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I 

Abstract 

Electric vehicles are expected to reduce fossil fuel dependency, improve urban air quality, and 

thus help the transition to more sustainable and environment-friendly travel. These effects are 

dependent greatly on how an electric vehicle is used. However, researches have shown that it 

is challenging for users to utilize batteries and charging infrastructure in an optimal way. 

Therefore, this study aims to explore how factors influence the way people currently charge 

their vehicles by using battery electric vehicle usage data extracted from a two-year field trial 

in Japan, with the hope of encouraging users to make effective use of battery and charging 

infrastructure. In addition, researches have shown that electric vehicle recharging in the 

evening or during off-peak hours has less of an impact on the electricity grid. However, users 

tend to recharge electric vehicles randomly at their convenience without considering the state 

of the electricity grid. Therefore, this study also aims to explore how factors influence choice 

behavior related to recharge timing by using the same data, with the hope of encouraging 

users to charge during off-peak hours by adopting suitable measures. 

A stochastic frontier model is first used to explore how factors including charging 

infrastructure and battery technology associate the way people currently use batteries, as well 

as to explore whether good use of battery capacity can be encouraged, with the remaining 

charge when mid-trip fast charging begins is treated as a dependent variable. The estimation 

results obtained using four models, for commercial and private vehicles, respectively, on 

working and non-working days, show that remaining charge is associated with number of 

charging stations, familiarity with charging stations, usage of air-conditioning or heater, 

battery capacity, number of trips, Vehicle Miles of Travel, speed, and the type of business. 

However, the associated factors are not similar for the four models. In general, battery 

electric vehicles with high-capacity batteries are initiated at higher remaining charge. The 
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estimation results also show that there are great opportunities to encourage more effective 

battery usage. It appears that the stochastic frontier modeling method is an effective way to 

model the remaining charge at which mid-trip fast-charging should be initiated, since it 

incorporates trip and vehicle characteristics into the estimation process to some extent. 

Then this thesis explores how battery electric vehicle users choose where to fast-charge 

their vehicles from a set of charging stations, as well as the distance by which they are 

generally willing to detour for fast-charging. The focus is on fast-charging events during trips 

that include just one fast-charge between origin and destination in Kanagawa Prefecture, 

Japan. Mixed logit models with and without a threshold effect for detour distance are applied, 

and the former shows a better model fitting. Findings from the mixed logit model with 

threshold show that private users are generally willing to detour up to about 1750m on 

working days and 750m on non-working days, while the distance is 500m for commercial 

users on both working and non-working days. Users in general prefer to charge at stations 

requiring a shorter detour and use chargers located at gas stations, and are significantly 

affected by the remaining charge. Commercial users prefer to charge at stations encountered 

earlier along their paths, while only private users traveling on working days show such 

preference and they turn to prefer the stations encountered later when choosing a station in 

peak hours. Only private users traveling on working days show a strong preference for free 

charging. Commercial users tend to pay for charging at a station within 500 meters’ detour 

distance. The fast charging station choice behavior is heterogeneous among users. These 

findings provide a basis for early planning of a public fast charging infrastructure. 

Lastly, this thesis examines choice behavior in respect of the time at which battery 

electric vehicle users charge their vehicles. The focus is on normal charging conducted at 

home after the last trip of the day, and the alternatives presented are no charging, charging 

immediately after arrival, nighttime charging, and charging at other times. A mixed logit 
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model with unobserved heterogeneity is applied separately for commercial and private 

vehicles, and estimation results suggest that state of charge, interval in days before the next 

travel day, and vehicle-kilometers to be traveled on the next travel day are the main predictors 

for whether a user charges the vehicle or not, that the experience of fast charging negatively 

affects normal charging, and that users tend to charge during the nighttime in the latter half of 

the trial. On the other hand, the probability of normal charging after the last trip of a working 

day is increased for commercial vehicles, while is decreased for private vehicles. Commercial 

vehicles tend not to be charged when they arrival during the nighttime, while private vehicles 

tend to be charged immediately. Further, the correlations of nighttime charging with charging 

immediately and charging at other times reveal that it may be possible to encourage charging 

during off-peak hours to lessen the load on the electricity grid. This finding is supported by 

the high variance for the alternative of nighttime charging. 
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Chapter 1  

Introduction 

1.1 Background 

Electric vehicles (EVs) are attracting more and more attention because they are expected to 

help the transition to more sustainable and environment-friendly travel, for their potential to 

improve urban air quality levels (Hawkins et al., 2013), and reduce fossil fuel dependency 

(Lopes et al., 2009). However, despite the impressive environmental, economic and societal 

benefits that EVs may deliver, there are several major problems that stand in the way of 

promoting their greater use, and the limited range between charges is typically perceived as 

one of them (Dimitropoulos et al., 2011). 

To make consumers more comfortable buying and using EVs, part of great efforts is 

being made to improve the storage capacity of batteries, with the expectation of dealing with 

the range problem by increasing range on a single full charge. However, researches have 

shown that it is a big challenge for users to utilize batteries optimally, they typically initiate 

recharging at higher remaining electricity (Franke et al., 2012; Franke and Krems, 2013a), 

which is mainly because the limited range compared to that of conventional vehicles 

heightens the fear of running out of power. Since the economic and environmental benefits of 

EVs are dependent greatly on the battery capacity (Shiau et al., 2009; Neubauer et al., 2012), 

the additional battery requirement resulted from the inefficient range utilization certainly has 

an adverse impact on the benefits that EVs may deliver. Therefore, it would be beneficial to 

understand the charging behavior related to battery usage to guide more effective utilization 

of EV battery. 

Another part of efforts is being made to deploy a public charging infrastructure to solve 

the range problem by providing convenient recharging opportunities, which has been shown 
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to be an effective way to address the anxiety caused by limited range (Neubauer and Wood, 

2014). However, the charging infrastructure seems to have been underutilized. Observation of 

EV usage at Tokyo Electric Power Company (TEPCO) has indicated that though the 

remaining charge at the end of a journey decreases with the implementation of additional 

charging stations, these stations are infrequently utilized (Electrification Coalition, 2009). 

TEPCO’s experience raises questions such as how much charging infrastructure is sufficient, 

what kind of charging infrastructure layout is effective, which show the importance of 

understanding charging behavior related to charging station usage to develop an effective 

charging infrastructure. 

One inevitable concern which comes with EVs’ popularization is the impact of 

recharging on the electricity grid, since it might add a significant load, which possibly 

requiring changes to the existing infrastructure. Previous researches demonstrate that the 

effect of EV recharging on the electricity grid depends crucially on the timing of recharging 

(Hadley, 2006; Shao et al., 2009; Axsen and Kurani, 2010; Elgowainy et al., 2012). Generally 

speaking, recharging initiated during off-peak hours has less impact on peak loads than that 

during peak hours. However, users tend to recharge EVs randomly at their convenience 

without considering the state of the electricity grid, thus it is important to understand charging 

behavior related to charge timing choice to encourage users to charge at appropriate timing. 

Currently, the EV market is far from mature with evolving battery technology, an 

incomplete charging infrastructure and a small number of EVs on the roads. But several 

national and local governments around the world are promoting the introduction and mass 

market adoption of EVs. Therefore, it is necessary to explore charging behavior, related to 

battery usage, charging infrastructure usage, and charge timing choice, to provide a basis for 

guiding effective battery utilization, developing an effective charging infrastructure, and 

encouraging more appropriate charge timing, which can be expected to accelerate EV market 

growth and promote EVs as societal and environmental policies. 
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1.2 Electric vehicles 

1.2.1 Types of electric vehicles 

Electric vehicles are all kinds of vehicles that are powered entirely or partially by electricity. 

Currently, there are four types of EVs: battery electric vehicles (BEVs), plug-in hybrid 

electric vehicles (PHEVs), hybrid electric vehicles (HEVs) and fuel-cell electric vehicles 

(FCEVs). While each has its advantages and disadvantages, all save on fuel and reduce 

greenhouse gas emissions. 

BEVs run entirely on electricity via batteries that are recharged by plugging into 

electricity grid. BEVs have no internal combustion engine, so they do not directly consume 

any fossil fuel and do not produce any pollution from the vehicles themselves. Moreover, 

because BEVs use electricity instead of fossil fuel, consumers can save more money by using 

a BEV than they would with a conventional vehicle. But the initial purchase price of BEVs is 

significantly higher than the similar conventional vehicles. Also the BEVs on the market 

today generally go around 120 to 180km on a single full charge, which is very limited 

compared with 500km or more between refuelings for most conventional vehicles. The higher 

purchase cost and limited range are two major barriers for their acceptance. However, there is 

strong government support for the development and sale of BEVs for their excellent 

fuel-saving and environmental benefits, including incentives to developers for improving 

battery technology and to consumers for their purchase. Thus it is likely that BEV ranges will 

be extended even further and the purchase cost will be lowered in the future, making BEVs 

become attractive alternatives for many consumers. 

PHEVs run partially on electricity via batteries that are recharged by plugging into the 

electricity grid. The PHEVs on the market generally support a range of 10 to 35km in 

electric-only mode. They are also equipped with an internal combustion engine that can be 

used to replace the electric motor when the battery is depleted and more power is required, 

which gives PHEVs a significantly increased range compared to BEVs. What’s more, the 
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initial purchase cost of PHEVs is comparable to the similar conventional vehicles. The usage 

of electricity would save more money for consumers than they would with a conventional 

vehicle, and the savings can be comparable to BEVs if the distance traveled before recharging 

always less than the vehicle’s range in electric-only mode. Also, using electricity makes 

PHEVs achieve good environmental benefit. But the fuel savings and environmental benefit 

are not so significant if consumers always take long distance trips using gas mode. PHEVs 

currently have advantages over BEVs because the initial purchase cost is acceptable for 

consumers and the internal combustion engine makes consumers comfortable with driving 

range. However, once purchase cost of BEVs resembles the conventional vehicles and their 

driving ranges are extended, consumers may prefer BEVs for their increased fuel savings and 

lessened environmental impact. 

HEVs combine both an electric motor and a gasoline engine. Though these vehicles 

have a battery, they cannot be plugged into electricity grid to be recharged. Instead their 

batteries are recharged by converting kinetic energy into electricity using regenerative 

breaking, such energy is normally wasted in the conventional vehicles. The electric motor 

works simultaneously with the gasoline engine to power the vehicle, which dramatically 

increase fuel economy and reduce gasoline use. HEVs have an advantage in initial purchase 

cost, but the environmental benefit is very limited. 

FCEVs use only an electric motor like BEVs, but the energy is stored in a quite different 

way. FCEVs store hydrogen gas in a tank, the fuel cell in FCEVs combines hydrogen with 

oxygen to produce electricity, which then powers the electric motor just like a BEV. And like 

BEVs, there is no pollution from the vehicles themselves – the only byproduct is water. 

Unlike BEVs, however, there is no need to plug FCEVs into electricity grid, because their 

fuel cells are recharged by refilling with hydrogen gas. Though FCEVs are considered as the 

best EVs for their water-only emissions, they are still in development phases, and there are 

many challenges in extracting hydrogen from renewable resources and delivering hydrogen to 
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fuel stations. 

The BEVs and PHEVs are the most common EVs offering impressive environmental, 

economic and societal benefits on the current market. They are collectively referred to as 

“plug-in electric vehicle” (PEV), which is defined as any vehicle that can be recharged from 

an external source of electricity (Sandalow, 2009). And the issues of charging behavior 

discussed above are raised related to them. 

1.2.2 Types of battery charging 

The introduction of EVs shows that battery charging is one important aspect of PEV 

operation. A convenient infrastructure for charging may bolster the market acceptance of 

PEVs. 

Charging PEVs requires plugging in to electric vehicle supply equipment (EVSE). 

EVSE for PEVs is classified by the rate at which the batteries are charged. And charging 

times vary depending on the type of EVSE, as well as the type of battery, how much energy it 

holds, and how depleted the battery is. 

Currently there are three types of EVSE: Level 1, 2 and 3. Level 1 EVSE provides 

charging through a standard alternating current (AC) 120 Volt (V) household outlet. This is 

the most convenient home-based charging method, but it is also the slowest one. Charging 

times vary greatly from vehicle to vehicle depending on the battery type, but generally take 

around 10-20 hours for a fully depleted battery to be fully recharged. 

Level 2 EVSE offers charging through 240V AC outlet, and is therefore a bit faster than 

Level 1, but requires installation of dedicated equipment. Level 2 EVSE is usually located in 

public places, such as the workplaces, parking lots, shopping centers, restaurants, and so on. 

It can also be located at home, which typically means an additional investment is required for 

PEV owners. Level 2 charging times are variable and depend upon the vehicle as well as the 

equipment. Generally speaking, Level 2 charging takes around 4-8 hours for a full charge. 

Level 3 charging typically operates at 480V or higher voltage. Due to the much higher 
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voltage, Level 3 EVSE requires installation of dedicated equipment, and is normally located 

in public places, operating like a filling station. The higher voltage also offers Level 3 as the 

fastest and most powerful type of charging available, which typically provides an 80% charge 

in 30 minutes. 

Level 1 and Level 2 are often collectively referred to as normal charging, which takes 

several hours to fully recharge a PEV; while level 3 is known as fast charging (also known as 

quick or rapid charging), which reduces the charging time from hours to minutes, making an 

effective complement to normal charging. 

For a PEV recharging, the battery charger is one of the key auxiliaries, which 

replenishes energy for a PEV like a gasoline pump refills a gas tank. The battery chargers can 

be classified into two types: on-board and off-board. An on-board charger means the charger 

is in the PEV, and the battery can be recharged anywhere there is an electric outlet. While an 

off-board charger means the charger is at a fixed location, and the battery can be recharged 

only there is an available charger. Typically, an on-board charger is limited in the power 

output because of size, weight, and cost constraints dictated by the vehicle design, while an 

off-board charger is less constrained by size and weight. Both Level 1 and Level 2 charging 

are on-board, supplying AC power to the vehicle’s charger, which then converts the energy to 

direct current (DC) for storage in the battery. However, Level 3 charging is off-board, with 

the DC output directly to the vehicle’s battery pack bypasses PEV on-board chargers, thus 

Level 3 charging is also called DC fast charging. 

Level 1 and Level 2 have been standardized in SAE J1772 (Electric Vehicle and Hybrid 

Electric Vehicle Conductive Charge Coupler, 2010), but have slight national differences given 

the differences in utility voltages among countries, for example, in Japan, Level 1 and 2 

charge at 100V and 200V respectively. Most vehicles and charging equipment support the 

standard of SAE J1772, which provides an excellent compatibility for Level 1 and Level 2 

charging. However, Level 3 has not been standardized, and there are currently three major 
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fast-charging standards in the world: CHAdeMO, the SAE J1772 Combined Coupler 

Standard (called CCS or “Combo”), and Tesla. All these three standards use different 

connectors and software, leading to compatibility problem. But CHAdeMO is the most 

common fast charging technology by far, as it is used by the Nissan Leaf – the most popular 

EV on the market. 

The characteristics of each type charging are summarized in Table 1.1. 

 

Table 1.1 Characteristics of battery charging 
Charging 

Level Type Power 
supply 

Charger 
location 

Charging time 
(24kWh battery) Typical use Standard 

Level 1 Normal 120V AC On-board 16 hours Home SAE J1772 

Level 2 Normal 240V AC On-board 8 hours Home or 
public places SAE J1772 

Level 3 Fast 480V DC Off-board 30 minutes Public places CHAdeMO/CCS/ 
Tesla 

 

1.3 Related researches 

Exploring on refueling behavior with alternative fuel vehicles (AFVs, vehicles that run on 

fuels other than traditional petroleum, including electricity, biodiesel, ethanol, hydrogen, and 

natural gas) started about several decades ago. Since there were few AFVs on the road, 

however, such studies usually entail analyzing the refueling behavior of 

traditional-fuel-vehicle drivers (e.g. Dingemans et al., 1986; Kitamura and Sperling, 1987). 

With the promotion of AFV Projects around the world, refueling behavior is beginning to be 

explored based on real-life AFV usage data (e.g. Kuby et al., 2013; Kelley and Kuby, 2013), 

and so is the charging behavior of EV users (e.g. Smart and Schey, 2012; Robinson et al., 

2012; Franke et al., 2012; Franke and Krems, 2013a; Franke and Krems, 2013b; Zoepf et al., 

2013; Jabeen et al., 2013). 

Generally, previous researches on EV charging behavior can be classified into three 

groups according to their research contents. The first one usually presents the statistical 

characteristics of charging behaviors observed in an EV project, such as the number of daily 
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charging, the remaining electric when charging begins, the location of charging (home, work, 

public charging stations, and others), and so on. The studies of Smart and Schey (2012), 

Robinson et al. (2012) belong to this group. The second group focuses on the EV range 

utilization from psychological perspective. The representative studies are Franke et al. (2012), 

Franke and Krems (2013a), Franke and Krems (2013b). By investigating the psychological 

dynamics of user-range interaction, these studies identified the variables that influence the 

actual usable range for EV users. And the third group aims to model the behavior of charging 

choice, such as whether charge or not at the end of a trip, where to charge (home, work, or 

public charging stations), and so on. The studies of Zoepf et al. (2013) and Jabeen et al. (2013) 

belong to the third group. 

Previous studies have revealed that familiarity or experience greatly influences refueling 

behavior (Dingemans et al., 1986; Kitamura and Sperling, 1987; Franke et al., 2012), and 

refueling choice is the result of a learning process (Dingemans et al., 1986; Franke et al., 

2012). Currently, the EV market is at developing stage with the charging infrastructure 

becomes more spatial diffusion, technical progress is made with batteries, and drivers gain 

more experience. Therefore, just presenting the statistical characteristics of charging 

behaviors and exploring the variables that influence the charging behaviors are not enough to 

provide informed strategies for promoting the development of EV market, as well as 

constructive advices for directing the construction of infrastructure for EVs. Rather, it is 

necessary to explore how various factors influence charging behaviors based on real-life EV 

usage data, which is rarely involved in previous studies. 

1.4 Objective of this thesis 

In light of the above discussion about the related researches on charging behavior as well as the 

charging issues mentioned in the background, basing on the two-year field trial on BEV usage 

in Japan, this thesis aims to explore: 1) how various factors influence charging behavior related 
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to battery usage; 2) how various factors influence charging behavior related to charging 

infrastructure usage; 3) how various factors influence charging behavior related to charge 

timing choice. 

1.5 Organization of the thesis 

This thesis is composed of six chapters, and the remainder is organized in the following 

manner. 

Chapter 2 introduces the field trial on BEV usage in Japan. The BEVs participating in 

the field trial and the development of charging infrastructure in Japan are firstly introduced. 

Then the statistical characteristics of observed driving and charging behaviors are presented, 

including the trip distance, the number of daily trips, the remaining electricity when charging 

begins, the charge timing, and so on. 

Chapter 3 examines the charging behavior related to battery usage. The focus is on the 

mid-trip fast charging, taking place after leaving the origin and before arriving at the 

destination. A stochastic frontier model is used to explore factors that influence the remaining 

charge when mid-trip fast charging begins, as well as to explore whether good use of battery 

capacity can be encouraged. The effects of various factors on the remaining charge when 

mid-trip fast charging begins are discussed based on the estimation results. And the average 

inefficiency in battery usage is also discussed by comparing the actual remaining charge with 

the predicted required charge. 

Chapter 4 examines the charging behavior related to charging infrastructure usage. The 

focus is on fast-charging events during trips that include just one fast-charge between origin 

and destination in Kanagawa Prefecture. Mixed logit models with and without a threshold 

effect for detour distance are applied to explore how BEV users choose where to fast-charge 

their vehicles from a set of charging stations, as well as the distance by which they are 

generally willing to detour for fast-charging. The estimation results are discussed to show the 
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effects of various factors on the choice of fast charging stations. And the generally willing 

detour distance is obtained by comparing the model fittings of models with different 

thresholds. 

Chapter 5 examines the charging behavior related to charge timing choice. The focus is 

on normal charging after the last trip of the day, and the alternatives presented are no 

charging, charging immediately after arrival, nighttime charging, and charging at other times. 

A mixed logit model with unobserved heterogeneity is applied to explore choice behavior in 

respect of the time at which BEV users charge their vehicles. The effects of various factors on 

the choice of normal charge timing are discussed based on the estimation results. 

