ⊆ V.

Remark 2.52. We can call a pair of subcategories (U ,V) a co-t-structure on B if it is a hereditary cotorsion
pair, since by the proposition above the hereditary cotorsion pair on B is just an analogue of the co-t-
structure on triangulated category.

Example 2.53. We introduce two trivial hereditary cotorsion pairs:

(P,B) and (B, I).

We observe that in these two cases the hearts are 0. These two cotorsion pairs also form a twin cotorsion
pair

(P,B), (B, I).

We observe that its heart is also 0.

Example 2.54. Let Λ be an artin algebra and T be a cotilting module of finite injective dimension,
denote

X := ⊥T and Y := (⊥T )⊥.

By [AR, Theorem 5.4, Corollary 5.10, Proposition 3.3.], (X ,Y) is a hereditary cotorsion pair. By [AR,
Proposition 3.3, (c, iii)], we get

W ⊆ (mod Λ)+ ⊆ Y.
Dually, by [AR, Proposition 3.3, (d, iii)], we get

W ⊆ (mod Λ)− ⊆ X .

Then H = (mod Λ)+ ∩ (mod Λ)− ⊆ X ∩ Y =W, hence H = 0.
By [AR, Proposition 1.8], (⊥1T , (⊥1T )⊥1) is a cotorsion pair. According to [AR, §2], ⊥1T , (⊥1T )⊥1 is also
a a cotorsion pair. Hence by definition

(⊥T, (⊥T )⊥), (⊥1T , (⊥1T )⊥1)

form a twin cotorsion pair. We can also observe that its heart is trivial.

In fact, we have

Proposition 2.55. If one cotorsion pair in a twin cotorsion pair (S, T ), (U ,V) is hereditary, then this
twin cotorsion pair has a trivial heart, i.e. its heart is zero.
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Proof. We prove that if (S, T ) is hereditary, then W = V ∩ S = B+ ∩ B−, another part is by dual.
For any object B ∈ B−, there is a short exact category

B �WB � SB .

Since we have the following exact sequence

0 = Ext1
B(WB , T )→ Ext1

B(B, T )→ Ext2
B(SB , T ) = 0

which implies B ∈ S. Hence B− = S. Dually, B+ = V. Hence W ⊆ B+ ∩ B− = V ∩ S ⊆ W, this implies
H = 0. �

Recall that M is n-cluster tilting if it satisfies the following conditions

(a) M is contravariantly finite and covariantly finite in B,
(b) M⊥n =M.
(c) ⊥nM =M.

A 2-cluster tilting subcategory is usually called cluster tilting subcategory.
Let M be a cluster tilting subcategory of B. Remark that P ⊆M and I ⊆ M. For each object B ∈ B,
we have two short exact sequences

B //
f // M // // N,

N ′ // // M ′
g // // B

that f (resp. g) is a left (resp. right) M-approximation of B. We observe N ∈ ⊥1M = M (resp.
N ′ ∈ M⊥1 =M), therefore (M,M) is a cotorsion pair. In this case, W =M and B+ = B− = B, thus
H = B = B/M, which is abelian also by [DL].
Moreover, any object in ΩM (resp. Ω−M) is projective (resp. injective) in B/M, and by Proposition
2.43,2.46, B/M has enough projectives and enough injectives.

Proposition 2.56. A subcategory M in B is cluster tilting if and only if (M,M) is a cotorsion pair on
B.

Proof. From the above discussion, we know that (M,M) is a cotorsion pair if M is cluster tilting, so it
remains to show the ”only if” part. But it is just followed by the definition of cotorsion pair and Lemma
2.6. �

In the following examples, we denote by ”◦” in a quiver the objects belong to a subcategory and by
”·” the objects do not.

Example 2.57. Let Λ be the path algebra of the following quiver

1 2oo 3oo 4oo

then we obtain the AR-quiver Γ(mod Λ) of mod Λ.

1

!!DDDD 2

$$IIIII 3

$$IIIII 4

2
1

!!DDDD

::uuuuu
3

2

!!DDDD

::uuuuu
4

3

==zzzz

3
2

1

==zzzz
4

3
2

==zzzz

Let M = {X ∈ mod Λ | Ext1
B(X,Λ) = 0}, then by [AR, Proposition 1.10, 1.9], (M,M⊥1) is a cotorsion

pair on mod Λ. But

M = ◦ · · ◦
◦ · ◦
◦ ◦
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which consisting of all the direct sums of indecomposable projectives and indecomposable injectives. We
observe that in fact M = M⊥1 and hence it is a cluster tilting subcategory. And the quiver of the
quotient category (mod Λ)/M is

2

!!BBBBBBBB 3

3
2

==||||||||

which is equivalent to the AR-quiver of A2.

Example 2.58. Take the notion of the former example, Let

M′ = ◦ · · ·
◦ · ◦
◦ ◦

then by [AR, Proposition 1.10, 1.9], (M′,M′⊥1) is a cotorsion pair and

M′⊥1 = ◦ · ◦ ◦
◦ · ◦
◦ ◦

hence it contains Λ. Obviously it is closed under extension and contravariantly finite, then by [AR,

Proposition 1.10, 1.9], (M′⊥1 , (M′⊥1)⊥1) is also a cotorsion pair on mod Λ and

(M′⊥1)⊥1 = ◦ · · ◦
· · ◦
◦ ◦

Thus we get a twin cotorsion pair

(M′,M′⊥1), (M′⊥1 , (M′⊥1)⊥1).

Then the quiver of (mod Λ)/M′⊥1 is 2 → 3
2 . The quiver of quotient category ΩM′/P is just 2. Hence

we get ((mod Λ)/M′⊥1)R ' mod(ΩM′/P).

From Example 2.58, we see that there exist two cotorsion pairs which have non-trivial hearts form a
twin cotorsion pair also having a non-trivial heart. From the following example, we see that even two
components of a twin cotorsion pair have non-trivial hearts, the heart of the twin cotorsion pair itself
can be zero.

Example 2.59. Let Λ be the k-algebra given by the quiver

1
β

����������

3
γ

// 2

α

^^>>>>>>>>

and bound by αβ = 0 and βγα = 0. Then its AR-quiver Γ(mod Λ) is given by

1

��???? 2

��???? 3

��???? 1

2
1

??����

��9999
3
2

??����

��9999
1
3

??����

3
2
1

BB����
1
3
2

BB����
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Here, the first and the last columns are identified. Let

S = · ◦ · ·
◦ · ◦
◦ ◦

T = · · ◦ ·
◦ · ◦
◦ ◦

and

U = ◦ ◦ · ◦
◦ · ◦
◦ ◦

V = · · · ·
◦ · ◦
◦ ◦

The heart of cotorsion pair (S, T ) is add( 1 ) and the heart of cotorsion pair (U ,V) is add( 3 ). But when
we consider the twin cotorsion pair (S, T ), (U ,V), we get W = V and

(mod Λ)−/W = add( 1 ⊕ 2 ) and (mod Λ)+/W = add( 3 )

hence its heart is zero.

3. Half exact functors associated with general hearts on exact categories

To construct the associated half exact functor H, we first introduce two functors σ+ : B → B+ and
σ− : B → B− in section 3.2, which are analogs of function functors associated with t-structures. In
section 3.3, we show that these two functors commute. We prove the property of the half exact functor in
section 3.4. The relationship between different hearts are studied in section 3.5. The last section contains
several examples of our results.

3.1. Preliminaries. For briefly review of the important properties of exact categories, we refer to [L,
§2]. For more details, we refer to [B]. We introduce the following properties used a lot in this paper, the
proofs can be found in [B, §2].

We recall some in section 2, which also work for a single cotorsion pair.

Definition 3.1. For any B ∈ B, we define B+ and αB : B → B+ as follows:
Take two short exact sequences:

VB // // UB
uB // // B , UB //

w′ // W 0 // // U0

where UB , U
0 ∈ U , W 0,VB ∈ V. In fact, W 0 ∈ W since U is closed under extension. By Proposition 2.2,

we get the following commutative diagram

VB // // UB
��

w′

��

uB // // B
��
αB

��
VB // // W 0

w
// //

����

B+

����
U0 U0

(7)

where the upper-right square is both a push-out and a pull-back.

By definition, B+ ∈ B+. We recall the following useful proposition.

Proposition 3.2. For any B ∈ B
(a) If B ∈ B−, then B+ ∈ H.
(b) αB is a left B+-approximation, and for an object Y ∈ B+, HomB(αB , Y ) : HomB(B+, Y ) →

HomB(B, Y ) is bijective.
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By Proposition 3.2, we can define a functor σ+ from B to B+ as follows:
For any object B ∈ B, since all the B+′s are isomorphic to each other in B by Proposition 3.2, we fix a
B+ for B. Let

σ+ : B → B+

B 7→ B+

and for any morphism f : B → C, we define σ+(f) as the unique morphism given by Proposition 3.2

B
f
//

αB

��

C

αC

��
B+

σ+(f)

// C+.

Let i+ : B+ ↪→ B be the inclusion functor, then (σ+, i+) is an adjoint pair by Proposition 3.2.

Proposition 3.3. The functor σ+ has the following properties:

(a) σ+ is an additive functor.
(b) σ+|B+ = idB+ .

(c) For any morphism f : A→ B, σ+(f) = 0 in B if and only if f factors through U . In particular,

σ+(B) = 0 if and only if B ∈ U .

Proof. (a), (b) can be concluded easily by definition, we only prove (c).
The ”if” part is followed by [L, Lemma 3.4].
Now suppose σ+(f) = 0 in B. By Proposition 3.2, we have the following commutative diagram

A
��

αA

��

f // B
��
αB

��

UB
��
w′

��

uBoooo VBoooo

A+

����

f+

// B+

����

W 0

����

w
oooo VBoooo

U0
A

// U0 U0

where f+ = σ+(f). Then f+ factors through an object W ∈ W.

