COTORSION PAIRS ON TRIANGULATED AND EXACT CATEGORIES
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1. INTRODUCTION

There are two important notions in triangulated categories which are deeply studied in the represen-
tation theory.

The first one is t-structure, which is introduced by Beilinson, Bernstein and Deligne [BBD] in their
study of perverse sheaves on an algebraic varieties. One of the important properties is that

(*) The heart of a t-structure is an abelian category.

A t-structure also provides a homological functor H with values in the heart from the original triangulated
category. A typical example of a t-structure, which we call the standard t-structure, is a pair ('TSO, T7=9)
for the derived category D(A) of an abelian category A, where 7= consists of complexes with vanishing
cohomologies in positive degrees, and 7= consists of complexes with vanishing cohomologies in negative
degrees. Moreover, if we have a derived equivalence between two algebra A and B, the we have a t-
structure in standard t-structure of A by this equivalence. Therefore, t-structure is important to study
the derived equivalence.

The second one are cluster tilting subcategories. They were introduced in [BMRRT] as a generalization
of tilting theory for hereditary algebras, in order to categorify Fomin-Zelevinsky’s cluster algebras [FZ]. It
was proved that cluster tilting subcategories always exist in certain triangulated categories called cluster
categories. Also cluster tilting subcategories of module categories were studied by Iyama in [I11] By Koenig
and Zhu [KZ)

(**) The quotient of a triangulated category by a cluster tilting subcategory is abelian.

Moreover, this quotient is Iwanaga-Gorenstein of dimension at most one (see [KZ, Theorem 4.3]).
These two structures can be unified to the notion of torsion pairs on triangulated categories, which is
a pair on a triangulated category D is a pair (U, V) of full subcategories such that

e Homp (U, V) = 0.
e Any object D € D admits a triangle U — D — V — U[1] such that U € i and V € V.

The notion is classical, going back to the example of torsion and torsion free abelian groups. Now the
concept has been widely used in the representation theory, since it is also important in the study of the
algebraic structure of triangulated categories.

By a technical reason, we consider a cotorsion pair instead of torsion pair. The notion of cotorsion
pair is just an analog of torsion pair on triangulated category: a pair (U,V) on T is called a cotorsion
pair if (U, V[1]) is a torsion pair. Nakaoka introduced the notion of hearts of cotorsion pairs on triangu-
lated categories , as a generalizatoin of the heart of ¢t-structure, and showed that the hearts are abelian
categories [N]. His construction of hearts generalizes the above results (*) and (**) for ¢-structure and
cluster tilting subcategory. Moreover, he generalized these results to a more general setting called twin
cotorsion pair [N1].

Motivated by Nakaoka’s results of cotorsion pairs on triangulated category, in this paper, we consider
cotorsion pairs on Quillen’s exact category, which is a generalization of abelian categories and there are
many important examples of it. The cotorsion pairs on abelian categories goes back to Salce in [S], and
it has been deeply studied in the representation theory during these years, especially in tilting theory
and Cohen-Macaulay modules [AR] and [AB] (see [EJ, GT, Hul, Ri] for more examples).

By Happel [H, Theorem 2.6], the stable category of a Frobenius category (which is a specail case of
exact category) has a structure of a triangulated category. Most triangulated categories appearing in
representation theory turn out to be in fact algebraic (i.e. stable categories of Frobenius categories).
Moreover, if we have a cotorsion pair on a Frobenius category, then it is still a cotorsion pair on the
stable category of this Frobenius category.

In this article, we introduce the heart H of a cotorsion pair (U, )V) on the exact category B with enough
projectives enough injectives (see subsection 2.1 for more details). We first prove that 7 is abelian. We
will apply this result to the case of cluster tilting subcategory. A more general setting, which is called
twin cotorsion pair, is also discussed. We show several results for the hearts of twin cotorsion pairs.
Then we construct a half exact functor from B to H, and as an application, we give a sufficient condition



when two hearts are equivalent to each other. At last, by using this functor, we show that the heart is
equivalent to functor category over the coheart of (U, V).

1.1. Hearts of twin cotorsion pairs. We begin with the central concept of our results: a cotorsion
pair in an Krull-Schmidt exact category B with enough projectives and enough injectives (see for example
[KS, A.1]).
Let U and V be full additive subcategories of B which are closed under direct summands. We call
(U, V) a cotorsion pair if it satisfies the following conditions:
(a) Extg(U,V) = 0.
(b) For any object B € B, there exits two short exact sequences

Vg —Ug—»B, B—V?EUP

satisfying Ug,UP € U and Vi, VB € V.
Since B has enough projectives and injectives, we always have two cotorsion pairs (P, B) and (B, 7).
Now let us define the heart of a cotorsion pair.

Definition 1.1. Let
BT :={BeB|UgeV}, B :={BeB|VBcul.
Let H = BT N B~, we define the heart of (U,V) as the quotient category
H:=(BTNB)/UNV).
Now we introduce the following main theorem in Section 2.

Theorem 1.2. Let (U, V) be a cotorsion pair on an exact category B with enough projectives and injec-
tives. Then H is abelian.

Now we apply this theorem to the cluster tilting subcategory M of B. In our words, M is cluster
tilting if and only if (M, M) is a cotorsion pair. In this case, the heart of (M, M) is B/ M. Therefore,
we have the following corollary which is an analog of the result in [KZ] for triangulated category (see
Proposition 2.56 for details)..

Corollary 1.3. [DL] Let M be a cluster tiling subcategory on B, The quotient category B/M is abelian.
We also prove more general results for twin cotorsion pairs defined as follows.
Definition 1.4. A pair of cotorsion pairs (S,7), (U, V) is called a twin cotorsion pair it S CU.

The notion of semi-abelian category (see Definition 2.27) was introduced by Rump [R], as a special
class of preabelian categories. In this setting, we still have the following results.

Theorem 1.5. Let (S,T), (U, V) be a twin cotorsion pair on B. Then H is semi-abelian.

There are two nice classes of semi-abelian categories called integral (see [R, §2] for examples) and
almost abelian (any torsion class associated with a tilting module is almost abelian [CF]). We give
sufficient conditions for hearts to be integral (see Theorem 2.34) or almost abelian (see Theorem 2.38).

Finally, we consider a special twin cotorsion pair (S, T), (T, V), note that this is an analog of TTF the-
ory and recollement. Then we have a theorem (see Theorem 2.49) which gives a more explicit description
of the heart and can be regarded as an analog of [BM, Theorem 5.7].

1.2. Associated half exact functors. It is natural to ask whether we can find the relationship between
the hearts and the original exact categories. For t¢-structures, there is a natural cohomological functor
from triangulated category to the hearts. For cluster tilting subcategories, we have natural functors from
triangulated category to the quotient category over them. Abe and Nakaoka unified these two functor by
constructing a cohomological functor from triangulated categories to the hearts of cotorsion pairs [AN].
The main result of Section 3 is to answer this question by constructing an associated half exact functor
H from the exact category B to the heart #.
we recall the definition of the half exact functor on B (also see [O, p.24]).
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Definition 1.6. A covariant functor F' from B to an abelian category A is called half exact if for any

short exact sequence A~ B Y in B, the sequence F'(A) £, F(B) Flo), F(C) is exact in A.

Denote add(U V) by K, We will prove the following theorem (see Theorem 3.11 and Proposition 3.12
for details).

Theorem 1.7. For any cotorsion pair (U, V) on B, there exists an associated half exact functor H : B —
H such that

(a) H|y = m|ly where w: B — B/(UNYV) is the natural functor.

(b) H(B) =0 if and only if B € K.

We denote by Q : B/P — B/P the syzygy functor and by Q~ : B/Z — B/T the cosyzygy functor. We
will prove that any half exact functor F' which satisfies F(P) = 0 and F(Z) = 0 has a similar property
as cohomological functors on triangulated categories.

In particular, as an application, we have the following corollary (see Corollary 3.16 for details).

Corollary 1.8. For any short exact sequence

A—r.p_ ¢

in B, there exist morphisms h: C — Q™A and h' : QC — A such that the sequence

HEM, o4y 220 o) 299 gy 29 gy 29 g(p)
1), oy T, oo a) O, gomp) 1O, po-c) T,

s exact in H.

The half exact functor we construct gives us a way to find out the relationship between different
hearts. Let k € {1,2}, (U, Vx) be a cotorsion pair on B and Wy = U N V. Let Hp /Wi be the
heart of (Uy, V) and Hy be the associated half exact functor. If Wy C Ko, then Hy induces a functor
b1z : Hi/W1 — Ha/Wa, and we have the following proposition (see Proposition 3.21, 3.20 and Theorem
3.23 for details).

Theorem 1.9. Let (U1, V1), (U, Va) be cotorsion pairs on B. If Wy C Ko C K4, then
(a) We have a natural isomorphism B21512 ~ idyy, yw, of functors.
(b) (Ha N K1)/ Wsa is a Serre subcategory.
(c) Let Ha be the localization of Ha/Wa by (HaNK1)/Wha, then we have an equivalence Hy /Wy ~ Ha.

This implies the following corollary which gives a sufficient condition when two different hearts (see
Corollary 3.22).

Corollary 1.10. If K1 = Ko, then we have an equivalence Hi /Wy ~ Ha/Wa between two hearts.

1.3. Hearts are equivalent to functor categories. By using the half exact functor, we give an
equivalence between hearts and the functor categories over cohearts. For the details of functor category,
see [A] and also [IY, Definition 2.9].

Let 7 be a triangulated category. For any cotorsion pair (i, V) on T, We denote by U the subcategory
such that X € +U/ if Hom7(X,U) = 0. We introduce the notion of cohearts of a cotorsion pair, denote
by

C=Ul-1]n*u.

This is a generalization of coheart of a co-t-structure, which plays an important role in [KY]. We have
the following theorem in triangulated category.

Theorem 1.11. Let (U, V) be a cotorsion pair on a triangulated category T. If U[—1] C C «U, then the
heart of (U, V) has enough projectives H(C), and moreover it is equivalent to the functor category modC.
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This generalizes [BR, Theorem 3.4] which is for ¢-structure. One standard example of this theorem is
the following: let A be a Noetherian ring with finite global dimension, then the standard ¢-structure of
D®(mod A) has a heart mod A with coheart proj A, and we have an equivalence mod A ~ mod(proj A) in
this case.

For any cotorsion pair (4, V) on an exact category B, We denote by “1I{ the subcategory such that
X € 11U if Extg(X,U) = 0. We denote by

c=uUn+u
the coheart of (U,V). We have the following theorem in exact category.

Theorem 1.12. Let (U,V) be a cotorsion pair on an exact category B with enough projectives and
injectives, if for any any object U € U, there exists an exact sequence U' ~— C — U where U' € U and
C € C, then the heart of (U, V) has enough projectives H(2C), and moreover it is equivalent to the functor
category mod(C/P), where P is the subcategory of projetive objects on B.

We also show that the condition U[—1] C C *U on triangulated category is satisfied in many cases, for
example, when U is covariantly finite in a Krull-Schmidt triangulated category. And for exact category
case, see Examples 4.18 and 4.19.

2. HEARTS OF TWIN COTORSION PAIRS ON EXACT CATEGORIES

2.1. Preliminaries. First we briefly review the important properties of exact categories. For more
details, we refer to [B]. Let A be an additive category, we call a pair of morphisms (i,d) a weak short
exact sequence if i is the kernel of d and d is the cokernel of i. Let £ be a class of weak short exact
sequences of A, stable under isomorphisms, direct sums and direct summands. If a weak short exact
sequence (i,d) is in &, we call it a short exact sequence and denote it by

X>%— Y — Z.
We call ¢ an inflation and d a deflation. The pair (A, &) (or simply A) is said to be an exact category if
it satisfies the following properties:

(a) Identity morphisms are inflations and deflations.
(b) The composition of two inflations (resp. deflations) is an inflation (resp. deflation).

(c) It X"V —%+ Z isashort exact sequence, for any morphisms f: 7/ — Zand g : X — X/,
there are commutative diagrams

v 4z Xty
L on ] o |
Y*d»Z X'>—sY'

where d’ is a deflation and ¢’ is an inflation, the left square being a pull-back and the right being
a push-out.

We introduce the following properties of exact category, the proofs of which can be find in [B, §2]:

Proposition 2.1. Consider a commutative square

A~ . B
fi lf/
Al B

-/
K2

in which i and i’ are inflations. The following conditions are equivalent:

(a) The square is a push-out.



(b) The sequence A>(;f)> Bo A Y B s short exact.

(c) The square is both a push-out and a pull-back.
(d) The square is a part of a commutative diagram

A— "> B »C

b

A'>%/>B/H>C
i

with short exact rows.

Proposition 2.2. (a) If X sY —%% 7 and N2> M LY are two short ezact se-
quences, then there is a commutative diagram of short exact sequences
N _—— N

|

Q— M ——= 7

R

XHY?Z

where the lower-left square is both a push-out and a pull-back.

(b) If XY % 7 and Y2 K A L are two short exact sequences, then there is a
commutative diagram of short exact sequences

]

where the upper-right square is both a push-out and a pull-back.

Let A be an exact category, an object P is called projective in A if for any deflation f : X — Y and
any morphism ¢ : P — Y, there exists a morphism A : P — X such that ¢ = fh. A is said to have
enough projectives if for any object X € A, there is an object P which is projective in A and a deflation
p: P — X. Injective objects and having enough injectives are defined dually.

Throughout this paper, let B be a Krull-Schmidt exact category with enough projectives and injectives.
Let P (resp. Z) be the full subcategory of projectives (resp. injectives) of B.

Definition 2.3. Let ¢/ and V be full additive subcategories of B which are closed under direct summands.
We call (U, V) a cotorsion pair if it satisfies the following conditions:

(a) ExtgU,V)=0.
(b) For any object B € B, there exits two short exact sequences

Vg —Ug—»B, B—VEUP
satisfying Ug,UP € U and Vi, VB € V.
Definition 2.4. A pair of cotorsion pairs (S, T), (U, V) on B is called a twin cotorsion pair if it satisfies:

SCu.



By definition and Lemma 2.6 this condition is equivalent to Exty(S,V) = 0, and also to V C T

Remark 2.5. (a) We also regard a cotorsion pair (U, V) as a degenerated case of a twin cotorsion pair
u,v),U,v).
(b) If (S8, 7), (U,V) is a twin cotorsion pair on B, then (V°P, U°P), (T°P,S°P) is a twin cotorsion pair
on B°P.