Chapter 6 provides the conclusions and future directions followed by this thesis. 
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Chapter 2  

Field trial and data profiles 

This chapter introduces the field trial on BEV usage conducted in Japan. Firstly, the 

BEVs participating in the field trial and the development of charging infrastructure in Japan 

are introduced. Following this, the statistical characteristics of observed driving and charging 

behaviors are presented, including the trip distance, the number of daily trips, the remaining 

electricity when charging begins, the charging locations, the charging timing, and so on. 

Finally, a summary is presented to wraps up this chapter. 

2.1 Background 

The Ministry of Economy, Trade and Industry (METI) launched its Project of Consigning 

Technology Development for Rational Use of Energy in 2011 (Successful Applicant, 2012). 

From February 2011 to January 2013, the Japan Automobile Research Institute (JARI) 

collected data from nearly 500 BEVs used by both commercial fleets and private households in 

42 out of 47 prefectures across Japan. Throughout this thesis, vehicles owned by fleets are 

referred to as “commercial vehicles”, which include both business vehicles and government 

vehicles, while vehicles owned by households are referred to as “private vehicles”. 

 

 

Figure 2.1 Number of BEVs participating in the field trial 
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Figure 2.1 shows these BEVs participating in the field trial. It is worth noting, from 

Figure 2.1, that although the total trial period was 24 months, the sampling of private vehicles 

began in October 2011, and not every vehicle in each group participated in the trial at the same 

time. Most vehicles, however, were observed over the final 12 months of the trial. 

As of the end of this field trial, the charging infrastructure has been expanded into all 47 

prefectures of Japan to encourage BEV usage. The charging station density for each 

prefecture is shown in Figure 2.2, which indicates that the density of charging stations varies 

greatly from region to region in Japan. 

 

 

Figure 2.2 Charging station density for each prefecture 
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remaining 10.6% are not open to the public and are only available to users belonged to the 

constructors of the charging stations for free. However, the trial does not provide information 

about whether a user is a member or a constructor-belonged of a charging station. The fast 

chargers are generally located at workplaces, leisure places, car sales outlets, parking lots, 

expressway service areas, convenience stores and gas stations, as shown in Figure 2.3. 

 

 

Figure 2.3 Locations of fast charging infrastructure 
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charging infrastructure. The following sections will present the statistical characteristics of 

driving and charging behaviors of nearly 500 BEVs observed in two years. 

2.3.1 Driving behaviors 

The analyzing unit of driving behavior is typically a trip. Considering that the battery packs 

of BEVs covered by this field trial support maximum driving mileages of 120km and 180km 

on a single full charge under typical road conditions, as well as that range anxiety is usually 

felt by BEV users (Sun et al., 2015a), more than one fast charging may be conducted during a 

long trip. On the other hand, the current fast-charging time is much longer than the traditional 

refueling time, and users may engage some activities while charging, such as having a tea or 

making a short-time shopping, which raise such question that whether a stay for fast-charging 

ends a trip or not. The distribution of duration between initiating a fast-charging and starting 

the next traveling is shown in Figure 2.4, which indicates an increase in percentage of stays 

for fast-charging when the duration is longer than one hour. 

 

 

Figure 2.4 Distribution of duration between initiating a fast-charging and starting the next traveling 
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followed by a driving with a different start-up time (Figure 2.5-(1)), or a stay for normal 

charging (Figure 2.5-(2)), or a stay for fast charging whose duration time is more than one 

hour (Figure 2.5-(3)), or nothing (Figure 2.5-(4)); 

(2) two or more contiguous sequences of vehicle locations with the same start-up time 

for driving connected by stays for fast-charging whose duration time is not more than one 

hour, followed by a driving with a different start-up time (Figure 2.5-(5)), or a stay for normal 

charging (Figure 2.5-(6)), or a stay for fast charging whose duration time is more than one 

hour (Figure 2.5-(7)), or nothing (Figure 2.5-(8)). 

 

 

Figure 2.5 Example diagram of a trip 
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addition, BEVs were driven on average about 5.2 km/12.2 minutes per trip, but the trip 

completed by private vehicles is longer. What's more, BEVs were driven on average about 

24.6 km/68.9 minutes per travel day, and both commercial and private vehicles have the 

similar daily travel distance, however, the daily travel time is longer for commercial vehicles. 

 

Table 2.1 Statistical characteristics of driving behaviors 

Item Mean Median Standard deviation 
All Commercial Private All Commercial Private All Commercial Private 

Number of daily 
trips* 5.7 7.0 4.7 4 5 4 5.0 6.5 3.0 

Trip length (km) 5.2 4.5 5.9 3 3 3 6.7 5.6 7.5 
Trip duration 

(minute) 12.2 11.2 13.3 7 6 8 18.0 18.4 17.4 

Daily sums of 
trip length* (km) 24.6 24.5 24.7 19 19 18 22.9 20.8 24.4 

Daily sums of 
trip duration* 

(minute) 
68.9 78.4 61.8 53 63 46 62.7 67.9 57.5 

* including days with trips 

 

 

Figure 2.6 Distribution of driving along time of day 
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there is almost no difference in the average distance driven per travel day between 

commercial and private vehicles. The inconsistency between daily travel distance and daily 

travel time for commercial and private vehicles could be because of their travel periods and 

the traffic condition. And this possible explanation can be supported by Figure 2.6, which 

shows the distribution of driving along time of day. The larger percentage of driving 

commercial vehicles in the high traffic periods may results in the longer travel time of 

commercial vehicles for the similar travel distance. 

To examine the driving behavior in more detail, the following will presents the 

distributions of number of daily trips, trip length, trip duration, daily sums of trip length and 

daily sums of trip duration. 

The distribution of the number of daily trips for commercial and private vehicles is 

shown in Figure 2.7, which indicates that the highest frequency of daily trips is two times per 

day for both commercial and private vehicles, and that the higher frequency is more common 

among commercial vehicles. 

 

 

Figure 2.7 Distribution of number of daily trips 
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and private vehicles; that the very short trips less than 1 km are more common among 

commercial vehicles; and that the private vehicles were generally used for longer trips than 

commercial vehicles. 

 

 

Figure 2.8 Distribution of trip length 

 

The distribution of the trip duration for commercial and private vehicles is depicted in 

Figure 2.9, which shows the similar trend as the distribution of trip length in Figure 2.8 for 

both commercial and private vehicles. 

 

 

Figure 2.9 Distribution of trip duration 
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The distribution of the daily sums of trip length for commercial and private vehicles is 

shown in Figure 2.10, which indicates that most of the daily travel distance is less than 100 

km for both commercial and private vehicles. It seems that any fully charged BEV 

participating in the field trial can satisfies the daily travel demand. 

 

 

Figure 2.10 Distribution of daily sums of trip length 

 

 

Figure 2.11 Distribution of daily sums of trip duration 
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common among commercial vehicles. 

2.3.2 Charging behaviors 

During this two-year field trial, there are 104,632 charging events conducted by all the BEVs, 

and normal charging accounts for 90.6% while fast charging accounts for 9.4%. Considering 

the differences between normal charging and fast charging mentioned in Section 1.2.2, the 

characteristics of observed charging behavior will be presented for normal charging and fast 

charging respectively. 

 

Table 2.2 Statistical characteristics of charging behaviors 

Item Mean Median Standard deviation 
All Commercial Private All Commercial Private All Commercial Private 

Number of 
normal 

charging per 
day* 

0.77 1.04 0.60 1 1 0 0.89 1.05 0.74 

Number of 
fast charging 

per day* 
0.36 0.40 0.35 0 0 0 0.77 0.87 0.74 

Normal 
charging time 

per day* 
(hour) 

1.75 2.09 1.54 1.27 1.88 0 2.08 2.00 2.10 

Fast charging 
time per day* 

(minute) 
8.32 4.32 9.46 0 0 0 57.16 9.91 64.55 

SOC at the 
start of 
normal 

charging (%) 

62.26 67.75 54.80 64 71 54 21.80 20.39 21.42 

SOC at the 
start of fast 

charging (%) 
54.55 56.74 53.72 51.5 56.5 49.5 22.21 22.71 21.96 

SOC at the 
end of normal 
charging (%) 

94.86 94.88 94.82 100 100 100 12.94 12.84 13.07 

SOC at the 
end of fast 

charging (%) 
83.98 85.43 83.43 83.5 83.5 83.5 10.45 9.18 10.84 

* including days with trips, with or without charging 
 

The normal charging performed to commercial vehicles accounts for 57.5% of the total 

94,832 normal charging and the other 42.5% are performed to private vehicles, while the fast 
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charging performed to commercial and private vehicles accounts for 27.5% and 72.5% 

respectively of the total 9800 fast charging. Table 2.2 gives the statistical characteristics of 

observed charging behavior. It is worth noting that the daily statistics are obtained by 

including days with trips, with or without charging. Table 2.2 shows that all the BEVs 

participating in this field trial were normal-charged 0.77 times and fast-charged 0.36 times 

per travel day on average, and these values are both larger for commercial vehicles. In 

addition, BEVs were normal-charged about 1.75 hours and fast-charged 8.32 minutes per 

travel day on average, but the daily normal charging time is longer while the daily fast 

charging time is shorter for commercial vehicles. What's more, the SOC at which normal 

charging begins is 62.26% and the SOC at which fast charging begins is 54.55% on average, 

and these values are both larger for commercial vehicles. However, the SOC at which normal 

charging ends is 94.86%, which is similar between commercial and private vehicles, but the 

SOC at which fast charging ends is 83.98%, which is larger for commercial vehicles. 

The results indicate that BEVs were recharged more frequently by normal charging than 

by fast charging, especially the commercial vehicles which were normal-charged at least once 

a travel day on average. In addition, normal charging typically began at a higher SOC than 

fast charging, but private vehicles were generally recharged at a relatively stable level of SOC 

for both normal charging and fast charging. On the other hand, normal charging typically 

ended at a higher SOC nearly 100% than fast charging, and there were not much difference 

between commercial and private vehicles. 

Like analyzing driving behaviors, the distributions of number of charging per day, 

charging time per day, SOC at the start of charging and SOC at the end of charging for 

normal and fast charging respectively will be presented below to examine the charging 

behavior in more detail. 

The distribution of the number of normal charging per day for commercial and private 

vehicles is shown in Figure 2.12, which indicates that private vehicles were not 
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normal-charged in a much larger percentage of their travel days than commercial vehicles; 

and that for the days with normal charging, the highest frequency of normal charging is once 

a day for both commercial and private vehicles, but sometimes commercial and private 

vehicles were normal-charged multiple times during a travel day. 

 

 

Figure 2.12 Distribution of number of normal charging per day 

 

 

Figure 2.13 Distribution of number of fast charging per day 
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in Figure 2.12 for both commercial and private vehicles; and that for the days with fast 

charging, the highest frequency of fast charging is once a day for both commercial and 

private vehicles, but sometimes commercial and private vehicles were fast-charged multiple 

times during a travel day. 

The distribution of the normal charging time per day for commercial and private 

vehicles is depicted in Figure 2.14, which shows the same percentage of travel days without 

normal charging as that shown in Figure 2.12 for both commercial and private vehicles; and 

that for travel days with normal charging, the percentage with shorter daily normal charging 

time is higher for commercial vehicles. 

 

 

Figure 2.14 Distribution of normal charging time per day 
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Figure 2.15 Distribution of fast charging time per day 

 

The distribution of the SOC at the start of normal charging for commercial and private 

vehicles is depicted in Figure 2.16, which shows that very few BEVs were started to be 

normal-charged when they are about to run out of power; and that commercial vehicles were 

generally started to be normal-charged at a higher SOC than private vehicles. The higher 

SOC when normal charging begins possible because BEV users tend to normal-charge their 

vehicles at their convenience in advance for the next trip. 

 

 

Figure 2.16 Distribution of SOC at the start of normal charging 
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fast-charged when they are about to run out of power; and that though the SOC at the start of 

fast charging is higher for commercial vehicles on average, the comparison of fast charging 

behavior between commercial and private vehicles is more complex than that of normal 

charging behavior: fast charging initiated at a particularly low SOC of less than 20% is more 

common among commercial vehicles, while fast charging initiated at a particularly high SOC 

of more than 80% is more common among private vehicles. The higher SOC when fast 

charging begins possible because BEV users tend to fast-charge their vehicles when there is 

an available fast charging station in advance for the next trip. The complicated difference in 

SOC at the start of fast charging between commercial and private vehicles might be resulted 

from the layout of fast charging stations. 

 

 

Figure 2.17 Distribution of SOC at the start of fast charging 
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are presented for, respectively, the earlier and the latter period of this trial (the observations 

are divided into two equal stages for each individual according to the sample date). 

As shown in Table 2.3, the SOC at which normal charging begins in the earlier period of 

this trial is smaller on average than that in the latter period, so is the SOC at which fast 

charging begins, which are the cases for both commercial and private vehicles. 

 

Table 2.3 Statistical characteristics of SOC at the start of charging at different stages (%) 

 Mean Median Standard deviation 
All Commercial Private All Commercial Private All Commercial Private 

Normal charging 
The earlier 59.95 63.92 54.55 61.5 66.5 53.5 21.43 20.74 21.16 
The latter 64.57 71.58 55.05 67.0 75.5 54.0 21.92 19.29 21.68 

Fast charging 
The earlier 50.97 54.50 49.62 47.5 54.5 46.0 21.70 23.12 20.98 
The latter 58.16 59.00 57.84 55.0 58.0 54.0 22.14 22.07 22.16 

 

The distribution of the SOC at the start of normal charging for commercial and private 

vehicles, respectively, in the earlier and the latter period of this trial is depicted in Figure 2.18, 

which shows an obvious increase in percentage of normal charging initiated at higher SOC in 

the latter period among commercial vehicles. 

 

 

Figure 2.18 Distribution of SOC at the start of normal charging in different stages 
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The distribution of the SOC at the start of fast charging for commercial and private 

vehicles, respectively, in the earlier and the latter period of this trial is depicted in Figure 2.19, 

which shows that the percentage of fast charging initiated at SOC smaller than 40% 

decreased obviously in the latter period for both commercial and private vehicles, while the 

percentage of fast charging initiated at SOC larger than 50% increased. 

 

 

Figure 2.19 Distribution of SOC at the start of fast charging in different stages 
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Figure 2.20 Distribution of SOC at the end of normal charging 

 

The distribution of the SOC at the end of fast charging for commercial and private 

vehicles is depicted in Figure 2.21, which shows that most of the fast charging ends at a level 

of SOC higher than 70% for both commercial and private vehicles; and that nearly half of the 

fast charging ends at 80%~90% for both commercial and private vehicles. 

 

 

Figure 2.21 Distribution of SOC at the end of fast charging 
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vehicles is depicted in Figure 2.22, which shows that normal charging occurred during 

nighttime is more common among private vehicles, and the home-based characteristic of 
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normal charging definitely is a reason. 

 

 

Figure 2.22 Distribution of normal charging along time of day 

 

The distribution of fast charging along time of day for commercial and private vehicles 

is depicted in Figure 2.23, which shows that fast charging performed to both commercial and 

private vehicles typically occurred during periods with higher traffic, as shown in Figure 2.6, 

and the reason may be that fast charging must be completed through dedicated equipment 

normally located in public places. 

 

 

Figure 2.23 Distribution of fast charging along time of day 
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2.4 Summary 

This chapter assessed the driving and charging behavior observed from nearly 500 BEVs in a 

two-year field trial on BEV usage in Japan. On average, BEVs were driven 5.7 trips per day, 

5.2 km per trip and 24.6 km per day. However, differences in charging behavior exist between 

commercial and private vehicles, which are that commercial vehicles were used for shorter 

trips with a higher use frequency than private vehicles, but the daily travel distance is similar 

between commercial and private vehicles. For the charging behavior, BEVs were 

normal-charged 0.77 times and fast-charged 0.36 times per travel day on average. Differences 

also exist between commercial and private vehicles with respect to normal charging as well 

as fast charging. Typically, normal charging began at a higher SOC than fast charging, but 

private vehicles were generally recharged at a relatively stable level of SOC for both normal 

charging and fast charging. What’s more, the SOC at which charging begins is larger on 

average in the latter period of this trial for both normal and fast charging, which are the cases 

among both commercial and private vehicles. On the other hand, normal charging typically 

ended at a higher SOC nearly 100% than fast charging, and there were not much difference 

between commercial and private vehicles. What’s more, normal charging occurred during 

nighttime is more common among private vehicles, but fast charging performed to both 

commercial and private vehicles typically occurred during periods with higher traffic. 

It is important to point out that the characteristics of driving and charging behavior 

displayed in this Chapter are only indicative of BEV adopters in Japan, and they may not 

necessarily be generalized outside of Japan. 
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Chapter 3  

Stochastic frontier analysis of excess access to mid-trip battery 

electric vehicle fast charging 

This chapter examines the charging behavior related to battery usage. By analyzing the 

research background, this study focuses on the mid-trip fast charging events taking place after 

leaving the origin and before arriving at the destination. Then, some characteristics of 

mid-trip fast charging behavior seen in the samples used in this study are explained. And a 

stochastic frontier model is described and used to explore factors that influence the remaining 

charge when mid-trip fast charging begins, as well as to explore whether good use of battery 

capacity can be encouraged. The effects of various factors on the remaining charge when 

mid-trip fast charging begins are discussed based on the estimation results. In addition, the 

average inefficiency in battery usage is also discussed by comparing the actual remaining 

charge with the predicted required charge. Finally, some conclusions are presented to wraps 

up this chapter. 

3.1 Introduction 

To deal with the range problem typically perceived by consumers as a barrier in their buying 

and using EVs, great efforts are currently being made to deploy a charging infrastructure and 

improve the storage capacity of batteries. These efforts deal with the range problem on two 

fronts: by providing convenient recharging opportunities and by increasing range on a single 

full charge. However, observation of EV usage at Tokyo Electric Power Company (TEPCO) 

has indicated that the remaining charge at the end of a journey decreases with the 

implementation of additional charging stations, even though these stations are infrequently 

utilized (Electrification Coalition, 2009), which suggests that drivers are recharging just to give 
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themselves a larger margin of error to prevent running out of charge without a station nearby. 

This raises questions such as how much charging infrastructure and what battery capacity is 

sufficient, whether charging stations and battery capacity are being effectively used and, more 

importantly, how to encourage users to make effective use of charging stations and battery 

capacity. TEPCO’s experience may suggest that charging behavior, especially the SOC at 

which drivers begin to charge their EVs, may provide some answers to these questions. 

Previous studies have revealed that refueling behavior is greatly influenced by users’ 

familiarity with refueling station locations (Dingemans et al., 1986; Kitamura and Sperling, 

1987; Plummer et al., 1998), and refueling choice is the result of a learning process 

(Dingemans et al., 1986). Currently, however, the EV market is far from mature. There is an 

incomplete charging infrastructure, battery technology is evolving, and there is only a small 

number of EVs on the roads, so drivers’ present charging behavior is likely to change over 

time as the infrastructure becomes more spatial diffusion, technical progress is made with 

batteries, and drivers gain more experience. Therefore, it is important to explore how 

charging behavior is influenced by the charging infrastructure and battery capacity based on 

real-life EV usage data, which is rarely involved in previous studies. 

Currently EVs can be recharged by normal charging and fast charging, as introduced in 

Section 1.2.2. Normal charging usually receives special attention because it is most frequent, 

but although most charging can be done while stationary, fast charging plays an important 

role in long-distance trips or when an unexpected emergency arises. The BEV field trial in 

Japan (Successful Applicant, 2012) showed that it is rare for a car to require fast charging 

every day, but seen over a period of a couple of weeks or months nearly all cars need to use 

fast charging. The widespread availability of fast chargers but with limited numbers in Japan, 

characteristic revealed by the introduction of charging infrastructure in Section 2.2, probably 

results from the understanding that fast charging is needed by most vehicles but only very 

rarely. In addition, Christensen et al. (2010) pointed out that a fast-charging infrastructure is 
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the most important need if EVs are to come into widespread use. 

This chapter investigates fast-charging behavior in consideration of charging 

infrastructure and battery capacity. The layout of fast chargers in Japan, depicted in Figure 

2.3, may generate three types of fast-charging events: beginning-of-trip, mid-trip and 

end-of-trip. Beginning-of-trip and end-of-trip fast-charging occurs respectively at the origin 

and destination of trips, while mid-trip fast-charging takes place after leaving the origin and 

before arriving at the destination. Although the focus is on fast charging, it is mid-trip 

fast-charging events that are of interest rather than beginning-of-trip and end-of-trip events. 