A+

a !!CCCCCCCC
f+

// B+

W

b

=={{{{{{{{

Since w is a right U-approximation of B+, there exists a morphism c : W →W 0 such that b = wc. Thus
αBf = f+αA = baαA = w(caαA). By the definition of pull-back, there exists a morphism d : A → UB
such that f = uBd. Thus f factors through U . �

Definition 3.4. For any object B ∈ B, we define B− and γB : B− → B as follows:
Take the following two short exact sequences

B //
vB // V B // // UB , V0

// // W0
// // V B

where V B , V0 ∈ V, and W0,UB ∈ U . Then W0 ∈ W holds since V is closed under extension. By
Proposition 2.2, we get the following commutative diagram:
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V0
��

v

��

V0
��

��
B−

γB
����

// // W0

����

// // UB

B //
vB
// V B // // UB .

(8)

By definition B− ∈ B− and we have:

Proposition 3.5. [L, Proposition 3.6] For any object B ∈ B
(a) B ∈ B+ implies B− ∈ H.
(b) γB is a right B−-approximation. For any X ∈ B−, HomB(X, γB) : HomB(X,B−)→ HomB(X,B)

is bijective.

we define a functor σ− from B to B− as the dual of σ+:

σ− : B → B−

B 7→ B−.

For any morphism f : B → C, we define σ−(f) as the unique morphism given by Proposition 3.5

B−
σ−(f)

//

γB

��

C−

γC

��
B

f
// C.

Let i− : B− ↪→ B be the inclusion functor, then (i−, σ−) is an adjoint pair by Proposition 3.5.

Proposition 3.6. The functor σ− has the following properties:

(a) σ− is an additive functor.
(b) σ−|B− = idB− .

(c) For any morphism f : A→ B, σ−(f) = 0 in B if and only if f factors through V. In particular,

σ−(B) = 0 if and only if B ∈ V.

3.2. Reflection sequences and coreflection sequences. In the following two sections we fix a cotor-
sion pair (U ,V). The reflection (resp. coreflection) sequences [AN] are defined on triangulated categories,
but the definitions of the similar concepts on exact categories are not simple.

Let C be a subcategory of B, denote by ΩC (resp. Ω−C) the subcategory of B consisting of objects ΩC
(resp. Ω−C) such that there exists a short exact sequence

ΩC � PC � C (PC ∈ P, C ∈ C)
(resp. C � IC � Ω−C (IC ∈ I, C ∈ C)).

Lemma 3.7. ΩU ⊆ B− and Ω−V ⊆ B+.

Proof. We only prove the first one, the second is dual.
An object ΩU ∈ ΩU admits two short exact sequences

ΩU //
q // PU // // U, ΩU //

v′ // V ΩU // // UΩU
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where U,UΩU ∈ U , V ΩU ∈ V and PU ∈ P. It is enough to show that V ΩU ∈ U . Since Ext1
B(U, V ΩU ) = 0,

there exists a morphism p : PU → V ΩU such that pq = v′.

ΩU //
q // PU

p

��

// // U

��
ΩU //

v′
// V ΩU // // UΩU

Now we get a short exact sequence PU // // V ΩU ⊕ U // // UΩU . Since U is closed under extension

and direct summands, V ΩU ∈ U . Thus ΩU ∈ B−. �

Definition 3.8. Let B be any object in B.

(a) A reflection sequence for B is a short exact sequence

B //
z // Z // // U

where U ∈ U , Z ∈ B+ and there exists a commutative diagram

ΩU //
q //

x

��

PU // //

p

��

U

B //
z
// Z // // U

with PU ∈ P and x factoring through U .
(b) A coreflection sequence for B is a short exact sequence

V // // K
k // // B

where V ∈ V, K ∈ B− and there exists a commutative diagram

V // // K
k // //

��

B

y

��
V // // IV // // Ω−V

with IV ∈ I and y factoring through V.

Lemma 3.9. Let B be an object in B. Then

(a) The short exact seqeunce B //
αB // B+ // // U0 in (2.1) is a reflection sequence for B.

(b) The short exact seqeunce V0
// // B−

γB // // B in (2.2) is a coreflection sequence for B.

(c) For any reflection sequence B //
z // Z // // U for B, we have Z ' B+ in B.

(d) For any coreflection sequence V // // K
k // // B for B, we have K ' B− in B.

Proof. We only prove (a) and (c), the other two are dual.
(a) Since U0 admits the following short exact sequence

ΩU0 // q0 // PU0 // // U0

we get the following commutative diagram

ΩU0 // q0 //

x0

��

PU0 // //

p0

��

U0

B //
αB

// B+ // // U0.
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Since PU0 is projective, there exists a morphism p′0 : PU0 → W 0 such that wp′0 = p0, we get αBx0 =
p0q0 = wp′0q0. Then x0 factors through UB ∈ U since (2.1) is a pull-back diagram.

ΩU0

��

// q0 //

x0

��

PU0

p′0

�����������������
// //

p0

��

U0

B //
αB // B+ // // U0

UB //
w′
//

uB

<<zzzzzzzzz
W 0

w

<<yyyyyyyy
// // U0

{{{{{{{{

{{{{{{{{

Hence by definition B //
αB // B+ // // U0 is a reflection sequence for B.

(c) We first show that there exists a morphism f : Z → B+ such that αB = fz.
The reflection sequence admits a commutative diagram

ΩU //
q //

x

��

PU // //

p

��

U

B //
z
// Z // // U

where the left square is a push-out by Proposition 2.1. Since x factors through U , and uB is a right U-
approximation of B, there exists a morphism x′ : ΩU → UB such that x = uBx

′. Since Ext1
B(U,W 0) = 0,

there exists a morphism p′ : PU →W 0 such that w′x′ = p′q, thus αBx = αBuBx
′ = ww′x′ = wp′q. Then

by the definition of push-out, there exists a morphism f : Z → B+ such that αB = fz.

ΩU

x′

		����������������������
// q //

x

��

PU

p′

		����������������������
// //

p

��

U

B //
z // Z

a // //

f
��

U

B //
αB

// B+ // // U0

UB //
w′
//

uB

=={{{{{{{{
W 0

w

=={{{{{{{{
// // U0

||||||||

||||||||

Since By Proposition 3.2, there is a morphism g : B+ → Z such that gαB = z, we have a morphism
fg : B+ → B+ such that fgα = α, which implies that fg = idB+ .
Now we prove that gf = idZ .

Since (gf − idZ)z = 0, we get a morphism b : U → B+ such that gf − idZ = ba. Since Ext1
B(U, VB) = 0,

b factors through W 0, hence gf = idZ .

Thus B+ ' Z in B. �

Proposition 3.10. There exists an isomorphism of functors from B to H

η : σ+ ◦ σ− '−→ σ− ◦ σ+.
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Proof. By Proposition 3.2 and 3.5 both σ+ ◦ σ− and σ− ◦ σ+ are functors from B to H.
By Lemma 3.9, We can take the following commutative diagram of short exact sequences

V0
// v // B−

γB // //

d
��

B

y0

��
V0
//
j
// I0

i
// // Ω−V0

where y0 factors through V B since vB is a left V-approximation of B.

B
y0 //

vB   AAAAAAAA Ω−V0

V B
v′

<<xxxxxxxx

By Lemma 3.7 and Proposition 3.2, there exists a morphism t : B+ → Ω−V0 such that y0 = tαB . Since
Ext1

B(U0, V B) = 0, there exists a morphism v0 : B+ → V B such that vB = v0αB . Thus tαB = v′vB =
v′v0αB , then we obtain that t− v′v0 factors through U0.

B //
αB //

vB

��

B+

v0

�

||xxxxxxxxx
t−v′v0
��

// // U0

u

�

tt
V B

v′
// Ω−V0

Since Ext1
B(U0, V0) = 0, u factors through I0 ∈ V. Hence t factors through V.

Take a pull-back of t and i, we get the following commutative diagram

V0
// // Q

PB

s // //

d′

��

B+

t

��
V0
//
j
// I0

i
// // Ω−V0.

By [L, Lemma 2.11], we obtain Q ∈ B+. Now by Proposition 2.2, we get the following commutative
diagram

V0
��

��

V0
��

��
Q′ // //

����

Q // //

s
����

U0

B //
αB

// B+ // // U0.

By the definition of pull-back, there exists a morphism k : B → Q such that sk = αBγB and d′k = d.
Hence we have the following diagram

V0

idV0

��

v0

��

// v // B−

k

��

d
��

γB // // B

αB

��
V0
// // Q

s // //

PBd′

��

B+

t

��
V0
//
j
// I0

i
// // Ω−V0
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where the upper-left square commutes. Hence jv0 = d′kv = dv = j, we can conclude that v0 = idV0
since

j is monomorphic. By the same method we can get the following commutative diagram

V0

idV0

��

v′0
��

// v // B−

k′

��

k
��

γB // // B

V0
// // Q′ // //

��

��

B
��
αB

��
V0
// // Q // // B+

where v′0 = idV0
. Therefore k′ is isomorphic by [B, Corollary 3.2]. We obtain the following commutative

diagram

V0
��

v

��

V0
��

��
B− //

k //

γB
����

Q // //

s
����

U0

B //
αB

// B+ // // U0.

We get Q ∈ B− by [L, Lemma 2.10], hence Q ∈ H. Since t factors through V, V0
// // Q

s // // B+ is

a coreflection sequence for B+. By Lemma 3.9, we have the following commutative diagram

Q

s

  @@@@@@@@
α′

{{
σ−(B+)

α
// B+

in B where α′ is isomorphic.