By definition of a cotorsion pair, we can immediately conclude:

Lemma 2.6. Let (U, V) be a cotorsion pair of B, then
(a) B belongs to U if and only if Extg(B,V) = 0.
(b) B belongs to V if and only if Extg(U, B) = 0.
(¢) U and V are closed under extension.
) PCU and T C V.

Definition 2.7. For any twin cotorsion pair (S, T), (U, V), put

W:=TnNU.
(a) BT is defined to be the full subcategory of B, consisting of objects B which admits a short exact
sequence
VB — UB —-» B

where Ug € W and Vg € V.
(b) B~ is defined to be the full subcategory of B, consisting of objects B which admits a short exact
sequence
B— TP - 5P

where T8 € W and SB € S.
By this definition we get SCUY C B~ and VC T C B™.

Definition 2.8. Let (S,7), (U,V) be a twin cotorsion pair of B, we denote the quotient of B by W as
B := B/W. For any morphism f € Homp(X,Y), we denote its image in Homp(X,Y’) by f. And for any
subcategory C of B, we denote by C the subcategory of B consisting of the same objects as C. Put

H:=B"NnB".
Since H O W, we have an additive full quotient subcategory
H:=H/W

which we call the heart of twin cotorsion pair (S, T), (U, V).
The heart of a cotorsion pair (U4, V) is defined to be the heart of twin cotorsion pair (U, V), (U, V).

We prove some useful lemmas for a twin cotorsion pair (S,7), (U, V) in the following:

Lemma 2.9. Let (S, T),(U,V) be a twin cotorsion pair on B, then

(a) B~ is closed under direct summands. Moreover, if X € B~ admits a short exact sequence

X—-W=U

where W € W and U € U, then any direct summand X1 of X admits a short exact sequence
Xi— WY

where Y € U.

(b) Bt is closed under direct summands. Moreover, if X € BY admits a short exact sequence

VW - X

where W € W and V €V, then any direct summand Xo of X admits a short exact sequence
Z—W - Xy

where Z € V.
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Proof. We only show (a), (b) is by dual.
Suppose X1 @ X, admits a short exact sequence

(71 @2)

X1 ® Xo W U

where U € Y and W € W. Then z; : X1 — W is also an inflation by the properties of exact category.
Let x1 admit a short exact sequence

X1>L-W*»-Y.

For any morphism f : X; — Vi where Vj € V, consider a morphism (f0) : X; & Xo — Vj. Since
Extg(U,Vg) = 0, (@1 @2) is a left V-approximation of W, there exists a morphism g : W — Vj such that
(fO) = (gwl gw2).

1

X W v
; // l(%) o l
/ Xl @XQ Lz W U

Hence Homp(z1, Vo) : Homp(W, V) — Homp (X1, Vp) is surjective. By the following exact sequence

Homg (W, Vo) —2ECY0), fompu(Xy, Vo) 2 Exth(Y, Vo) — Exth(W, Vo) = 0
we have Exty(Y, Vp) = 0, which implies Y € U. O
Lemma 2.10. (a) If AL~ B %o U s a short ezact sequence in B with U € U, then A € B~

implies B € B~.
(b) If A>L> B—2 S is a short exact sequence in B with S € S, then B € B~ implies A € B™.

Proof. (b) Since B € B~, by definition, there exists a short exact sequence

B=" B SB.

Take a push-out of g and w®, by Proposition 2.2, we get a commutative diagram of short exact sequences

A ]I3 f
A wh X
S8 SB.

We thus get X € S since S is closed under extension. This gives A € B~.
(a) Since A € B, it admits a short exact sequence

A

A" > WA SA.
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where W4 € W and S4 € S. Since Extlg(S,T) =0, w? is a left T-approximation of A. Thus there

exists a commutative diagram of two short exact sequences

A w4 54
| 1]
B 5 SB.
tB

It suffices to show T2 € U.
Apply Exty(—,V) to the following commutative diagram

WA . TB
since Extg(U, V) = 0, we obtain the following commutative diagram

Exty(T5,V) — Extg(W4,V) =0

. J{Extg(tB,V) l
L

0 = Extys(U,V) — Exty(B,V Extgs(4,V).
s(U,V) s(B,V) L) B(4,V)

It follows that Ethg(tB ,V) = 0. Then from the following exact sequence

Extg(t2,V)

0 = Ext4(SB,V) — ExtL(T5,V) =% Exty(B,V)

we get that Exty (T, V) = 0, which implies that 7% € . Thus T? € W and B € B~.

Dually, the following holds.

Lemma 2.11. (a) If T— A e B is a short exact sequence in B with T € T, then B € Bt

implies A € BT.

(b) If V—> A o B is a short exact sequence in B with V € V, then A € BY implies B € B*.

Now we give a proposition which is similar with [AR, Proposition 1.10] and useful in our article.

Proposition 2.12. Let T be a subcategory of B satisfying

(a) PCT.
(b) T is contravariantly finite.
(¢) T is closed under extension.

Then we get a cotorsion pair (T,V) where
V={X € B| Extz(T,X) =0}.
Proof. For any object B € B, it admits a short exact sequence

f

B>—1] —> X
where I € Z. By (a) and (b), we can take two short exact sequences

Vi Ty — > X, Vp——T5 LN
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where tx (resp. tp) is a minimal right 7-approximation of X (resp. B). Since T is closed under
extension, by Wakamatsu’s Lemma, we obtain Vx € V (resp. Vg € V). Take a pull-back of f and tx, we
get the following commutative diagram

Vx == Vx

|

B>——Y ——=Tx

e

B>—>IT>>X.

Since I,V € V and V is extension closed, we get Y € V. Thus B admits two short exact sequence
Ve—Tg B, B—Y —>Tx
satisfying Vp,Y € V and T, Tx € T. Hence by definition (7,V) is a cotorsion pair. O

2.2. H is preabelian. In this section, we fix a twin cotorsion pair (S,7T), (U, V), we will show that the
heart H of a twin cotorsion pair is preabelian.

Definition 2.13. For any B € B, define BT and b" : B — B as follows:
Take two short exact sequences:

Vg —Ug —» B, Ug—TY —»SY

where Ug € U, Vg € V, TV € T and SY € S. By Proposition 2.2, we get the following commutative
diagram

Vs Ugp B

'

Vg>—> TV _ts BTt

o

SU —= gV

where the upper-right square is both a push-out and a pull-back.
We can easily get the following Lemma.
Lemma 2.14. By Definition 2.13, Bt € BT. Moreover, if B € B~, then BT € H.

Proof. Since U is closed under extension, we get TV € Y N T = W. Hence by definition BT € Bt. If
B € B~, by Lemma 2.10, BT also lies in B~. Thus BT ¢ H. O

We give an important property of b in the following proposition.

Proposition 2.15. For any B € B and Y € BT, Homp(b",Y) : Homp(B*,Y) — Homp(B,Y) is
surjective and Homg(b*,Y") : Homg(B*,Y) — Hompg(B,Y) is bijective.

Proof. Let y € Homp(B,Y') be any morphism. By definition, there exists a short exact sequence

Vy>———> Wy K>>Y'
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Since Exty(Up, Vy') = 0, wy is a right U-approximation of Y. Thus any f € Homg(Ugp,Y) factors
through Wy-.

Vy Wy

wy

As Ext(S,T) =0, u is a left T-approximation of U, we get the following commutative diagram:
UB>$- TU — - SU

|,

Wy
Wy l
Y

which implies that Homg(u,Y) : Homg(TY,Y) — Homp(Up,Y) is epimorphic. Hence when we apply
Hompg(—,Y) to the diagram (1), we obtain the following exact sequence

Hompg(b1,Y)
B —

Hompg(B™,Y) Hompg(B,Y) Exty(S,Y) — Extz(B1,Y)
Homp(u,Y) V 1 l
Homp(TY,Y) ———— Homp(Up, Y) 0. Exty(SY,Y) —— Ext(TY,Y)

which implies that Homp(b,Y) is an epimorphism. In particular, Hompg(b*,Y") is an epimorphism.

It remains to show that Homg(b",Y") is monomorphic. Suppose ¢ € Homp(B™,Y) satisfies ¢b™ = 0,
it follows that gb* factors through W. Since wy is a right /-approximation, there exists a morphism
a : B — Wy such that wya = ¢gb". Take a push-out of bT and a, we get the following commutative

diagram of short exact sequences
pt

B Bt sv

o |

Wy>——Q —— Svu.

There exists a morphism d : Q — Y such that dc = wy and d¢’ = ¢ by the definition of push-out. But
@ € U by Lemma 2.6, and wy is a right U-approximation, we have that d factors through Wy. Thus
q = dc also factors through Wy, and ¢ = 0. O

We give an equivalent condition for a special case when BT = 0 in B.

Lemma 2.16. For any B € B, the following are equivalent.
(a) BT e W.
(b) Bel.
(c) bt =0 in B.

Proof. Consider the diagram (1) in Definition 2.13. We first prove that (b) implies (a).

Suppose (b) holds. Since B € U, we get BT € U. Thus Extyz(Bt,Vp) = 0, and then ¢ splits. Hence B
is a direct summand of TV € W, which implies that BT € W.

Obviously (a) implies (c), now it suffices to show that (c) implies (b).

Since b factors through W, and ¢ is a right -approximation of BT, we get that b factors through ¢.
Hence by the definition of pull-back, the first row of diagram (1) splits, which implies that B € U. O

Now we give a dual construction.
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Definition 2.17. For any object B € B, we define b~ : B~ — B as follows Take the following two short
exact sequences

B—T8 8B Vo Up T8
where Ur € U, Vo € V, TB € T and S € S. By Proposition 2.2, we get the following commutative

diagram:
Vp =—=1Vp

L

B> >Up——> 8B

4

B T8 SE.

By duality, we get:
Proposition 2.18. For any B € B, B~ € B~ and B € B*" implies B~ € H. For any X €
B~, Homg(X,b™) : Homg(X,B~) — Homg(X, B) is surjective and Homg(X,b~) : Homg(X,B~) —
Hompg(X, B) is bijective.
Definition 2.19. For any morphism f: A — B with A € B™, define Cy and ¢y : B — C} as follows:
By definition, there exists a short exact sequence
A A S4.

Take a push-out of f and w?, we get the following commutative diagram of short exact sequences

A=Y > WA S4
fi PO J/

A
B o Cy . S

(2)

By Lemma 2.10, B € B~ implies Cy € B™.
Dually, we have the following;:

Definition 2.20. For any morphism f : A — B in B with B € BT, define Ky and ky : Ky — A as
follows:
By definition, there exists a short exact sequence

Vg Wp LN B.
Take a pull-back of f and wg, we get the following commutative diagram of short exact sequences

k
VB>—>Kf4f>>A

l%if

VB>—> WB TB»-B

By Lemma 2.11, A € BT implies Ky € B*.
The following lemma gives an important property of cy:



13

Lemma 2.21. Let f: A — B be any morphism in B with A € B~, take the notation of Definition 2.19,
then cy : B — C§ satisfies the following properties:

For any C € B and any morphism g € Homp (B, C) satisfying gf = 0, there exists a morphismc: Cy — C
such that ccy = g. o

Moreover if C € BT, then c is unique in B. The dual statement also holds for ks in Definition 2.20.

Proof. Since gf = 0, gf factors through W. As Ext}j,(SA, W4) =0, w? is a left W-approximation of
A. Hence there exists b: W4 — C such that gf = bw?. Then by the definition of push-out, we get the
following commutative diagram

Now assume that C' € BY and there exists ¢ : Cy — C such that ¢’c; = g. Since (¢ — ¢)cy = 0, there
exists a morphism d : 4 — C such that ¢/ — ¢ = ds. As C admits a short exact sequence

Vo—— We g)C

and wc is a right U-approximation of C, we obtain that there exists a morphism e : S4 — W such that
wee = d. Hence ¢/ — ¢ factors through We, and ¢ = ¢'. O

Theorem 2.22. For any twin cotorsion pair (S,T), (U,V), its heart H is preabelian.

Proof. We only show the construction of the cokernel. For any A, B € H and any morphism f: A — B,
by Definition 2.19, since A, B € B, it follows c¢;f = 0 and Cy € B~. By Proposition 2.15, there exists
¢yt Cp — O where Cp" € H by Lemma 2.14. We claim that ¢y Tcy : B — Cf ™ is the cokernel of f.
Let @ be any object in H, and let 7 : B — @ be any morphism satisfying rf = 0, then by Lemma 2.21
and Proposition 2.15, there exists a commutative diagram

Q<.
%TT Qb
+
A 7 B o Cy = Cy
The uniqueness of b follows from Lemma 2.21 and Proposition 2.15. O

Corollary 2.23. Let f: A — B be a morphism in H, the the followings are equivalent:
(a) f is epimorphic in H.
(b) C;Tew.
(C) Cf eu.

Proof. The equivalence of (b) and (c) is given by Lemma 2.16.
By Theorem 2.22, cytey is the cokernel of f in H. The equivalence of (a) and (b) follows immediately
by this argument. O
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2.3. Abelianess of the hearts of cotorsion pairs. In this section we fix a cotorsion pair (U, V). We
will prove that the heart H = BT N B~ /U NV of a cotorsion pair is abelian.

Lemma 2.24. Let A,B € H, and let

be a short exvact sequence in B. If f is epimorphic in H, then C belongs to B~.

Proof. As f is epimorphic in H, we get Cy € U by Corollary 2.23. By Definition 2.19, we get following
commutative diagram

The middle column shows that C' € B~. O

We need the following lemma to prove our theorem.

Lemma 2.25. (a) Let f: A — B be a morphism in B with B € BT, then there exists a deflation
a=(f-ws): A®Wp — B in B such that o = f.

(b) Let f : A — B be a morphism in B with A € B~, then there exists an inflation o = (—{qu) :
A— BoWA inB such that o/ = f.

Proof. We only show the first one, the second is dual.
As B € BT, it admits a short exact sequence

V> Wp B B.

Take a pull-back of f and wpg, we get a commutative diagram

\%:] C A

L)

VBH WB TB»- B.