Because we think mid-trip fast-charging represents the intended demand for fast charging, 

while beginning-of-trip and end-of-trip fast-charging does not seem to represent intended 

demand for fast charging. For instance, some BEV drivers typically plug in their vehicles for 

fast charging prior to departing from or when parked at a charging location regardless of the 

vehicle’s SOC and their upcoming driving plans. This type of fast-charging event does not 

happen during trips. Actually, the beginning-of-trip and end-of-trip fast-charging account for 

11.2% of all the fast charging events observed during the field trial. 

Personality trait has been shown to affect EV range utilization (Franke and Krems, 

2013a), which may results in a complicated pattern of SOC at the initiation of fast charging. 

For example, a risk-averse driver will probably choose to fast charge at a higher remaining 

charge in order to avoid the risk of running out of charge; in an extreme case, such a driver 

may charge whenever there is a fast-charging station available. Such excessive “just-in-case” 

behavior would require a high density of charging stations that would be unnecessarily 

wasteful. On the other hand, the most adventurous driver will charge only on the realization 

that the remaining charge cannot support the rest of the trip. Planning for this behavior would, 

inversely, require a lower density of fast-charging stations leading to greater risk of stranding 

and might discourage some customers from buying an EV. This means it is better to estimate 

charging behavior on an individual level. 
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Thus, this chapter aims at developing a methodology for effectively representing the 

relationship between remaining charge when mid-trip fast charging is initiated and the 

charging infrastructure, taking into account the charge capacity of the vehicle. A stochastic 

frontier model is used for the analysis, using real-life BEV usage data collected in Japan, and 

each individual’s remaining charge at fast-charging initiation is taken to be a function of the 

characteristics of charging stations, BEV’s charge capacity, travel patterns, and the familiarity 

with charging infrastructure. 

3.2 Data profiles 

As mentioned previously, only mid-trip fast-charging events were under consideration. After 

selecting the required fast-charging events and bypassing individuals for whom there is only a 

single mid-trip fast-charging event, the final dataset used in the study included 40 commercial 

vehicles with 1794 fast-charging events and 114 private vehicles with 4702 fast-charging 

events. 

We now look at the characteristics of the data used in this study. Figure 3.1 shows the 

distribution of SOC when mid-trip fast charging begins for commercial and private vehicles, 

respectively, on working and non-working days. Here “non-working days” include both 

weekends and holidays. From this graph, it can be shown that nearly half of fast-charging 

events occur at an SOC of 30-50% in the case of private vehicles, while the proportion is 

40-70% for commercial vehicles. On the other hand, very few vehicles start fast charging 

when they are about to run out of power (less than 10% charge, in fact, the smallest SOC 

when mid-trip fast charging begins is 5.5%). Further, a greater proportion of commercial 

vehicle fast-charging events occur at a higher SOC on non-working days, while the 

distributions are similar for private vehicles both on working and non-working days. This 

makes it clear that charging behavior differs between commercial and private vehicles, as 

well as between working and non-working days. 
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Figure 3.1 Distribution of SOC at initiation of mid-trip fast charging 

 

The purpose of this study is to explore how factors including charging infrastructure and 

battery capacity affect charging behavior for different users by analyzing the behavior of 

commercial and private users who participated in this trial. The ultimate aim is to assess the 

possibility of encouraging more effective charging behavior. It is important to point out that 

the results of this study are only indicative of early BEV adopters, given the limited number 

and spatial distribution of charging stations. Also the results may not necessarily be 

generalized outside of Japan. 

3.3 The stochastic frontier model 

Generally speaking, a BEV will be stranded without charge if there are no charging stations 

within the range provided by the remaining charge. Here we assume that at every possible 

location on the road network one can estimate the nearest charging station. Then, given the 

battery capacity, there is a critical value of SOC for that “location & battery capacity” 

combination that would be the minimum required charge to prevent being stranded. While the 

actual remaining charge when fast charging begins is almost always available from the trial 

data, the minimum required charge is not observable. A modeling approach, therefore, is 
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adopted in this study to estimate the minimum required charge based on the inequality, 

RE0≤RE1                                                            (3.1) 

Where RE0 is the minimum required charge and RE1 is the actual remaining charge when 

a fast-charging event begins. For this inequality, we can state 

RE1=RE0+u                                                         (3.2) 

where u is a non-negative random variable representing the inefficiency inherent in fast 

charging. It is this inefficiency that demands more infrastructure and bigger batteries than 

absolutely necessary. 

As noted earlier, it is better to carry out estimations at the individual level rather than as 

an average. Additionally, as noted in the description of the samples above, the BEV usage 

data used in this study consists of an unbalanced panel of data representing 154 vehicles for 

the months from February 2011 to January 2013. One possible model that can be applied to 

this relationship is the true random effects stochastic frontier model (Greene, 2005), whose 

general form can be presented as 

' '
it i it it i it it ity w x w x v uα β ε α β= + + + = + + + +                              (3.3) 

Where i denotes the vehicle, t denotes the trial period of the vehicle, the observed dependent 

variable yit is the remaining charge of vehicle i during period t when a fast-charging event 

begins and obviously yit is RE1 defined previously, wi is the random vehicle specific effect, β 

is a vector of coefficients, xit is a vector of explanatory variables, and vit and uit are the 

symmetric and one-sided random error terms, which represent the statistical noise and 

inefficiency, respectively. The random variables wi and vit are typically assumed to be 

normally distributed, while a half-normal or truncated-normal distribution is often used for 

uit. 

2~ [0, ]i ww N σ                                                        (3.4) 

2~ [0, ]it vv N σ                                                         (3.5) 

2, ~ [0, ]it it it uu U U N σ=                                                (3.6) 



37 

α + wi + β′xit + vit is the optimal, frontier goal which, in this study, is RE0 defined 

previously and can be viewed as the minimum required charge at the initiation of fast 

charging. The observed remaining charge will not be less than α + wi + β′xit + vit, since uit is 

non-negative, to satisfy inequality (3.1). 

At first sight, this appears to be a model with a three-part disturbance, which would 

surely be inestimable. But as Greene (2005) pointed out, it is in fact a model with a 

traditional random effect, but with a compound error εit having the asymmetric distribution 

given by (3.7) below. 

( ) 1( ) ( )
(0)
it it

itf ε λ σ εε φ
σ σ

Φ −
=

Φ
                                           (3.7) 

where 𝜆 = 𝜎𝑢 𝜎𝑣⁄  and 𝜎 = �𝜎𝑢2 + 𝜎𝑣2. 

The parameters of the model are estimable by maximum likelihood based on simulation 

or quadrature, since there is no closed form for this density. 

Although the stochastic frontier model was originally proposed independently by Aigner 

et al. (1977) and Meeusen and van den Broeck (1977) for estimating the effects of technical 

inefficiency in production, recent applications have also been found in many other fields. 

These include agriculture (Baten et al., 2009; Ali and Samad, 2013), finance (Wang, 2003; 

Neffati et al., 2011), public utility (Hattori, 2002; Vishwakarma and Kulshrestha, 2010), and 

transportation (Pendyala et al., 2002; Cullinane et al., 2002; Holmgren, 2013). In these 

applications, the observed outcomes below the frontier level (for the production frontier 

model) or above the frontier level (for the cost frontier model) lead to inefficiency, so the 

observed outcomes are modeled as deviating from the frontier level in a particular direction 

according to the model type. Thus a stochastic cost frontier model seems appropriate for this 

study when seen in terms of these application contexts. 

Considering that the same SOC means different electricity for different EVs and it is 

difficult to convert electricity to supportable range, the dependent variable of this study is 
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defined as the remaining charge in kWh when a mid-trip fast-charging event begins. The 

focus is then on the independent variables. 

First is the factors related to charging stations, inspired by TEPCO’s experience 

(Electrification Coalition, 2009). The number of charging stations varies greatly from region 

to region in Japan (see Figure 2.2). In order to accurately describe the relationship between 

charging behavior and charging stations, further, to evaluate and instruct the construction of 

charging infrastructure, the charging stations are divided into three groups: Tokyo & 

Kanagawa (stations/1000km2 > 55), Osaka & Saitama (15 < stations/1000km2 < 55), and 

other prefectures; the first two groups are expressed with dummy variables, while specific 

value is used for the third group. These cut-offs are fixed based on the similarities and 

differences of charging station densities among prefectures as well as the sample size for each 

group. For the value of the third group, four types are examined: number of charging stations 

per 1000 square kilometers in prefecture where BEV is registered (number of charging 

stations 1), number of charging stations per 1000 square kilometers in prefecture where the 

charging station used in the trip is located (number of charging stations 2), number of 

charging stations within a 30km radius of home/company location (number of charging 

stations 3), and number of charging stations within a 30km radius of the charging station used 

in the trip (number of charging stations 4). It’s worth noting that all the four definitions don’t 

apply to BEVs in Tokyo, Kanagawa, Osaka and Saitama. It can be expected that the 

remaining charge could be decreased with increasing number of charging stations, as shown 

by the TEPCO’s experience (Electrification Coalition, 2009). 

In addition, familiarity with charging stations has been revealed that it may affect users’ 

charging decision (Dingemans et al., 1986; Kitamura and Sperling, 1987; Plummer et al., 

1998). So this study includes familiarity as one independent variable and defines it as the 

perception of whole charging station network. Familiarity is calculated based on the 

following two principles: the more fast-charging stations one uses, the more familiarity with 
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charging infrastructure; the smaller fluctuation of SOC at which fast charging is initiated, the 

more familiarity with charging infrastructure. The remaining charge can be expected to be 

decreased when users get more familiar with charging stations. 

The results of electricity consumption obtained from this trial show that it is around 

109Wh/km when air-conditioning and heater are both turned off, while around 186Wh/km 

when they are both turned on. Therefore, it can be expected that the usage of air-conditioning 

or heater will decreases the remaining charge when the available charging stations are sparse, 

or increases the remaining charge when users want to give themselves a larger margin of error 

to prevent running out of charge in case of using air-conditioning or heater during the next 

tour. 

Limited range of EVs has long been criticized as a major barrier in their promotion, but 

more range is not necessarily better if it is not used efficiently. So battery capacity is also 

treated as one independent variable, and expressed as a dummy variable by considering there 

are two types of battery capacities in this trial. 

The stations during this trial provide different price for fast-charging, 43.0% are free for 

all users, 6.8% must be paid for all users, and 50.2% are only free for their members. As 

revealed by the previous studies (Kitamura and Sperling, 1987; Plummer et al., 1998), price 

for fast-charging may affect the remaining charge, for example, some users charge their EVs 

at a high remaining charge at a special charging station because it is for free. However, the 

trial does not provide information about whether a user is a member of a charging station or 

not. So this study includes variables of free and paid to indicate respectively stations that are 

free for all users and are paid for all users. 

Besides, about 89.4% of these stations are available to any BEV users, while 10.6% can 

only be used by their constructors. What’s more, 83.1% of stations are exclusively for 

members who belong to electricity companies. Therefore, the variable of electricity is 

included to explore the charging behavior of electricity users. 



40 

Previous research also shows that refueling choice is the result of a learning process 

(Dingemans et al., 1986). So an indicator for the latter half of this trial is included to explore 

whether any difference exists between the earlier and the latter period of this trial (the 

observations are divided into two equal stages for each individual according to the sample 

date). 

Lastly, travel patterns have been shown to be related to refueling behavior (Kitamura 

and Sperling, 1987), and so does the speed because it affects the electricity consumption of 

EVs (Yao et al., 2013). So this study includes explanatory variables of number of trips, 

Vehicle Miles of Travel (VMT), and speed to analyze fast-charging behavior. Here “number 

of trips” and “VMT” is respectively the number of trips and VMT on the day it was charged, 

and “speed” is the average speed between the origin or the last fast-charging location and the 

current fast-charging location or home/company location. 

The explanatory variables used in the analysis for commercial and private vehicles as 

well as the statistical characteristics of the selected mid-trip fast charging events are described 

in Tables 3.1. 

The formulation adopted in this study defines the observed remaining charge when a 

mid-trip fast-charging event begins as yit; and the number of charging stations, familiarity 

with charging infrastructure, usage of air-conditioning or heater, battery capacity, price for 

recharging, electricity vehicles, and travel patterns as xit. But given what we know, the 

remaining charge is also influenced greatly by driver characteristics in addition to the factors 

included in xit, such as the attitudes toward risk exemplified above. Thus, some error is 

inevitable because of the fact that the observed charging behavior is governed by individual 

characteristics. However, it is reasonable to assume that α + wi + β′xit + vit is a useful measure 

for the minimum required charge at initiation of fast charging, and that it can be used to 

encourage more rational charging behavior by alleviating anxiety among risk-averse drivers 

and providing warnings to the most adventurous drivers. 
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Table 3.1 Definitions and statistical characteristics of independent variables 

Variable Definition 
Descriptive statistic* 

Commercial vehicles Private vehicles 
Working day Non-working day Working day Non-working day 

Number of charging 
stations 1 

Number of charging stations per 1000 square kilometers in 
prefecture where EV is registered, except for Tokyo, Kanagawa, 
Osaka and Saitama 

n.a. n.a. 2.5 n.a. 

Number of charging 
stations 2 

Number of charging stations per 1000 square kilometers in 
prefecture where the charging station used in the trip is located, 
except for Tokyo, Kanagawa, Osaka and Saitama 

n.a. n.a. n.a. 2.7 

Number of charging 
stations 3 

Number of charging stations within a 30km radius of 
home/company location**, except for Tokyo, Kanagawa, Osaka and 
Saitama 

n.a. 6.3 n.a. n.a. 

Number of charging 
stations 4 

Number of charging stations within a 30km radius of the charging 
station used in the trip, except for Tokyo, Kanagawa, Osaka and 
Saitama 

5.3 n.a. n.a. n.a. 

Tokyo & Kanagawa 1 if EV or the charging station used in the trip belongs to Tokyo or 
Kanagawa; 0 otherwise 58.6% 51.9% 51.8% 45.0% 

Osaka & Saitama 1 if EV or the charging station used in the trip belongs to Osaka or 
Saitama; 0 otherwise 13.0% 16.0% 6.7% 8.7% 

Familiarity Indicator of perception of whole charging station network 1.1 0.7 1.1 1.0 
Air-conditioning or 
heater 1 if air-conditioning or heater is on; 0 otherwise 49.8% 41.6% 42.6% 44.3% 

High-capacity battery 1 if EV has high-capacity battery; 0 otherwise 14.7% 14.7% 15.7% 20.7% 
Number of trips Number of trips per day 6.9 6.2 6.9 5.5 
VMT (km) Vehicle Miles Traveled per day 73.9 88.9 70.8 83.3 
Speed (0,20] 1 if speed of EVs travelling not more than 20km/h; 0 otherwise 45.4% 34.9% 38.8% 37.0% 
Speed (40~) 1 if speed of EVs travelling faster than 40km/h; 0 otherwise 14.8% 19.1% 10.9% 17.1% 
Free 1 if fast-charging is free for all users; 0 otherwise 17.2% 21.4% 22.6% 26.5% 
Paid 1 if fast-charging is paid for all users; 0 otherwise n.a. n.a. 13.1% 10.3% 
Latter half 1 if observation belongs to the latter half of this trial; 0 otherwise 49.3% 49.6% 49.4% 48.6% 
Electricity 1 if EV belongs to electricity company; 0 otherwise 9.1% n.a. n.a. n.a. 

* mean for continuous variables and % for dummy variable. If there is no % symbol, then the value is the mean. 
** since the data set didn’t include users’ personal information, home location is determined by the frequency of normal charging, for each vehicle, the location with 
highest frequency is regarded as the user’s home location. This result is almost the same with the location determined by highest first departure frequency of the day. 
n.a. indicates variables not included in the model. For the variables of number of charging stations, they are resulted from optimum choosing based on the 
goodness-of-fit of their models, while for the other variables, they are resulted from few samples. 
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3.4 Results of model estimation 

Mid-trip fast-charging characteristics are, as has been noted, different for commercial and 

private users as well as between working and non-working days, so the estimation results of 

four groups are presented in this section: commercial vehicles on working days, commercial 

vehicles on non-working days, private vehicles on working days and private vehicles on 

non-working days. 

Table 3.2 presents the estimation results obtained with the true random effects stochastic 

frontier model for the four groups. And the likelihood at convergence of the random effects 

regression model for each group is also included for comparison for the following three 

considerations: the simple regression analysis is another parametric approach to assess 

efficiency; there is reason to believe that differences across BEV users have some influence 

on the remaining charge; the simple regression model is a special case of the stochastic 

frontier model, the essential difference between them is that the stochastic frontier model 

distinguishes the effects of statistical noise from those of inefficiency while the simple 

regression model does not. 

In fact, before results presented here, we examined four types of number of charging 

stations for each model, and so did the non-linear form with quadratic term and linear form 

for number of charging stations. And finally, linear form with specific definition of number of 

charging stations is chosen for each model based on the goodness-of-fit. 

The comparison of the true random effects stochastic frontier model and the random 

effects regression model is conducted by doing the likelihood ratio test. The test statistic 

-2[log likelihood for regression model-log likelihood for stochastic frontier model] is 43.8, 

13.1, 94.7 and 49.0, for commercial and private vehicles, respectively, on working and 

non-working days, all of them are greater than the critical chi-square value with one degree of 

freedom. So it is clear that the stochastic frontier analysis is more effective than the simple 
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Table 3.2 Estimation Results for mid-trip fast charging 

Variable 
Commercial vehicles Private vehicles 

Working days Non-working days Working days Non-working days 
Coef. Std. error Coef. Std. error Coef. Std. error Coef. Std. error 

Constant (E[α]) 2.851** 0.415 -0.069 2.788 3.842** 0.134 3.822** 0.177 
Number of charging stations 1 n.a. n.a. n.a. n.a. -0.033* 0.016 n.a. n.a. 
Number of charging stations 2 n.a. n.a. n.a. n.a. n.a. n.a. -0.080** 0.020 
Number of charging stations 3 n.a. n.a. 0.216 0.141 n.a. n.a. n.a. n.a. 
Number of charging stations 4 0.013 0.015 n.a. n.a. n.a. n.a. n.a. n.a. 
Tokyo & Kanagawa 0.016 0.292 2.247 2.901 0.350** 0.123 -0.192 0.144 
Osaka & Saitama 1.553** 0.348 -0.046 2.794 -0.302 0.154 0.128 0.183 
Familiarity -0.028 0.168 0.780 0.975 -0.408** 0.044 -0.137* 0.060 
Air-conditioning or heater 0.014 0.114 0.254 0.384 -0.078* 0.038 0.106 0.077 
High-capacity battery 1.670** 0.196 0.688 0.363 1.602** 0.075 1.692** 0.105 
Number of trips 0.032 0.017 0.025 0.060 -0.030** 0.007 0.004 0.012 
VMT -0.006** 0.002 -0.0003 0.004 -0.000 0.0005 -0.001 0.001 
Speed (0,20]# -0.076 0.170 0.300 0.886 0.002 0.082 0.219* 0.103 
Speed (40~)# -0.002 0.206 0.544 0.617 -0.291** 0.110 0.033 0.134 
Free 0.187 0.163 0.016 0.275 -0.099 0.055 0.055 0.088 
Paid n.a. n.a. n.a. n.a. -0.198 0.101 -0.197 0.173 
Latter half 0.283* 0.123 0.331 0.393 0.129** 0.041 -0.161* 0.073 
Electricity## 1.602** 0.204 n.a. n.a. n.a. n.a. n.a. n.a. 
Log likelihood (regression model) -2820.216 -744.109 -5698.322 -3115.346 
Log likelihood (stochastic frontier 
model) -2798.333 -737.563 -5650.956 -3090.860 

Std(u), Std(v), Std(w) 2.444,0.971,1.408 2.034,1.060,3.135 1.966,0.903,1.116 2.013,1.010,1.458 
Observations 1407 387 3085 1617 
Unbalanced panels 39 11 95 90 

# referenced group is speed (20, 40] 
## referenced group is other commercial units except electricity 
**, * significance at 1%, 5% level 
n.a. indicates variables not included in the model. For the variables of number of charging stations, they are resulted from optimum choosing based on the 
goodness-of-fit of their models, while for the other variables, they are resulted from few samples.
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regression analysis in modeling the mid-trip fast charging behavior for commercial and 

private vehicles, respectively, on working and non-working days. Therefore, this study 

focuses on discussing mid-trip fast charging behavior according to the estimation results of 

the true random effects stochastic frontier model. 