By duality we conclude that B− //
k // Q // // U0 is a reflection sequence for B−. By Lemma 3.9,

we have the following commutative diagram

B−
β //

k   @@@@@@@@ σ+(B−)

β′
{{

Q

in B where β′ is isomorphic.
By Proposition 3.5, there exists a morphism θ : B− → σ−σ+(B) in B such that αθ = αBγB . Then by

Proposition 3.2, there exists a unique morphism ηB : σ+σ−(B) → σ−σ+(B) such that ηBβ = θ. Hence
we get the following commutative diagram

σ+σ−(B)

ηB

��

B−
βoo

θ

��

γB

��
B

αB

��
σ−σ+(B)

α
// B+.
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Then αηBβ = αBγB = sk = αα′β′β, and we have ηB = α′β′ by Proposition 3.2 and 3.5. Thus ηB is
isomorphic. Let f : B → C be a morphism in B, then we can get the following diagram by Proposition
3.2 and 3.5.

σ+σ−(B)

�

σ+σ−(f)

++

ηB

��

B−

�

β
oo

γB

��

σ−(f)
// C−

�

γ
//

γC

��

σ+σ−(C)

ηC

��

B

�αB

��

f
// C

αC

��
σ−σ+(B)

σ−σ+(f)

33
α // B+

σ+(f)

// C+ σ−σ+(C)
δoo

Since

δ(σ−σ+(f))ηBβ = (σ+(f))αBγB = αCγC(σ−(f)) = δηC(σ+σ−(f))β

we get (σ−σ+(f))ηB = ηC(σ+σ−(f)) by Proposition 3.2 and 3.5. Thus η is a natural isomorphism. �

3.3. Half exact functor. By Proposition 3.10, we have a natural isomorphism of functors from B to H

σ+ ◦ σ− ◦ π ' σ− ◦ σ+ ◦ π

where π : B → B denotes the canonical functor. We denote σ− ◦ σ+ ◦ π by

H : B → H.

The aim of this section is to show the following theorem.

Theorem 3.11. For any cotorsion pair (U ,V) in B, the functor

H : B → H

is half exact.

We call H the associated half exact functor to (U ,V).

Proposition 3.12. The functor H has the following properties:

(a) H is an additive functor.
(b) H|H = π|H.
(c) H(U) = 0 and H(V) = 0 hold. In particular, H(P) = 0 and H(I) = 0.

(d) For any reflection sequence B //
z // Z // // U for B, H(z) is an isomorphism in H.

(e) For any coreflection sequence V // // K
k // // B for B, H(k) is an isomorphism in H.

Proof. (a) is followed by the definition of H and Proposition 3.3, 3.6 directly. Since H = B+ ∩ B−,
by Proposition 3.3, 3.6, we get (b). By Proposition 3.3, σ+(B+) = 0, hence H(U), H(P) = 0 since
P ⊆ U , dually we have H(V) = 0 = H(I). Hence (c) holds. For any reflection sequence, we have
H(z) = σ− ◦ σ+(z) = σ−(g) where g : B+ → Z is the morphism in the proof of Lemma 3.9. Since g is
an isomorphism, we get H(z) is an isomorphism in H. Thus (d) holds and by dual, (e) also holds. �

Lemma 3.13. Let B be any object in B, HomB(U ,B+) = 0 and HomB(B−,V) = 0 hold.

Proof. We only show HomB(U ,B+) = 0, the other one is dual.
Since B ∈ B+, it admits a short exact sequence VB � WB � B where WB ∈ W. Then any morphism
from an object in U to B factors through WB , and the assertion follows. �
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Lemma 3.14. Let

ΩU //
q //

f

��

PU // //

p

��

U

A //
g
// B

h
// // U

(9)

be a commutative diagram satisfying U ∈ U and PU ∈ P. Then the sequence

H(ΩU)
H(f)−−−→ H(A)

H(g)−−−→ H(B)→ 0

is exact in H.

Proof. By Proposition 2.2, we get a commutative diagram by taking a pull-back of g and γB

V0
��

��

V0
��

��
L //

g′ //

l
����

B−

γB
����

// // U

A //
g
// B

h
// // U.

By [L, Lemma 2.10], L ∈ B−. We can obtain a commutative diagram of short exact sequences

V0
// // L

��

l // // A

g

��
V0
// // B−

��

γB // // B

j

��
V0
// // I0 // // Ω−V0

where j factors through V by Lemma 3.9, hence

V0
// // L

l // // A

is a coreflection sequence for A. By Proposition 3.12, H(l) and H(γB) are isomorphic in H. Thus,
replacing A by L and B by B−, we may assume that A,B ∈ B−. Under this assumption, we show H(g)
is the cokernel of H(f). We have ΩU ∈ B− by Lemma 3.7. For any Q ∈ H, we have a commutative
diagram

HomB(H(B), Q)

'
��

HomB(H(g),Q) // HomB(H(A), Q)

'
��

HomB(H(f),Q) // HomB(H(ΩU), Q)

'
��

HomB(σ+(B), Q)

'
��

HomB(σ+(g),Q)
// HomB(σ+(A), Q)

'
��

HomB(σ+(f),Q)
// HomB(σ+(ΩU), Q)

'
��

HomB(B,Q)
HomB(g,Q)

// HomB(A,Q)
HomB(f,Q)

// HomB(ΩU,Q).

So it suffices to show the following sequence

0→ HomB(B,Q)
HomB(g,Q)
−−−−−−−→ HomB(A,Q)

HomB(f,Q)
−−−−−−−→ HomB(ΩU,Q)
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is exact.
We first show that HomB(g,Q) is injective. Let r : B → Q be any morphism such that rg = 0. Take a
commutative diagram of short exact sequences

ΩUA //
qA //

a

��

PUA

pA

��

// // UA

A //
wA

// WA // // UA.

Since rga factors throughW and Ext1
B(UA,W) = 0, it factors through qA. Thus there exists c : WA → Q

such that cwA = rg.

ΩUA
qA //

a

��

PUA

pA

��

��

A
wA
//

rg
,,

WA

c

!!
Q

As Ext1
B(U,WA) = 0, there exists d : B → WA such that wA = dg. Hence rg = cwA = cdg, then r − cd

factors through U .

A

wA

��

// g // B // //

d

�

}}||||||||
r−cd
��

U

�

ttWA
c
// Q

Since HomB(U,Q) = 0 by Lemma 3.13, we get that r = 0.

Assume r′ : A → Q satisfies r′f = 0, since Ext1
B(U,W) = 0, r′f factors through q. As the left square of

(3) is a push-out, we get the following commutative diagram.

ΩU
q //

f

��

PU

��

��

A
g //

r′ ,,

B

  
Q

Hence r′ factors through g. This shows the exactness of

HomB(B,Q)
HomB(g,Q)
−−−−−−−→ HomB(A,Q)

HomB(f,Q)
−−−−−−−→ HomB(ΩU,Q).

�

Dually, we have the following:

Lemma 3.15. Let

V //
f // A

g // //

��

B

h
��

V // // IV // // Ω−V

be a commutative diagram satisfying V ∈ V and IV ∈ I. Then the sequence

0→ H(A)
H(g)−−−→ H(B)

H(h)−−−→ H(Ω−V )
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is exact in H.

Now we are ready to prove Theorem 3.11.

Proof. Let

A //
f // B

g // // C

be any short exact sequence in B. By Proposition 2.1, we can get the following commutative diagram:

ΩUA //
b //

a

��

PUA

��

// // UA

A //
vA //

PO

��
f

��

V A // //
��
e

��

UA

B //
c
//

g
����

D // //

d
����

UA

C C.

From the first and second row from the top, we get an exact sequenceH(ΩUA)
H(a)−−−→ H(A)→ 0 by Lemma

3.14. From the first and the third row from the top, we get an exact sequence H(ΩUA)
H(fa)−−−−→ H(B)

H(c)−−−→
H(D) → 0 by Lemma 3.14. From the middle column, we get an exact sequence 0 → H(D)

H(d)−−−→ H(C)

by Lemma 3.15. Now we can obtain an exact sequence H(A)
H(f)−−−→ H(B)

H(g)−−−→ H(C). �

Now we prove the following general observation on half exact functors.

Corollary 3.16. Let A be an abelian category and F : B → A be a half exact functor satisfying F (P) = 0
and F (I) = 0. Then for any short exact sequence

A //
f // B

g // // C

in B, there exist morphisms h : C → Ω−A and h′ : ΩC → A such that the following sequence

· · · F (Ωh′)−−−−→ F (ΩA)
F (Ωf)−−−−→ F (ΩB)

F (Ωg)−−−−→ F (ΩC)
F (h′)−−−→ F (A)

F (f)−−−→ F (B)

F (g)−−−→ F (C)
F (h)−−−→ F (Ω−A)

F (Ω−f)−−−−−→ F (Ω−B)
F (Ω−g)−−−−−→ F (Ω−C)

F (Ω−h)−−−−−→ · · ·

is exact in A.

Proof. Since F (P) = 0 (resp. F (I) = 0), the functor F can be regarded as a functor from B/P (resp.
B/I) to A.
For convenience, we fix the following commutative diagram:

ΩA //
qA //

Ωf

��

PA
pA // //

r

��

A

f

��
ΩB //

qB //

Ωg

��

PB
pB // //

k

��

B

g

��
ΩC //

qC
// PC pC

// // C.