By dual of Proposition 2.1, we get a short exact sequence

a=(f —wg)

Co— AW ———B

and consequently « is a deflation and o = f. O

Theorem 2.26. For any cotorsion pair (U, V) on B, its heart H is an abelian category.

Proof. Since H is preabelian, it remains to show the following:

(a) If f is epimorphic in 7, then f is a cokernel of some morphism in .
(b) If J is monomorphic in H, then f is a kernel of some morphism in H.



We only show (a), since (b) is dual.

For any morphism f : A — B which is epimorphic in H, by Lemma 2.25, it is enough to consider the
case that f is a deflation.

Let f admit a short exact sequence:

C>gH- A *f>> B.
By Lemma 2.24, we have C' € B~. By Proposition 2.15, there exists
ct:C—=Ct

where CT lies in H by Lemma 2.14. As A € BT, there exists a : CT — A such that ac™ = g.

N oA

ct.

Since fact = fg =0, we have fa = 0 by Proposition 2.15. We claim that f is the cokernel of a.

Let @ be any object in H and r : A — @ be any morphism. By Proposition 2.15, rg = 0 if and only if
ra = 0.

So it is enough to show that any r satisfying rg = 0 factors through f.

If rg = 0, rg factors through W. Consider the second column of diagram (4), since h is a left V-

approximation of C, there exists a morphism ¢ : W4 — @ such that rg = ch. Since h = w?g, we get
that (r — cw?)g = 0. Thus r — cw? factors through f, which implies that r factors through f O

2.4. H is semi-abelian. In the following sections, we fix a twin cotorsion pair (S, T), (U, V).
Definition 2.27. A preabelian category A is called left semi-abelian if in any pull-back diagram

A—2-~B

|l
in A, « is an epimorphism whenever § is a cokernel. Right semi-abelian is defined dually. A is called

semi-abelian if it is both left and right semi-abelian. In this section we will prove that the heart H of a
twin cotorsion pair is semi-ableian.

Lemma 2.28. If morphism € Homy(B,C) is a cokernel of a morphism f € Homy(A, B), then B
admits a short exact sequence

B—C' — S
where C' € H, C ~C" inH and S € S.

Proof. Let 3 be the cokernel of f : A — B. By Theorem 2.22, the cokernel of f is given by crtey.

Therefore C;* ~ C in H. Consider diagram (4) and the diagram which induces (C)* by Definition
2.13:

Vo—no o> *»Cf

ICf+

Vo T — Cf+

]

S/ Sl



16

By Proposition 2.2, we obtain the following commutative diagram of short exact sequences

B Cy SA
B Cyt Q
S/ — ,}’
From the third column we get @ € S. Hence we get the required short exact sequence. O

Proposition 2.29. Let A>L> B2 C be a short ezact sequence in B with f in H. If g factors
through U, then f is epimorphic in H.

Proof. By Corollary 2.23, it suffices to show that Cy € U.
By definition of ¢y : B — C'y, there is a commutative diagram of short exact sequences

A A 54
fI PO
B Cy 54
|
C——C.

Since Ext(W, V) = 0, we get the following commutative diagram of exact sequence
Extg(C, V) Exty(Cy, V) Extz(WA,V) =0

J/ExtIB(Cf,V) \L

Exty(C,V) ———— Ext(B, V) Extg(A,V).

Exty(9,V)

Exty(f,V)
Then Ext}g(cf, V) factors through Extllg(g, V). We have Ext}g(g, V) = 0 since g factors through U, thus
we get Ethg(Cf, V) = 0. Then from the following exact sequence

1, oA 1 Exty(cs,V)=0
0 = Exts(S4,V) = Exty(Cp, V) —2L27

we obtain that Extj(Cy,V) = 0, which implies Cy € U.

Exty(B,V)

Lemma 2.30. Suppose X € B~ admits a short exact sequence

X2 B U

where B € H and U € U. Then the unique morphism b € Homy (X, B) given by Proposition 2.15 which
satisfies bxt = x is epimorphic.

Proof. By Definition 2.13, there exists a short exact sequence
X>z—+> Xt —= §

where S € S. By Proposition 2.15, there exits b : XT — B such that bz™ = x. Since X € B~, we obtain
X1 € H by Lemma 2.14. Hence X admits a short exact sequence

Xt=2 oW — 8
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where W € W and S’ € S. Take a push-out of a and b, we get the following commutative diagram

Xt 2 oW — 8§

|

B C——9
which induces a short exact sequence
(L)
Xt S BeW —C

by Proposition 2.1. By Proposition 2.2, we obtain the following commutative diagram

X" X+

Take a push-out of x and ¢

X o W —

|

/

B>—(C' ——
U——=U
from the second column we obtain that C’ € U and we get the following short exact sequence

X( )BEBW‘»C’

by Proposition 2.1. Thus we get the following commutative diagram

oz
T

@:@

Xt

N

Hence by Proposition 2.29, b is epimorphic. d

We introduce the following lemma which is an analogue of [N1, Lemma 5.3].

Lemma 2.31. Let
A—=~B
Bi lv

be a pull-back diagram in H. If there exists an object X € B~ and morphisms zp : X — B, z¢: X —» C
which satisfy the following conditions, then a is epimorphic in H.
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(a) The following diagram is commutative.

*B

X ——=B
|

(b) There exists a short exact sequence X>——> B —s= U with U € U.

Proof. Take z7 : X — X7 as in Definition 2.13. Then by Proposition 2.15, there exist fg : X+ — B
and fo : Xt — C such that fpz™ = zp and feaz™ = z¢. By Lemma 2.30, fp is epimorphic in H. As
yrp = 0xc, we get yfpat = dfcat, it follows by Proposition 2.15 that v fp = § fc. By the definition of
pull-back, there exists a morphism 7 : X+ — A in { which makes the foll(TWing %gram commute.

Since fp is epimorphic, we obtain that « is also epimorphic. O

Theorem 2.32. For any twin cotorsion pair (S,T), (U,V), its heart H is semi-abelian.

Proof. By duality, we only show H is left semi-abelian. Assume we are given a pull-back diagram
A—2sB
N

in H where ¢ is a cokernel. It suffices to show that « becomes epimorphic.
By Lemma 2.28, replacing D by an isomorphic one if necessary, we can assume that there exists an
inflation d : C — D satisfying § = d, which admits a short exact sequence

C>L—D*>>-S

where S € S. As D € BT, by Lemma 2.25 we can also assume that there exists an deflation ¢ : B — D
such that v = ¢. By Proposition 2.2, we get the following commutative diagram of short exact sequences

X=".B g9

S

d

it follows by Lemma 2.10 that X € B~. Hence by Lemma 2.31 « is epimorphic in . g

2.5. The case where H becomes integral. In this section we give a sufficient condition where the
heart H becomes integral.
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Definition 2.33. A preabelian category A is called left integral if in any pull-back diagram
A—"-B
B i J{v
C — D
in A, « is an epimorphism whenever § is an epimorphic. Right integral is defined dually. A is called
integral if it is both left and right integral.

Let C be a subcategory of B, denote by QC (resp. Q7 C) the subcateogy of B consisting of objects QC
(resp. 2~ C) such that there exists a short exact sequence

QC — Po—»C (PeP,CeC)
(resp. C — I - Q~C (I € Z,C €C)).

By definition we get P C QC and Z C Q~C. By Lemma 2.9 we get that for any cotorsion pair (U4, V) on
B, QU and Q~V are closed under direct summands.

Let By By be two subcategories of B, recall that By x By is subcategory of B consisting of objects X
such that there exists a short exact sequence

Bi— X —» By
where By € By and By € Bs.
Theorem 2.34. If a twin cotorsion pair (S,T), (U, V) satisfies
UCS*T, PCW or TCUxV, ITCW
then H becomes integral.

Proof. According to [R, Proposition 6], a semi-abelian category is left integral if and only if it is right
integral. By duality, it suffices to show that f C & = T,P C W implies that H is left integral. Assume
we are given a pull-back diagram

Sy

A—2s

B

-
=2

!

¢ é

in H where ¢ is an epimorphism. It is sufficient to show that « is epimorphic.
Let d: C — D and c¢: B — D be morphisms satisfying 6 = d and v = ¢. Since § is epimorphic, if we
take c¢q : D — Cy as in Definition 2.19

C

C—2>Wwc¢ S¢
| v |
D Cy S¢

Cd T

then Cy € U by Corollary 2.23. By assumption U C S « T, Cy admits a short exact sequence

S0 to
So—Cy —==1T

with Sg € S, Ty € T. Since B € B~ admits a short exact sequence
B— W5 — 5P

and SP admits a short exact sequence
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there exists a commutative diagram

QSB~—L s pop —2 s GB

B whB SB.

(5)

As Ext};(SB, To) = 0, p is a left T-approximation of 2S”. Therefore there exists a morphism f : Pgs —
Ty such that tocqcsp = fp. As Pgs € P, there is a morphism h : Pgs — Cy such that f = tgh. Since
to(cacsp — hp) = 0, there exists a morphism g : QSp — Sy such that cqesp — hp = sog. Then we get the
following diagram

Qs? b Pgs —> §B
SB
B Sop  h.
C\L SOI o
Cd // f
D — Yy N
t()i
¥
7.

Take a push-out of p and g, we get the following commutative diagram

Q5B s pop —*s GB

|

So Q SB

and a short exact sequence

(%)

QSB——% Pos @ Sy — Q
by Proposition 2.1 where @ € S. As () admits a short exact sequence
Q"2 Py % @
we get the following commutative diagram of short exact sequences

ko l

Q P —2>Q

QSB>T> Pgs & Sy —= Q.
-9




Since cqcsp = hp + sog, we obtain the following commutative diagram of short exact sequences.

(%)

QSB>—>PSB@504 >> Q

e ]

D Cy S¢

Cq T

Thus we get the following commutative diagram

Q2> Py 2@

D Cy *T»SC.

Cd

As P C W, we conclude that QQ € B~. Since S admits a short exact sequence

Q5O pge 2% ¢
where Pgc € P, hence we get the following commutative diagram of short exact sequence
Q5O poo 2% 0
T
O W s¢
|
D> Cq —> 5°
which induces the following diagram
Q8015 pee 190 g0
dqci l"sc
D Ca Se.

Cd T

As Py is projective, there exists a morphism ¢ : Pg — Ps,, such that [t = rng.

PQ&Cd

X i
Y

0S¢ Pse S¢

kgc lgc

21

Now it follows that Igctkg = rngkg = rcacspqp = 0, thus there exists a morphism z : 2Q — 2S¢ such

that kgcx = tkg.

ko
QQ —— Pg
't
05¢ Pec 5C.
ksg lgo

As rnget = lgot = rng, there exists a morphism y : Po — D such that ngot — ng = cqy. Therefore

cqdqer = ngckgex = ngetkg = (cqy + ng)kg = ca(ykg + cspyp).
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Then dgcx = ykq + cspqp, since cq is monomorphic. Hence there exists a commutative diagram in B

By Proposition 2.1, we get the following short exact sequences from (5) and (6):

4B SB
—k —
QQi—% QSp ® Py — Ps,, & S, QSB>(—p> B@® Pgs —> WB,

Then by Proposition 2.2, we get the following commutative diagram of short exact sequences

(“a)

OSB @©Pg—Pss® S

s

QQ>T>BGBPSBGBPQ4»M

i i

WB WB

QQ

where n = spqp. From the third column we get that M € U. By Lemma 2.31, we obtain that « is
epimorphic. O

2.6. The case where H becomes almost abelian. In this section we give a sufficient condition when
H becomes almost abelian.

Definition 2.35. A preabelian category A is called left almost abelian if in any pull-back diagram
A—"2->B
B i l’y

in A, « is a cokernel whenever ¢ is a cokernel. Right almost abelian is defined dually. A is called almost

abelian if it is both left and right almost abelian.

We need the following proposition to show our result.

Proposition 2.36. [R, Proposition 2] Let A ENY ;N C' be morphisms in a right (resp. left) semi-abelian
category. If f and g are (co-)kernels, then gf is a (co-)kernel. If gf is a (co-)kernel, then f (resp. g) is
a (co-)kernel.

Use this proposition, we can prove the following lemma, which is an analogue of Lemma, 2.31.

Lemma 2.37. Let

;

<
2

£
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be a pull-back diagram in H. Let X € B~ and zp : X — B, x¢ : X — C be morphisms which satisfy
that xp is a cokernel in the following commutative diagram

B

X——=B
C ——D.
)

Then if U C T, we obtain « is a cokernel in H.

Proof. Since Y C T, we get H = B~. Take 27 : X — X7 as in Definition 2.13. Then by Proposition
2.15, there exist fp : XT — B and fc : X* — C such that fpa™ = zp and fea™ = z¢. Since 25 is a
cokernel, by Proposition 2.36, fp is also a cokernel in H. As yxp = dz¢, it follows by Proposition 2.15
that vfg = §fc. By the definition of pull-back, there exists a morphism 7 : X — A in A which makes
the following diagram commute.

Since fp is a cokernel, we obtain that « is also a cokernel by Proposition 2.36. O

Theorem 2.38. Let (S,T), (U,V) be a twin cotorsion pair on B satisfying
UCT orTCU
then H is almost abelian.

Proof. By [R, Proposition 3|, a semi-abelian category is left almost abelian if and only if it is right almost
abelian. By duality, it is enough to show that & C T implies H is left almost abelian.
Assume we are given a pull-back diagram

Sy

A%

B

-~
=2

>

¢ 4

in H where § is a cokernel. It suffices to show that a becomes a cokernel.
Repeat the same argument as in Theorem 2.32, we get the following diagram

X>I—B>BH>S

\ \
C’>T>D—»S

where X € B~, d = § and ¢ = 7. According to Lemma 2.37, it suffices to show that zp is a cokernel in

H.



24

By Definition 2.20 and Proposition 2.2, we get the following commutative diagram

kIB
%% K,, X
Ia I
Vg Wg B
S S.

It follows that K,, € B~ = H and ky,zp = 0. Now let r : X — @ be any morphism in H such that

ke, = 0, then rk,, factors through W. Since Exty(S,7) = 0, a is a left T-approximation of K,,,, thus
there exists a morphism b : W — @ such that ab = rkp. By the definition of push-out, we get the
following commutative diagram

Since zp is epimorphic in H by Proposition 2.29, the above diagram implies that xp is the cokernel of
kyp- O

By Theorem 2.34, in the case of the above theorem, the heart A also becomes integral. Then by [R,
Theorem 2], H is equivalent to a torsionfree class of a hereditary torsion theory in an abelian category
induced by H. For more details, one can see [R, §4].