For commercial vehicles on working days, number of charging stations 4 is better to 

explain their mid-trip fast charging behavior. However, it doesn’t show significant association 

with the remaining charge. Apparently increasing charging stations doesn’t effectively 

decrease the remaining charge. And the remaining charge can't seem to be significantly 

decreased even when the charging station density larger than 55 stations/1000km2, as shown 

by the insignificant effect of Tokyo & Kanagawa. The effect of Osaka & Saitama shows that 

the remaining charge significantly increases with charging station density increases to 15 < 

stations/1000km2 < 55. These results are contrary to TEPCO’s experience (Electrification 

Coalition, 2009). 

The significant positive correlation between high-capacity battery and remaining charge 

means that remaining charge increases with the battery capacity – which seems not the 

original intention of developing battery technology. VMT per day correlates negatively with 

remaining charge, which is consistent with previous studies (Kitamura and Sperling, 1987; 

Yao et al., 2013) that travel patterns do have correlations with charging behavior. The 

significant positive correlation of latter half on remaining charge shows the obvious 

difference of charging behavior between the earlier and the latter period of this trial, however, 

the increasing remaining charge in the latter period seems not to be desired. The results also 

show that EV users from electricity companies start fast charging with about 1.6kWh more 

additional remaining charge than other users, which is accordance with the statistical result 

that the average SOC at mid-trip fast charging for the electricity users is 61.3%, while the 

overall average is 50.4%. In addition, inconsistent with our expectation, variables of 

familiarity, air-conditioning or heater, number of trips, speed and free of charge don’t have 
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significant correlations with remaining charge. 

Then, for commercial vehicles on non-working days, number of charging stations 3 is 

chosen to explain their mid-trip fast charging behavior. However, none of the explanatory 

variables show any significant association with remaining charge, which may result from the 

few samples. 

Now the results of private vehicles on working days are discussed. In this model, 

number of charging stations 1 is used to explain the mid-trip fast charging behavior. The 

results show that number of charging stations has a significant negative correlation with 

remaining charge, which is consistent with TEPCO’s experience (Electrification Coalition, 

2009). While the dummy variables of Tokyo & Kanagawa has a significant positive 

correlation with remaining charge, which is contrary to TEPCO’s experience (Electrification 

Coalition, 2009). The variables of familiarity and air-conditioning or heater have significant 

negative correlations with remaining charge as hypothesized. In addition, the significant 

correlations of high-capacity battery and latter half are similar with their correlations in the 

model for commercial vehicles on working days, and so does the insignificant effect of free 

of charge. Also the dummy variable of paid charging doesn’t show significant effect on the 

remaining charge. However, the correlations of travel patterns are opposite to their 

correlations in the model for commercial vehicles on working days, and number of trips has a 

significant negative correlation with remaining charge, while VMT doesn’t show significant 

correlation. What’s more, the dummy variable of speed faster than 40km/h has a significant 

negative correlation with the remaining charge, while the variable of speed not more than 

20km/h doesn’t show significant correlation. 

Lastly is the model for private vehicles on non-working days, which chooses number of 

charging stations 2 to explain the mid-trip fast charging behavior. The results show that 

number of charging stations has a significant negative correlation with remaining charge, 

which is consistent with TEPCO’s experience (Electrification Coalition, 2009). While the 



46 

dummy variables of Tokyo & Kanagawa and Osaka & Saitama don’t have significant 

associations with remaining charge. These results possibly reveal that increasing charging 

infrastructure helps to decrease remaining charge, but more charging infrastructure is not 

necessarily better, there must be an optimal number of charging stations to encourage the 

effective use of both battery capacity and charging infrastructure, which is expected in the 

development of charging infrastructure. The significant negative correlation of familiarity is 

similar with its correlation in the model for private vehicles on working days. The variable of 

high-capacity battery, again, has a significant positive correlation with remaining charge. The 

dummy variable indicating speed not more than 20km/h has a significant positive correlation 

with the remaining charge, while the variable indicating speed faster than 40km/h doesn’t 

show significant correlation. The significant negative correlation of latter half on remaining 

charge shows a desired development trend of charging behavior, that is the remaining charge 

when mid-trip fast charging begins decreases with the increasing BEV usage experience. 

Other variables — air-conditioning or heater, number of trips, VMT, free and paid — don’t 

show any significant association with remaining charge. 

Excluding the model for commercial vehicles on non-working days in which none of the 

explanatory variables is significantly correlated with remaining charge, the chosen definitions 

of number of charging stations are different for the other three models. This difference is 

probably due to the BEVs’ usage patterns: commercial vehicles are usually used for widely 

distributed businesses, so a conception of charging station defined relative to charging 

locations is better to explain the charging behavior; private vehicles in general be used for 

daily travel (especially commuter travel), so a conception of charging station defined relative 

to home locations is better to explain the charging behavior. 

In summary, the factors that are significantly correlated with the remaining charge are 

not similar for commercial and private vehicles, respectively, on working and non-working 

days. But generally speaking, BEVs with high-capacity batteries are initiated at higher 
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remaining charge. Inconsistent with the previous studies, the free of charge and paid charging 

don’t show any significant association with remaining charge. 

3.5 Discussion 

This section discusses the possible explanations for certain charging patterns and the 

possibility of encouraging more efficient charging behavior among users. 

Since none of the explanatory variables is significantly correlated with remaining charge 

for commercial vehicles on non-working days, the discussion about possible explanations for 

charging patterns will focus on the other three models: commercial vehicles on working days, 

private vehicles on working days and private vehicles on non-working days. 

Related studies have shown that the more range anxiety felt by an EV user, the more 

likely he/she will apply coping strategies, such as charging EV (Franke and Krems, 2013a; 

Franke and Krems, 2013b; Franke et al., 2012). Here “range anxiety” is defined as the fear of 

running out of power before the destination or a suitable charging station is reached when 

driving an EV (Nilsson, 2011). It affects user’s behavior in this way: an EV user continuously 

checks the difference between available range and intended range, then the difference is 

compared with the preferred range buffer, it is the compared result that determines whether 

user feel anxiety or not, and if so, some coping strategies (e.g. charging EV) will be applied 

(Franke and Krems, 2013b). Thus, it can be stated that range anxiety is one possible 

explanation for more remaining charge when mid-trip fast-charging begins. 

Comparing the effects of the continuous variable of number of charging stations in the 

three models, it seems commercial users unaffected by the increasing charging infrastructure, 

while private users tend to charge their BEVs at lower level of remaining charge with 

increasing charging infrastructure. According to the previous discussion, therefore, it possibly 

reveals that increasing charging infrastructure helps to alleviate range anxiety felt by private 

users, while it has no effect on commercial users, which may result from the nature of the 
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business, which requires punctuality, speed, and so on. The suggested explanation between 

remaining charge and the number of charging stations for commercial users seems to apply to 

the positive effect of electricity users, since electricity users can access to more charging 

stations that are exclusive for them. The significant positive effects of dummy variable of 

Osaka & Saitama in the model for commercial vehicles on working days and dummy variable 

of Tokyo & Kanagawa in the model for private vehicles on working days reveals that more 

charging infrastructure may causes more remaining charge when mid-trip fast charging 

begins. The above discussions seem to show that increasing charging infrastructure to a 

certain extent may helps to alleviate range anxiety felt by BEV users, but the charging 

infrastructure is not the more the better. 

The insignificant effect of familiarity in the model for commercial vehicles but 

significant negative effects in the models for private vehicles may reveal that commercial 

users are more anxious about the limited range, which may be caused by the nature of 

business discussed above. 

The variable of air-conditioning or heater only significantly correlates with private 

vehicles on working days, which may result from the driving and charging experience 

developed in daily travel. Other insignificant correlations may reveal that users don’t care 

about the extra electricity consumption by using air-conditioning or heater, and just charge if 

a certain remaining charge is reached. These possible explanations may reveal that the range 

anxiety is less among private users on working days to some extent. 

The significant negative effect of number of trips in the model for private vehicles on 

working days but insignificant effects in other models may be due to the less range anxiety 

felt by private users resulted from the more familiarity with charging infrastructure on 

working days: more trips offer private users the opportunity to charge at a convenient 

charging station by considering all trips. However, the significant negative effect of VMT in 

the model for commercial vehicles on working days but insignificant effects in other models 
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may be due to the more range anxiety caused by the nature of business, which offers limited 

time to stop and charge during the trip and thus decreases the remaining charge, especially for 

the long trips. 

The speed has significant effect only for private vehicles. The significant negative effect 

of the variable indicating speed faster than 40km/h in the model for private vehicles on 

working days may be due to the less range anxiety felt by private users resulted from the 

more familiarity with charging infrastructure on working days, which alleviates the fear of 

running out of power without an available charging station caused by the faster rate of 

electricity consumption. The significant positive effect of the variable indicating speed not 

more than 20km/h in the model for private vehicles on non-working days may be due to the 

more diversified activities for private users on non-working days, for example, private users 

may charge their vehicles at a shopping center with fast charging infrastructure while they 

make a short-time shopping during a trip. The example may also reveals that private users are 

a bit more anxious on non-working days and they charge when there is a convenient charging 

station without considering too much about the remaining charge, which may be caused by 

the less familiarity with charging infrastructure when traveling in non-commuting area on 

non-working days. 

Lastly, the significant positive effects of latter half in the models for commercial and 

private vehicles on working days as well as the significant negative effect in the model for 

private vehicles on non-working days may result from the experienced range anxiety during 

BEV use, as pointed out in the previous research (Franke and Krems, 2013c). Possible 

explanations may be that the longer charging time has influenced the punctuality, so 

commercial users tend to charge their BEVs at their convenience without considering too 

much about the remaining charge; the adventure in charging caused by the less range anxiety 

on working days has led to private users be stranded, so they tend to charge their BEVs at a 

higher level of remaining charge; the more range anxiety on non-working days always gives 
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private users a higher level of remaining charge when mid-trip fast charting begins, so they 

tend to charge their BEVs at a lower level of remaining charge. 

Above all, range anxiety is one possible explanation for more remaining charge when 

mid-trip fast charging begins, which is mainly caused by the sparse charging stations, less 

familiarity with charging stations, and the nature of business (which requires punctuality, 

speed, and so on). 

Next the possibility of encouraging more efficient charging behavior among users is 

discussed. The approach is to compare the predicted required charge with the actually 

observed values at which fast charging is initiated. Here the comparison covers the four cases 

of commercial vehicles on working days, commercial vehicles on non-working days, private 

vehicles on working days and private vehicles on non-working days. 

 

 

Figure 3.2 Distribution of minimum required and actual remaining charge 
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Figure 3.2 shows the distributions of predicted required charge and actual remaining 

charge at the initiation of mid-trip fast charging for the four models. There are clear 

differences between the two distributions in each case, with actual charging generally being 

initiated at a higher level of remaining charge than the predicted required charge. It is worth 

noting that these differences come from the inefficiency in mid-trip fast charging, and thus 

they point to ample opportunity to encourage improvements in current charging behavior. 

However, the degree of possible improvement varies with the situation. The average 

inefficiency, defined as the additional electricity demand in actual behavior as compared with 

the predicted required charge, can be evaluated by the expected value of uit 

[ ] 

1 22
it uE u σ

π
 =  
 

                                                    (3.8) 

where 𝜎𝑢� is the estimate of 𝜎𝑢. The average inefficiency is respectively 1.95kWh, 1.62kWh, 

1.57kWh, and 1.61kWh for the four situations, which equates to driving about 22.0km, 

18.3km, 17.7km, and 18.1km (according to electricity consumption figures provided by the 

Ministry of Land, Infrastructure, Transport and Tourism, MLIT). The estimated inefficiencies 

seem to be reasonable since the regular behavior for private vehicles on working days is more 

difficult to be improved, which possibly results from the range anxiety according to the 

discussions of the estimation results. Therefore, it can be expected that the estimations are 

obtained by considering the influence factors mentioned above to some degree. What’s more, 

the average predicted required charge for the four cases is respectively 3.75kWh, 3.85kWh, 

3.70kWh and 3.89kWh, likely indicate that the stable behavior after alleviating inefficiency is 

similar among both commercial and private users. The possible measures can be applied to 

alleviate inefficiency include increasing charging stations and increasing familiarity with 

charging stations, as revealed by the estimation results of number of charging stations and 

familiarity, which is consistent with the previous findings (Mirchandani et al., 2014; 
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CABLED, 2011). 

Overall, the results seem to show that range anxiety is a probable reason for current 

inefficient charging behavior of BEV users, and there are great opportunities to encourage 

greater rationality in charging behavior. 

3.6 Summary 

In this study, the stochastic frontier modeling methodology is used to explore how factors 

including charging infrastructure and battery capacity affect the mid-trip fast-charging 

behavior of BEV drivers. The results are then used to estimate the possibility of encouraging 

more effective use of battery capacity and the charging infrastructure. Estimation results are 

presented for four cases (commercial vehicles on working days, commercial vehicles on 

non-working days, private vehicles on working days and private vehicles on non-working 

days) based on mid-trip fast-charging data extracted from a BEV usage trial conducted in 

Japan. 

The comparison of the estimation results with the true random effects stochastic frontier 

model and the random effects regression model indicates that the stochastic frontier modeling 

methodology is more effective in analyzing the battery usage behavior. The estimation results 

obtained with the true random effects stochastic frontier model show that the remaining 

charge at the initiation of fast charging during a trip associates with number of charging 

stations, familiarity with charging stations, usage of air-conditioning or heater, battery 

capacity, number of trips, VMT, speed, and the type of business. All the factors correlated 

with charging behavior of commercial and private vehicles, respectively, on working and 

non-working days in different way, which possibly result from range anxiety felt by users. 

The range anxiety arises mainly from the sparse charging stations and unfamiliarity with 

charging infrastructure, which seems can be alleviated by increasing charging stations and 

providing detail infrastructure information for BEV users. The positive correlation between 
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high-capacity battery and remaining charge shows that higher capacity battery is not 

necessarily better. And the unexpected positive correlation between remaining charge and the 

latter half of this trial may indicates that it would be a long time to form reasonable behavior 

in using battery capacity and charging infrastructure. 

Comparison of actual and predicted values for the four models indicated that there is 

considerable opportunity to encourage improvements in charging behavior. It appears that the 

stochastic frontier modeling method is an effective way to model the required charge at which 

mid-trip fast charging could be initiated as it takes into account trip and vehicle 

characteristics to some extent in the process of estimation. 

Lastly, since the remaining charge when mid-trip fast-charging begins is affected by user 

perceptions, which may change with increasing experience, further research should focus on 

evaluating these perceptions to explore the process by which charging behavior is learned, 

thereby accurately representing the required charge needed by the mass consumer market. 
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Chapter 4  

Fast-charging station choice behavior among battery electric 

vehicle users 

This chapter examines the charging behavior related to charging infrastructure usage. 

The focus is on fast-charging events during trips that include just one fast-charge between 

origin and destination in Kanagawa Prefecture, Japan. The characteristics of fast-charging 

behavior seen in the samples used in this study are then described. Mixed logit models with 

and without a threshold effect for detour distance are applied to explore how BEV users 

choose where to fast-charge their vehicles from a set of charging stations, as well as the 

distance by which they are generally willing to detour for fast-charging. The generation of the 

choice set is also described in the modeling process. The estimation results are discussed to 

show the effects of various factors on the choice of fast charging stations. And the generally 

willing detour distance is obtained by comparing the model fittings of models with different 

thresholds. Finally, some conclusions are presented to wraps up this chapter. 

4.1 Introduction 

The introduction of EVs in Section 1.2 shows that battery charging is one important aspect of 

EV operation, while an inadequate charging infrastructure is consistently cited as a major 

barrier to widespread EV adoption (Bapna et al., 2002; Romm, 2006; Melaina and Bremson, 

2008; Johns et al., 2009). 

With the current charging technologies, EVs can be recharged by normal charging and 

fast charging, as introduced in Section 1.2.2. Although for most usage EVs can be 

normal-charged during long stationary periods, fast charging plays an important role in 

long-distance trips or when an unexpected emergency arises. The field trial of BEV usage in 
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Japan introduced in Chapter 2 shows that it is rare for a car to require fast charging every day, 

but seen over a period of a couple of weeks or months nearly all owners need to use fast 

charging. It has also been pointed out by Christensen et al. (2010) that a fast-charging 

infrastructure is the most important need if EVs are to come into widespread use. However, 

the EV market is immature and the fast-charging infrastructure is incomplete, creating a 

barrier to adoption as noted above. Thus, the construction of EV fast charging stations is 

essential if EVs are to come into widespread use. 

The optimal location of fueling stations for AFVs has in recent years been the focus of 

many proposed approaches and models. These studies are generally based on assumptions 

about drivers’ preferences for refueling location. For example, p-median model (Hakimi, 

1964) and maximal covering location model (Church and Velle, 1974) assume that drivers 

prefer to refuel close to home, work, or other key trip anchors; Flow Capturing Location 

Model (FCLM, Hodgson, 1990) and Flow Refueling Location Model (FRLM, Kuby and Lim, 

2005) assume that drivers prefer to refuel en-route from origin to destination. In addition, 

driver’s willingness to deviate from the shortest path to access a refueling station has been 

incorporated into modeling, such as Deviation Flow Refueling Location Model (DFRLM, 

Kim and Kuby, 2012) and Deviation Flow Refueling Location Model - enhanced (DFRLM-E, 

Yildiz et al., 2015). 

Unfortunately, empirical studies on the refueling preferences of AFV users, and even of 

petroleum-powered vehicle users, are rare. About the refueling location, Sperling and 

Kitamura (1986) surveyed the refueling behavior of gasoline and diesel vehicle drivers 

through interviews while they refueled at selected fuel stations in northern California, treating 

diesel vehicles as a proxy for AFVs. They found that 56% of diesel vehicle drivers stated that 

convenience to home, work or school is the primary reason for selecting a fuel station. In 

other work, Kitamura and Sperling (1987) found that the refueling stops of gasoline vehicle 

drivers are clustered at the beginning or end of a trip, and close to home or work locations in 
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particular. Kelley and Kuby (2013) updated the Sperling and Kitamura studies by 

interviewing drivers of compressed natural gas (CNG) vehicles while they refueled at 

selected stations in southern California using the same type of survey methodology. They 

concluded that more CNG drivers prefer fuel stations requiring the least deviation from the 

path between origin and destination than stations closest to home. Kuby et al. (2013) came to 

the similar conclusion when they investigated the refueling behavior of CNG drivers in Los 

Angeles. While these studies provide a general descriptive analysis of where drivers are most 

likely to refuel their vehicles, they fall short of providing insight about the decision-making 

process that drivers use. Further, these studies demonstrate that the decision of where to 

refuel is related to many factors, including the driver’s activity program, the quantity of fuel 

remaining in the tank, and the location and attributes of fuel stations (Sperling and Kitamura, 

1986; Kitamura and Sperling, 1987). However, the tradeoff among these factors in making a 

refueling location choice is left unsolved. Pramono (2013) provided some insights about the 

decision-making process and the tradeoff among various factors in gas station choice using a 

two-stage fixed-effect conditional logit model applied to data obtained by interviewing 

gasoline vehicle drivers while they refueled at selected stations in Bandung, the capital of 

West Java Province, Indonesia. About the deviation for refueling, Lines et al. (2008) 

conducted surveys on hydrogen rental cars at the Orlando International Airport, finding that 

more than 80% of respondents expressed a willingness to detour more than one mile away in 

order to refuel, and 46% were willing to detour more than three miles. Kelley and Kuby 

(2013) and Kuby et al. (2013) found that there is a sharp decay beyond six minutes of 

deviation for CNG drivers and the willingness to deviate is relatively consistent across 

stations. Pramono (2013) found that the sampled drivers are most likely to refuel at gas 

stations within 1500 meters’ detour distance. However, caution is needed in mapping these 

data to the charging behavior of EV drivers for two reasons: first, the fast-charging of an EV 

takes longer than traditional petroleum vehicle and other AFV refueling; second, EVs can be 
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normal-charged at home or in other locations where they remain stationary for some hours, in 

addition to fast charging at public charging stations. 

With growing usage of EVs around the world, studies of charging behavior are 

beginning. Jabeen et al. (2013) explored EV drivers’ preference for charging at work, home or 

public charging stations through stated choice experiments in Western Australia. In fact, this 

study not only covers charging location choice, but also choice of charging method, normal 

charging or fast charging. Arslan et al. (2014) analyzed the degrees to which PHEV drivers 

deviated from their shortest paths to recharge under several deployment levels of fast 

charging stations, using simulated trips. They found that the deviation is higher when fast 

charging stations are sparse. However, to the authors’ knowledge, there has been almost no 

empirical research into choice behavior for fast charging stations. 