Since

A //
f // B

g // // C
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admits two commutative diagrams

ΩC //
qC //

h′

��

PC
pC // //

l

��

C

A //
f
// B

g
// // C,

A //
f // B

g // //

i
��

C

h
��

A // // IA
j
// // Ω−A

we get two short exact sequences by Proposition 2.1:

ΩC //

(−qC
h′

)
// PC ⊕A

( l f )// // B, B //

(
i
g

)
// IA ⊕ C

(−j h )// // Ω−A.

They induce two exact sequences

F (ΩC)
F (h′) // F (A)

F (f) // F (B), F (B)
F (g) // F (C)

F (h) // F (Ω−A).

by Theorem 3.11. Now it is enough to show that

(a) A //
f // B

g // // C induces an exact sequence

F (ΩA)
F (Ωf)−−−−→ F (ΩB)

F (Ωg)−−−−→ F (ΩC)
F (h′)−−−→ F (A).

(b) A //
f // B

g // // C induces an exact sequence

F (C)
F (h)−−−→ F (Ω−A)

F (Ω−f)−−−−−→ F (Ω−B)
F (Ω−g)−−−−−→ F (Ω−C).

We only show the first one, the second is by dual.

The short exact sequence ΩC //

(−qC
h′

)
// PC ⊕A

( l f )// // B admits the following commutative diagram

ΩB //
qB //

x

��

PB
pB // //

(
k′

m

)
��

B

ΩC //(−qC
h′

)// PC ⊕A
( l f )
// // B

which induces the following exact sequence

ΩB //
(−qBx )

// PA ⊕ ΩC

(
k′ −qC
m h′

)
// // PC ⊕A.

We prove that x+ Ωg factors through P.
Since fm + lk′ = pB ⇒ gfm + glk′ = gpB ⇒ pCk

′ = pCk, there exists a morphism n : PB → ΩC such
that k− k′ = qCn. Thus we have qCnqB = kqB − k′qB = qCΩg+ qCx, which implies that x+ Ωg = nqB .

Hence we obtain an exact sequence F (ΩB)
F (Ωg)−−−−→ F (ΩC)

F (h′)−−−→ F (A).
Since we have the following commutative diagram

ΩA //
qA //

x′

��

PA
pA // //

( st )
��

A

( 0
1 )
��

ΩB //
(−qBx )

// PB ⊕ ΩC (
k′ −qC
m h′

) // // PC ⊕A

we can show that x′ + Ωf factors through P using the same method.
Hence we get the following exact sequence

F (ΩA)
F (Ωf)−−−−→ F (ΩB)

F (Ωg)−−−−→ F (ΩC)
F (h′)−−−→ F (A).
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Now we obtain a long exact sequence

· · · F (Ωh′)−−−−→ F (ΩA)
F (Ωf)−−−−→ F (ΩB)

F (Ωg)−−−−→ F (ΩC)
F (h′)−−−→ F (A)

F (f)−−−→ F (B)

F (g)−−−→ F (C)
F (h)−−−→ F (Ω−A)

F (Ω−f)−−−−−→ F (Ω−B)
F (Ω−g)−−−−−→ F (Ω−C)

F (Ω−h)−−−−−→ · · ·

in H. �

Since H(P) = H(I) = 0, we can see from this proposition that H has the property we claimed in the
introduction.

For two subcategories B1,B2 ⊆ B, we denote add(B1 ∗ B2) by the subcategory which consists by the
objects X which admits a short exact sequence

B1
// // X ⊕ Y // // B2

where B1 ∈ B1 and B2 ∈ B2.

Proposition 3.17. For any cotorsion pair (U ,V) on B and any object B ∈ B, the following are equivalent.

(a) H(B) = 0.
(b) B ∈ add(U ∗ V).

Proof. We first prove that (a) implies (b).
By Proposition 3.6, since H(B) = σ− ◦ σ+(B) = 0, we get that B+ ∈ V, hence from the following
commutative diagram

VB // // UB
��

w′

��

uB // // B
��
αB

��
VB // // W 0

w
// //

����

B+

����
U0 U0

we get a short exact sequence UB // // B ⊕W 0 // // B+ , which implies that B ∈ add(U ∗ V).

We show that (b) implies (a).
This is followed by Theorem 3.11 and Proposition 3.12. �

We denote add(U ∗ V) by K.
The kernel of H becomes simple in the following cases.

Corollary 3.18. Let (U ,V) be a cotorsion pair on B, then

(a) If U ⊆ V, then H(B) = 0 if and only if B ∈ V.
(b) If V ⊆ U , then H(B) = 0 if and only if B ∈ U .

Proof. This is followed by Proposition 3.17 directly. �

3.4. Relationship between different hearts. The half exact functor constructed in the previous
section gives a useful to study the relationship between the hearts of different cotorsion pairs on B. First,
we start with fixing some notations

Let i ∈ {1, 2}. Let (Ui,Vi) be a cotorsion pair on B and Wi = Ui ∩ Vi. Let B+
i and B−i be the

subcategories of B defined in (1.1) and (1.2).
Let Hi := B+

i ∩ B
−
i , then Hi/Wi is the heart of (Ui,Vi). Let πi : B → B/Wi be the canonical functor

and ιi : Hi/Wi ↪→ B/Wi be the inclusion functor.
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If H2(W1) = 0, which means W1 ⊆ K2 by Proposition 3.17, then there exists a functor h12 : B/W1 →
H2/W2 such that H2 = h12π1.

B

H2 ""EEEEEEEEE
π1 // B/W1

h12zz
H2/W2

Hence we get a functor β12 := h12ι1 : H1/W1 → H2/W2.

Lemma 3.19. The following conditions are equivalent to each other.

(a) H1(U2) = H1(V2) = 0.
(b) K2 ⊆ K1.

Proof. By Proposition 3.12 and Theorem 3.11, (b) implies (a). Now we prove that (a) implies (b).
By Proposition 3.17, we get U2 ⊆ K1 and V2 ⊆ K1. Let X ∈ K2, then by definition, it admits a short
exact sequence

U2 � X ⊕ Y � V2

where U2 ∈ U2 and V2 ∈ V2. Since U2, V2 ∈ K1, by definition, there exist two objects A and B such that
U2 ⊕A, V2 ⊕B ∈ U1 ∗ V1. Thus we get a short exact sequence

U2 ⊕A� X ⊕ Y ⊕A⊕B � V2 ⊕B.

Hence X ∈ add((U1 ∗ V1) ∗ (U1 ∗ V1)) = add(U1 ∗ (V1 ∗ U1) ∗ V1) = add(U1 ∗ U1 ∗ V1 ∗ V1) = add(U1 ∗ V1),
which implies that K2 ⊆ K1. �

Proposition 3.20. The functor β12 is half exact. Moreover, if K1 ⊆ K2, then β12 is exact and (H1 ∩
K2)/W1 is a Serre subcategory of H1/W1.

Proof. Let 0 → A
ρ−→ B

µ−→ C → 0 be a short exact sequence in H1/W1, then µ admits a morphism
g : B � C such that π1(g) = β. We get the following commutative diagram

VC // // Kg

kg // //

a

��

B

g

��
VC // // WC wC

// // C

where VC ∈ V1 and WC ∈ W1. Then we obtain a short exact sequence

Kg
//

(−a
kg

)
// B ⊕WC

( g wC )// // C.

By [L, Lemma 4.1], Kg ∈ B−j . By [L, Definition 3.8], Kg ∈ B+
1 . Hence Kg ∈ H1. By [L, Theorem 4.3],

µ is the cokernel of π1(kg). By dual of [L, Theorem 3.10], π1(kg) is the kernel of µ. Hence Kg ' A in
H1/W1. By Theorem 3.11, We get the an exact sequence

H2(Kg)
H2(kg)−−−−→ H2(B)

H2(g)−−−−→ H2(C)

which implies the following following exact sequence

β12(A)
β12(ρ)−−−−→ β12(B)

β12(µ)−−−−→ β12(C).

Hence β12 is half exact. Now we prove that if K1 ⊆ K2, which means H2(U1) = 0 = H2(V1), then β12 is
exact.
In this case, we only need to show that β12(ρ) is a monomorphism and β12(µ) is an epimorphism. We
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show that β12(µ) is an epimorphism, the other part is by dual.
Since we have the following commutative diagram

B //
wB
//

g

��

WB // //

b

��

UB

C //
cg
// Cg s

// // UB

where WB ∈ W1 and UB ∈ U1. Since µ is epimorphism, by [L, Corollary 3.11], Cg ∈ U1. Since we have
the following short exact sequence

B //

( g
−h
)
// C ⊕WB

( cg b )// // Cg.

By Theorem 3.11, We have an exact sequence H2(B)
H2(g)−−−−→ H2(C) → 0, which induces the following

exact sequence

β12(B)
β12(µ)−−−−→ β12(C)→ 0.

Now we prove that (H1 ∩ K2)/W1 is a Serre subcategory of H1/W1.

Let 0→ A
ρ−→ B

µ−→ C → 0 be a short exact sequence in H1/W1.
If B ∈ (H1∩K2)/W1, since β12 is exact and β12(B) = 0 by Proposition 3.17, we have β12(A) = 0 = β12(C),
which implies that A,C ∈ (H1 ∩ K2)/W1.
If A,C ∈ (H1 ∩ K2)/W1, since we have the following short exact sequence

Kg
//

(−a
kg

)
// B ⊕WC

( g wC )// // C.

in B such that Kg ' A in H1/W1, we get that B ∈ add((U1 ∗ V1) ∗ (U1 ∗ V1)) = add(U1 ∗ V1). Hence
B ∈ (H1 ∩ K2)/W1. �

We prove the following proposition, and we recall that a similar property has been proved for trian-
gulated case in [ZZ, Lemma 6.3].