2.7. Existence of enough projectives/injectives. We call an object P € H (proper-)projective if for
any epimorphism (resp. cokernel) a: X — Y in H, there exists an exact sequence

Homy (P,cx)
B AN

Homy, (P, X) Homy, (P,Y) — 0.

An (proper-)injective object is defined dually.
H is said to have enough projectives if for any object X € H, there is a cokernel § : P — X such that P
is proper-projective. Having enough injectives is defined dually.

In this section we give sufficient conditions that the heart H of a twin cotorsion pair has enough
projectives and has enough injectives.

Lemma 2.39. If a twin cotorsion pair (S,T),(U,V) satisfiesd C T, then we have QS C H.

Proof. We first have P C U = W, then by definition 28§ C B~. But we observe that &/ C 7 implies
Bt = B, hence QS C H. O

Proposition 2.40. Let (S,T), (U, V) be a twin cotorsion pair satisfying U C T, then any object in QS
s projective in H.

Proof. Let B and C' be any objects in H and let p : QS — C be any morphism.
Let g : B — C be a morphism which is epimorphic in X, by Lemma 2.25 we can assume that it admits
a short exact sequence
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Since B € H admits a short exact sequence B — W' — SB then according to Proposition 2.2, there
exists a commutative diagram

a—t st ¢
Lo
A WB_" D

B —— §B,

By Lemma 2.10, we obtain D € B~ = H. Since qg = 0 and g is epimorphic in H, we have ¢ = 0. By
definition 25 admits a short exact sequence

QS>~2>P—=8 (PcP,ScS).

Since gp = 0, gp factors through W. As Ext};(S,T) = 0, a is a left T-approximation of Q5. Thus
there exists a morphism s : P — D such that gp = sa. Since P is projective, there exists a morphism
t: P — W5 such that s = rt. Hence by the definition of pull-back, we get the following commutative
diagram

N

\ l lq
N
which implies that €S is projective in H. O

Proposition 2.41. Let (§,7),(U,V) be a twin cotorsion pair satisfying U C T, then any object B € H
admits an epimorphism o : QS — B in H.

Proof. Let B be any object in H, consider commutative diagram (5). By Proposition 2.1, the left square
is a push-out. Now it suffices to show sp is epimorphic in H.

Let ¢ : B — C be any morphism in H such that csp = 0, then csp factors through W. Since p is a left
T-approximation of Q.5 there exits a morphism d : Pgz — C such that csg = dp. Thus by the definition
of push-out we have a commutative diagram

QS8 L5 pgs

B——>W?

which implies ¢ = 0. Hence sp is epimorphic in H. O
Moreover, we have

Proposition 2.42. Let (S,7T),(U,V) be a twin cotorsion pair satisfying U C T, then an object B is
projective in H implies that B € QS.

Proof. Suppose B is projective in #, consider the commutative diagram (5). By Proposition 2.41, sp is
epimorphic in #, thus B is a direct summand of QS? in H. Hence by Lemma 2.9 B lies in QS. O

From the following proposition we can get that in the case i C T when the projectives in H is enough.
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Proposition 2.43. Let (S,T),(U,V) be a twin cotorsion pair satisfying U C T, then H has enough
projectives if and only if any indecomposable object B € H — U admits a short exact sequence

B — S — §?
where S*, 5% € S.

Proof. We prove the ”if” part first.

Since an object B € H isomorphic to an object B’ € H in H such that B’ does not have any direct
summand in U, we can only consider the obejct B € H not having any direct summand in &/. Thus by
assumption, B admits a short exact sequence

B — St — §?
where S1,52 € S. As S? admits a short exact sequence

052t o Pgo —s S2.

We have the following commutative diagram

082"~ P 52
B St S2.

Then we get a short exact sequence

(%)

08?>—= B @ Pgs — 5!
by Proposition 2.1. Since B @ Pg2 admits a short exact sequence
V—U — B® Pgs2
where V € V and U € U = W, we obtain the following commutative diagram by Proposition 2.2

Ve Q — % 052

Id (%)

Vo——sU — B® Pq

y

Sl _—— Sl_
Thus Q € B~ = H and ca = 0. We claim that a is the cokernel of ¢ in H.
If 7 : 252 — M is a morphism in H such that rc factors through W, then there exists e : U — M such
that cr = ed, since d is a left T-approximation of ). Hence by definition of push-out, we get the following
commutative diagram

Q ——=0s5?

|

which implies that r factors through a. Since g is epimorphic in H by Proposition 2.41, we get that a is
the cokernel of c.
Now we assume that H has enough projectives.
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By Proposition 2.42; all the projective objects in H lie in S. Let B be any indecomposable object in
H —U and B : QS — B be a cokernel in . Then by Lemma 2.28, we get a short exact sequence

f

QS>> B — = §'

where B’ € H and B’ ~ B in H and S’ € S. Since S admits a short exact sequence

we take a push-out of f and p, then we get the following commutative diagram

QS>L> B — = 5

]

Py—s Q' —— 9’

o

S=—=25.

From the second row we get Q' € S. Since B is indecomposable, it is a direct summand of B’. Hence by
Lemma 2.9, B admits a short exact sequence

B — Q/ — S/l
where S” € S. d
By duality, we have

Proposition 2.44. Let (S,T),(U,V) be a twin cotorsion pair satisfying T C U, then any object in H is
injective if and only if it lies in Q~V.

Proposition 2.45. Let (S, T), (U, V) be a twin cotorsion pair satisfying T C U, then any object B € H
admits a monomorphism 3 : B — Q~V in H where Q~V € Q~V.

Proposition 2.46. Let (S,7),(U,V) be a twin cotorsion pair satisfying T C U, then the heart has
enough injectives if and only if any object B € H — T admits a short exact sequence

Vo— Vi, » B
where V1, Vo € V.

2.8. Localisation on the heart of a special twin cotorsion pair. Let (S,7),(U,V) be a twin
cotorsion pair on B such that 7 = U, in this case we get BY = B~ = B and W = T, hence H = B/T.
According to Theorem 2.34, B/T is integral. Moreover, By Proposition 2.40 (resp. Proposition 2.44), we
obtain that any object in QS (resp. 27V) is projective (resp. injective) in B/T.

Let R be the class of regular morphisms in B/7T, then by Theorem [R, p173], the localisation (B/T)r (if
it exists) is abelian.

Till the end of this section we assume that B is skeletally small and k-linear over a field k£ and has a
twin cotorsion pair (S,7),(7,V). We denote that by Proposition 2.12 it is equivalent to assume that B
has a cotorsion pair (S,7) such that S C T and T is contravariantly finite.

Let D be a category and R’ is a class of morphisms on D. If R admits both a calculus of right fractions
and a calculus of left fractions (for details, see [BM, §4]), then the Gabriel-Zisman localisation Dps at
R’ (if it exists) has a very nice description. The objects in Dgs are the same as the objects in D. The
morphism from X to Y are of the form

f

X< A—>Y

denoted by [r, f] where r lies in R'.
The localisation functor from D to Dg/ takes a morphism f to [id, f]. We denote this image by [f]. For
r € R, [r,id] is the inverse of [r]. We denote it x,. Thus, every morphism has the form [r, f] = [f],.
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By [BM, Corollary 4.2], R admits both a calculus of right fractions and a calculus of left fractions.
For a subcategory C C B, we denote by [C] the full subcategory of (B/7T)r which has the same objects
as C.

Lemma 2.47. We have QS/P = QS ~ [QS].

Proof. We first show that a morphism f : QS — B factors through P if and only if it factors through 7.
Since P C U = T, we only need to show f factors through 7 implies it factors through P. Suppose f
factors through 7. By definition Q.5 admits the following short exact sequence

where Pg € P, S € S and B admits the following short exact sequence

Vg Wp B B.

As wpg is a right U-approximation of B, there exists a morphism a : QS — Wpg such that f = wga.
Since ¢ is a left T-approximation of 2S5, there exists a morphism b : P — Wpg such that bg = a, hence
f = wpbq. Thus by definition we have QS/P = QS.

Let L : QS — [QS] be the location of the localisation functor from B/T to (B/T)r. We claim that it is
an equivalence. Obviously it is dense, it is faithful by [BM, Lemma 4.4] and full by [BM, Lemma 5.4]. O

Denote by Mod C the category of contravariant additive functors from a category C to mod k for any
category C. Let modC be the full subcategory of ModC consisting of objects A admitting an exact
sequence:

Home(—, C1) 2 Home(—, Co) 2 A — 0
where Cy, Cq € C.

Since QS ~ [Q2S], We have mod(QS/P) ~ mod[2S].

We give the following proposition which is an analogue of [BM, Lemma 5.5] (for more details, see [BM,
§5]).

Proposition 2.48. If (S,7),(T,V) is a twin cotorsion pair on B which is skeletally small, and let R
denote the class of morphisms which are both monomorphic and epimorphic in B/T, then

(a) The projectives in (B/T)r are exactly the objects in QS.
(b) The category (B/T)r has enough projectives.

For convenience, for any objects X,Y € B, we denote Homz)(X,Y) by [X,Y]. For any morphism
f: X =Y, we denote Homg)(—, [f]) by — o [f] and Homz([f], —) by [f]o —.
Now we can prove the following theorem.

Theorem 2.49. Let B be a skeletally small, Krull-Schimdt, k-linear exact category with enough pro-
jecitves and injectives, containing a twin cotorsion pair

(S,7),(T,V).

Let R denote the class of morphisms which are both monomorphic and epimorphic in B/T and (B/T)r
denote the localisation of B/T at R, then

(B/T)r ~ mod(QS/P).
Proof. 1t suffices to show (B/T)r ~ mod[QS].
From any object B € (B/T)r, there is a projective presentation of B:

[di] [do]
0S5 — QASg — B —=0

Let QS be any object in [QS], we get the following exact sequence:

QSo[dy] QSo[do]

(S, Q51] ——= [QS, 2S0] ——— [QS, B] — 0
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which induces a exact sequence in mod[QS]:

—,05] =9 1 a5, —9 — g1 o

Now we can define a functor ® : (B/7)gr — mod[Q2S] as follows:
B — [, B,
[f] = —olf].

e Let us prove that @ is faithful.
For any morphism [f] : B — B’ we have the following commutative diagram

[di] [do]

Q,Sl QSO — B 0
i) 15 im
Y Y
Qs8] 0S8y —= B 0
[dy] [do]
in (B/T)r which induces a commutative diagram in mod[Q2S]
—oldi] —oldo]
-] a5 2 - B0
—olfil —olfo i—om
Y Y
[=, Q51 —— [, Q5p] ——= [, Bl ——=0.
—oldi] —oldy]

Hence if — o [f] = 0, we obtain — o [d{ fo] = 0, which implies [dj fo] = 0. Thus [f] = 0.
e Let us prove that ® is full.

For any morphism « : [—, B] — [—, B’], we have the following commutative diagram
—oldi] —oldo]
[_7951]*>[_7Q 0]*)[_73]*)0
(xll Otol \LOA
—, Q8] —, Q8] -, B 0
[ 1 T[dj [ o] @) [ ] —

in mod[Q2S]. By Yoneda’s Lemma, there exists [f;] : Q5; — QS such that o; = — o [f;]. Hence there is a
commutative diagram

—oldi] —o[do]
[_7951]*>[_7 0]*)[_73]*)0

o[ml iow —olf]
—, Q5] —, QS -, B
[ 1] T[dj [ ol *TﬂoT [

in (B/T)g, thus a = — o [f].

e Let us prove that @ is dense:

We first show that mod[Q2S] is abelian. It is enough to show that [QS] has pseudokernels. Let « : 257 —
Sy be a morphism in [Q2S], then since (B/T)r is abelian, there exists a kernel 8 : K — QS; in (B/T)g.
By Proposition 2.48, there exists a epimorphism v : QS — K. We observe that 8 is a pseudokernel of
a.

Let F € mod[Q2S] which admits an exact sequence

[, Q8] =5 [, Q8] = F =0
where v € [257,5p]. Let B = Cokery then we get an exact sequence
QS 5 QSy — B —0
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in (B/T)gr. Hence F ~ [—, B]. O

2.9. Examples. In this section we give several examples of twin cotorsion pair, and we also give some
view of the relation between the heart of a cotorsion pair and the hearts of its two components.
First we introduce some notations. Let C be a subcategory of B, we set

(a) Ct» ={X € B| Exti(C,X) =0, 0 <i<n}.

(b) tnC ={X € B| Extsz(X,C) =0, 0 <i<n}.

(c) Ct ={X € B| Exti(C,X) =0, Vi > 0}.

(d) *C¢ ={X € B| Extyx(X,C) =0, Vi > 0}.
According to [HO, §7.2], we give the following definition.

Definition 2.50. A cotorsion pair (i, V) is called a hereditary cotorsion pair if Extz(14,V) = 0,4 > 0.
The following proposition can be easily checked by definition.

Proposition 2.51. For a cotorsion pair (U, V), the following conditions are equivalent.
(a) (U,V) is hereditary.

(b) V=U-=.
(c) U =2V
(d) QU CuUu
(e) Q" VCV

Remark 2.52. We can call a pair of subcategories (U, V) a co-t-structure on B if it is a hereditary cotorsion
pair, since by the proposition above the hereditary cotorsion pair on B is just an analogue of the co-t-
structure on triangulated category.

Example 2.53. We introduce two trivial hereditary cotorsion pairs:
(P,B) and (B,T).
We observe that in these two cases the hearts are 0. These two cotorsion pairs also form a twin cotorsion
pair
(P,B), (B,T).
We observe that its heart is also 0.

Example 2.54. Let A be an artin algebra and T be a cotilting module of finite injective dimension,
denote

X:='Tand Y := (*17)*.
By [AR, Theorem 5.4, Corollary 5.10, Proposition 3.3.], (X,)) is a hereditary cotorsion pair. By [AR,
Proposition 3.3, (c, iii)], we get
W C (modA)T C Y.
Dually, by [AR, Proposition 3.3, (d, iii)], we get
W C (modA)” CAX.
Then H = (mod A)™ N (modA)~ CXNY =W, hence H = 0.
By [AR, Proposition 1.8], (11T, (11T)11) is a cotorsion pair. According to [AR, §2], 11T, (11T)11 is also
a a cotorsion pair. Hence by definition
(T, (D)), (2T, (1))
form a twin cotorsion pair. We can also observe that its heart is trivial.