An understanding of fast charging station choice behavior is of paramount importance in 

knowing how EV users trade off the relevant factors to make fast charging decisions, and will 

provide the basis for developing an effective fast charging infrastructure to accelerate EV 

market growth, which is essential for promoting EVs as societal and environmental policies. 

The aim of this paper is to provide insight into the process by which EV users choose fast 

charging stations by exploring how various factors influence choice behavior. This paper also 

explores the specific distance by which BEV users in the sample are generally willing to 

detour to reach a fast charging station, in light of the above-mentioned findings about the 

detour willingness for refueling. 

4.2 Data profiles 

As the description of the field trial in Chapter 2 makes clear, the data includes repeated 

observations for each individual. What needs to be clarified is that this study assumes one 

vehicle is driven and charged by one individual during the trial, even though it may be driven 

and charged by more than one person in practice, since such information is not provided by 
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the trial. Generally, repeated observations from an individual tend to be similar, which means 

that individuals tend to make choices according to the same principle from one observation to 

the next. However, there are differences in choices across individuals; for example, 

availability-sensitive drivers may opt to charge whenever there is an available fast-charging 

station because of uncertainty about subsequent alternatives along their paths, while 

price-sensitive drivers may bypass the fee-paying stations along their paths and charge at free 

stations. In addition, it might be argued that one individual’s choices might vary over time, as 

a result of experience and other factors. Such similarities and differences are unobserved but, 

in principle, can be discovered, since an individual’s choices reveal something about them. 

This means that fast-charging station choice behavior would better be estimated using panel 

data, which is regarded as offering advantages over a single cross-section or time series data 

in capturing the complexity of human behavior (Hsiao, 2007). And the efficiency of using 

panel data is also revealed by our study on the modeling of normal charge timing choice 

behavior among BEV users (Sun et al., 2015b). For this reason, individuals for whom there is 

only one observation during this trial are excluded from the sample set used. 

What do we know about fast charging stations introduced in Section 2.2 is that 79.2% of 

these stations are available to any BEV users for free or by paying a fee, 10.2% are available 

to members only for free or by paying a fee, and the remaining 10.6% are not open to the 

public and are only available to users belonged to the constructors of the charging stations for 

free. However, the trial does not provide information about whether a user is a member or a 

constructor-belonged of a charging station. Considering an EV user who is a member or a 

constructor-belonged of a charging station, if the user charges at a member-only or 

ownership-only station, then membership or ownership can be assumed to be the main reason 

for the choice. On the other hand, if such a user chooses a different station, that choice is 

made for reasons other than simple membership or ownership. Based on this understanding 

and keeping in mind that the objective of this study is to explore how factors influence 
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fast-charging station choice behavior, it is reasonable to focus only on fast-charging events at 

stations available to any BEV users. In addition, the research objective also implies that 

fast-charging events at charging stations that are the only available choice should be excluded 

from the dataset used in this study, since the factor of no other choice undoubtedly makes 

other factors unnecessary. 

The data provided by the field trial is the location of each BEV and whether it being 

driven, normal charged or fast charged every minute. However, fast-charging decisions are 

made while a BEV is moving through the road network along the path from an origin to a 

destination. Therefore, the necessary first step before analyzing fast-charging station choice 

behavior is map matching, which associates a sorted list of vehicle positions with the road 

network on a digital map. The unit of map matching and analysis is a trip with fast charging. 

Based on the definition of a trip in Section 2.3.1, this study defines a trip with fast charging as: 

(1) a contiguous sequence of vehicle locations with the same start-up time for driving, 

followed by a stay for fast charging whose duration time is more than one hour; (2) two or 

more contiguous sequences of vehicle locations with the same start-up time for driving 

connected by stays for fast-charging whose duration time is not more than one hour, followed 

by a stay for normal charging, or a stay for fast charging whose duration time is more than 

one hour, or a driving with a different start-up time. And the origin and destination are 

denoted as the beginning and ending points of a trip with fast charging throughout this study. 

Given the good availability of digital maps for the prefecture and the sample size, the set of 

fast-charging events used for this study is further limited to those in Kanagawa Prefecture, 

where there are 2329 trips with fast charging made by 34 private vehicles and 518 trips with 

fast charging made by 12 commercial vehicles during the field trial. 

Among trips with fast charging obtained according to the above definition, the trips with 

more than one fast charging do exist but the number is only 5% in Kanagawa Prefecture. The 

decision-making process for trips with one fast charge may be different from that for trips 
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with more than one fast charge; for example, decisions about where to fast charge made 

during a particular trip may influence each other. Considering this situation and the available 

sample size, this study focuses only on trips where there is one fast-charging event between 

origin and destination. 

In summary, this study focuses on fast-charging events that: (1) take place in Kanagawa 

Prefecture; (2) take place during trips that are successfully matched to the digital map; (3) 

take place at stations available to any BEV user; (4) permit a choice from more than one 

available station; (5) are by users who have more than one observation during the trial; and (6) 

are the only fast charging event between origin and destination. After data checking and 

cleaning, the final data set used in the study includes 24 private vehicles with 1513 

fast-charging events and 8 commercial vehicles with 386 fast-charging events. 

 

 

Figure 4.1 Distribution of observed SOC at initiation of fast charging during trips that include just one 
fast-charge between origin and destination in Kanagawa Prefecture 

 

We now look at the characteristics of the data used in this study. Figure 4.1 shows the 

distribution of observed SOC at the initiation of fast charging during trips that include just 

one fast-charge between origin and destination in Kanagawa Prefecture, for commercial and 
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private vehicles, respectively, on working and non-working days. This graph reveals that 

more commercial vehicles are fast charged at a higher SOC than private vehicles, and that a 

greater proportion of fast-charging events occur at higher SOC on non-working days. This 

makes it clear that charging behavior differs between commercial and private vehicles, as 

well as between working and non-working days. 

 

 

Figure 4.2 Distribution of detour distance for fast charging during trips that include just one fast-charge 
fast-charge between origin and destination in Kanagawa Prefecture 

 

The distribution of detour distance for commercial and private vehicles, respectively, on 

working and non-working days is shown in Figure 4.2. The detour distance for individual n 

who charges at station j when traveling from origin Ont to destination Dnt is: 

nt nt nt ntnjt O j jD O Ddetour d d d= + −                                            (4.1) 

where dOntj, djDnt and dOntDnt are the shortest paths, respectively, between origin Ont and 

station j, between station j and destination Dnt, and between origin Ont and destination Dnt. 

This figure reveals that fast charging without detour is possible on only about 10% of trips. 

For trips with a detour for fast charging, about half have the minimum deviation from the 

shortest path, 0.5km or less, in the case of commercial vehicles, while the value is 1.0km for 
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private vehicles. In addition, greater detours for fast charging are more frequently seen on 

non-working days, but the difference between working days and non-working days is not as 

significant as that between private vehicles and commercial vehicles. However, it is still 

better to analyze fast-charging station choice behavior for private and commercial vehicles 

separately on working and non-working days, according to Figure 4.1 and Figure 4.2. 

As previously mentioned, this study uses only fast-charging events occurring in 

Kanagawa Prefecture for reasons of map matching and sample size. Since the charging 

infrastructure is different in each Japanese prefecture and a different charging infrastructure 

can be expected to lead to different charging patterns, the charging characteristics displayed 

in Figure 4.1 and Figure 4.2 cannot be readily applied to other regions of Japan. Further, these 

charging characteristics can not necessarily be regarded as an indication of the behavior of 

future BEV adopters in Kanagawa Prefecture, since the EV market is far from mature with an 

incomplete charging infrastructure, evolving battery technology and little utilization 

experience. It is for these very reasons that this study is carried out to explore how factors 

affect fast-charging station choice behavior. The ultimate aim is to provide a basis for 

developing an effective fast-charging infrastructure that accelerates EV market growth, and 

then promote EVs as societal and environmental policies. 

4.3 Modeling process 

The decision of where to charge can be described as a process by which BEV users choose 

one alternative from a set of alternatives while on their way to a destination. This section first 

discusses the generation of a choice set and then presents the methodology for modeling 

fast-charging station choice behavior. 

4.3.1 Choice set 

Generally, numerous charging stations are available to a BEV driver when the need to charge 

arises, but the level of remaining charge places some charging stations out of reach. 
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Obviously, only accessible charging stations are considered, so the alternatives in the choice 

set must satisfy this spatial accessibility condition. Other studies related to spatial choice 

behavior usually consider simultaneously spatial accessibility and temporal accessibility in 

developing a choice set (Pramono, 2013; Arentze and Timmermans, 2005). However, in this 

trial there is no available information about trip purpose, time budget, traffic conditions and 

possible wait time due to the limited number of chargers at each charging station. For this 

reason, only spatial accessibility is adopted as a restriction in generating the choice set in this 

study. It is worth noting that the time at which the demand to charge arises is not available in 

the trial data and would be difficult to determine, so it is assumed that charging demand arises 

when a trip is started. 

 

 

Figure 4.3 Scatter diagrams of origin-destination distance against, respectively, origin-station distance 
and station-destination distance in Kanagawa Prefecture 

 

Among accessible stations, some may enable users to charge without detour from their 

intended routes, or with only a short detour; these stations can be reasonably taken as 
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candidate alternatives in the choice set. However, there are accessible charging stations which 

are beyond a trip’s origin or destination at a distance greater than the distance between the 

origin and the destination; whether these stations should be included in the choice set needs 

further discussion. The fast-charging events observed in Kanagawa Prefecture show that such 

stations are also chosen for charging, as revealed by Figure 4.3. However, this does not mean 

it is reasonable to include all such accessible stations in the choice set, since a greater 

distance will place a station beyond consideration. In fact, private users on average tend to 

consider accessible stations that are an extra 1.8km more than the distance between origin and 

destination, while the value is 2.8km for commercial vehicles. 

 

 

Figure 4.4 Schematic diagram of choice set generation 

 

In summary, this study adopts the following principles for generating the choice set, 

supplemented by the schematic diagram presented in Figure 4.4. The alternatives in the 

choice set must satisfy: 

(1) Accessibility: can be reached from the charging demand point (Ont); the accessible 

set includes S1, S2, S3, S4, S5 and S6; 

(2) Distance relations: dOntSj≦dOntDnt+ɛ and dSjDnt≦dOntDnt+ɛ, where dOntSj, dSjDnt and 

dOntDnt are the shortest paths, respectively, between origin Ont and station Sj, between station 
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Sj and destination Dnt, and between origin Ont and destination Dnt, where ɛ is 2.8km for both 

private and commercial vehicles. The resulting choice set includes S1, S2, S3, S4 and S5. This 

principle excludes from the set any fast-charging events where the station is more than 

distance ɛ further away than the distance between origin and destination; this accounts for 4.9% 

of the fast-charging events shown in Figure 4.3 for private vehicles and 1.6% for commercial 

vehicles. These small proportions ensure the representativeness of the estimation results. 

It should be noted that there is an assumption implied in generating choice set – that 

users have perfect information about the entire fast-charging infrastructure. 

4.3.2 Methodology 

This study adopts a mixed logit (ML) formulation to model fast-charging station choice 

behavior, since it is a powerful method for handing many sources of individual variability. 

The utility that individual n obtains from alternative j in choice situation t can be specified as: 

njt n njt njtU Xβ ε= +                                                     (4.2) 

where Xnjt is a vector of observed variables related to individual n and alternative j on 

choice situation t, βn is a vector of coefficients of these variables for individual n, and ɛnjt is a 

random term which is assumed to be an independently and identically distributed extreme 

value and varies over time, individuals, and alternatives. 

The choice set for individual n in choice situation t is denoted by Jnt. Individual n 

chooses alternative i from Jnt if and only if Unit > Unjt ∀j≠i; here, Unit and Unjt are obtained by 

individual n based on his/her own βn, which is known to individual n but unobserved by the 

researcher. If the researcher were to observe βn, then the choice probability would have the 

following form: 

1

( )
n nit

nt n njt

X

nit n J X

j

eP
e

β

β
β

=

=
∑                                                  (4.3) 

A detailed derivation of Formula (4.3) can be found in Train (Train, 2003). Since the 
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researcher does not know βn and therefore cannot condition on βn, the unconditional choice 

probability must be the integral of Pnit(βn) over all possible values of βn: 
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Thus the sample likelihood is: 
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where dnit=1 if individual n chooses alternative i in choice situation t and zero otherwise. 

Usually, the distribution of β is specified freely by the researcher and then the parameters of 

that distribution are estimated. In most applications, f(β) has been specified to be normal 

(Ben-Akiva and Bolduc, 1996) or log-normal (Revelt and Train, 1998), but other 

distributional assumptions also have been applied widely, such as truncated-normal and 

uniform (Revelt and Train, 2000), where, as pointed out by Train (2003), the appropriate 

choice depends on the research question. The parameters of the assumed distribution f(β) can 

be estimated by maximizing the sample likelihood. However, there exists no analytical 

solution for the integral in (4.5). Therefore, in the literature, methods such as quadrature 

(Geweke, 1996) and simulation (Train, 2003) are proposed for its approximation. 

This study assumes that β is identically and independently distributed over the 

individuals and follows a multivariate normal distribution with mean b and 

variance-covariance matrix W, β~N(b,W), without correlations between independent variables. 

Simulation is used to estimate the parameters of the mixed logit model. The simulated sample 

likelihood is: 
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where R is the number of draws from the distribution of β, and βn
r represents the rth 
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draw for individual n. The standard approach to simulation-based estimation is to use random 

draws from the specified distribution; using this method, the accuracy of the results increases 

with the number of draws, but so does the estimation time. On the other hand, Halton 

sequences (Halton, 1960) have been used in several studies and they perform well with a 

small number of draws (Train, 2000; Bhat, 2001), so Halton sequences are adopted in this 

study. 

The above-specified ML model is appropriate to accomplish one objective of this study, 

that of exploring how factors influence choice behavior for fast-charging stations. For the 

other objective, that of exploring the specific distance by which users in the sample are 

generally willing to detour for fast-charging, a ML model is also appropriate by just adding a 

threshold effect of detour distance to Formula (4.2): 

njt njt n njt njtU Z Xα β ε= + +                                               (4.7) 

where Znjt is a dummy variable related to individual n and alternative j in choice 

situation t representing whether the detour resulting from charging at alternative j is within 

the specific threshold value, α is the coefficient of this dummy variable fixed for all 

individuals, and the other terms share the same meaning as that in Formula (4.2). This ML 

model with threshold effect is notated here as ML-T in order to differentiate it from the ML 

model in the discussion. The second objective of this study is explored by an iterative process 

of estimating ML-T with gradual changes in threshold value; the threshold value at which 

ML-T gives the closest model fitting is the distance by which users in the sample are 

generally willing to detour for fast charging. 

It is obviously that ML-T can also be used to explore how factors influence fast-charging 

station choice behavior, so ML-T also offers an opportunity to explore choice behavior in a 

more effective way. The choice probability and model estimation of ML-T can be obtained by 

simply adding αZnjt to the exponential part in Formulas (4.3)-(4.6), so these formulas are not 

repeated here. 
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Next, we discuss the factors expected to affect users’ choice of fast-charging stations. 

Pramono’s study revealed that two spatial effects influence users’ choice behavior when 

selecting a gas station (Pramono, 2013). The first is a spatial structure effect, which derives 

from the fact that each alternative has a fixed position and faces a different degree of 

competition from the others, and the relative positive of each alternative will affect its 

likelihood of being chosen. The second is a spatial separation effect, which results from the 

fact that spatial separation between the individual’s current location and the alternative has an 

impact on the individual’s spatial cognition of the refueling infrastructure and, as a result, 

affects the choice. Given the similarity between choosing a refueling station for a gasoline 

vehicle and a BEV, in that the choice takes place while driving a route from origin to 

destination, this study adopts spatial dominance and detour distance, respectively, as 

representing the spatial structure effect and the spatial separation effect in modeling 

fast-charging station choice behavior. 

The spatial dominance for alternative j with respect to individual n who is traveling from 

origin Ont to alternative j is: 

nt
njt njii CS

dom D
∈

=∑                                                    (4.8) 

where Dnji=1 if alternative i is located along the shortest path between origin Ont and 

alternative j, and zero otherwise; and CSnt is the choice set for alternative n in choice situation 

t. 

The detour distance between alternative j and the route of individual n who is traveling 

from origin Ont to destination Dnt can be obtained using Formula (4.1). 

In addition to these spatial effects, the non-spatial attributes of fast-charging stations can 

be expected to influence users’ choice. This study adopts two indicators to explore the effect 

of non-spatial attributes based on the available information: an indicator for fast-charging 

stations available to any users for free and an indicator for fast chargers located at gas 

stations. 
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Waiting time due to the longer charging time compared with traditional petroleum 

vehicle and other AFV refueling time and limited number of chargers may affect users’ 

choice, but unfortunately such data is not provided by this field trial. Since charging in peak 

hours might incur some waiting time, this study incorporates variables obtained by 

combining an indicator for charging in peak hours with the spatial variables of dominance 

and detour distance as well as with the non-spatial indicator for stations free to charge into 

the model in the hope of reflecting the effect of waiting time to some extent. Peak charging 

hours are taken to be 10:00-18:00 and 21:00-22:00, which are derived from observed charge 

timing in Kanagawa Prefecture. 

Another important factor influencing fast-charging station choice is the remaining 

charge when fast charging begins, since this represents the urgency of charging. From this 

field trial we are able to obtain the SOC when fast charging is actually initiated at a charging 

station. For other stations in the choice set, however, the SOC when fast charging would 

begin if it were chosen is not directly provided. Therefore, we calculate the SOC for each 

alternative in the choice set to explore the effect of remaining charge. The remaining charge 

when an individual n reaches alternative j from origin Ont is: 

SOC 100nt

nt

O j t
njt O

n

d eff
SOC

cap
×

= − ×                                        (4.9) 

where SOCOnt is the SOC at the origin Ont; dOntj is the shortest path between origin Ont and 

alternative j; efft is the average electric efficiency in choice situation t, which is calculated 

from the observed data and varies with usage of air-conditioner and heater as shown in Table 

4.1; and capn is the battery capacity of vehicle n. 

 

Table 4.1 Electrical efficiencies for different vehicle usage states 
Vehicle usage state Electrical efficiency (Wh/km) 

Heater (off) Air-conditioner (off)  109 
Heater (off) Air-conditioner (on) 148 
Heater (on) Air-conditioner (off) 186 
Heater (on) Air-conditioner (on) 201 
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As previously mentioned, there is an indicator for alternatives where the detour distance 

is within the specific threshold value for the ML-T model. Additionally, the non-spatial 

attributes of fast-charging stations inside and outside the specific threshold value may have 

different attraction to users. So this study also incorporates a variable combining the indicator 

related to the specific threshold value with the non-spatial indicator for stations that are free 

to charge. 

In summary, mixed logit models with and without a threshold effect of detour distance 

are used to model users’ behavior in choosing a fast-charging station from a choice set. The 

spatial effects of dominance and detour distance, the non-spatial effects related to attributes of 

fast-charging stations, and the remaining SOC at initiation of fast charging, as well as certain 

combined effects, are incorporated into the models to explore their roles in determining 

charging station choice. 

4.4 Results of model estimation 

Given that two models are used in this study to explore the charging station choice behavior 

during trips with one fast-charging event between origin and destination, which is different 

for private and commercial users as well as between working and non-working days, eight 

sets of estimation results are presented in this section. Model estimation is conducted in the 

STATA software. 

Since the number of parameters is different between ML and ML-T and the parameters 

are estimated by means of maximum likelihood estimation, we use Akaike’s Information 

Criterion (AIC) (Akaike, 1998) to choose the more effective model. Figure 4.5 displays the 

AIC of ML model and ML-T models at different thresholds for private and commercial 

vehicles. It is clear that the introduction of the threshold effect of detour distance in the ML-T 

model improves the fitting for both private and commercial vehicles. Therefore, this study 
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focuses on discussing fast-charging station choice behavior according to the estimation 

results of the ML-T model. 

 

 

Figure 4.5 AIC of ML model and ML-T models at different thresholds 

 

In Figure 4.5, there are various local minima with similar AIC to the global minimum 

AIC, especially for private vehicles. So that, for the moment, one can not be sure the results 

estimated at the optimum threshold at which the ML-T model achieves the closest fitting 

really represent fast-charging station choice behavior of BEV users. 