Proposition 3.21. Let (U1,V1), (U2,V2) be cotorsion pairs on B. If W1 ⊆ K2 ⊆ K1, then we have a
natural isomorphism β21β12 ' idH1/W1

of functors.

Proof. Let B ∈ H1. By Definition 3.1 and 3.4, we get the following commutative diagrams

VB // // UB
��

��

// // B
��
sB

��
VB // // W 0 // //

����

B+
2

����
U0 U0,

V0
��

��

V0
��

��
(B+

2 )−2

tB
����

// // W0

����

// // UB2

B+
2
// // V B2 // // UB2

where UB , U
0, UB2 ∈ U2, VB , V

B2 , V0 ∈ V2, W0,W
0 ∈ W2 and (B+

2 )−2 = H2(B) in B/W2. By Lemma
3.19, we get H1(U2) = H1(V2) = 0, by Lemma 3.9 and Theorem 3.11, we get two isomorphisms

B
H1(sB)−−−−−→ H1(B+

2 ) and H1((B+
2 )−2 )

H1(tB)−−−−→ H1(B+
2 ) in H1/W1. Since H1((B+

2 )−2 ) = β21β12(B), we
get a isomorphism ρB := H1(tB)−1H1(sB) : B → β21β12(B) on H1/W1. Let f : B → C be a morphism
in H1, we also denote it image in H1/W1 by f . By the definition of H2, we get the following commutative
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diagrams in B

B
sB //

f

��

B+
2

f+

��
C

sC
// C+

2 ,

(B+
2 )−2

tB //

(f+)−

��

B+
2

f+

��
(C+

2 )−2 tC
// C+

2

where π2((f+)−) = H2(f). Hence we obtain the following commutative diagram in H1/W1

B
ρB //

f

��

β21β12(B)

β21β12(f)

��
C

ρC
// β21β12(C)

which implies that β21β12 ' idH1/W1
. �

According to Proposition 3.21, we obtain the following corollary immediately.

Corollary 3.22. If K1 = K2, then we have an equivalence H1/W1 ' H2/W2 between two hearts.

Let S = {α ∈ Mor(H2/W2) | Ker(α),Coker(α) ∈ (H2 ∩K1/W2} and let H2 be localization of H2/W2

respect to (H2 ∩K1/W2, then H2 is abelian. Since β21 is exact and Ker(β21) = (H2 ∩K1/W2, we get the
following commutative diagram

H2/W2

L ##GGGGGGGGG
β21 // H1/W1

H2

β21

;;

where L is the localization functor which is exact and β21 is a faithful exact functor. Since β21Lβ12 '
idH1/W1

, we get that Lβ12 is fully-faithful. Now we prove that Lβ12 is dense under the assumption of
Proposition 3.21.

Let B ∈ H2, by Definition 3.1 and 3.4, we get the following commutative diagrams

VB // // UB
��

��

// // B
��
sB

��
VB // // W 0 // //

����

B+
1

����
U0 U0,

V0
��

��

V0
��

��
(B+

1 )−1

tB
����

// // W0

����

// // UB1

B+
1
// // V B1 // // UB1

where UB , U
0, UB1 ∈ U1, VB , V

B1 , V0 ∈ V1, W0,W
0 ∈ W1 and (B+

1 )−1 = H1(B) in B/W1. Since
H2(W1) = 0, we get the following exact sequences by Theorem 3.11

H2(UB)→ B → H2(B+
1 )→ H2(U0),

H2(V0)→ H2((B+
1 )−1 )→ H2(B+

1 )→ H2(V B1).

One can check that H2(U1), H2(V1) ⊆ (H2 ∩K1/W2 by definition. Since H2 is abelian and L is exact, we
get B ' H2(B+

1 ) ' H2((B+
1 )−1 ) = Lβ12β21(B) in H2, which implies that Lβ12 is dense.

Now we get the following theorem.

Theorem 3.23. Let (U1,V1), (U2,V2) be cotorsion pairs on B. If W1 ⊆ K2 ⊆ K1, then we have an
equivalence Lβ12 : H1/W1 → H2.
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In the rest of this section, we discuss about the relationship between the heart of a twin cotorsion pair
and the hearts of its two components.

First we recall the definition of the twin cotorsion pair. A pair of cotorsion pairs (U1,V1), (U2,V2) is
called a twin cotorsion pair if U1 ⊆ U2. This condition is equivalent to V2 ⊆ V1 and also equivalent to
Ext1

B(U1,V2) = 0. We introduce some notations.
Let Wt := V1 ∩ U2.

(a) B+
t is defined to be the full subcategory of B, consisting of objects B which admits a short exact

sequence

VB � UB � B

where UB ∈ Wt and VB ∈ V2.
(b) B−t is defined to be the full subcategory of B, consisting of objects B which admits a short exact

sequence

B � V B � UB

where V B ∈ Wt and UB ∈ U1.

Denote

Ht := B+
t ∩ B−t .

Then Ht/Wt is called the heart of (U1,V1), (U2,V2).

Proposition 3.24. Let (U1,V1), (U2,V2) be a twin cotorsion pair on B and f : A → B be a morphism
in Ht, then Hk(f) = 0 (k = 1 or 2) if and only if f factors through Wt.

Proof. We only prove the case k = 2, the other case is by dual.
The ”if” is followed directly by Proposition 3.3. Now we prove the ”only if” part.
Since Hk(f) = 0, by Proposition 3.6 and 3.10, we get in the following commutative diagram

A
��

αA

��

f // B
��
αB

��

UB
��
w′

��

uBoooo VBoooo

A+

����

f+

// B+

����

W 0

����

w
oooo VBoooo

U0
A

// U0 U0

which is similar as in Proposition 3.3, where U0
A, U

0 ∈ U2, VB ∈ V2, UB ∈ Wt and W 0 ∈ W2, f+ factors
through an object V ∈ V2. Since A,B ∈ Ht, by [L, Lemma 2.10], A+, B+ ∈ B−t . Hence there exits a
diagram

A+

a

  BBBBBBBB

f+

��

// wA
// WA // // UA

V

b~~||||||||

B+ // // WB // // UB

where WA,WB ∈ Wt and UA, UB ∈ U1. Since Ext1
B(UA, V ) = 0, there exists a morphism c : WA → V

such that f+ = bcwA. Now using the same argument as in Proposition 3.3, we get that f factors through
UB ∈ Wt. �

Let πt : B → B/Wt be the canonical functor and ιt : Ht/Wt ↪→ B/Wt be the inclusion functor.
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Let k ∈ {1, 2}, since Hk(Wt) = 0 by Proposition 3.12, there exists a functor hk : B/Wt → Hk/Wk

such that Hk = hkπt.

B

Hk ""EEEEEEEEE
πt // B/Wt

hkzz
Hk/Wk

Hence we get a functor βk := hkιt : Ht/Wt → Hk/Wk and the following corollary.

Corollary 3.25. Let (U1,V1), (U2,V2) be a twin cotorsion pair on B, then βk : Ht/Wt → Hk/Wk

(k ∈ {1, 2}) is faithful.

This corollary also implies that if H1/W1 = 0 or H2/W2 = 0, Ht/Wt is also zero.
Moreover, we have the following proposition.

Proposition 3.26. Let (U1,V1), (U2,V2) be a twin cotorsion pair on B. If Ht/Wt = 0, then H1 ⊆ U2

and H2 ⊆ V1.

Proof. We only prove that Ht/Wt = 0 implies H1 ⊆ U2, the other one is by dual.
Let B ∈ H1, since B−1 ⊆ B

−
t by definition, in the following diagram

VB // // UB
��

��

// // B
��

��
VB // // W 0 // //

����

B+

����
U0 U0

where UB ∈ U2, VB ∈ V2, U0 ∈ U1 and W 0 ∈ Wt, we get B+ ∈ Ht by [L, Lemma 2.10]. If Ht/Wt = 0,
then B+ ∈ Wt. By [L, Lemma 3.4], B ∈ U2. �

3.5. Examples.

Example 3.27. Let Λ be the k-algebra given by the quiver

1

a
##
2

a∗

cc

b
##
3

b∗

cc

and bounded by the relations a∗a = 0 = bb∗, aa∗ = b∗b. The AR-quiver of B = mod Λ is given by

1
2
3

��9999

1

""EEEEEE
2
3

BB����

��99999
1
2

��@@@@@ 3

2
1 3

2
// 2

1 3

��@@@@@

??~~~~~
2

��99999

BB�����
1 3

2

""EEEEEE

<<yyyyyy
// 2

1 3
2

3

<<yyyyyy
2
1

BB�����

��9999
3
2

??~~~~~
1 .

3
2
1

BB����

We denote by ”◦” in the AR-quiver the indecomposable objects belong to a subcategory and by ”·” the
indecomposable objects do not.
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Let U1 and V1 be the full subcategories of mod Λ given by the following diagram.

◦
��>>>

·
��==== ·

??���

��;;; ·
��999 ·

U1 = ◦ // ◦
��;;;

AA���
·
��;;;

AA���
·
��;;;

AA��� // ◦

·

@@���
·

AA���

��>>> ·

BB���
·

◦
??���

◦
��>>>

◦
��=== ◦

??~~~

��=== ·
��999 ◦

V1 = ◦ // ◦
��===

@@���
·
��;;;

AA���
·
��;;;

AA��� // ◦

◦

@@���
◦

@@����

��@@@ ·

BB���
◦

◦
??���

The heart H1/W1 = add( 2 ) and H1 ' mod(U1/P) by [DL, Theorem 3.2]. Now let U2 and V2 be the full
subcategories of mod Λ given by the following diagram.