In fact, we have

Proposition 2.55. If one cotorsion pair in a twin cotorsion pair (S,T), (U, V) is hereditary, then this
twin cotorsion pair has a trivial heart, i.e. its heart is zero.
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Proof. We prove that if (S,7) is hereditary, then W =V NS = BT N B~, another part is by dual.
For any object B € B™, there is a short exact category
B— WP - 55
Since we have the following exact sequence
0=Extz(W5,T) — Exty(B,T) — Extg(S%,7) =0

which implies B € S. Hence B~ = S. Dually, BT = V. Hence W C BT N B~ =V NS C W, this implies
H=0. O

Recall that M is n-cluster tilting if it satisfies the following conditions
(a) M is contravariantly finite and covariantly finite in B,
(b) Mtn =M.
(c) t» M= M.
A 2-cluster tilting subcategory is usually called cluster tilting subcategory.
Let M be a cluster tilting subcategory of 5. Remark that P C M and Z C M. For each object B € B,
we have two short exact sequences

B>L>M*»N’

N>——>M 2B
that f (resp. g) is a left (resp. right) M-approximation of B. We observe N € 1M = M (resp.
N’ € M*+1 = M), therefore (M, M) is a cotorsion pair. In this case, W = M and Bt = B~ = B, thus
H = B = B/M, which is abelian also by [DL].
Moreover, any object in QM (resp. Q= M) is projective (resp. injective) in B/ M, and by Proposition
2.43,2.46, B/ M has enough projectives and enough injectives.

Proposition 2.56. A subcategory M in B is cluster tilting if and only if (M, M) is a cotorsion pair on
B.

Proof. From the above discussion, we know that (M, M) is a cotorsion pair if M is cluster tilting, so it
remains to show the ”only if” part. But it is just followed by the definition of cotorsion pair and Lemma
2.6. O

In the following examples, we denote by ”0” in a quiver the objects belong to a subcategory and by
”.” the objects do not.

Example 2.57. Let A be the path algebra of the following quiver
1< 2 3<—4
then we obtain the AR-quiver I'(mod A) of mod A.

Let M = {X € mod A | Extj(X,A) = 0}, then by [AR, Proposition 1.10, 1.9], (M, M11) is a cotorsion
pair on mod A. But
M = 0 . . o)
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which consisting of all the direct sums of indecomposable projectives and indecomposable injectives. We
observe that in fact M = M= and hence it is a cluster tilting subcategory. And the quiver of the
quotient category (mod A)/ M is

N, S

3
2

which is equivalent to the AR-quiver of As.
Example 2.58. Take the notion of the former example, Let
M = o
[e] o

then by [AR, Proposition 1.10, 1.9], (M’, M’ll) is a cotorsion pair and

1
Mt = o . o o

o (@]

hence it contains A. Obviously it is closed under extension and contravariantly finite, then by [AR,
Proposition 1.10, 1.9], (M’**, (M’**)11) is also a cotorsion pair on mod A and

(M/J-l)J_l — o . . °

Thus we get a twin cotorsion pair
(M M) (MO (M) ),

Then the quiver of (mod A)/M'** is 2 — 3 5 The quiver of quotient category QM’/P is just 2. Hence
we get ((mod A)/ M)z ~ mod(QM'/P).

From Example 2.58, we see that there exist two cotorsion pairs which have non-trivial hearts form a
twin cotorsion pair also having a non-trivial heart. From the following example, we see that even two
components of a twin cotorsion pair have non-trivial hearts, the heart of the twin cotorsion pair itself
can be zero.

Example 2.59. Let A be the k-algebra given by the quiver

/N

Y

3 2

and bound by af = 0 and Sya = 0. Then its AR-quiver I'(mod A) is given by

rrrrrrrrrrrrrrrrrrrrrrrr BT |
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Here, the first and the last columns are identified. Let

S=. o ) T = ) o
0] 0] o 0]
o] ) ] o
and
U= o o o V=
) () (o) o]
(] o) o) [e)

The heart of cotorsion pair (S,7) is add(1) and the heart of cotorsion pair (U, V) is add(3). But when
we consider the twin cotorsion pair (S, 7T), (U, V), we get W =V and

(mod A)~ /W = add(1 @ 2) and (mod A)* /W = add(3)

hence its heart is zero.

3. HALF EXACT FUNCTORS ASSOCIATED WITH GENERAL HEARTS ON EXACT CATEGORIES

To construct the associated half exact functor H, we first introduce two functors ot : B — BT and
0~ : B — B™ in section 3.2, which are analogs of function functors associated with ¢-structures. In
section 3.3, we show that these two functors commute. We prove the property of the half exact functor in
section 3.4. The relationship between different hearts are studied in section 3.5. The last section contains
several examples of our results.

3.1. Preliminaries. For briefly review of the important properties of exact categories, we refer to [L,
§2]. For more details, we refer to [B]. We introduce the following properties used a lot in this paper, the
proofs can be found in [B, §2].

We recall some in section 2, which also work for a single cotorsion pair.

Definition 3.1. For any B € B, we define BT and ap : B — B™T as follows:
Take two short exact sequences:

‘/YB>—>U'B£>>B7 UB>LI>WO—>>UO

where Ug,U® e U, WO Vg € V. In fact, W° € W since U is closed under extension. By Proposition 2.2,
we get the following commutative diagram

U0 —=10"

where the upper-right square is both a push-out and a pull-back.
By definition, BT € B*. We recall the following useful proposition.

Proposition 3.2. For any B € B
(a) If B€ B~, then BT € H.
(b) ap is a left Bt -approzimation, and for an object Y € Bt, Homg(ap,Y) : Homp(BT,Y) —
Hompg(B,Y) is bijective.
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By Proposition 3.2, we can define a functor ot from B to Bt as follows:
For any object B € B, since all the Bt's are isomorphic to each other in B by Proposition 3.2, we fix a
BT for B. Let

ot :B— B
B+— Bt

and for any morphism f: B — C, we define ot (f) as the unique morphism given by Proposition 3.2

!
B——C
u| e
Bt (.
ot (f)

Let it : BT < B be the inclusion functor, then (o,4%) is an adjoint pair by Proposition 3.2.

Proposition 3.3. The functor o™ has the following properties:
(a) ot is an additive functor.
(b) oF|g+ = idg+.
(c) For any morphism f: A — B, ot (f) =0 in B if and only if f factors through U. In particular,
o7 (B) =0 if and only if B € U.

Proof. (a), (b) can be concluded easily by definition, we only prove (c).
The 7if” part is followed by [L, Lemma 3.4].
Now suppose o (f) = 0 in B. By Proposition 3.2, we have the following commutative diagram

At o pt oy, Vs
I
A+ B+ o Vs
A
U — > U0 —— 0"

where f* = o7 (f). Then f* factors through an object W € W.

Since w is a right U-approximation of B, there exists a morphism ¢ : W — W9 such that b = we. Thus
apf = fTas = bacy = w(caas). By the definition of pull-back, there exists a morphism d : A — Up
such that f = upd. Thus f factors through U. 0

Definition 3.4. For any object B € BB, we define B~ and yp : B~ — B as follows:
Take the following two short exact sequences

B>U—B>VB*>>-UB, V0>—>W0*>>VB

where VB, V) € V, and Wy, UB € Y. Then Wy € W holds since V is closed under extension. By
Proposition 2.2, we get the following commutative diagram:



By definition B~ € B~ and we have:

Proposition 3.5. [L, Proposition 3.6] For any object B € B

(a) B € B* implies B~ € H.
(b) B is a right B~ -approzimation. For any X € B~, Homp(X,vp) : Homg(X, B~) — Homp(X, B)
1s bijective.

we define a functor ¢~ from B to B~ as the dual of o7:
o :B— B~
B— B™.

For any morphism f : B — C, we define o~ (f) as the unique morphism given by Proposition 3.5

o (f)

B~ e
B C.

Let i~ : B~ — B be the inclusion functor, then (i~,07) is an adjoint pair by Proposition 3.5.

Proposition 3.6. The functor o~ has the following properties:
(a) o~ is an additive functor.
(b) 07|~ =idp--
(c) For any morphism f: A — B, o= (f) =0 in B if and only if f factors through V. In particular,
o~ (B) =0 if and only if B€ V.

3.2. Reflection sequences and coreflection sequences. In the following two sections we fix a cotor-
sion pair (U, V). The reflection (resp. coreflection) sequences [AN] are defined on triangulated categories,
but the definitions of the similar concepts on exact categories are not simple.

Let C be a subcategory of B, denote by 2C (resp. 27 C) the subcategory of B consisting of objects QC
(resp. Q~C) such that there exists a short exact sequence

QCHpc—»C(Pce’P,CGC)
(resp. C — I - Q=C (I° € Z,C € C)).
Lemma 3.7. QU C B~ and QY C BT.

Proof. We only prove the first one, the second is dual.
An object QU € QU admits two short exact sequences

WL py—>U, QU—2sVW U
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where U, U e Y, V¥ €V and Py € P. It is enough to show that VU € I{. Since Extg(U, Ve =,
there exists a morphism p : Py — VU such that pg = v'.

QU—21 > p, U
P
QU you Ueu

Now we get a short exact sequence Py>——s VO @ U ——= U®Y . Since U is closed under extension
and direct summands, VU € Y. Thus QU € B~. O

Definition 3.8. Let B be any object in B.

(a) A reflection sequence for B is a short exact sequence
B—2s7 U

where U € U, Z € BT and there exists a commutative diagram

QU>L>PU*>>U

B>?-Z*>>U

with Py € P and z factoring through U.
(b) A coreflection sequence for B is a short exact sequence

V—>K-*~ B

where V € V, K € B~ and there exists a commutative diagram

1% K—"»B
L)
VsV —Q°V
with IV € T and y factoring through V.
Lemma 3.9. Let B be an object in B. Then
(a) The short exact seqeunce B>——> Bt ——= U9 in (2.1) is a reflection sequence for B.
(b) The short exact seqeunce Vo— B~ 225 B in (2.2) is a coreflection sequence for B.
(c) For any reflection sequence B> 7 —=U for B, we have Z ~ B* in B.

)
(d) For any coreflection sequence V>——> K LN for B, we have K ~ B~ in B.

Proof. We only prove (a) and (c), the other two are dual.
(a) Since U° admits the following short exact sequence

QUO—2 o Pyo — U°

we get the following commutative diagram

QU2 5 P Uo
wol lpo
B B+ Uo.

ap
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Since Pyo is projective, there exists a morphism pj : Pyo — WO such that wpf, = po, we get apry =
Pogo = wphqgo. Then xg factors through Up € U since (2.1) is a pull-back diagram.

QU0>q$-PUo — U

J{wo Po \LPO
< 37 B+/U0
/ 0 /

2
Us wo U

Hence by definition B=2% BT — s UY is a reflection sequence for B.
(c) We first show that there exists a morphism f: Z — B™ such that ap = fz.
The reflection sequence admits a commutative diagram

1)

B>T>Z*>>U

where the left square is a push-out by Proposition 2.1. Since x factors through U, and upg is a right U-
approximation of B, there exists a morphism 2’ : QU — Up such that & = uga’. Since Exty(U, W°) =0,
there exists a morphism p’ : Py — W9 such that w'z’ = p'q, thus apxr = apupr’ = ww'z’ = wp’q. Then
by the definition of push-out, there exists a morphism f : Z — BT such that ap = fz.

QU>L>PU4>>U
T
B—=/f-7 U

Vv

Up>——— W0 — - o
w

’
x

Since By Proposition 3.2, there is a morphism ¢g : BT — Z such that gap = 2, we have a morphism
fg: BT — BT such that fga = «, which implies that fg =idg+.

Now we prove that gf =id,. o

Since (gf —idz)z = 0, we get a morphism b: U — BT such that gf — idz = ba. Since Extg(U, V) =0,
b factors through W0, hence gf = id,,.

Thus BT ~ Z in B. O

Proposition 3.10. There exists an isomorphism of functors from B to H

n:a+oa_ o oot
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Proof. By Proposition 3.2 and 3.5 both 67 00~ and ¢~ o o™ are functors from B to H.
By Lemma 3.9, We can take the following commutative diagram of short exact sequences

B

Vo—2s B~ B

]

V0>Jﬁ IO ?Qi‘/o

where o factors through V2 since v is a left V-approximation of B.
B Yo Q_Vb

VB
By Lemma 3.7 and Proposition 3.2, there exists a morphism ¢ : BT — Q~Vj such that yy = tap. Since
Exty(U°, VEB) = 0, there exists a morphism v : Bt — VF such that v# = vpap. Thus tap = v'v? =
v'vpag, then we obtain that ¢ — v’vg factors through U°.

B~ . B+ Uo

O .
UB\L % lt v v O
RN 7)

VB =0 %"
v

Since Exty(U°, Vy) = 0, u factors through I° € V. Hence t factors through V.
Take a pull-back of ¢ and i, we get the following commutative diagram

Vo——> Q —— B*

1

Vo—— IO—»i QO V.

By [L, Lemma 2.11], we obtain @ € BT. Now by Proposition 2.2, we get the following commutative
diagram

TT
Q—Q Uo

B>a—B>B+ — U,

By the definition of pull-back, there exists a morphism k : B — @ such that sk = agyg and d'k = d.
Hence we have the following diagram

VE] v -'Bi B B
-~
4 [y s
idVoi Vb g\ Q BT
\ d\ id’ PB \Lt
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where the upper-left square commutes. Hence jvy = d’kv = dv = j, we can conclude that vy = idy, since
7 is monomorphic. By the same method we can get the following commutative diagram

‘/0 v B, B B
: /
(= [
[ v v
idVoi VO iQ/ B
oA
Vo Q —B*

where v, = idy,. Therefore k' is isomorphic by [B, Corollary 3.2]. We obtain the following commutative
diagram

‘f To
B>t sQ—sp°
)
B BT Uo.
ap

We get @Q € B~ by [L, Lemma 2.10], hence Q € H. Since ¢ factors through V, Vo= Q —>= Bt is
a coreflection sequence for BT. By Lemma 3.9, we have the following commutative diagram

o~ (BY) ——— B*

in B where o’ is isomorphic.