The comparisons of the estimation results of the ML-T models with the global minimum 

AIC and with a local minima AIC show that the ML-T model with a local minima AIC may 

gives a significant negative parameter estimate for the threshold variable; that there is only a 

small difference in the estimation results that the evidence showing a variable has an effect on 

the fast-charging station choice becomes weak for some variables in the ML-T model with a 
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local minima AIC. Since it can be expected that stations within the specific distance by which 

BEV users are generally willing to detour to charge may have additional attraction for users, a 

statistically significant positive parameter estimate for the threshold variable seems largely 

reasonable. The t-statistic of threshold parameter at different threshold values for both private 

and commercial vehicles are shown in Figure 4.6, which, combined with Figure 4.5, indicates 

that the threshold at which the ML-T model has the global minimum AIC also has the 

maximum significance in the model for private vehicles on working days, and the models for 

commercial vehicles on working and non-working days. In the model for private vehicles on 

non-working days, the threshold at which the ML-T model has the global minimum AIC has 

the second maximum significance of the two statistically significant positive parameter 

estimates. 

 

 

Figure 4.6 t-statistic of threshold parameter at different thresholds 
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Above all, there seems to be an indication that the results estimated at the optimum 

threshold at which the ML-T model achieves the closest fitting represent fast-charging station 

choice behavior of BEV users in the sample to a large extent. 

Table 4.2 presents the estimation results of the ML-T model for private and commercial 

users, respectively, on working and non-working days, estimated at the optimum threshold at 

which the ML-T model achieves the closest fitting. 

 

Table 4.2 Estimation results of ML model with threshold effect of detour distance 

Variable 

Private vehicles Commercial vehicles 
Working days 

(Threshold=1750m) 
Non-working days 
(Threshold=750m) 

Working days 
(Threshold=500m) 

Non-working days 
(Threshold=500m) 

Coef. Std. error Coef. Std. error Coef. Std. error Coef. Std. error 
Mean 
Threshold 0.490* 0.217 0.797** 0.290 2.837** 0.279 3.926** 0.545 

Detour (km) -0.800** 0.070 -0.650** 0.101 -0.661** 0.113 -0.511** 0.122 

Dominance -0.146** 0.055 0.043 0.040 -0.134** 0.024 -0.145** 0.035 

Free 2.478** 0.362 0.681 0.517 0.698 0.531 -3.552 2.562 
Gas-station 3.087** 0.190 2.760** 0.292 3.909** 0.426 3.007** 0.692 

SOC (%) -0.111** 0.020 -0.145** 0.027 -0.042** 0.015 -0.067** 0.019 

Detour_peak (km) 0.023 0.071 0.001 0.113 0.168 0.128 0.048 0.482 
Dominance_peak 0.077** 0.029 -0.036 0.046 0.058 0.035 0.047 0.066 
Free_peak 0.311 0.300 0.625 0.554 1.659** 0.535 -1.130 1.622 
Free_threshold 0.368 0.263 -0.078 0.419 -3.707** 0.653 -4.990** 1.820 

Standard deviation 
Detour (km) 0.479** 0.061 0.096 0.050 0.117 0.094 0.473 0.812 
Dominance 0.104** 0.031 0.096** 0.031 0.116** 0.029 0.065 0.152 
Free 3.435** 0.328 2.314** 0.383 0.646** 0.232 2.992* 1.454 

Gas-station 5.531** 0.485 1.889** 0.275 1.738** 0.434 0.212 0.806 
SOC (%) 0.159** 0.033 0.256** 0.048 0.127* 0.057 0.777 0.720 
Detour_peak (km) 0.234** 0.083 0.312** 0.074 0.004 0.094 0.481 1.051 
Dominance_peak 0.065* 0.029 0.089** 0.027 0.095 0.053 0.131* 0.065 

Free_peak 1.090** 0.151 2.512** 0.770 0.859* 0.404 3.564* 1.622 

Free_threshold 2.540** 0.286 1.334** 0.307 0.488 0.423 0.995 1.409 
LL(Bc) -1077.019 -517.735 -414.143 -134.253 
LL(B) -862.747 -438.441 -379.056 -125.305 
* , ** indicate significance at 5% and 1% levels, respectively 
LL(Bc): log likelihood with constraint that all the standard deviations are equal to zero 
LL(B): log likelihood without constraint that all the standard deviations are equal to zero 

 

For private vehicles traveling on working days, users are generally willing to charge at 

stations that require a detour of 1750 meters or less, and are less willing to charge at stations 

with a greater detour distance, as revealed by the significant negative effect of the detour 

variable. This preference is not significantly different when choosing a charging station in 
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peak hours, as indicated by the non-significant effect of the variable of detour in peak hours. 

Further, they tend to charge at stations encountered earlier along their path from origin to 

destination, as revealed by the significant negative effect of the dominance variable. But they 

tend to charge at stations encountered later when they choose a station in peak hours, as 

indicated by the significant positive effect of the variable of dominance in peak hours. 

However, this does not mean they charge whenever they encounter an available fast-charging 

station earlier or later along their trips; in fact, they take the SOC into account when making 

charging decisions, as indicated by the significant negative effect of the SOC variable. In 

addition, these users prefer stations that are free to charge, and this preference is not 

significantly different when they choose a station in peak hours or from alternatives that 

require a detour of 1750 meters or less, as revealed by the significant positive effect of the 

variable for stations free to charge, and the non-significant effects of the variables for stations 

free to charge in peak hours and stations free to charge within 1750 meters’ detour distance. 

Moreover, they prefer chargers located at gas stations. However, all the factors that 

significantly affect fast-charging station choice vary substantially among private users 

traveling on working days, as revealed by the statistically significant parameter estimates for 

the standard deviations of these random variables. 

Users of private vehicles traveling on non-working days are generally willing to charge 

at stations that require a detour of up to 750 meters. As on working days, they prefer to 

charge at stations with shorter detour distance and this preference is not significantly different 

when choosing a charging station in peak hours. Also they prefer to use chargers located at 

gas stations and take the SOC into account when making charging decisions. But the attribute 

of free to charge has no significant effect on their choice, neither choosing a station in peak 

hours or from alternatives within 750 meters’ detour distance. And they do not show 

preference to charge at stations encountered earlier or later along their paths from origin to 

destination, neither choosing a station in peak hours. Factors showing substantial variation in 
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determining fast-charging station choice among private users traveling on non-working days 

include the indicator for chargers located at gas stations and SOC. 

Next, we look at commercial vehicles traveling on working days. These users are 

generally willing to charge at stations that require a detour of up to 500 meters. They prefer to 

charge at stations requiring a shorter detour or encountered earlier along their paths from 

origin to destination, and this preference is not significantly different when choosing a 

charging station in peak hours. Also they prefer to use chargers located at gas stations and 

take the SOC into account when making charging decisions. The free to charge attribute does 

not have a significant effect on choice, but it does have a significant positive effect when 

choosing a station in peak hours, while it has a significant negative effect when choosing a 

station from alternatives within 500 meters’ detour distance. The factors showing substantial 

variation in determining fast-charging station choice among commercial users traveling on 

working days include dominance, the indicator for chargers located at gas stations, SOC and 

the indicator for stations free to charge in peak hours. 

Lastly, users of commercial vehicles traveling on non-working days are also generally 

willing to charge at stations that require a detour of up to 500 meters, and factors that 

significantly affect their choice are the same as those for commercial users traveling on 

working days, except that the interaction between free to charge and charging in peak hours 

has no significant effect. There are no factors showing substantial variation in determining 

fast-charging station choice among commercial users traveling on non-working days. 

Comparing the estimation results in Table 4.2 shows that BEV users are willing to 

deviate from the shortest paths to reach a charging station, but the length of the detour is 

different for private and commercial users, respectively, on working and non-working days. 

Generally, private users are willing to detour by up to about 1750m to charge their vehicles 

on working days and 750m on non-working days, while the value is 500m for commercial 

users on both working and non-working days. One possible reason for the shorter detour 
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among private users on non-working days than on working days is that private users are less 

familiar with the charging stations along their trips on non-working days, so a greater detour 

may increases their anxiety of being stranded; this anxiety may encourage them to charge at 

stations requiring a smaller detour but where a fee must be paid. This is supported to some 

extent by the non-significant effect of the indicator for stations free to charge for private 

vehicles on non-working days. This argument implies that private users are price-sensitive 

and that their greater familiarity with stations along their trips on working days gives them 

the confidence to detour a greater distance to reach a free charging station. Another possible 

reason is that there is some degree of destination choice flexibility on non-working days, for 

example, a shopping destination which is near a charging station or whose route is dotted 

with charging stations. 

The smaller detour among commercial users probably derives from the following three 

reasons: first, an anxiety (as noted above) resulting from less familiarity with stations along 

the trips; second, the nature of the service business, which requires punctuality, speed, and so 

on, leads commercial users to charge their vehicles at stations requiring a shorter detour; 

finally, commercial users may be less price-sensitive and are more willing to charge at 

stations requiring a smaller detour but where a fee must be paid, as indicated by the 

non-significant effects of the indicator for stations free to charge, as well as the significant 

negative effects of the combined indicator for stations free to charge and within 500 meters’ 

detour distance, for commercial vehicles on both working and non-working days. 

It is worth mentioning that although BEV users are willing to detour for fast charging, 

they actually want to avoid it, and this preference does not change significantly when 

choosing a station in peak hours. Moreover, the possible reason of familiarity with stations 

for different detours discussed above may also explain why BEV users all prefer to charge at 

gas stations. 

Further, private users traveling on working days tend to charge at stations encountered 
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earlier along their paths from origin to destination, but tend to charge at stations encountered 

later when choosing a station in peak hours, such change may be due to anticipated waiting 

time. On the other hand, commercial users tend to charge at stations encountered earlier along 

their paths on both working and non-working days, and this preference does not change 

significantly when they choose a station in peak hours. This may be due to the familiarity 

with stations and the nature of business, as mentioned previously, which might increase 

anxiety of commercial users that perhaps there would be no appropriate stations later in the 

trip, even for example stations requiring smaller detours. However, it should be noted that 

SOC also plays an important role in determining station choice for all BEV users, that is, the 

higher the SOC upon reaching a charging station, the lower the probability of charging at that 

station. 

A final finding is that all or some of the factors that significantly affect fast-charging 

station choice vary substantially among users in three of the groups: private users traveling on 

working days, private users traveling on non-working days and commercial users traveling on 

working days. The less substantial variation among commercial users traveling on 

non-working days may result from the small sample size. However, a heterogeneity —  

unobserved taste variation — in choosing fast-charging stations is revealed among users in 

all four groups, as indicated by the likelihood ratio test; that is, the test statistic 

-2[LL(Bc)-LL(B)] is significantly greater than the critical chi-square value with nine degrees 

of freedom in the four ML-T model estimates given in Table 4.2. Further, private users seem 

to be more heterogeneous than commercial users in choosing fast-charging stations, as 

revealed by the larger fluctuations of model fittings at different detour thresholds for private 

vehicles in Figure 4.5. 

In summary, choice behavior when choosing a fast-charging station differs between 

private and commercial users traveling on, respectively, working and non-working days. The 

distance by which they are generally prepared to detour for fast charging is different; the 
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factors that significantly affect their choices are different; and the factors showing substantial 

variations in determining their choices are different. However, the results for all of these 

groups lead to broadly the same conclusions: that BEV users prefer to charge at stations 

requiring shorter detours or located at gas stations, and take the SOC into account when 

making charging decisions. In addition, the choice of fast-charging stations is heterogeneous 

among users in all four groups, though private users exhibit greater heterogeneity. 

4.5 Summary 

In this study, a mixed logit models with (ML-T) and without (ML) threshold effect are used 

to explore how various factors affect the choice of fast-charging stations made by users of 

battery electric vehicles (BEVs) and to explore the distance by which BEV users in the 

sample are generally willing to detour for fast charging. The data set used consists of trips 

that have one fast charge between origin and destination in Kanagawa Prefecture extracted 

from a BEV usage field trial in Japan. To the authors’ knowledge, this is the first study 

applying a discrete choice model to the empirical analysis of fast-charging station choice 

behavior. The results should provide a basis for the early planning of a public fast-charging 

infrastructure, which can be expected to accelerate EV market growth and then promote EVs 

as societal and environmental policies. 

The ML-T model is shown to fit better than the ML model, so ML-T estimation results 

are used to analyze fast-charging station choice behavior, leading to several discoveries. First, 

private users are generally willing to detour up to about 1750m to charge their vehicles on 

working days and up to 750m on non-working days, while the figure is 500m for commercial 

users on both working and non-working days. Second, although BEV users are willing to 

deviate from the shortest path to reach a charging station, they prefer to charge at stations 

with a shorter detour. Third, commercial users show a preference to charge at a station 

encountered earlier along their paths from origin to destination, while only private users 
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traveling on working days show such preference and they turn to prefer stations encountered 

later when choosing a station in peak hours. Fourth, the attribute of free to charge seems only 

to attract private users traveling on working days, and commercial users prefer to pay for 

charging at a station within 500 meters’ detour distance. Fifth, all BEV users prefer chargers 

located at gas stations. Sixth, a higher SOC decreases the propensity to charge for all BEV 

users. Last, the choice of fast-charging stations is heterogeneous among users in all four 

groups: private and commercial users traveling on, respectively, working and non-working 

days. However, private users exhibit greater heterogeneity. 

These results represent a glimpse into how BEV users choose a fast-charging station 

during trips that have one fast-charging event between the origin and the destination in 

Kanagawa prefecture. Caution must be exercised in extending the findings to other regions or 

to trips with more than one fast-charging event. 

This study is limited in that some factors that might affect choice behavior are absent, 

including users’ socio-economic and demographic attributes, users’ attitudes and perceptions 

toward charging infrastructure, users’ daily routine activities, and many others. Future studies 

including these factors may give further insights into users’ charging behavior. In addition, 

given the long-noted variation of interpersonal and intrapersonal travel behavior in the 

transportation engineering literature, the relatively small sample of drivers that were 

eventually chosen (24 private vehicles and 8 commercial vehicles) may affect the consistency 

of results, which could be further verified by additional studies based on a large sample of 

drivers. It would be also interesting to apply the model proposed in this study to other areas 

with different fast-charging station densities to explore the relationship between charging 

patterns and development levels of charging infrastructure. The other key point is that this is a 

preliminary study on fast-charging station choice behavior based on trips, future study based 

on tours may presents a fuller picture of how users decide when and where to fast-charge 

their vehicles.  
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Chapter 5  

Charge timing choice behavior of battery electric vehicle users 

This chapter examines the charging behavior related to charge timing choice. The research 

background is firstly introduced, which states the focus of this study: normal charging after the 

last trip of the day. Then, the characteristics of the normal-charging behavior seen in the 

samples used in this study are described, and the alternatives are presented that no charging, 

charging immediately after arrival, nighttime charging, and charging at other times. A mixed 

logit model with unobserved heterogeneity is applied to explore choice behavior in respect of 

the time at which BEV users charge their vehicles. The effects of various factors on the choice 

of normal charge timing are discussed based on the estimation results. Finally, some 

conclusions are presented to wraps up this chapter. 

5.1 Introduction 

It is generally known that EVs may deliver impressive environmental, economic and societal 

benefits. A recent area of research relates to the costs and benefits to the environment, 

economy, and society of EVs. A number of authors have already discussed this question (e.g. 

van Vliet et al., 2011; Campanari et al., 2009; Eaves and Eaves, 2004; Delucchi and Lipman, 

2001; Funk and Rabl, 1999). However, the impact of EVs on the electricity grid has become a 

growing concern in recent years, since they will add a significant load as they become more 

popular, possibly requiring changes to the existing infrastructure. 

Previous research demonstrates that the effect of EV recharging on the electricity grid 

depends crucially on the timing of charging as well as the type of charging. Hadley (2006) 

pointed out that nighttime recharging had less impact on peak loads than charging during the 

early evening. Similarly, discussion by Axsen and Kurani (2010) shows that shifting 
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recharging to off-peak hours could eliminate the threat to California utilities caused by the 

additional electricity demand. The significant effect of early evening (or peak period) 

recharging is mainly a result of it coinciding with the peak in household electricity 

consumption. Staggered EV recharging therefore seems necessary. Here ‘recharging’ refers to 

level 1 charging. 

Shao et al. (2009) compared the peak loads resulting from two charging scenarios: all 

assumed vehicles are charged at level 1 at 6 p.m. and all are charged at level 2 at 6 p.m. They 

concluded that the first case increases the transformers to 68%/52% of their limits in 

winter/summer while the second overloads transformers to 103%/98%. The increased peak 

load of level 2 charging is due to the higher voltage requirement. Further, Shao et al. (2009) 

examined what happened if level 1 and level 2 charging were shifted to off-peak hours, 

finding that the peak load was then 58%/52% for level 1 charging and 93%/86% for level 2 

charging. Similar results are obtained by Elgowainy et al. (2012), who compared the impacts 

on grids of recharging conducted at different timing and different level using the U.S. 

National Household Travel Survey. 

The above discussion makes clear that appropriate timing of EV recharging is crucial to 

the impact of EVs on the electricity grid. However, users tend to recharge EVs randomly at 

their convenience without considering peak or off-peak hours. In order to maintain the 

reliability of the electricity grid once EVs are integrated into the economy, many studies 

suggest that recharging must be controlled and coordinated (Clement et al., 2009). As a result, 

smart charging with vehicle-to-grid (V2G) technology has begun to be widely discussed as a 

way to regulate recharging (Venayagamoorthy et al., 2009; Acha et al., 2010). Although this 

topic is not the focus of the present study, more details and related research can be found in 

Green II et al. (2011). Rather, the focus of this work is to explore what and how factors 

influence choice behavior related to recharge timing, and whether it is possible to encourage 

users to charge during off-peak hours by adopting suitable measures. 
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To the authors’ knowledge, there has been almost no research on the choice behavior of 

recharge timing. Zoepf et al. (2013) used a mixed logit model to estimate the binary choice as 

to whether a PHEV was charged or not at the end of a trip. They suggested that the 

probability of charging overnight at home is going to be relatively high. Jabeen et al. (2013) 

explored EV drivers’ preferences for charging at work, home or public charging stations 

through stated choice experiments, using a multinomial logit model and a mixed logit model, 

with indicators for time of day (morning, lunchtime and night hours) as explanatory variables. 

Both estimation results showed that drivers preferred to charge their EVs during the night 

hours. However, neither of these studies is really about the choice of recharge timing, with 

recharge timing as the dependent variable. 

For EVs owned by households (hereafter referred to as private EVs), a typical daily trip 

may be from home to work, maybe to lunch, back home, and possibly for shopping or social. 

Considering that several hours are needed for normal charging, EVs might possibly be 

normal-charged at home, at an employer’s parking lot if chargers are provided, or at a 

restaurant/store parking lot if enough time is spent there and if chargers are provided. For 

EVs owned by commercial fleets (hereafter referred to as commercial EVs), on the other 

hand, a typical day may start at the company premises with a trip to another business, then 

maybe on to a second business, then back to the company premises, and such a trip could be 

repeated several times. The possible locations for normal charging are the company premises, 

a parking lot if the dwell time is long enough and if chargers are provided. However, both 

private and commercial EVs can be fast-charged at any point during a trip as long as fast 

chargers are available, because of the short time requirement of fast charging. 

This study will focus only on behavior related to normal charging after the last trip of 

the day, and on charging at home for private EVs and at the company premises for 

commercial EVs. The reasons for this choice are as follows. Firstly, EVs can be 

normal-charged at home or at the company premises without concerns about the availability 
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of chargers. Secondly, after the last trip of the day, there is plenty of time to make a decision 

about when to begin normal charging – during peak hours or off-peak hours or randomly – 

and this decision significantly affects the power load as mentioned above. 

In general, this study aims at exploring what and how factors influence the choice 

behavior for normal charging after the last trip of the day, in the hope that it may be possible 

to encourage recharging with appropriate timing, such as during off-peak hours. The analysis 

uses a mixed logit model with unobserved heterogeneity based on real-life BEV usage data 

collected in Japan. 

5.2 Data profiles 

As previously mentioned, this study uses only one choice situation – that of normal charging 

after the last trip of the day. After data checking and cleaning, the final data set used in the 

study included 249 commercial vehicles with 51,333 observations and 234 private vehicles 

with 66,933 observations. Table 5.1 compares the charging events used in this study and that 

in the field trial and shows that the normal-charging events used in this study represent a large 

proportion of the total charging events, which further reveals the importance of studying 

charge timing choice behavior for normal charging. 