◦
��>>>

·
��==== ◦

??~~~

��=== ·
��999 ·

U2 = ◦ // ◦
��===

@@���
·
��;;;

AA���
·
��;;;

AA��� // ◦

·

@@���
·

@@����

��@@@ ·

BB���
·

◦
??���

◦
��>>>

·
��==== ◦

??~~~

��=== ·
��999 ◦

V2 = ◦ // ◦
��===

@@���
·
��;;;

AA���
·
��;;;

AA��� // ◦

◦

@@���
◦

@@����

��@@@ ·

BB���
·

◦
??���

The heart H2/W2 = add( 1 , 2 ). Since W1 = U1 ⊆ U2 ⊆ V2 ⊆ V1, by Theorem 3.23, H2 ' H1/W1.
Moreover, V1/U1 has a triangulated category structure, and (U2/U1,V2/U1) is a cotorsion pair on it. The
Serre subcategory (H2 ∩ K1)/W2 = add( 1 ) is the heart of (U2/U1,V2/U1).

Recall that a subcategoryM of B is called rigid if Ext1
B(M,M) = 0,M is cluster tilting if it satisfies

(a) M is contravariantly finite and covariantly finite in B.
(b) X ∈M if and only if Ext1

B(X,M) = 0.
(c) X ∈M if and only if Ext1

B(M, X) = 0.

If M is a cluster tilting subcategory of B, then (M,M) is a cotorsion pair on B (see [L, Proposition
10.5]).. In this case we have H = B− = B+ = B, σ− = σ+ = id and H = π.

Example 3.28. Let Λ be the k-algebra given by the quiver

3

������

5

������
2

������

^^====

6 4

^^====
1

^^====

with mesh relations. The AR-quiver of B := mod Λ is given by

3
5

6

!!DDDD

1
2

3

!!DDDD

5
6

==zzzz

!!DDDDDD
3

5

!!DDDDD
4

""EEEEEE
2

3

==zzzz

!!DDDDDD
1

2

��?????

6

@@�����
5

==zzzzzz

!!DDDDDD
3 4

5

<<yyyyyy
//

""EEEEEE
2

3 4
5

// 2
3 4

==zzzzz

!!DDDDD
2

==zzzzzz
1 .

4
5

==zzzzz
3

<<yyyyyy
2

4

==zzzzzz
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Let U1 and V1 be the full subcategories of mod Λ given by the following diagram.

◦
��=== ◦

��===

U1 = ◦

@@���

��=== ·
��;;; ·

��;;; ·

@@���

��==== ◦
��===

◦

@@���
·

@@����

��@@@ ·

AA��� //

��>>> ◦ // ·

AA���

��>>> ·

@@���
◦

◦
??���

·
??���

◦

??~~~

◦
��=== ◦

��===

V1 = ◦

@@���

��=== ·
��;;; ◦

��;;; ·

@@���

��==== ◦
��===

◦

@@���
◦

@@����

��@@@ ·

AA��� //

��>>> ◦ // ·

AA���

��>>> ·

@@���
◦

◦
??���

·
??���

◦

??~~~

Then (U1,V1) is a cotorsion pair on mod Λ. The heart H1/W1 is the following.

2
3

""EEEEE

3
5

$$JJJJJ
2

3 4

<<yyyy
2

3

::ttttt

The only indecomposable object which does not lie in H1 or U1,V1 is 3 4
5 , since we have the following

commutative diagram

5
��

��

5
��

��
4

5 ⊕ 3
5
// //

����

4
5 ⊕

2
3 4

5
// //

����

2
4

3 4
5
// // 4 ⊕ 2

3 4
5

// // 2
4 .

We get H1( 3 4
5 ) = 3

5 since 4
5 ∈ P. Let

◦
��>>> ◦

��>>>

M = ◦

@@���

��>>> ·
��<<< ◦

��<<< ·

@@���

��>>>> ◦
��>>>

◦

@@���
·

@@����

��@@@ ·

@@��� //

��>>> ◦ // ·

@@���

��>>> ·

@@���
◦

◦
??���

·
??���

◦

??~~~

SinceM is a cluster tilting subcategory of B, (U2,V2) = (M,M) is a cotorsion pair. The heart H2/W2 =
mod Λ/M is the following.

3
5

##GGGG
2

3

""EEEEE

5

<<xxxxx
3 4

5

%%KKKKK
2

3 4

<<yyyy
2

3

::ttttt

Since U1 ⊆ M ⊆ V1, we have W1 ⊆ K2 ⊆ K1. Since We get H1( 4 3
5 ) = 3

5 , we get that β21 is exact.

But β12 is not exact, since 3
5

// 3 // 2
3 4 is a short exact sequence in H1/W1 but not a short

exact sequence in H2/W2. In this case, (H2 ∩ K1)/W2 is add( 5 ), we can see that H2 ' H1/W1.
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Let U3 and V3 be the full subcategories of mod Λ given by the following diagram.

◦
��=== ◦

��===

U3 = ◦

@@���

��=== ·
��;;; ◦

��;;; ·

@@���

��==== ◦
��===

◦

@@���
·

@@����

��@@@ ·

AA��� //

��>>> ◦ // ·

AA���

��>>> ◦

@@���
◦

◦
??���

·
??���

◦
??~~~

◦
��=== ◦

��===

V3 = ◦

@@���

��=== ·
��;;; ·

��;;; ·

@@���

��==== ◦
��===

◦

@@���
·

@@����

��@@@ ·

AA��� //

��>>> ◦ // ·

AA���

��>>> ·

@@���
◦

◦
??���

·
??���

◦

??~~~

and the heart H3/W3 is the following.

3
5
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<<xxxxx
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5

%%KKKKK
2

3

3

::vvvvv

Hence we get H1/W1 ' H3/W3. But we find that U3 " K1 and V1 " K3, which implies that the condition
Corollary 3.22 is not necessary for the equivalence of two hearts.

By Theorem 3.11 and Proposition 3.16, we get:

Proposition 3.29. Let M be a cluster tilting subcategory of B. Then the canonical functor

π : B → B/M
is half exact. Moreover, every short exact sequence

A //
f // B

g // // C

in B induces a long exact sequence

· · · Ωh′−−→ ΩA
Ωf
−−→ ΩB

Ωg
−−→ ΩC

h′−→ A
f
−→ B

g
−→ C

h−→ Ω−A
Ω−f
−−−→ Ω−B

Ω−g
−−−→ Ω−C

Ω−h−−−→ · · ·
in the abelian category B/M.

Example 3.30. LetM be a cluster tilting subcategory of B (for instance, see [DL, Example 4.2]). Then
we have a half exact functor

G : B → modM/P
X 7→ Ext1

B(−, X)|M.

This is a composition of the half exact functor π : B → B/M given by Proposition 3.29 and an equivalence

B/M '−→ modM/P
X 7→ Ext1

B(−, X)|M.

given by [DL, Theorem 3.2]. By Proposition 3.18, G(X) = 0 if and only if X ∈M.

A more general case is given as follows. If M is a rigid subcategory of B which is contravariantly
finite and contains P, then by [L, Proposition 2.12], (M,M⊥1) is a cotorsion pair where M⊥1 = {X ∈
B | Ext1

B(M, X) = 0}. Since M is rigid, we have M ⊆ M⊥1 . In this case we have B+ = B, B− = H,
σ+ = id and H = σ− ◦π. By [DL, Theorem 3.2], there exists an equivalence between H and mod(M/P).
Hence by Theorem 3.11, we get the following example:

Example 3.31. Let M be a rigid subcategory of B which is contravariantly finite and contains P (for
instance, see [DL, Example 4.3]). Then there exists a half exact functor

G : B → modM/P
X 7→ Ext1

B(−, σ−(X))|M
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which is a composition of H and the equivalence

H '−→ modM/P
Y 7→ Ext1

B(−, Y )|M

given by [DL, Theorem 3.2]. By Proposition 3.18, G(X) = 0 if and only if X ∈M⊥1 .

4. Hearts of cotorsion pairs are functor categories over cohearts

In this section, we give an equivalence between hearts and the functor categories over cohearts.

4.1. Hearts on triangulated categories. Let T be a triangulated category.

Definition 4.1. Let U and V be full additive subcategories of T which are closed under direct summands.
We call (U ,V) a cotorsion pair if it satisfies the following conditions:

(a) HomT (U ,V[1]) = 0.
(b) For any object T ∈ T , there exists a triangle T [−1] → VT → UT → T satisfying UT ∈ U and

VT ∈ V.

For a cotorsion pairs (U ,V), let W := U ∩ V. We denote the quotient of T by W as T := T /W. For
any morphism f ∈ HomT (X,Y ), we denote its image in HomT (X,Y ) by f . For any subcategory D ⊇ W
of T , we denote by D the full subcategory of T consisting of the same objects as D. Let

T + := {T ∈ T | UT ∈ W}, T − := {T ∈ T | V T ∈ W}.

Let

H := T + ∩ T −

we call the additive subcategory H the heart of cotorsion pair (U ,V). Under these settings, Abe, Nakaoka
[AN] introduced the homological functor H : T → H associated with (U ,V). We often use the following
property of H: H(U) = 0 = H(V).

For the coheart C := U [−1] ∩ ⊥U , since C ⊆ T −, for any object C ∈ C, by definition of H we get the
following commutative diagram the following commutative diagram

VC // UC //

��

C

i

��

// VC [1]

VC // WC
//

��

H(C)

��

// VC [1]

U ′C

��

U ′C

��
UC [1] // C[1]

(10)

where UC , U
′
C ∈ U , VC ∈ V and WC ∈ W. Moreover, H(i) is an isomorphism in H by [AN, Proposition

3.8, Theorem 5.7].
For the coheart, we have the following proposition which implies that mod C is an abelian category.