By duality we conclude that ); LA Q —U"Y is a reflection sequence for B~. By Lemma 3.9,
we have the following commutative diagram

Bm——so0o%(B")

\ 4

Q

in B where ' is isomorphic.

By Proposition 3.5, there exists a morphism 6 : B~ — o~ (B) in B such that o = agyp. Then by
Proposition 3.2, there exists a unique morphism ng : 6t~ (B) — o~ 01 (B) such that 53 = 0. Hence
we get the following commutative diagram

oto~(B) - B

nB - B
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Then angf = apyp = sk = ad’B'S, and we have ng = o/’ by Proposition 3.2 and 3.5. Thus ng is
isomorphic. Let f: B — C be a morphism in B, then we can get the following diagram by Proposition
3.2 and 3.5.

oto (f)
/’,ﬂm\

+ +
oto™(B) 5 ST>0'0 (©)
f
B O B C @) nc
-+ B a 1 -+ C
o~ot( )WJ ot (C)
070+(i)

Since
8= a " (NmpB = (¢F(f)asye = acyc(o™ (f)) = dnclor o™ ()8
we get (070" (f))ns =nc(oto™(f)) by Proposition 3.2 and 3.5. Thus 7 is a natural isomorphism. [

3.3. Half exact functor. By Proposition 3.10, we have a natural isomorphism of functors from B to

+

ctooc or~g oo™

om

where 7 : B — B denotes the canonical functor. We denote 0~ o o™ o 7 by
H:B—H.

The aim of this section is to show the following theorem.

Theorem 3.11. For any cotorsion pair (U,V) in B, the functor
H:B—H

is half exact.

We call H the associated half ezact functor to (U, V).

Proposition 3.12. The functor H has the following properties:

(a) H is an additive functor.

(b) Hlp = 73

(¢) HU) =0 and H(V) =0 hold. In particular, H(P) =0 and H(Z) = 0.
(d

For any reflection sequence B——> 7 ——U for B, H(z) is an isomorphism in H.
(e

Proof. (a) is followed by the definition of H and Proposition 3.3, 3.6 directly. Since H = BT N B~
by Proposition 3.3, 3.6, we get (b). By Proposition 3.3, o+ (B") = 0, hence H(U), H(P) = 0 since
P C U, dually we have H(V) = 0 = H(Z). Hence (c) holds. For any reflection sequence, we have
H(z) =0 oot(z) = 0~ (g) where g : Bt — Z is the morphism in the proof of Lemma 3.9. Since g is
an isomorphism, we get H(z) is an isomorphism in . Thus (d) holds and by dual, (e) also holds. O

)
)
)
)

For any coreflection sequence V>—— K —*~ B for B, H(k) is an isomorphism in H.

Lemma 3.13. Let B be any object in B, Hompg (U, BT) =0 and Homp(B~,V) = 0 hold.

Proof. We only show Homg(U,B") = 0, the other one is dual.
Since B € B*, it admits a short exact sequence Vg »— Wp — B where W € W. Then any morphism
from an object in U to B factors through W, and the assertion follows. O



41

Lemma 3.14. Let
QU>L> Py ——=U

|

A—— s> B— U
g h

be a commutative diagram satisfying U € U and Py € P. Then the sequence

gou) 22 gy 19 gy o
is exact in H.

Proof. By Proposition 2.2, we get a commutative diagram by taking a pull-back of g and ~vp

‘f‘f

L—2s B~ U
I
A 5 B*h»U.

By [L, Lemma 2.10], L € B~. We can obtain a commutative diagram of short exact sequences

Vo L—t A
L
Vo B~ 4+ B

L

Vo——= 1" —== Q7 1}

where j factors through V by Lemma 3.9, hence

Vo——> L s A
is a coreflection sequence for A. By Proposition 3.12, H(l) and H(vyg) are isomorphic in H. Thus,
replacing A by L and B by B~, we may assume that A, B € B~. Under this assumption, we show H(g)
is the cokernel of H(f). We have QU € B~ by Lemma 3.7. For any Q € H, we have a commutative
diagram

Hompg(H(g),Q Hompg (H(f),Q

Homg(H(B), @)~ % Homg(H(4), Q) """ % Homgs (H(0), Q)

i Homp (o (g),Q) i Homp (ot (f),Q) i
Homg (0 (B), Q) —— > Homg (0 (4), Q) —— = Hompg (o (QU), Q)

Homp(g,Q) Homp(f,Q) i

Homgp (B, Q) - Hompg(A4, Q) _— Homp (U, Q).
So it suffices to show the following sequence
Hom ,Q Hom ,Q
0 — Homp(B, Q) 29D, fomu(A, Q) 2L, Homp(U, Q)
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is exact.
We first show that Homp(g, Q) is injective. Let r : B — @ be any morphism such that rg = 0. Take a
commutative diagram of short exact sequences

QUA~" 5 Pa UA
[
A w4 U4,

wA

Since rga factors through W and EX‘L};(UA, W) = 0, it factors through g4. Thus there exists ¢ : W4 — Q
such that cw? = rg.
QUA 5 Pa
\
aJ/ pAi AN
A

A—"Y s wA

As BExty (U, W4) = 0, there exists d : B — W4 such that w? = dg. Hence rg = cw?® = cdg, then r — cd
factors through U.

A—2 o B U

| o | e

WA ~ Q z
Since Homp (U, @) = 0 by Lemma 3.13, we get that r = 0.

Assume 1’ : A — @Q satisfies 7' f = 0, since Extys(U, W) = 0, ' f factors through q. As the left square of
(3) is a push-out, we get the following commutative diagram.

U - p,

|,

Hence 7’ factors through g. This shows the exactness of

Homp(g,Q) Homp(f,Q)
e

Homé(B,Q) HOIHQ(A,Q) —_— HOmE(QU,Q).

Dually, we have the following:
Lemma 3.15. Let

vt A9 . B

L
VoIV — = QV

be a commutative diagram satisfying V €V and IV € I. Then the sequence

0— H(A) X9 gy XY go-v)
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1s exact in H.
Now we are ready to prove Theorem 3.11.

Proof. Let

be any short exact sequence in B. By Proposition 2.1, we can get the following commutative diagram:

QUA~"> Pya Ul
/N el U4
f PO e
B>———D U4
9 d
C C
From the first and second row from the top, we get an exact sequence H(QU*) RGNy} (A) — 0 by Lemma
3.14. From the first and the third row from the top, we get an exact sequence H(QU*) Ao, H(B) A,
H(D) — 0 by Lemma 3.14. From the middle column, we get an exact sequence 0 — H(D) A, H(C)
by Lemma 3.15. Now we can obtain an exact sequence H(A) KU H(B) 1), H(C). O

Now we prove the following general observation on half exact functors.

Corollary 3.16. Let A be an abelian category and F : B — A be a half exact functor satisfying F(P) =0
and F(Z) =0. Then for any short exact sequence

f g

A—> B —s»(C

in B, there exist morphisms h : C — Q™A and h' : QC — A such that the following sequence

] F(Qh) F(4) 28, F(Qf) rFB) 299, F(Qg) F(c) 20, F(h) F(A) F(f) F(B)
9, pey 2 piama) K0, po-p) K9, pro-o) KON,

is exact in A.

Proof. Since F(P) = 0 (resp. F(Z) = 0), the functor F' can be regarded as a functor from B/P (resp.
B/T) to A.

For convenience, we fix the following commutative diagram:
QA1 Py A A

4

QB>qi>pBﬂ»B

T
QC>q—C> Pc 5 C.

Since
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admits two commutative diagrams
QC-29 Po ey B g C

b T

A BT»C A>—>IA‘J_>>Q*A

we get two short exact sequences by Proposition 2.1:

(o (5)

0L peaalil g Bl i Tl o-a
They induce two exact sequences
Fo) 2 oy Y ey, R 29 po) UL pa-a).
by Theorem 3.11. Now it is enough to show that
(a) AL~ B %+ ¢ induces an exact sequence
Fea) 290 pap) 199 pocy L9, pa.
(b) A=+ B %+ ¢ induces an exact sequence
Fe) 2 pea-a) 29 pia-B) F29, o).
We only show the first one, the second is by dual.
—dqc
The short exact sequence QC£—>) PocdA—> i) B admits the following commutative diagram
OB~ > Pp
| l<%>
h/
which induces the following exact sequence
_ k' —qc
() (5 )
OB>—"= P4, ® QC Po & A.

We prove that x + Qg factors through P.
Since fm + 1k’ = pg = gfm + glk' = gpp = pck’ = pck, there exists a morphism n : Pg — QC' such
that & — k' = gcn. Thus we have gqcngp = kqp — k'qg = qcQg + qocx, which implies that z + Qg = ngp.
F(h)

Hence we obtain an exact sequence F(Q2B) 199, g F(QC) —= F(A).
Since we have the following commutative diagram
OA qA PA pa A
.| | |
QOB>—— P & QC Pod A
(72°) (&)
m k'

we can show that o’ + Qf factors through P using the same method.
Hence we get the following exact sequence

Fea) 290 pap) 199 pocy £, pa).



Now we obtain a long exact sequence

~ F(Qh') F(f)

FQ4) 29, pop) 99, pac) 20, pa

(h)

F(B)

P 4) 28D po-py K29, po-o) K80,

in H. O

Since H(P) = H(Z) = 0, we can see from this proposition that H has the property we claimed in the
introduction.

For two subcategories B1, B2 C B, we denote add(B;y * Bs) by the subcategory which consists by the
objects X which admits a short exact sequence

Bi— > X®Y — By
where B; € B; and By € Bs.

Proposition 3.17. For any cotorsion pair (U, V) on B and any object B € B, the following are equivalent.
(a) H(B)=0.
(b) B e€addd V).

Proof. We first prove that (a) implies (b).

By Proposition 3.6, since H(B) = o~ oot (B) = 0, we get that B* € V, hence from the following
commutative diagram

Vg U —= B

w’I IO‘B

Vg— WO — Bt

U0 —=10"

we get a short exact sequence Up>——> B ® W ——= BT  which implies that B € add(U = V).
We show that (b) implies (a).
This is followed by Theorem 3.11 and Proposition 3.12. g

We denote add(U * V) by K.
The kernel of H becomes simple in the following cases.

Corollary 3.18. Let (U,V) be a cotorsion pair on B, then

(a) IfU CV, then H(B) =0 if and only if B € V.
(b) If Vv CU, then H(B) =0 if and only if B € U.

Proof. This is followed by Proposition 3.17 directly. O

3.4. Relationship between different hearts. The half exact functor constructed in the previous
section gives a useful to study the relationship between the hearts of different cotorsion pairs on B. First,
we start with fixing some notations

Let i € {1,2}. Let (U;,V;) be a cotorsion pair on B and W; = U; NV;. Let B and B; be the
subcategories of B defined in (1.1) and (1.2).

Let H; := Bf N B;, then H;/W; is the heart of (U;,V;). Let m; : B — B/W; be the canonical functor
and ¢; : H;/W; = B/W; be the inclusion functor.
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If Hy(W;) = 0, which means W, C K3 by Proposition 3.17, then there exists a functor hiy : B/W; —
HQ/WQ such that H2 = hlgﬂ'l.

KLY

R L " hia

Ho /W
Hence we get a functor B2 := hi2t1 : H1/ W1 — Ha/Wh.

B

B/Wy

Lemma 3.19. The following conditions are equivalent to each other.
(a) Hl(UQ) = H1(V2) =0.
(b) Ky C K.
Proof. By Proposition 3.12 and Theorem 3.11, (b) implies (a). Now we prove that (a) implies (b).

By Proposition 3.17, we get Us C K7 and Vo C K;. Let X € Ko, then by definition, it admits a short
exact sequence

Uyr— XPY » Vs

where Uy € Uy and Vo € Vs, Since Us, Vo € Ky, by definition, there exist two objects A and B such that
Us® A, Vo ® B €Uy, V. Thus we get a short exact sequence

Uy A— XY DPA®B —» Vo ® B.

Hence X € add((Uy = V1) = (Uy % V1)) = add(Uy * (V1 «Uy) * V1) = add(Uy « Uy « Vi« Vp) = add(U; * V1),
which implies that Ko C 5. O

Proposition 3.20. The functor B12 is half exact. Moreover, if K1 C Ka, then P12 is exact and (Hi N
K2) /W is a Serre subcategory of Hi/Wi.

Proof. Let 0 - A % B £ C — 0 be a short exact sequence in H1/Wi, then p admits a morphism
g : B — C such that m1(g) = 8. We get the following commutative diagram

kg
Voe— K, — B

Pk

Vor—Weo ——C

we

where Vo € Vi and W € W,;. Then we obtain a short exact sequence

Kg>(’“_9>>3@wc(g$>)c.

By [L, Lemma 4.1], K, € B;". By [L, Definition 3.8, K, € Bf. Hence K, € H;. By [L, Theorem 4.3],
 is the cokernel of 7 (ky). By dual of [L, Theorem 3.10], m1(k,) is the kernel of p. Hence K; ~ A in
Hi1/Wi. By Theorem 3.11, We get the an exact sequence

Hy(Ky) 250 Hy(B) % Hy(C)

which implies the following following exact sequence
B B
Bra(4) 222 g15(B) 228, 51, (0).

Hence (12 is half exact. Now we prove that if 1 C Ky, which means Ho(U;) = 0 = Ha(Vy), then [io is
exact.
In this case, we only need to show that $12(p) is a monomorphism and S12(p) is an epimorphism. We



47

show that 12(x) is an epimorphism, the other part is by dual.
Since we have the following commutative diagram

B—">Ww5B UB
O Cy — Ub

where W € Wy and UZ € U;. Since p is epimorphism, by [L, Corollary 3.11], C, € U;. Since we have
the following short exact sequence

(%)

B~"Lcgws Ll

e,

By Theorem 3.11, We have an exact sequence Hs(DB) 1), H5(C) — 0, which induces the following

exact sequence

Bra(B) 229, 31.(C) -

Now we prove that (H; N K2)/W; is a Serre subcategory of Hy /W;.