 

Table 5.1 Comparison of charging events in this study and field trial 

Charging 
Events 

Commercial Vehicles Private Vehicles Total 
Normal 

Charging 
Fast 

Charging 
Normal 

Charging 
Fast 

Charging 
Normal 

Charging 
Fast 

Charging Total 

This Study 34801 n.a. 26164 n.a. 60965 n.a. 60965 
Field Trial 52575 2637 66784 6948 119359 9585 128944 

Percentage (%) 66.2 n.a. 39.2 n.a. 51.1 n.a. 47.3 
n.a. indicates variables not included in the analysis 

 

One characteristic of EVs is that charging takes a long time, even for the fast charging, 

so an effective behavior is to end a travel day by doing a normal charging ready for the next 

travel day. However, this trial in Japan shows that only 67.8% of arrival events for 
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commercial vehicles and 39.1% for private vehicles are charged in this way. The necessity of 

analyzing choice behavior regarding whether perform normal charging or not at the end of a 

travel day (and before the next trip) is thus clear. And the difference between commercial and 

private vehicles reveals that it is better to analyze commercial and private vehicles separately. 

Among users who perform normal charging at the end of a travel day, there are two 

different behaviors: charging immediately after arriving at home or the company premises, 

and charging time later. By examining the delay time between arriving at the end of the travel 

day and starting normal charging separately for commercial and private vehicles, in about 

80% of sampled normal-charging events, normal charging starts within 30 minutes for 

commercial vehicles, while the figure is 45% for private vehicles. Again this indicates the 

importance of analyzing normal charging behavior for commercial and private vehicles 

separately. This “delay time” so far is referred to as the lag between arrival time and when 

normal charging begins. However, this is a slightly incorrect definition for several reasons: 

users may need some time to prepare for charging; users may have some customary behavior 

immediately after arriving (and before charging), such as checking the mail or playing with 

the children; and the common occurrence of sampling errors. So we redefine “delay time” 

such that the lag is counted as a delay if it is greater than 30 minutes, otherwise we will say 

that users begin charging immediately upon arrival. 

Even with this definition of “delay time”, 20% of sampled normal-charging events for 

commercial vehicles and 55% for private vehicles begin after a certain delay. The reason for 

this delay before beginning to charge a BEV is worthy of attention – particularly given that 

normal charging initiated in off-peak hours has less impact on the electricity grid. We first 

attempt to discover a pattern by drawing the distributions of arrivals and the start of 

normal-charging events through the day, and then the distribution of delay events against the 

time at which normal charging starts. The results are shown in Figure 5.1. 
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Figure 5.1 Distributions of arrivals, start of normal charging, and start of delayed normal charging 
after arrival of the last trip of the day 

 

Figure 5.1 reveals that there is a greater spread of delay in the case of private vehicles 

than for commercial vehicles. Further, it seems that most users who delay charging are 

waiting until 23:00 to begin charging, for both commercial and private vehicles. This might 

be caused by electricity pricing, since one low-price electricity tariff begins at 23:00 and ends 

at 7:00 in Japan. However, there are some differences in delay behavior between commercial 

and private users. For commercial vehicles, there is a small rise in delayed charging events 

between 16:00 and 17:00; this may just be because users leave work at this time and leave 

their BEVs on charge. Similarly, delayed charging events that start between 8:00 and 9:00 are 

possibly caused by users arriving at work. There are two other charging peaks around 22:00 

and 1:00 for commercial vehicles, which may need further explanation except for a possible 
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link with electricity pricing (since there are several different electricity tariffs in Japan). For 

private vehicles, there is a peak in delayed charging events between 22:00 and 0:00, which is 

possibly linked with electricity pricing. 

Given that a large proportion of delayed charging events start around 23:00 and the time 

period from 23:00 to 7:00 corresponds with off-peak hours and with a lower electricity tariff 

for some users (though not all, because of the various electricity tariffs), we divide delay 

behavior for normal charging into two categories: nighttime charging (from 23:00 to 7:00) 

and charging at other times. 

Based on the above discussion, therefore, there are four choices of normal charging 

behavior after the last trip of the day: no charging, charging immediately after arrival, 

nighttime charging, and charging at other times. Figure 5.2 shows the distributions of choice 

behavior among these four possibilities for normal charging with arrival time, separately for 

commercial and private vehicles. To summarize, there is a difference of normal charging after 

the last trip of the day between commercial and private vehicles, with most commercial 

vehicles being charged at the end of the travel day while most private vehicles are not; most 

normal-charging events are initiated immediately after arrival at home or company premises, 

but a larger percentage of charging events take place at nighttime in the case of private 

vehicles. 

 

 

Figure 5.2 Distributions of choice behavior for normal charging after arrival of the last trip of the day 
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The assumption that BEV users are faced with the above-mentioned four choices after 

the last trip of the day does have some limitations. It does not include other charging 

opportunities during off-peak or low-price hours, which exist since the arrival time of the 

end-of-day trip varies in a wide range and there are several different electricity tariffs in 

Japan. Also it does not include such charging behavior that the normal-charging start time is 

determined by the departure time of the next travel day and duration time of fully charged. 

However, the assumed four choices are appropriate for this study since the purpose of this 

study is to explore what and how factors influence choice behavior related to recharge timing, 

and whether it is possible to encourage users to charge during off-peak hours by adopting 

suitable measures. It is important to point out that the results of this study are only indicative 

of early BEV adopters, given the few BEVs on the road. And the results may not necessarily 

be generalized outside of Japan. 

5.3 Methodology 

The decision whether to charge after the last trip of the day seems appropriately modeled as a 

multinomial discrete choice problem in which BEV users choose one alternative from the set 

of alternatives: no charging, charging immediately after arrival (at home or company 

premises), nighttime charging and charging at other times. As the introduction to the field 

trial in Chapter 2 makes clear, the data includes repeated observations for each individual and 

this warrants further consideration. What needs to be clarified is that this study assumes one 

vehicle is driven and charged by one individual during the trial, even though it may be driven 

and charged by more than one person in practice, since user information is not provided by 

the field trial in Japan. Generally, repeated observations from an individual tend to be similar, 

which means that individuals tend to make the same choices from one observation to the next. 

However, there are differences in preference for alternatives within and across individuals; 

for example, some users who are price-sensitive like to charge their BEVs at night for the 



88 

lower price, while others who are less price-sensitive tend to charge at any time after the last 

trip of the day. In addition, it might be argued that one individual’s choices will vary over 

time, as a result of experience and other factors. Such similarities and differences are 

unobserved but, in principle, can be discovered, since an individual’s choices reveal 

something about them. This means that normal charging choices would better be estimated 

using panel data, with appropriate specifications of similarity and difference within one 

individual’s choices as well as differences among individuals. These specifications are 

modeled through an individual-specific and alternative-specific as well as time-invariant error 

component in this study, by assuming that differences over time within an individual’s 

choices have an important component that is individual-specific and time-invariant and that 

affects the charging choice after the last trip of the day. 

The utility that individual n obtains from alternative j in choice situation t can be 

specified as: 

njt j njt nj njtU Xβ α ε= + +                                                 (5.1) 

where Xnjt is a vector of observed variables related to alternative j which varies between 

individuals and over time, βj is a vector of coefficients of these variables for alternative j, αnj 

is an unobserved individual effect related to alternative j which is time invariant and 

represents the individual’s preference, and ɛnjt is a random term which is assumed to be 

independently and identically distributed and to vary over time, individuals, and alternatives. 

βjXnjt is the deterministic portion of utility, while the term αnj is an error component, along 

with ɛnjt, defining the stochastic portion of utility. 

Individual n chooses alternative i from the set of alternatives J in choice situation t if and 

only if Unit > Unjt ∀j≠i; here, Unit and Unjt are obtained by individual n based on his/her own 

αn, which is known to individual n but unobserved by the researcher. If the researcher were to 

observe αn, then the choice probability has the following form: 
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A detailed derivation of Formula (5.2) can be found in Train (2003). Since the researcher 

does not know αn and therefore cannot condition on αn, the unconditional choice probability 

must be the integral of Pnit(αn) over all possible values of αn: 
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Thus the sample likelihood is: 
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where dnit=1 if individual n chooses alternative i at time t and zero otherwise. Usually, the 

distribution of α is specified freely by the researcher and then the parameters of that 

distribution are estimated. In most applications, f(α) has been specified to be normal 

(Ben-Akiva and Bolduc, 1996) or log-normal (Revelt and Train, 1998), but other 

distributional assumptions also have been applied widely, such as truncated-normal and 

uniform (Revelt and Train, 2000), where, as pointed out by Train (2003), the appropriate 

choice depends on the research question. The parameters of the assumed distribution f(α) can 

be estimated by maximizing the sample likelihood. However, there exists no analytical 

solution for the integral in (5.4). Therefore, in the literature, methods such as quadrature 

(Geweke, 1996) and simulation (Train, 2003) are proposed to approximate the integral. 

This study assumes that α is identically and independently distributed over the 

individuals and follows a multivariate normal distribution with mean b and 

variance-covariance matrix W, α~N(b,W), and uses simulation to estimate the parameters of 

the multinomial logit model with unobserved heterogeneity. The simulated sample likelihood 

is: 
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where R is the number of draws from the distribution of α, and αni
r represents the rth draw for 

individual n and alternative i. The standard approach to simulation-based estimation is to use 

random draws from the specified distribution; using this method, the accuracy of the results 

increases with the number of draws, but so does the estimation time. On the other hand, 

Halton sequences (Halton, 1960) have been used in several studies and they perform well 

with a small number of draws (Train, 2000; Bhat, 2001), so Halton sequences are adopted in 

this study. 

Although α is specified as independent over individuals, there are possibly correlations 

between alternatives within one individual, since individuals might view one alternative as 

closer to a certain other one than others. For example, charging immediately after arrival can 

be expected to be seen as more similar to charging at other times or nighttime charging than 

to the alternative of no charging. Therefore, this study assumes that there are correlations 

between alternatives. Correlated draws can be created through transformations of independent 

draws, such as with the Cholesky transformation (Train, 2003). 

For model identification, the coefficient vector and the unobserved heterogeneity of one 

choice are both normalized to zero. Therefore, each draw contains three values (ɛ1, ɛ2, ɛ3), 

which follow a standard normal distribution. And α can be calculated using the Cholesky 

factor, L: 

1 11 1

2 21 22 2

3 31 32 33 3

0 0
0

l
L l l

l l l

α ε
α α ε ε

α ε

    
    = = =    
    
    

                                     (5.6) 

where, L is defined as a lower-triangular matrix such that LL’ = W. It is worth noting that it 

does not matter which alternative is normalized to zero, but the estimations of all other 

choices do have to be interpreted relative to whichever one is normalized to zero. In this study, 
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the alternative of no charging is chosen as the one to be normalized to zero in order to 

interpret the results much more intuitively. 

The dependent variable, which is known with certainty, is the choice from no charging, 

charging immediately after arrival (at home or company premises), nighttime charging, and 

charging at other times. The focus is then on the independent variables. 

(1) The SOC after the last trip of the day, which visually represents the need for charging. 

It can be expected that the higher SOC the higher probability of no charging. 

(2) The number of interval days before the next travel day, because generally users can 

be expected not to charge their BEVs if they do not plan to use it again for a couple of days. 

(3) The vehicle-kilometers of travel (VKT) on next travel day, which reflects the 

electricity demand. It can be expected that the longer planned travel distance the higher 

probability of normal charging. 

(4) The experience of fast charging, measured as the total number of fast charging events 

before the last trip of the current travel day. If the experienced fast charging is convenient, 

then the urgency of normal charging can be expected to be reduced, otherwise will be 

increased. 

(5) A working day indicator for the current travel day and the next travel day, since it can 

be expected that the behavior pattern would be different for working days and non-working 

days. 

(6) An indicator for nighttime return to home/company premises (from 23:00 to 7:00), 

which relates to charge timing. 

(7) An indicator for the latter half of this trial. Since previous research shows that 

refueling choice is the result of a learning process (Dingemans, 1986), this indicator is 

included to explore whether any difference exists between the earlier and the latter period of 

this trial (the observations are divided into two equal stages for each individual according to 

the sample date). 
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Table 5.2 Statistical characteristics of independent variables 

Variable 

Commercial vehicles Private vehicles 

Total 
(n=51333) 

No 
charging 

(n=16532 ) 

Charging 
immediately 
(n=27591) 

Nighttime 
charging 
(n=2588) 

Other 
times 

(n=4622) 

Total 
(n=66933) 

No 
charging 

(n=40769) 

Charging 
immediately 
(n=11616) 

Nighttime 
charging 
(n=9769) 

Other 
times 

(n=4779) 
SOC (%) 69.3 (19.7) 74.1 (18.2) 67.9 (19.7) 65.8 (20.5) 63.1 (20.6) 63.2 (20.4) 70.5 (17.1) 54.2 (20.8) 49.4 (19.2) 50.7 (19.1) 
Interval days before next 
travel day 1.9 (2.7) 1.9 (3.2) 1.9 (2.6) 1.8 (1.7) 1.7 (1.7) 1.3 (1.4) 1.3 (1.7) 1.3 (1.0) 1.2 (0.8) 1.3 (0.9) 

VKT on next travel day (km) 24.5 (20.5) 21.1 (21.7) 26.2 (19.6) 30.0 (22.1) 23.6 (19.1) 24.6 (24.1) 19.7 (19.6) 31.1 (26.4) 34.6 (30.0) 29.2 (27.8) 
Experience of fast charging 10.9 (43.8) 21.6 (64.6) 5.1 (25.6) 8.8 (39.1) 7.9 (31.1) 25.8 (62.8) 28.5 (67.6) 20.3 (52.6) 23.8 (57.4) 20.7 (51.6) 
Working day (current travel 
day) (%) 88.8 82.0 92.5 95.1 87.6 70.8 71.3 69.9 71.0 67.9 

Working day (next travel day) 
(%) 88.9 82.6 92.3 94.7 87.9 70.9 71.2 71.0 70.4 68.4 

Nighttime (arrival at home 
/company premises) (%) 1.3 3.2 0.4 0.5 0.4 4.7 4.9 7.4 1.6 2.5 

Latter half of trial (%) 49.9 49.0 49.9 59.4 47.4 49.9 49.7 49.1 52.6 48.7 
Electricity company (%) 46.1 23.2 58.8 83.1 31.8 n.a. n.a. n.a. n.a. n.a. 

Value in () indicates the standard deviation, while outside is the mean value 
n.a. indicates variables not included in the analysis 
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(8) An indicator for BEVs operated by the electricity company, since it can be expected 

that electricity workers are better aware of the distribution of peaks and troughs in electricity 

grid demand. 

There is an assumption implied in the above discussion that individuals can correctly 

predict their next travel plans in the definitions of interval days, VKT, and the working day 

indicator. The statistical characteristics of the independent variables for both commercial and 

private vehicles as well as for each choice are described in Table 5.2. 

In summary, this study uses a multinomial logit model with unobserved heterogeneity 

based on panel data to model users’ behavior in choosing a mode of normal charging after the 

last trip of the day. In fact, it is an application of a mixed logit model, the derivation and 

estimation of which can be found in Train (2003) in greater detail. 

5.4 Results of model estimation 

Choice behavior for normal charging after the last trip of the day is, as has already been noted, 

different for commercial and private users. So the estimation results of two groups are 

presented in this section, respectively, for commercial vehicles and private vehicles. 

Table 5.3 presents the estimation results of mixed logit model with unobserved 

heterogeneity (ML) for commercial and private vehicles, the likelihood at convergence of 

multinomial logit model (MNL) is also presented for comparison. All of these results should 

be interpreted relative to the alternative of no charging, since this is specified as the baseline. 

It is clear from the AICs in Table 5.3 that mixed logit model with unobserved heterogeneity is 

more effective than multinomial logit model in analyzing the charge timing choice behavior. 

Therefore, this study focuses on discussing charge timing choice behavior after arrival of the 

last trip of the day according to the estimation results of the mixed logit model with 

unobserved heterogeneity. 
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Table 5.3 Estimation results for normal charge timing choice after the last trip of the day# 

Variable Alternative Commercial vehicles Private vehicles 
Coef. Std. error Coef. Std. error 

SOC 
Charging immediately -0.066** 0.001 -0.104** 0.001 

Nighttime charging -0.059** 0.002 -0.100** 0.001 
Charging at other times -0.059** 0.001 -0.096** 0.001 

Interval days before 
next travel day 

Charging immediately -0.042** 0.005 -0.058** 0.017 

Nighttime charging -0.086** 0.020 -0.195** 0.023 
Charging at other times -0.059** 0.010 -0.008 0.013 

VKT on next travel 
day 

Charging immediately 0.015** 0.001 0.025** 0.001 

Nighttime charging 0.018** 0.001 0.028** 0.001 

Charging at other times 0.009** 0.001 0.024** 0.001 

Experience of fast 
charging 

Charging immediately -0.002** 0.0004 -0.001** 0.0003 

Nighttime charging -0.003** 0.001 -0.0003 0.0003 
Charging at other times -0.002** 0.001 -0.001** 0.0004 

Working day 
(current    
travel day) 

Charging immediately 0.166** 0.045 -0.174** 0.034 

Nighttime charging 0.321** 0.121 -0.092* 0.036 

Charging at other times 0.090 0.061 -0.203** 0.040 

Working day (next 
travel day) 

Charging immediately 0.008 0.045 0.076* 0.034 

Nighttime charging 0.052 0.119 0.009 0.036 
Charging at other times 0.032 0.062 -0.040 0.039 

Nighttime (arrival at 
home/company 
premises) 

Charging immediately -0.817** 0.127 0.504** 0.068 

Nighttime charging -0.433 0.343 -1.434** 0.105 
Charging at other times -1.293** 0.254 -0.916** 0.110 

Latter half of trial 
Charging immediately 0.108** 0.029 0.104** 0.031 

Nighttime charging 1.121** 0.070 0.289** 0.033 

Charging at other times -0.0002 0.041 0.104** 0.037 

Electricity company 
Charging immediately 1.750** 0.049 n.a. n.a. 
Nighttime charging 2.735** 0.092 n.a. n.a. 
Charging at other times -0.309** 0.063 n.a. n.a. 

Alternative specific 
constant (i.e. Mean) 

Charging immediately 3.751** 0.084 4.497** 0.080 

Nighttime charging -1.489** 0.192 3.053** 0.088 

Charging at other times 3.239** 0.107 3.477** 0.084 

Variance 
Charging immediately 4.503** 0.100 8.200** 0.168 

Nighttime charging 7.843** 0.314 7.333** 0.168 

Charging at other times 6.697** 0.188 3.588** 0.106 

Covariance 

Charging immediately & 
Nighttime charging 0.279** 0.098 2.798** 0.087 

Charging immediately & 
Charging at other times 2.698** 0.118 4.330** 0.095 

Nighttime charging & 
Charging at other times 1.934** 0.134 2.435** 0.065 

Log likelihood 
(MNL)  -48489.578 -62803.558 

Log likelihood 
(ML) 

LL (Bc) -30708.327 -40994.861 
LL (B) -30503.235 -39873.729 

AIC (MNL)  97033.156 125655.116 
AIC (ML)  61078.47 79813.458 

# Reference group is: no charging 
n.a. indicates variables not included in the analysis 
* , ** indicate significance at 5%, and 1% level, respectively 
LL(Bc): log likelihood without correlated coefficients for ML 
LL (B): log likelihood with correlated coefficients for ML 
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For commercial vehicles, firstly we consider the variable of indicator for BEVs operated 

by electricity company, which has significant positive effects on the choices of charging 

immediately and nighttime charging as well as significant negative effect on the choice of 

charging at other times. The low utility of charging at other times indicates that electricity 

workers prefer to charge at some points after their last trip of the day, rather than randomly. 

And the high utility of the nighttime charging indicates that they prefer to delay charging 

until nighttime. The reason for this pattern may be that electricity workers know the exact 

distribution of peaks and troughs in the electricity grid and choose to charge during off-peak 

hours to regulate the peak-trough differential. This might also be used to explain the charging 

peak at 1:00 for commercial vehicles in Figure 5.1, maybe something like smart charging is 

used to initiate such nighttime charging. 

Next, we see that, compared to no-charging, the probabilities of charging immediately, 

nighttime charging and charging at other times are lower when SOC is higher, which is 

consistent with our expectation, since a higher SOC means greater available range and thus 

smaller charge demand. 