Proposition 4.2. Let (U ,V) be a cotorsion pair that U [−1] ⊆ C∗U , then the coheart C has pseudo-kernels.
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Proof. Let f : C1 → C2 be a morphism in C, we can extend it to a triangle T
g−→ C1

f−→ C2 → T [1]. Since
we have a cotorsion pair (U ,V), the pair (U [−1],V[−1]) is also a cotorsion pair on T . Hence T admits

a triangle V [−1] → U [−1]
h−→ T

j−→ V where U ∈ U and V ∈ V. Since U [−1] ⊆ C ∗ U , U [−1] admits a

triangle C
a−→ U [−1]

b−→ U ′ → C[1]. We obtain that f(gha) = 0 and we claim that gha : C → C1 is a
pseudo-kernel of f .
Let g′ : C ′ → C be morphism in C such that fg′, then there exists a morphism x : C ′ → T such that
g′ = gx. Since HomT (C ′, V ) = 0, we have jx = 0, hence there exists a morphism y : C ′ → U [−1] such
that x = hy. Since HomT (C ′, U) = 0, we have by = 0, hence there exists a morphism z : C ′ → C such
that y = az. Thus g′ = (gha)z, which means that gha : C → C1 is a pseudo-kernel of f .coheart �

We will prove the following theorem.

Theorem 4.3. Let (U ,V) be a cotorsion pair that U [−1] ⊆ C ∗ U , then H has enough projectives H(C)
and is equivalent to mod C.

Let’s start with an important property for H.

Proposition 4.4. The functor H|C : C → H(C) is an equivalence.

Proof. By definition we get that H is dense on C. We only have to check that H|C is fully-faithful.
Let C1, C2 ∈ C, since Ci, i = 1, 2 admits a triangle

Ci → H(Ci)→ Ui → Ci[1]

where Ui ∈ U , let f ∈ HomT (C1, C2), by [N, Proposition 4.3], we get a commutative diagram

C1

f

��

// H(C1)

f+

��

// U1

��

// C1[1]

��
C2

// H(C2) // U2
// C2[1].

where f+ = H(f). If H(f) = 0, f factors through U by [L2, Proposition 2.5]. Since HomT (C,U) = 0, we
get f = 0 which means H is faithful on C.
Let g ∈ HomT (H(C1), H(C2)), since HomT (C,U) = 0, we can still get the following commutative diagram

C1
//

f ′

��

H(C1)

g

��

// U1

��

// C1[1]

��
C2

// H(C2) // U2
// C2[1].

Then we have g = H(f ′). Thus H is full on C. �

Now we prove the following theorem.

Theorem 4.5. If U [−1] ⊆ C ∗ U , then H has enough projectives H(C).

Proof. We first prove that H(C) is projective in H.
Let f : A→ B be an epimorphism in H, since A ∈ T −, we get the following commutative diagram in T

UA[−1] // A //

f

��

WA //

��

UA

UA[−1] // B
g
// D // UA.

(11)
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First we show that D ∈ add(U ∗V). We can get the following triangle A→ B⊕WA → D → A[1]. Apply

H to this triangle, we have an sequence A
f
−→ B

H(g)−−−→ H(D), since f is epimorphic, we obtain H(g) = 0.

Apply H to the second row of the above diagram, we get an exact sequence B
H(g)−−−→ H(D) → 0, which

implies H(D) = 0. By [L2, Proposition 4.7], this means that D ∈ add(U ∗ V).

Denote B⊕WA by B′, from the second square (8) we get a triangle A
f ′−→ B′

g′−→ D → A[1] where f ′ = f .
Since D ∈ K, it admits a triangle UD → D⊕D′ → VD → UD[1]. Now let h : H(C)→ B′ be a morphism
in H where C ∈ C. Since HomT (C, VC) = 0 = HomT (C,UC), by (10), g′hi = 0, we have the following
commutative diagram

C
i //

j

��

H(C) //

h

��

U //

��

C[1]

��
A

f ′
// B′

g′
// D // A[1].

Apply H to this diagram, since H(i) is an isomorphism in H, we have the following commutative diagram

H(C)
H(j)H(i)−1

||zzzzzzzz
h

��
A

f
// B // 0.

This implies that H(C) is projective in H.
Since U [−1] ⊆ C ∗ U , and H ⊆ U [−1] ∗ U = C ∗ U , any object A ∈ H admits a triangle CA → A→ U ′ →
CA[1], apply H to this triangle, we get an exact sequence H(CA)→ A→ 0 in H. �

Now we show the main result of this section.

Theorem 4.6. If U [−1] ⊆ C ∗ U , then H ' mod C.

Proof. It is enough to show that H ' modH(C) since C ' H(C).
Define

F : H → modH(C)
A 7→ HomT (−, A)|H(C).

Now we show that F is dense.
Let N ∈ modH(C), we have an exact sequence

HomH(C)(−, P1)
HomH(C)(−,f)
−−−−−−−−−→ HomH(C)(−, P0)→ N → 0

where P1, P0 ∈ H(C). Since H is abelian, we have a exact sequence P1

f
−→ P0 → Y → 0 Now apply

HomT (H(C),−) to this exact sequence, we have

HomH(C)(−, P1)
HomH(C)(−,f)
−−−−−−−−−→ HomH(C)(−, P0)→ HomT (−, H(Y ))|H(C) → 0

Hence N ' HomT (−, H(Y ))|H(C).
We prove that F is faithful.
Let f : A → B be a morphism in H such that F (f) = 0. Since U [−1] ⊆ C ∗ U , A admits a triangle

CA
i−→ A → U → CA[1], and CA admits a triangle CA

g−→ H(C)
h−→ U ′ → C[1]. Since there exists a

morphism j : H(C)→ B such that i = jg, we have fj = 0, hence fi factors through W, then fH(i) = 0.
Since H(i) is epimorphic, we get f = 0
We prove that F is full.
Let α : HomT (−, A1)|H(C) → HomT (−, A2)|H(C) be a morphism in modH(C). By Theorem 4.5, Ai
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admits an exact sequence P ′Ai

gi
−→ PAi

fi
−→ Ai → 0 such that P ′Ai

, PAi
∈ H(C), we get the following

commutative diagram

HomH(C)(−, P ′A1
)

HomH(C)(−,g1)
//

HomH(C)(−,a)

��

HomH(C)(−, PA1)
HomH(C)(−,f1)

//

HomH(C)(−,b)
��

HomT (−, A1)|H(C) → 0

α

��
HomH(C)(−, P ′A2

)
HomH(C)(−,g2)

// HomH(C)(−, PA2)
HomH(C)(−,f2)

// HomT (−, A2)|H(C) → 0

by Yoneda’s Lemma. Hence we get the following commutative commutative diagram

P ′A1

g1 //

a

��

PA1

f1 //

b

��

A1

c

��
P ′A2

g2 // PA2

f2 // A2

Hence HomH(C)(−, c) = α. �

Note that the condition U [−1] ⊆ C ∗ U is satisfied in many cases. The following proposition is given
as an example.

Proposition 4.7. If U is covariantly finite and T is Krull-Schimdt, then U [−1] ⊆ C ∗ U .

Proof. If U is covariantly finite and T is Krull-Schimdt, then (⊥1U ,U) is a cotorsion pair. Hence any
object U ∈ U admits a triangle U ′ → C[1]→ U → U ′[1], which implies that U [−1] ⊆ C ∗ U . �

4.2. Hearts on exact categories. Let B be a exact category with enough projectives P and enough
injectives I.

Since ΩC ⊆ B− by [L2, Lemma 3.2], for any object ΩC ∈ ΩC, by definition of H we get from the
following commutative diagram

VΩC
// // UΩC

// //
��

��

ΩC
��
a

��
VΩC

// // WΩC
// //

����

H(ΩC)

����
U U

where H(a) is an isomorphism by [L2, Theorem 4.1, Proposition 4.2].
For the coheart, we have the following proposition which implies that mod(C/P) is an abelian category.

Proposition 4.8. Let (U ,V) be a cotorsion pair that for any any object U ∈ U , there exists an exact
sequence U ′ � C � U where U ′ ∈ U and C ∈ C,, then the quotient category C/P has pseudo-kernels.

Proof. This is an analog of Proposition 4.2. �

We will prove the following theorem.

Theorem 4.9. Let (U ,V) be a cotorsion pair. Let C := U∩⊥1U and ΩC = {X ∈ B | X admits X � P �
C where P ∈ P and C ∈ C}. If for any any object U ∈ U , there exists an exact sequence U ′ � C � U
where U ′ ∈ U and C ∈ C, then the heart of (U ,V) has enough projectives H(ΩC) and is equivalent to
mod(C/P).

We prove the theorem in several steps. We denote the quotient of B by P as B := B/P. For any
morphism f ∈ HomB(X,Y ), we denote its image in HomB(X,Y ) by f .

Lemma 4.10. We have an equivalence C ' ΩC.
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Proof. For any morphism f : C → C ′ in C, we have the following commutative diagram

ΩC // //

g

��

P // //

��

C

f

��
ΩC ′ // // P ′ // // C ′

We can define a functor G : C → ΩC such that G(C) = ΩC and G(f) = g. G is well defined since if f
factors through P ′′ ∈ P, then it factors through P ′, which implies g factors through P , hence g = 0. We
prove that G is an equivalence.
(i) We first prove that G is faithful.
If g = 0, it factors through an projective object P0. By the definition of C, we get Ext1

B(C,P) = 0, hence
we have the following

ΩC // //

!!DDDDDDDD

g

��

P

~~

// //

��

C

f

��

P0

}}zzzzzzzz

ΩC ′ // // P ′ // // C ′.