Let 0> A2 B % C — 0 be a short exact sequence in Hi/W.

If B € (H1NK2) /W, since b1 is exact and B12(B) = 0 by Proposition 3.17, we have 315(A4) = 0 = 512(C),
which implies that A, C' € (H1 N K3)/Ws.

If A,C € (H1 N Ks)/Wx, since we have the following short exact sequence

—a
K, >—>( ) Baw. "L

in B such that K, ~ A in H, /Wi, we get that B € add((U: = V1) * (U * V1)) = add(Uy * V1). Hence
BE(H1 ﬂ/CQ)/W1. OJ

We prove the following proposition, and we recall that a similar property has been proved for trian-
gulated case in [ZZ, Lemma 6.3].

Proposition 3.21. Let (Ui, V1), (U, Vs) be cotorsion pairs on B. If Wy C Ko C Ky, then we have a
natural isomorphism (a1 812 ~ idy, yw, of functors.

Proof. Let B € Hy. By Definition 3.1 and 3.4, we get the following commutative diagrams

Vs Up B V) ——1)
k]
Vg—=W°—=Bf  (Bf); Wo UBe
N
U —— 1", Bj VB UB:

where Ug,U°, UB2 € Uy, Vi, VB2, Vo € Vo, Wy, W° € Wy, and (B ), = Hz(B) in B/W,. By Lemma
3.19, we get Hi(Us) = Hi(V2) = 0, by Lemma 3.9 and Theorem 3.11, we get two isomorphisms

) =
Hi(s Hi(t

B 2 (BF) and Hy((B)3) i), Hy(BF) in Hi/Wi. Since Hi((BF)3) = Ba1frz(B), we

get a isomorphism pp := Hy(tg) " *Hi(sg) : B — B21512(B) on H1/W;. Let f: B — C be a morphism

in H;, we also denote it image in H; /W by f. By the definition of Hy, we get the following commutative
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diagrams in B

B—2-Bf  (B)); =B
s
C sc 03_7 (C;_)Q_ te C;_

where mo((f1)7) = Ha(f). Hence we obtain the following commutative diagram in H;/W;

B B21512(B)

fl iﬁmﬁlz(f)

c e B21812(C)
which implies that 821812 >~ idy, ), - O
According to Proposition 3.21, we obtain the following corollary immediately.
Corollary 3.22. If K1 = Ka, then we have an equivalence Hq1/Wh =~ Ha/Ws between two hearts.

Let S = {a € Mor(Ha/Ws) | Ker(a), Coker(a) € (HaNK1/Wa} and let Ha be localization of Ha /W
respect to (Ha N Ky /W, then Hy is abelian. Since Ba; is exact and Ker(fa1) = (Ha N K1/ Wa, we get the
following commutative diagram

B21
HQ/WQ Hl/Wl

7

Ho

where L is the localization functor which is exact and (o1 is a faithful exact functor. Since (a1 LB ~
idg, yw,, we get that LBz is fully-faithful. Now we prove that Lj312 is dense under the assumption of
Proposition 3.21.

Let B € Ha, by Definition 3.1 and 3.4, we get the following commutative diagrams

Vi Ug B Vo——=Wy
o
V= W9 — B (BHy Wo Uh
e
U0 —— [0, Bf VB B

where Ug, U, UB € Uy, Vg, VB V) € Vi, Wo,W? € W, and (Bfr)f = Hy(B) in B/W;. Since
Hy(W7) =0, we get the following exact sequences by Theorem 3.11

H,(Ug) — B — Hy(Bf") — Hy(U°),
Hy(Vo) = Ha((BY)7) = Ha(Bf) — Hy(VP).

One can check that Ha(U), Ho (V1) C (Ha N K1 /Ws by definition. Since Hs is abelian and L is exact, we
get B ~ HQ(BT) ~ Hg((Bf)f) = LfB12B21(B) in Ho, which implies that L1, is dense.
Now we get the following theorem.

Theorem 3.23. Let (U, V1), (Us, Vo) be cotorsion pairs on B. If Wy C Ko C Ky, then we have an

equivalence LB1a : Hi /W1 — Ha.
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In the rest of this section, we discuss about the relationship between the heart of a twin cotorsion pair
and the hearts of its two components.

First we recall the definition of the twin cotorsion pair. A pair of cotorsion pairs (Uy, V1), (Usz, Va) is
called a twin cotorsion pair if Uy C Us. This condition is equivalent to Vo C V; and also equivalent to
Exty (Ui, V2) = 0. We introduce some notations.

Let Wy := V1 NUs.

(a) Bj is defined to be the full subcategory of B, consisting of objects B which admits a short exact
sequence

VB >—>UB —- B
where Ug € W; and Vg € V.

(b) B is defined to be the full subcategory of B, consisting of objects B which admits a short exact
sequence

B— VP UP
where VB e W, and UP € U;.
Denote
H =B nB; .
Then H;/W; is called the heart of (U, V1), (Us, Va).

Proposition 3.24. Let (U, V1), (U2, V) be a twin cotorsion pair on B and f : A — B be a morphism
in My, then Hp(f) =0 (k=1 or 2) if and only if f factors through W;.

Proof. We only prove the case k = 2, the other case is by dual.
The "if” is followed directly by Proposition 3.3. Now we prove the "only if” part.
Since Hi(f) = 0, by Proposition 3.6 and 3.10, we get in the following commutative diagram

AL pt oy, Vi
I
A+ B+ Wo Vs
A

U) —= U ——1°

which is similar as in Proposition 3.3, where Ug, U €Uy, Vg € Vo, Ug € W, and WO € Wy, fT factors
through an object V € V,. Since A, B € H;, by [L, Lemma 2.10], AT, B* € B; . Hence there exits a
diagram

At v wA U4
f+ v
e
Bt wB UB

where WA, WE € W, and U4, U € U;. Since Extig(UA, V) = 0, there exists a morphism ¢ : W4 — V
such that f+ = bcw?. Now using the same argument as in Proposition 3.3, we get that f factors through
U € W,. O

Let 7 : B — B/W; be the canonical functor and ¢; : H/W: — B/W; be the inclusion functor.



Let k € {1,2}, since Hx(W;) = 0 by Proposition 3.12, there exists a functor hy : B/W, — Hy/ Wk
such that Hy = hymy.

Tt

x A hy

Hi /W
Hence we get a functor Sy := hgty : Hi/Wi — Hi /Wi and the following corollary.

Corollary 3.25. Let (Ui, V1), (Usz,Vs) be a twin cotorsion pair on B, then By : Hi/Wi — Hi/Wrk
(k € {1,2}) is faithful.

This corollary also implies that if H1/W; = 0 or Ha/Ws = 0, H/W; is also zero.
Moreover, we have the following proposition.

B

B/W,

Proposition 3.26. Let (U1, V1), Uz, Va) be a twin cotorsion pair on B. If Hi/Wy = 0, then Hi C Us
and Ho C V.

Proof. We only prove that H;/W; = 0 implies H; C Us, the other one is by dual.
Let B € H;, since B; C B, by definition, in the following diagram

Vs Ugp B

|

Vp>———> W0 ——- Bt

o

U0 ——=10"

where Up € Us, Vg € Vo, U® € Uy and W° € W;, we get BT € H; by [L, Lemma 2.10]. If H;/W; =0,
then BT € W;. By [L, Lemma 3.4], B € Us. O

3.5. Examples.

Example 3.27. Let A be the k-algebra given by the quiver

a b
TN TN
1 3
A S NS
a* b*

N
e

220NN
NGNS

We denote by ”o” in the AR-quiver the indecomposable objects belong to a subcategory and by ”-” the
indecomposable objects do not.
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Let U5 and V; be the full subcategories of mod A given by the following diagram.

N AN

o o NN _ o NN

NN /N NN/ N
NS ’ N

The heart H; /W, = add(2) and H; ~ mod(U;/P) by [DL, Theorem 3.2]. Now let Uz and Vs be the full
subcategories of mod A given by the following diagram.

AN | AN ]

v o NN L N NN
NN/ N NN /N

| NP S

The heart Ho/Ws = add(1, 2). Since Wy = U; C Uy C Vo C Vy, by Theorem 3.23, Hy =~ Hy /Wi.
Moreover, V; /U has a triangulated category structure, and (Us /Ui, Vo /Uy) is a cotorsion pair on it. The
Serre subcategory (Ha N K1)/ Wa = add(1) is the heart of (Us /Uy, Va/U1).

Recall that a subcategory M of B is called rigid if Extg(M, M) = 0, M is cluster tilting if it satisfies

(a) M is contravariantly finite and covariantly finite in 5.
(b) X € M if and only if Exty(X, M) = 0.
(¢) X € M if and only if Extg(M, X) = 0.

If M is a cluster tilting subcategory of B, then (M, M) is a cotorsion pair on B (see [L, Proposition
10.5]).. In this case we have H =B~ =Bt =B,0~ =o' =id and H = 7.

Example 3.28. Let A be the k-algebra given by the quiver
3
AN
/N /N

with mesh relations. The AR-quiver of B := mod A is given by

o N
6/ \5/ \3 4{324$ 2 / \2/ \1
NNl NS
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Let U5 and V; be the full subcategories of mod A given by the following diagram.

/\ /\ 7N

Vi .
N

NN S NS

The only indecomposable object which does not lie in H; or U;,V; is 3 5 4, since we have the following
commutative diagram

354>—>4@354*» 2

We get Hi(3,4) =3, since 4. € P. Let

\O

N O
SONINZIN SN SN

+ =0 = - (¢]

\/\/\/

Since M is a cluster tilting subcategory of B, (Us, V2) = (M, M) is a cotorsion pair. The heart Ho/Wo =
mod A/ M is the following.

Since Uy € M C Vy, we have W, C Ko C K. Since We get Hi(*53) = 3., we get that 821 is exact.
But (12 is not exact, since 3. — 3 — ;2, is a short exact sequence in H;/W; but not a short

exact sequence in Ha/Whs. In this case, (Ha N K1)/ Ws is add( 5 ), we can see that Ha ~ Hq/W;.



Let Us and V5 be the full subcategories of mod A given by the following diagram.

N SN ' 2N

ININININSN T NSNS
o

AW ANV ANV N

o

\O
RN
N

NN

and the heart Hs/Ws is the following.

Hence we get Hi /Wy ~ Hz/Ws. But we find that Us g K1 and V; g K3, which implies that the condition
Corollary 3.22 is not necessary for the equivalence of two hearts.

By Theorem 3.11 and Proposition 3.16, we get:
Proposition 3.29. Let M be a cluster tilting subcategory of B. Then the canonical functor
7:B— B/M
is half exact. Moreover, every short exact sequence

!

A >p s C
in B induces a long exact sequence

) Q- Q- -
PooaHhopHacabphohaatthaop oot

in the abelian category B/M.

Example 3.30. Let M be a cluster tilting subcategory of B (for instance, see [DL, Example 4.2]). Then
we have a half exact functor

G: B— mod M/P
X — Extg(—, X)|um.
This is a composition of the half exact functor 7 : B — B/M given by Proposition 3.29 and an equivalence
B/M = mod M/P
X = Exty(—, X)|um.
given by [DL, Theorem 3.2]. By Proposition 3.18, G(X) = 0 if and only if X € M.

A more general case is given as follows. If M is a rigid subcategory of B which is contravariantly
finite and contains P, then by [L, Proposition 2.12], (M, M=1) is a cotorsion pair where M+ = {X €
B | Extg(M, X) = 0}. Since M is rigid, we have M C M1, In this case we have BT = B, B~ = H,
ot =id and H = 0~ ow. By [DL, Theorem 3.2], there exists an equivalence between H and mod(M /P).
Hence by Theorem 3.11, we get the following example:

Example 3.31. Let M be a rigid subcategory of B which is contravariantly finite and contains P (for
instance, see [DL, Example 4.3]). Then there exists a half exact functor

G: B— mod M/P
X = Exty(—, 07 (X))lm
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which is a composition of H and the equivalence

H = mod M /P
Y — Exts(—, Y)|m

given by [DL, Theorem 3.2]. By Proposition 3.18, G(X) = 0 if and only if X € M11.

4. HEARTS OF COTORSION PAIRS ARE FUNCTOR CATEGORIES OVER COHEARTS

In this section, we give an equivalence between hearts and the functor categories over cohearts.

4.1. Hearts on triangulated categories. Let T be a triangulated category.

Definition 4.1. Let & and V be full additive subcategories of T which are closed under direct summands.
We call (U, V) a cotorsion pair if it satisfies the following conditions:
(a) Homy(U,V[1]) = 0.
(b) For any object T € T, there exists a triangle T[—1] — Vp — Up — T satisfying Ur € U and
Ve V.

For a cotorsion pairs (U, V), let W :=U N'V. We denote the quotient of T by W as T := T /W. For
any morphism f € Hom7(X,Y), we denote its image in Hom7(X,Y’) by f. For any subcategory D 2 W
of T, we denote by D the full subcategory of T consisting of the same objects as D. Let

TH={TeT|UreW}, T ={TeT|V ew}

Let
H:=T"NnT"
we call the additive subcategory H the heart of cotorsion pair (i4,)V). Under these settings, Abe, Nakaoka
[AN] introduced the homological functor H : T — H associated with (U,V). We often use the following
property of H: H(U) =0= H(V).
For the coheart C := U[—1] N U, since C C T, for any object C € C, by definition of H we get the
following commutative diagram the following commutative diagram

Ve Uc C Vel
Ve We H(C) Vell]
U¢ U¢

Uc[l] — C[l]
(10)

where Uc, U, € U, Vo € V and We € W. Moreover, H(i) is an isomorphism in 7 by [AN, Proposition
3.8, Theorem 5.7].
For the coheart, we have the following proposition which implies that mod C is an abelian category.

Proposition 4.2. Let (U, V) be a cotorsion pair that U[—1] C CxU, then the coheart C has pseudo-kernels.
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Proof. Let f : Cy — Ca be a morphism in C, we can extend it to a triangle T % C4 ER Cy — T[1]. Since
we have a cotorsion pair (U, V), the pair (U[—1],V[-1]) is also a cotorsion pair on 7. Hence T" admits

a triangle V[—1] — U[—1] 27 LV where U € U and V € V. Since U[-1] C C+U, U[—-1] admits a

triangle C' % U[—1] Ly - C[1]. We obtain that f(gha) = 0 and we claim that gha : C' — C} is a
pseudo-kernel of f.