Then let’s examine the effect of interval days before the next travel day. The results 

show that there are significant negative effects on the choices of charging immediately, 

nighttime charging and charging at other times, which may reveal again that normal charging 

is a demand-based behavior. 

Looking at VKT on the next travel day, the significant positive effects on the choices of 

charging immediately, nighttime charging and charging at other times reveal that a longer 

planned travel distance increases the probability of normal charging. This effect is similar to 

that of SOC and interval days before next travel day, and reveals again that normal charging 

is a demand-based behavior. 

The total number of fast charging events before the last trip of the current travel day has 

significant negative effects on the choices of charging immediately, nighttime charging and 
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charging at other times, which seems to reveal that fast charging reduces the demand for 

normal charging. One possible reason is the convenience provided by the much shorter 

charging time of fast charging as compared with normal charging, which attracts commercial 

users to take fast charging. 

The working day indicator for this current travel day has significant positive effects on 

the choices of charging immediately and nighttime charging. One possible reason is the 

nature of the service business, which requires punctuality, speed, and so on, and commercial 

users charge their BEVs ready for the upcoming travel demand. However, the insignificant 

effect on the choice of charging at other times reveals that commercial users prefer to charge 

at some points after their last trip of the day, rather than randomly, even though they are 

anxious about the upcoming electricity demand. The nature of the service business can also 

be used to explain the insignificant effects of working day indicator for the next travel day on 

the choices of normal charging. 

Table 5.3 shows that commercial users tend not to charge when they arrive during the 

nighttime, which may because it is too late to begin charging, or all of the chargers are in use 

by other vehicles if the number of chargers is less than the number of vehicles. 

Lastly, the indicator for the latter half of the trial data has significant positive effects on 

the choices of charging immediately and nighttime charging. These results can be seen as the 

development of consistent charging behavior with experience. Therefore, it can be said that 

commercial users tend to charge during the nighttime, which is expected because off-peak 

tariffs generally operate at night and charging events initiated during off-peak hours will 

reduce the impact on the electricity grid. 

Now the results of private vehicles are discussed. First we see that, the significant 

negative effects of SOC on the choices of charging immediately, nighttime charging and 

charging at other times are similar with the effects in the model for commercial vehicles, 

which can be explained by the demand of normal charging as discussed for commercial 
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vehicles. 

Then, the results show that the interval days before the next travel day has significant 

negative effects on the choices of charging immediately and nighttime charging. These results 

may also reveal that normal charging is a demand-based behavior. 

The VKT on the next travel day has significant positive effects on the choices of 

charging immediately, nighttime charging and charging at other times, which reveals again 

that normal charging is a demand-based behavior. 

The total number of fast charging events before the last trip of the current travel day has 

significant negative effects on the choices of charging immediately and charging at other 

times. This reveals that fast charging reduces the demand for normal charging for the possible 

reason discussed for commercial vehicles. However, this variable doesn’t have significant 

negative effect on the choice of nighttime charging, which may reveals that private users are 

price-sensitive, with the low price in off-peak hours attracts them to charge their BEVs. 

The effects of the working day indicator for this current travel day on the choices of 

charging immediately, nighttime charging and charging at other times are all significantly 

negative, which is opposite to commercial vehicles. This reveals that private users tend not to 

charge after the last trip of a working day, which may be because private users can charge 

their BEVs in their companies. The significant positive effect of the working day indicator for 

the next travel day on the choice of charging immediately shows that private users tend to 

charge immediately after arrival if the next travel day is a working day, which may reveals 

that private users also worry about the upcoming travel demand. 

Unlike commercial users, private users prefer to charge immediately rather than wait for 

other times or no charge when they come home during the nighttime, which may reflects the 

effect of electricity price to some extent. 

Lastly, the effects of the indicator for the latter half of the trial data on the choices of 

charging immediately, nighttime charging and charging at other times are all positive. These 
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results reveal that private users tend to charge during the nighttime, which is expected for the 

benefit of electricity grid as discussed for the commercial vehicles. 

In summary, the effects of all factors on the choice probability of each alternative are 

somewhat different for commercial and private vehicles. The effects of working day indicator 

for this current travel day on the choices of charging immediately, nighttime charging and 

charging at other times are positive for commercial vehicles but negative for private vehicles. 

The effect of nighttime indicator for arriving on the choice of charging immediately is 

negative for commercial vehicles but positive for private vehicles. However, the results come 

to broadly the same conclusions that SOC, interval days before the next travel day, and VKT 

on the next travel day are the main predictors for whether a user charges the vehicle or not, 

that the experience of fast charging reduces the demand for normal charging after the last trip 

of the day, and that there is a trend to charge during the nighttime. 

Next, we see the estimation results of individual effect related to alternatives in the 

mixed logit model with unobserved heterogeneity. The variance of each random coefficient is 

statistically significant for both commercial and private vehicles, indicating that there are 

substantial variations across individuals in their choices of normal charging after the last trip 

of the day. Specifically, the variance for nighttime charging is larger, which could have two 

underlying causes: (i) users are somewhat price-sensitive and like to charge during low-price 

hours; (ii) there are various electricity tariffs in Japan and thus several different periods of 

low-tariff hours. On the other hand, the variance for charging immediately after arrival is the 

smallest for commercial vehicles but the largest for private vehicles, which can be expected 

because this alternative reveals arrival distribution that is affected by certain relatively stable 

factors for commercial vehicles (e.g. working hours) while relatively flexible factors for 

private vehicles (e.g. working, shopping and socializing). In addition, the variance of 

charging at other times for private vehicles is smaller than that for commercial vehicles1

                                                   
1 The coefficient estimates can be compared because the scale parameters of the two models are the same. 

, 
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which may because private users are more price-sensitive and they tend not to charge their 

BEVs randomly. 

The significance of the correlation between alternatives can be tested using the 

likelihood ratio test. The test statistic -2[LL(Bc)-LL(B)] is 410.2 and 2242.3, respectively, for 

commercial and private vehicles, both of which are greater than the critical chi-square value 

with three degrees of freedom. This implies rejection of the null hypothesis that there are no 

correlations between alternatives. For both commercial and private vehicles, charging 

immediately and charging at other times correlate positively with nighttime charging, 

implying that users who prefer to charge immediately or at other times tend to be attracted by 

nighttime charging. It can be expected that more users will initiate normal charging during 

the nighttime after the last trip of the day if the utility of nighttime-charging option is 

increased with some measures. This is exciting because BEV users are price-sensitive, 

especially private users as discussed previously, and reducing electricity price at nighttime is 

one possible measure to increase the attractiveness of nighttime charging. Therefore, it could 

be concluded that it’s possible to encourage users, not only those who tend to charge 

immediately but also those who tend to charge at other times, to charge at during off-peak 

periods by offering price reductions or other measures. 

5.5 Summary 

In this study, a mixed logit model with unobserved heterogeneity is used to explore how 

factors affect users’ choices in relation to the normal charging of a BEV after the last trip of 

the day (where the choices are no charging, charging immediately after arrival at home or 

company premises, nighttime charging, and charging at other times). To the authors’ 

knowledge, this is the first study that directly examines this timing choice behavior for the 

charging of EVs by users. The results are used to consider the possibility of encouraging 

normal charging at an appropriate time. Estimation results are separately presented for two 
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models, one for commercial vehicles and one for private vehicles, as well as for the last three 

alternatives (with the first alternative adopted as the baseline), based on normal charging 

events after the last trip of the day extracted from a BEV usage field trial in Japan. 

The comparison of the estimation results with mixed logit model with unobserved 

heterogeneity and multinomial logit model indicates that the mixed logit model with 

unobserved heterogeneity is more effective in analyzing the charge timing choice behavior. 

The estimation results with mixed logit model with unobserved heterogeneity show that SOC, 

interval days before the next travel day, and VKT on the next travel day are the main 

predictors for whether a user charges the BEV or not, that the experience of fast charging 

decreases the probability of normal charging. These hold for both commercial and private 

vehicles. However, the probability of normal charging after the last trip of a working day is 

increased for commercial users, while is decreased for private users. In addition, commercial 

users tend not to charge their BEVs when they arrival during the nighttime, while private 

users tend to charge immediately. In this study, the nighttime charging choice can be seen as a 

kind of desired behavior, since these are usually off-peak hours for the electricity grid with 

lower tariffs, so factors that positively influence the choice might be used to encourage 

appropriate timing of normal charging. In the case of commercial vehicles, BEVs operated by 

electricity company have high utilities when they are charged during the nighttime, which 

may indicate that electricity workers are better aware of the distribution of peaks and troughs 

in electricity grid demand and they choose to charge during off-peak hours to balance the 

differential. Although drivers with other business types might not know the details of 

electricity demand or not care about it, measures can still be implemented to encourage 

normal charging during off-peak hours, such as providing detailed information about electric 

loading and electricity prices at different times of the day, and the technology and facilities of 

smart charging may be expected. Similar measures might be effective for private users 

according to the analysis of estimation results for private vehicles. In fact, users gradually 



101 

form such desired charging behavior as revealed by the effects of the “latter half” indicator of 

the trial on choice of charge timing. 

The possibility of encouraging normal charging with an appropriate timing can be 

further supported by the significant positive correlations of nighttime charging with charging 

immediately and charging at other times for both commercial and private vehicles. In 

addition, the great variation across individuals in nighttime charging may further indicate that 

encouraging BEV users to charge off-peak by adjusting the price is possible, since the 

variation may result from two characteristics: first, that users are somewhat price-sensitive 

and tend to charge during low-price hours; second, that there are various electricity contracts 

in Japan and thus several different low-price tariffs with different hours. 

A final observation is that users’ family and personal attributes can be expected to affect 

their choice behavior, including factors such as income, age, and so on. However, such 

information is unfortunately not included in this field trial data. Future studies of charge 

timing choice should take these factors into account. 
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Chapter 6  

Conclusions 

Battery charging is one important aspect of EV operation. However, it is a big challenge for 

users to charge their vehicles optimally: they typically initiate charging at higher remaining 

electricity; the charging infrastructure seems to have been underutilized. On the other hand, 

the EV market is currently far from mature with battery technology is being evolved, 

charging infrastructure is being developed and users are gaining experience in charging EVs. 

Therefore, it is necessary to explore how various factors influence charging behaviors related 

to battery usage and charging infrastructure usage based on real-life EV usage data to provide 

a basis for guiding efficient battery utilization and developing an effective charging 

infrastructure. 

In addition, the impact of battery charging on the electricity grid should not be ignored, 

since it will add a significant load as EVs become more popular, possibly requiring changes 

to the existing infrastructure. Considering that recharging during off-peak hours has less of an 

impact on the electricity grid, and that users tend to recharge EVs randomly at their 

convenience without considering the state of the electricity grid, it is necessary to explore 

how various factors influence charging behaviors related to charge timing choice to provide a 

basis for encouraging more appropriate charge timing. 

Exploring on charging behavior is rarely involved in previous studies, since there were 

few EVs on the road. This thesis uses the dataset derived from a recent two-year field trial on 

BEV usage in Japan to determine factors that significantly influence charging behavior 

related to battery usage, charging infrastructure usage, and charge timing choice. 

This final chapter summarizes the major findings, and then presents practical 

implications for guiding effective battery utilization, developing an effective charging 
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infrastructure, and encouraging more appropriate charge timing based on the findings of this 

study, the limitations of the current study and suggestions for the future research are also 

included in this chapter. 

6.1 Major findings 

6.1.1 Charging behavior related to battery usage 

By applying the true random effects stochastic frontier model to panel data about mid-trip 

fast-charging events taking place after leaving the origin and before arriving at the destination, 

the battery usage behavior of BEV drivers is examined. 

The comparison of the estimation results with the true random effects stochastic frontier 

model and the random effects regression model indicates that the stochastic frontier modeling 

methodology is more effective in analyzing the battery usage behavior. The estimation results 

obtained with the true random effects stochastic frontier model for commercial and private 

vehicles, respectively, on working and non-working days show that only private users tend to 

charge their BEVs at lower level of remaining charge with increasing charging infrastructure, 

but both commercial and private users traveling on working days in areas with higher density 

of charging stations tend to initiate mid-trip fast charging at a higher level of remaining 

charge; that private users tend to charge at lower level of remaining charge with increasing 

familiarity with fast charging infrastructure, however, the familiarity does not have significant 

effect on the remaining charge when mid-trip fast charging begins for commercial users; that 

the usage of air-conditioning or heater only has significant negative effect on private users 

traveling on working days; that users driving BEVs with high-capacity battery tend to charge 

at higher level of remaining charge; that private users traveling on working days tend to 

charge at lower level of remaining charge with increasing number of daily trips; that 

commercial users traveling on working days tend to charge at lower level of remaining charge 

with increasing daily travel distance; that the speed only has significant effect for private 

vehicles, the variable indicating speed faster than 40km/h has a significant negative 
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correlation with the remaining charge in the model for private vehicles on working days and 

the variable indicating speed not more than 20km/h has a significant positive correlation in 

the model for private vehicles on non-working days; that commercial users and private users 

traveling on working days tend to charge at higher level of remaining charge during the latter 

half of the trial, while private users traveling on non-working days tend to charge at lower 

level; that electricity users tend to charge at higher level of remaining charge. 

Above all, the factors that significantly correlated with battery usage behavior of 

commercial and private vehicles, respectively, on working and non-working days and the way 

in which they affect the battery usage behavior are not similar. According to the related 

research, range anxiety felt by BEV users is one possible explanation for more remaining 

charge when mid-trip fast-charging begins. 

Lastly, comparison of actual and predicted remaining charge for commercial and private 

vehicles, respectively, on working and non-working days indicates that there is considerable 

opportunity to encourage improvements in battery usage behavior. 

6.1.2 Charging behavior related to charging infrastructure usage 

By applying mixed logit models with (ML-T) and without (ML) threshold effect to panel data 

about fast-charging events during trips that include just one fast-charging between origin and 

destination in Kanagawa Prefecture, Japan, the choice behavior of fast-charging stations 

made by BEV users is examined. 

The ML-T model is shown to fit better than the ML model, so ML-T estimation results 

are used to analyze fast-charging station choice behavior, leading to several discoveries. First, 

private users are generally willing to detour up to about 1750m to charge their vehicles on 

working days and up to 750m on non-working days, while the figure is 500m for commercial 

users on both working and non-working days. Second, although BEV users are willing to 

deviate from the shortest path to reach a charging station, they prefer to charge at stations 

with a shorter detour. Third, commercial users show a preference to charge at a station 
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encountered earlier along their paths from origin to destination, while only private users 

traveling on working days show such preference and they turn to prefer stations encountered 

later when choosing a station in peak hours. Fourth, the attribute of free to charge seems only 

to attract private users traveling on working days, and commercial users prefer to pay for 

charging at a station within 500 meters’ detour distance. Fifth, all BEV users prefer chargers 

located at gas stations. Sixth, a higher SOC decreases the propensity to charge for all BEV 

users. Last, the choice of fast-charging stations is heterogeneous among users in all four 

groups: private and commercial users traveling on, respectively, working and non-working 

days. However, private users exhibit greater heterogeneity. 

6.1.3 Charging behavior related to charge timing choice 

By applying a mixed logit model with unobserved heterogeneity to panel data about normal 

charging after the last trip of the day, the choice behavior in respect of the time at which BEV 

users charge their vehicles is examined. 

The comparison of the estimation results with mixed logit model with unobserved 

heterogeneity and multinomial logit model indicates that the mixed logit model with 

unobserved heterogeneity is more effective in analyzing the charge timing choice behavior. 

The estimation results with mixed logit model with unobserved heterogeneity show that SOC, 

interval days before the next travel day, and VKT on the next travel day are the main 

predictors for whether a user charges the BEV or not; that the experience of fast charging 

decreases the probability of normal charging, which hold for both commercial and private 

vehicles; that the probability of normal charging after the last trip of a working day is 

increased for commercial users, while is decreased for private users; that commercial users 

tend not to charge their BEVs when they arrival during the nighttime, while private users tend 

to charge immediately; that BEVs operated by electricity company have high utilities when 

they are charged during the nighttime; that BEV users tend to charge during nighttime in the 

latter half of the trial. 
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In this study, the nighttime charging choice can be seen as a kind of desired behavior, 

since these are usually off-peak hours for the electricity grid with lower tariffs, so factors that 

positively influence the nighttime charging choice might be used to encourage appropriate 

timing of normal charging. 

The possibility of encouraging normal charging with an appropriate timing can be 

further supported by the significant positive correlations of nighttime charging with charging 

immediately and charging at other times for both commercial and private vehicles. 

6.2 Practical implications 

The above mentioned findings provide a basis for guiding effective battery utilization, 

developing an effective charging infrastructure, and encouraging more appropriate charge 

timing. 

Firstly, for BEV users, in order to help them use battery and charging infrastructure in an 

optimal way, it is better to provide them with information about the distribution of charging 

infrastructure as well as information about electricity consumption rates under different 

conditions, such as using air-conditioning or heater, driving with different speeds. Since the 

familiarity with charging infrastructure and electricity consumption rates helps to alleviate the 

anxiety of running out of power before a suitable charging station is reached, providing such 

information can be expected to help BEV users arrange the charging activities according to 

the actual needs. On the other hand, in order to encourage BEV users to normal-charge their 

vehicles during off-peak hours, it is better to provide them with the detailed information 

about electric loading and electricity prices at different times of the day. 

Secondly, for the charging infrastructure constructors, in order to develop an effective 

charging infrastructure, the following considerations should be taken into account: 1) 

although increasing charging infrastructure helps to decrease remaining electricity when fast 

charging begins, more charging infrastructure is not necessarily better, there is an optimal 
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number of charging stations to encourage the effective use of both battery capacity and 

charging infrastructure; considering both the commercial and private users, the current 

research reveals that the number of charging stations per 1000 square kilometers should not 

be more than 55, and the optimal number of charging stations per 1000 square kilometers is 

between 15 and 55; 2) although BEV users are willing to deviate from the shortest path to 

reach a charging station, they prefer to charge at stations with a shorter detour, so it is better 

to locate charging stations to ensure the detour resulting from charging at a station within 

users’ willingness to detour; considering both the commercial and private users, the current 

research reveals that the willingness to detour is not more than 1750 meters; 3) since BEV 

users prefer chargers located at gas stations, it is better to install more chargers at gas stations 

if other technologies allow. 

Lastly, there are some implications for the BEV manufacturers. The positive correlation 

between high-capacity battery and remaining electricity when fast charging begins indicates 

that higher capacity battery is not necessarily better, so an appropriate battery size designed 

according to the travel demand is good for both BEV manufactures and BEV users, since 

larger capacity battery needs more advanced battery technology and makes BEVs more 

expensive; Although this study has not identified the most appropriate battery size, the 

current research shows that BEVs with a higher capacity battery, 5.5kWh more than the lower 

capacity battery, are generally initiated to fast charging at a higher level of remaining 

electricity for an extra 1.6kWh. In addition, more information about the state of battery 

during driving should be provided by the manufacturers in more precise and more intuitive 

way. 

6.3 Limitations and future research direction 

This thesis is a preliminary study on charging behavior, and there are some limitations, which 

point out the direction for future research. 
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Firstly, some factors that might affect charging behavior are absent, including users’ 

socio-economic and demographic attributes, users’ attitudes and perceptions toward charging 

infrastructure, users’ daily routine activities, the charging cost and other attributes of charging 

stations, and many others. Future studies including these factors may give further insights 

into users’ charging behavior. A stated preference (SP) survey seems to be necessary, however, 

attention should be paid to the combination of SP data and the observed data if the two 

surveys are not conducted at the same time or not performed to the same participant. 

Secondly, since fast charging infrastructure is being developed, further studies exploring 

the relationship between charging patterns and development levels of charging infrastructure, 

by applying the models to areas with different fast-charging station densities, would be 

helpful to provide advices for planning a public fast charging infrastructure. 

Thirdly, given the long-noted variation of interpersonal and intrapersonal travel behavior 

in the transportation engineering literature, the relatively small sample of drivers that were 

eventually chosen in the study about fast charging station choice (24 private vehicles and 8 

commercial vehicles) and the study about mid-trip fast charging for commercial vehicles (33 

on working days and 10 on non-working days) may affect the consistency of results, which 

could be further verified by additional studies based on a large sample of drivers. 

Finally, it would be interesting to integrate the studies of this thesis to develop a 

charging navigation system, proving information in real time to guide an effective charging 

behavior, such as where is the best place to charge EVs, when is the best timing to charge 

EVs, and so on. It would be also interesting to compare the charging behavior examined in 

this study with that in other countries or regions. 
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