This implies that f factors through P ′, hence f = 0.
(ii) We prove that G is full.
For the following diagram

ΩC // //

g

��

P // // C

ΩC ′ // // P ′ // // C ′

since Ext1
B(C,P) = 0, we can get a commutative diagram

ΩC // //

g

��

P // //

��

C

f

��
ΩC ′ // // P ′ // // C ′

hence G(f) = g.
By the definition of ΩC, G is dense.
Hence G is an equivalence. �

Since H(P) = 0, we have the following commutative diagram

ΩC H //

π   BBBBBBBB H(ΩC)

ΩC
H

;;wwwwwwww

where π is the quotient functor.

Proposition 4.11. H : ΩC → H(ΩC) is an equivalence.

Proof. By definition we get that H is dense. Now we only have to check that H is fully-faithful.
Let ΩC1,ΩC2 ∈ ΩC, since ΩCi, i = 1, 2 admits a short exact sequence

ΩCi � H(ΩCi) � Ui
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where Ui ∈ U . Let f ∈ HomB(ΩC1,ΩC2), by [L, Proposition 3.3], we get the commutative diagram

ΩC1

f

��

// // H(ΩC1)

f+

��

// // U1

��
ΩC2

// // H(ΩC2) // // U2.

where f+ = H(f). If H(f) = 0, f factors through U by [L2, Proposition 2.5]. Since HomB(ΩC,U) = 0,

we get f = 0 which means J is faithful on ΩC.
Let g ∈ HomB(H(ΩC1), H(ΩC2)), since HomB(ΩC,U) = 0, we get that in the following diagram

ΩC1
// a1 // H(ΩC1)

g

��

b1 // // U1

ΩC2
//
a2
// H(ΩC2)

b2

// // U2.

b2ga1 factors through an object P ∈ P. Hence we have two morphisms c : ΩC1 → P and d : P → U2

such that dc = b2ga1. Since P is projective, there exists a morphism p : P → H(ΩC2) such that d = b2p.
Hence b2(ga1 − pc) = 0. Then there is a morphism f ′ : ΩC1 → ΩC2 such that f ′a2 = ga1 − pc. now we
get a commutative diagram

ΩC1
// a1 //

f ′

��

H(ΩC1)

g′

��

b1 // // U1

��
ΩC2

//
a2
// H(ΩC2)

b2

// // U2.

where H(f ′) = g′. Since H(P) = 0, we get g′H(a1) = H(f ′)H(a2) = gH(a1). Since H(a1) = 0, we have

g′ = g. Hence H is full. �

Lemma 4.12. If for any any object U ∈ U , there exists an exact sequence U ′ � C � U where U ′ ∈ U
and C ∈ C, then any object X ∈ H admits a short exact sequence X � U � C where U ∈ U .

Proof. Since X ∈ H, it admits a short exact sequence X // // W
a // // U where W ∈ W and U ∈ U .

Since U ⊆ {Y ∈ B | Y admits U ′ � C � Y }, U also admits a short exact sequence U ′ // // C
b // // U

where U ′ ∈ U and C ∈ C. Take a push-out of a and b, we get the following commutative diagram

U ′
��

��

U ′
��

��
X // // U ′′ // //

����

C

b
����

X // // W
a // // U

Since U is closed under extension, we have U ′′ ∈ U . �

Now we are ready to prove the main theorem of this section.

Theorem 4.13. If for any any object U ∈ U , there exists an exact sequence U ′ � C � U where U ′ ∈ U
and C ∈ C, then H has enough projectives H(ΩC).
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Proof. We first prove that H(ΩC) is projective in H.
Let f : A→ B be an epimorphism in H, it admits the following commutative diagram in B

A // //

f

��

WA // //

��

UA

B //
g
// D // // UA.

We can get the following short exact sequence A� B⊕WA � D. Apply H to this triangle, we have the

following exact sequence A
f
−→ B

H(g)−−−→ H(D) which implies that H(g) = 0. Apply H to the second row

of the above diagram, we get the following exact sequence B
H(g)−−−→ H(D)→ 0, which implies H(D) = 0.

This means that D ∈ K (see [L2, Proposition 4.7] ).

Now we can assume that f admits a short exact sequence: A //
f ′ // B′

g′ // // D such that D admits a
short exact sequence UD � D⊕D′ � VD. Now let C ∈ C. Since HomB(ΩC, VC) = 0 = HomB(ΩC,UC),
g′hi factors through P. Hence as in the proof of Proposition 4.11, there is a morphism j : C → A such
that fj − ha factors through P. Since H(a) is an isomorphism in H, we have the following commutative
diagram

H(C)
H(j)H(a)−1

||zzzzzzzz
h

��
A

f
// B // 0.

This implies that H(C) is projective in H.
Since U ⊆ {Y ∈ B | Y admits U ′ � C � Y where U ′ ∈ U and C ∈ C}, by Lemma 4.12, any object
X ∈ H admits a short exact sequence X � U � C where U ∈ U and C ∈ C. Hence we get the following
commutative diagram

ΩC // //

x

��

P // //

��

C

X // // U // // C

which implies that H(x) is an epimorphism. �

Theorem 4.14. If for any object U ∈ U , there exists an exact sequence U ′ � C � U where U ′ ∈ U and
C ∈ C, then H ' mod C.

Proof. This is an analog of Theorem 4.6. �

Proposition 4.15. If U is covariantly finite and contains I, B is Krull-Schmidt , then for any object
U ∈ U , there exists an exact sequence U ′ � C � U where U ′ ∈ U and C ∈ C.

Proof. This is an analog of Proposition 4.7. �

4.3. Examples. In this section we give several examples of our main theorem.
The first example comes from [KZ, Corollary 4.4].

Example 4.16. Let M be a cluster tilting subcategory of T , then (M,M) is a cotorsion pair with
coheartM[−1]. This cotorsion pair satisfies the condition in Theorem 4.6, we get an equivalence T /M'
mod(M[−1]) where T /M is the heart of (M,M).
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Example 4.17. Let k be a field.

�
��@@@ �

��>>> ·
��>>> ·

��@@@ ·
��>>> �

��@@@ �
��@@@ �

��@@@ ·
��@@@ ·

��@@@ �

�
��@@@

??~~~
·
��<<<

@@���
·
��@@@

??~~~ •
��>>>

??���
·
��@@@

??~~~ �
��@@@

??~~~
�
��@@@

??~~~
·
��@@@

??~~~ �
��@@@

??~~~
·
��@@@

??~~~

·
��@@@

??~~~ ·
��>>>

??���
·
��>>>

??���
�
��@@@

??~~~
·
��>>>

??���
·
��@@@

??~~~ �
��@@@

??~~~
·
��@@@

??~~~ �
��@@@

??~~~
�
��@@@

??~~~
·

·

??~~~ ·
@@���

�
??~~~

�
@@���

?

??~~~
·
??~~~ ·

??~~~ �
??~~~

�
??~~~

�

??~~~

The above diagram is a part of Db(mod kA4) which continues infinitely in both sides. Let U be the
objects in �, then (U ,U⊥1) is a cotorsion pair. The coheart C of it is in •, and the heart H of (U ,U⊥1) is
in ?. By Proposition 4.7, we have H ' mod C.

For exact category case, we have the following example in which the cluster category case is included.

Example 4.18. Let M be a contravariantly finite rigid subcategory of B which contains P, let ML =
{X ∈ B | X admits X �M1 �M2}, then by [DL, Theorem 3.2], we have ML/M' mod(M/P). This
is a special case of our theorem sinceML/M is the heart of cotorsion pair (M,M⊥1) andM =M∩⊥1M.

In the following example, we denote by ”◦” in a quiver the objects belong to a subcategory and by ”·”
the objects do not. The following example is one of the smallest ones with not so small hearts.

Example 4.19. Let Λ be the path algebra of the following quiver

1 2oo 3oo 4oo 5ooss

then we obtain the B = mod Λ.

1

!!DDDD 2

%%LLLLLL 3

%%LLLLLL 4

$$IIIII 5

2
1

!!DDDD

::uuuuu
3

2

##GGGGG

99rrrrrr
4

3

99rrrrrr

##GGGGG

99rrrrrr
5

4

==zzzz

3
2

1

;;wwwww

!!CCCC

4
3

2

;;wwwww

!!CCCC

5
4

3

==zzzz

4
3

2
1

=={{{{
5

4
3

2

=={{{{

Let

M = ◦ · · ◦ ◦
◦ · · ◦
◦ · ◦
◦ ◦

Then (M,M⊥1) is a cotorsion pair on B and the coheart C = ⊥1M∩M = ⊥1M
⊥1M = ◦ · · · ·

◦ · · ◦
◦ · ◦
◦ ◦

M⊥1 = ◦ · · · ◦
◦ · · ◦
· · ◦
◦ ◦

We get C/P = add(
5

4
3
⊕ 5

4 ). And the heart is the following.

H = · ◦ · · ·
· · ◦ ·
· ◦ ·
· ·

We can see that mod(C/P) ' H.
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[S] L. Salce. Cotorsion theories for abelian groups. Symposia Mathmatica 23 (Cambridge University Press, Cambridge,

1979) 11–32.

[ZZ] Y. Zhou, B. Zhu. Cotorsion pairs and t-structure in a 2-Calabi-Yau triangulated category. arXiv: 1210.6424v2.

Graduate School of Mathematics, Nagoya University, 464-8602 Nagoya, Japan
E-mail address: d11005m@math.nagoya-u.ac.jp