Let ¢’ : C' — C be morphism in C such that fg’, then there exists a morphism x : C’ — T such that
g = gz. Since Hom7(C’, V) = 0, we have jz = 0, hence there exists a morphism y : C’ — U[—1] such
that @ = hy. Since Homy(C’,U) = 0, we have by = 0, hence there exists a morphism z : ¢/ — C such
that y = az. Thus ¢’ = (gha)z, which means that gha : C' — C} is a pseudo-kernel of f.coheart O

We will prove the following theorem.

Theorem 4.3. Let (U, V) be a cotorsion pair that U[—1] C C xU, then H has enough projectives H(C)
and is equivalent to modC.

Let’s start with an important property for H.
Proposition 4.4. The functor H|c : C — H(C) is an equivalence.

Proof. By definition we get that H is dense on C. We only have to check that H|¢ is fully-faithful.
Let C1,C5 € C, since C;, i = 1,2 admits a triangle

C; — H(C;) = U; = Ci[1]
where U; € U, let f € Homy(C1,Cs), by [N, Proposition 4.3], we get a commutative diagram
Cy, ——= H(C;) ——=U; ——(C1[]]
A
Cy —— H(Cy) —— Uy —— Cy[1].

where f* = H(f). If H(f) = 0, f factors through U by [L2, Proposition 2.5]. Since Homy(C,U) = 0, we
get f = 0 which means H is faithful on C.
Let g € Homy(H(C1), H(C5)), since Hom(C,U) = 0, we can still get the following commutative diagram

C, — H(Cy) —= Uy —— C1[1]
ok
Cy ——> H(Cy) —> Uy — Ca]1].
Then we have g = H(f’). Thus H is full on C. O
Now we prove the following theorem.
Theorem 4.5. If U[—1] C C xU, then H has enough projectives H(C).

Proof. We first prove that H(C) is projective in H.
Let f: A — B be an epimorphism in A, since A € 7, we get the following commutative diagram in 7

UA[-1] A w4 U4
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First we show that D € add(U * V). We can get the following triangle A — B® W4 — D — A[1]. Apply

H(g)

f
H to this triangle, we have an sequence A = B H (D), since f is epimorphic, we obtain H(g) = 0.

Apply H to the second row of the above diagram, we get an exact sequence B M> H(D) — 0, which

implies H(D) = 0. By [L2, Proposition 4.7], this means that D € add(Uf % V).

Denote B®&W# by B’, from the second square (8) we get a triangle A %D A[l] where f' = f.
Since D € K, it admits a triangle Up — D @ D’ — Vp — Up|[1]. Now let h : H(C) — B’ be a morphism
in H where C' € C. Since Hom7(C, Vo) = 0 = Homy(C,Ug), by (10), ¢’hi = 0, we have the following
commutative diagram

Apply H to this diagram, since H (2) is an isomorphism in 7, we have the following commutative diagram

H(C)
H()H (i)™ lh
A B 0.

!
This implies that H(C) is projective in .

Since U[—1] CC*U, and H CU[-1] *U = C xU, any object A € H admits a triangle Cy - A - U’ —
Call], apply H to this triangle, we get an exact sequence H(Cy) - A — 0 in H. O

Now we show the main result of this section.
Theorem 4.6. IfU[—1] CC U, then H ~ modC.

Proof. Tt is enough to show that H ~ mod H(C) since C ~ H(C).
Define

F:H — modH(C)
A HOIHI(*,A”H((;).

Now we show that F' is dense.
Let N € mod H(C), we have an exact sequence

Hom (—,f)
Hompg ey (—, Pr) e,

HOIIIH(C)(—7 PQ) — N —=0
where P, Py € H(C). Since H is abelian, we have a exact sequence P; £> Py — Y — 0 Now apply
Homy(H(C), —) to this exact sequence, we have
Hom -,

HomH(c)(—,Pl) —)H(c>( i)
Hence N ~ Homy (—, H(Y))|r(c)-
We prove that F is faithful.
Let f : A — B be a morphism in # such that F(f) = 0. Since U[-1] C C * U, A admits a triangle
Ca LASU S Call], and C4 admits a triangle Cx EN H(C) N 5N C[1]. Since there exists a
morphism j : H(C) — B such that i = jg, we have fj = 0, hence fi factors through W, then fH (i) = 0.
Since H (i) is epimorphic, we get f =0
We prove that F' is full.
Let o : Homy(—, A1)|me) — Homy(—, A2)|m(c) be a morphism in mod H(C). By Theorem 4.5, A;

Homp ¢y (—, Po) — Homy (—, H(Y))|r@c) — 0
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gi fi
admits an exact sequence P) = Pa, = A; — 0 such that P} ,Pa, € H(C), we get the following
commutative diagram

Hompy(cy(—,91) Homp ey (—,f1)
Hompcy(—, Pa,) ——— Homy(—, A1)|m(c) = 0

Homyp c)(—, P},)
\LHOmH(C)(—ﬂ) iHomH(c)(—J)) ia

HomH(c)(—,Px’%) HomH(C)(—,PAz) HOIHI(—,AQNH(@ —0

_ _—
Hompy ey (—,92) Homp ey (—,f2)
by Yoneda’s Lemma. Hence we get the following commutative commutative diagram

91 fi
Py ——= Py, —= 4

ia \Lb c
92 Sz Y

P1'42 — Py, — Ay
Hence Hompg ¢y (—,¢) = a. O

Note that the condition U[—1] C C * U is satisfied in many cases. The following proposition is given
as an example.

Proposition 4.7. IfU is covariantly finite and T is Krull-Schimdt, then U[—1] CC xU.

Proof. If U is covariantly finite and 7 is Krull-Schimdt, then (+12/,U) is a cotorsion pair. Hence any
object U € U admits a triangle U' — C[1] — U — U’[1], which implies that U[—1] C C = U. O

4.2. Hearts on exact categories. Let B be a exact category with enough projectives P and enough
injectives Z.

Since QC C B~ by [L2, Lemma 3.2], for any object QC € QC, by definition of H we get from the
following commutative diagram

Vac Ugc QIC
Vac Wac H(QO)
U———U

where H(a) is an isomorphism by [L2, Theorem 4.1, Proposition 4.2].
For the coheart, we have the following proposition which implies that mod(C/P) is an abelian category.

Proposition 4.8. Let (U,V) be a cotorsion pair that for any any object U € U, there exists an exact
sequence U' — C — U where U' € U and C € C,, then the quotient category C/P has pseudo-kernels.

Proof. This is an analog of Proposition 4.2. O
We will prove the following theorem.

Theorem 4.9. Let (U, V) be a cotorsion pair. LetC :=UN1U and QC = {X € B | X admits X — P —»
C where P € P and C € C}. If for any any object U € U, there exists an exact sequence U — C — U
where U € U and C € C, then the heart of (U,V) has enough projectives H(QC) and is equivalent to
mod(C/P).

We prove the theorem in several steps. We denote the quotient of B by P as B := B/P. For any
morphism f € Hompg(X,Y'), we denote its image in Homg(X,Y) by f.

Lemma 4.10. We have an equivalence C ~ QC.
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Proof. For any morphism f : C'— C’ in C, we have the following commutative diagram

QC P——s=C

Pl

QC'>—— P —= ('

We can define a functor G : C — QC such that G(C) = QC and G(f) = g. G is well defined since if f
factors through P” € P, then it factors through P’, which implies g factors through P, hence g = 0. We
prove that G is an equivalence.

(i) We first prove that G is faithful.

If g = 0, it factors through an projective object Py. By the definition of C, we get Ext};(& P) =0, hence
we have the following

QC P c
\ o
g Po f
Qc’ P’ .

This implies that f factors through P’, hence f = 0.
(ii) We prove that G is full.
For the following diagram

QC>——P ——C
|
QC'>—— P —— ('
since Ext;(C,P) = 0, we can get a commutative diagram

QC>—P ——=C

ig f
Y Y

QC'>—— P —— ('
hence G(f) = 3.
By the definition of Q2C, G is dense.
Hence G is an equivalence. O

Since H(P) = 0, we have the following commutative diagram

—>HQC

\/

Proposition 4.11. H : QC — H(QC) is an equivalence.

where 7 is the quotient functor.

Proof. By definition we get that H is dense. Now we only have to check that H is fully-faithful.
Let QC1,QC5 € QC, since QC;, i = 1,2 admits a short exact sequence

QC; — H(QC;) — U,
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where U; € U. Let f € Homgz(Q2C1, QC3), by [L, Proposition 3.3], we get the commutative diagram

Q01>—> H(ch) e U1

lf \LJH \L
QCym— H(QCs) — Us.
where f* = H(f). If H(f) =0, f factors through U by [L2, Proposition 2.5]. Since Homg(QC,U) = 0,

we get f = 0 which means .J is faithful on QC.
Let g € Homp(H (QC1), H(2Cs)), since Homg(Q2C,U) = 0, we get that in the following diagram

00— H(QC) YT,

lg

QCy— > H(QC>) - Us.

bagay factors through an object P € P. Hence we have two morphisms ¢ : QC; — P and d : P — U,
such that dc = bagaq. Since P is projective, there exists a morphism p : P — H(QC3) such that d = bap.
Hence by(ga; — pc) = 0. Then there is a morphism ' : QCy — QC5 such that f'as = ga; — pe. now we
get a commutative diagram

00— H(QC)) 2 U,

ool

QCg>—a2> H(QCy) o Us.
2

where H(f') = g'. Since H(P) =0, we get g'H(a1) = H(f")H(a2) = gH(a1). Since H(a1) = 0, we have
g’ =g. Hence H is full. O

Lemma 4.12. If for any any object U € U, there exists an exact sequence U’ ~— C — U where U' € U
and C € C, then any object X € H admits a short exact sequence X ~— U — C where U € U.

Proof. Since X € H, it admits a short exact sequence X>—> W —%> U where W € W and U € U.

Sinced C{Y € B|Y admits U’ — C — Y}, U also admits a short exact sequence U'>——= C s U
where U’ € U and C € C. Take a push-out of a and b, we get the following commutative diagram

U/ U/

L

X>0—U"—=C

L

X0 W 25U

Since U is closed under extension, we have U” € U. O

Now we are ready to prove the main theorem of this section.

Theorem 4.13. If for any any object U € U, there exists an exact sequence U' — C — U where U' € U
and C € C, then H has enough projectives H(2C).
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Proof. We first prove that H(2C) is projective in 2.
Let f: A — B be an epimorphism in A, it admits the following commutative diagram in B

A w4 U4
b
B D U4,

g

We can get the following short exact sequence A — B@® W4 — D. Apply H to this triangle, we have the

), H(D) which implies that H(g) = 0. Apply H to the second row

of the above diagram, we get the following exact sequence B M H(D) — 0, which implies H (D) = 0.

This means that D € K (see [L2, Proposition 4.7] ).

. f
following exact sequence A = B

Now we can assume that f admits a short exact sequence: A>L> B' —% D such that D admits a
short exact sequence Up = D @ D" — Vp. Now let C' € C. Since Homz(Q2C, V) = 0 = Homg(QC, Uc),
g'hi factors through P. Hence as in the proof of Proposition 4.11, there is a morphism j : C — A such
that fj — ha factors through P. Since H(a) is an isomorphism in H, we have the following commutative
diagram

H(C)
HmH(y lh
A B 0.

Fi

This implies that H(C) is projective in H.

Since Y C {Y € B|Y admits U' — C — Y where U’" € U and C € C}, by Lemma 4.12, any object
X € H admits a short exact sequence X - U — C where U € U and C € C. Hence we get the following
commutative diagram

QC>— P ——=(C
Xo0—— U —>(C

which implies that H(x) is an epimorphism. O

Theorem 4.14. If for any object U € U, there exists an evact sequence U' — C' — U where U" € U and
C e, then H ~ modC(C.

Proof. This is an analog of Theorem 4.6. O

Proposition 4.15. If U is covariantly finite and contains T, B is Krull-Schmidt , then for any object
U € U, there exists an exact sequence U ~— C — U where U' € U and C € C.

Proof. This is an analog of Proposition 4.7. 0

4.3. Examples. In this section we give several examples of our main theorem.
The first example comes from [KZ, Corollary 4.4].

Example 4.16. Let M be a cluster tilting subcategory of T, then (M, M) is a cotorsion pair with
coheart M[—1]. This cotorsion pair satisfies the condition in Theorem 4.6, we get an equivalence 7 /M ~
mod(M[—1]) where T /M is the heart of (M, M).



Example 4.17. Let k be a field.
NN AN NN NN AN N AN A
/\/\/\/\/\/\/\/\/\/\
\/\/\/\/\/\/\/\/\/\/

The above diagram is a part of D’(modkA,) which continues infinitely in both sides. Let U be the
objects in o, then (U,U*1) is a cotorsion pair. The coheart C of it is in e, and the heart H of (U, U*1) is
in . By Proposition 4.7, we have H ~ mod C.

For exact category case, we have the following example in which the cluster category case is included.

Example 4.18. Let M be a contravariantly finite rigid subcategory of B which contains P, let M =
{X € B | X admits X »» Mj; —» M>}, then by [DL, Theorem 3.2], we have M /M =~ mod(M/P). This
is a special case of our theorem since M,/ M is the heart of cotorsion pair (M, M+1) and M = M+t M.

2 ” ”

In the following example, we denote by ”o” in a quiver the objects belong to a subcategory and by
the objects do not. The following example is one of the smallest ones with not so small hearts.

Example 4.19. Let A be the path algebra of the following quiver

1 2 3 4 5

then we obtain the B = mod A.
1 s 2 s 3 4 s 5
\2 / \ , / \ A / \ . S
1o g 3 4
3, a0 5,
1 2 3
N N S
4, 5,
2 3
1 2

Let

M= o o o

o o
[¢] . o
0] o
Then (M, M=1) is a cotorsion pair on B and the coheart C = L1 M N M =1 M
J‘lM — 0 . . . . MJ‘I — 0 . . . o)
o (] o 0]
(] o o
0] o o o)

We get C/P = add( °y 3 O 5, ). And the heart is the following.
H=- o

We can see that mod(C/P) ~ H
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