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2 ISAO KATO
1. INTRODUCTION

1.1. Main results and main idea. We study the Cauchy problem for the Klein-
Gordon-Zakharov system and the Zakharov system in spatial dimension d > 4. The

Klein-Gordon-Zakharov system is as follows.

(02— A+ Du = —nu, (t,z) € R x RY,
(0?2 — *A)n = Alul?, (t,z) € R x RY, (L.1)

(U, atua n, 815”) |t:0 - (Uo, Uy, No, nl)

€ H*t1(RY) x H5(RY) x H*(RY) x H*~1(RY),

where u = u(t,x),n = n(t,z) are real valued functions, ¢ > 0 and ¢ # 1. The

Zakharov system is as follows.
(i0; + A)u = nu, (t,x) € R x RY,
(07 — Ay = Alul?, (t,7) R x RY, (1.2
(u(0),1(0),9yn(0)) = (ug,m0,m1) € H*(R?) x H'(RY) x HY(R?),
where u = u(t, ) is complex valued and n = n(t, x) is real valued function.
First, we consider (1.1). If we transform uy := wiu & iQ,u, ng == n + i(cw) ' d;n,
wy = (1 —A)Y2 w:= (=A)Y2, then (1.1) is equivalent to the following.
(i0; F wi)us = £(1/4)(ny +n_)(wytuy +wilul), (t,7) € R x RY
(10, F cw)ne = % (4c) " rw|w; tuy + witu_|?, (t,x) € R x RY, (1.3)
(U, s ) 1m0 = (U0, nso) € H¥(RY) x H5(RY).

Our main result is as follows.

Theorem 1.1. (i) Let d = 4. Then (1.3) is locally well-posed in HY*(R*) x
H'4(RY).

(ii) Let d > 5 and s = (d* — 3d — 2)/2(d + 1). Then (1.3) is locally well-posed in
H*(R?Y) x H5(RY).

(iii) Let d > 4,8 = 5. = d/2 — 2 and assume the initial data (uLg,n+o) € H*(RY) x
H*(R%) is small and radial. Then, (1.3) is globally well-posed in H*(R?) x H*(R%).

Corollary 1.2. The solution obtained in Theorem 1.1 (iii) scatters as t — 400.

For more precise statement of Theorem 1.1 and Corollary 1.2, see Propositions
2.15, 2.16 in section 2.4. We consider both the radial case and the non-radial case.
First, we consider the radial case. The scaling regularity of (1.3) is s. = d/2 — 2.

We have to recover a half derivative loss to derive the key bilinear estimates at
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the critical space. Bourgain introduced the Fourier restriction norm method to
recover the derivative loss. However, it seems difficult to apply the method in the
ctitical case. We apply the U?, V? type spaces, which are introduced by Koch and
Tataru [30]. Thanks to ¢ > 0 and ¢ # 1, if |{] > ||, then it holds that

M' = max{|7 % c/¢|

N (IR e () e 13 (1.4)

Here, & (resp. &) denote frequency for the wave equation (resp. Klein-Gordon
equation) and 7 %+ c[¢| (resp. 7 £ (), 7 — 7 £ (£ — ) denote the symbol of the
linear part for the wave equation (resp. the Klein-Gordon equation). From (1.4)
and by applying the U2, V? type spaces, then we can recover the derivative loss. In
the radial case, the Strichartz estimates hold for a more wider range of (¢, 7). More
precisely, see Propostions 2.5, 2.6, 2.8 and 2.9. Therefore, we can derive the blinear
estimates at the critical space by applying the U?, V2 type spaces and the radial
Strichartz estimates. Next, we consider d = 4 and the non-radial case. When d < 4,
the Lorentz regularity s; is an important index as well as the scaling regularity for
the well-posedness for the wave equation. When d = 4 with quadratic nonlinearity,
the Lorentz regularity s;, = 1/4. On the other hand, s. = 0, hence we need to
consider s > s; = 1/4. When d = 4, we obtain local well-posedness at s = s, = 1/4
by applying U?, V2 type spaces. Finally, we consider d > 5 and the non-radial case.
Since s. > s; when d > 5, we expect the local well-posedness with s = s.. However,
we only obtain the local well-posedness with s = s.+1/(d+ 1). It seems difficult to
derive the bilinear estimates with s = s.. The reason is as below. We observe the
first equation of (1.3). We regard the nonlinearity as n. (w; 'uy). Here, we consider
the following cases. The case |£]| < €] and the case |£] > |£'|, where &, & denote the
frequency of n,us respectively. For the case || < |€/|, the nonlinearity does not
have the derivative loss, so we can show the bilinear estimate at the critical space
only by applying the Strichartz estimates. However, for the case || > |£'|, we need
to recover a half derivative loss by (1.4). Here, there are three cases in (1.4). The
cases (a) M' = |t £cl¢||, (b)) M’ = |7' £ (&) and (¢) M’ = |7 — 7/ £ ({ — £)|. For the
case (a) or (c), we apply (1.4) for n. and the Strichartz estimates for w; 'us. Then
we can obtain the bilinear estimate at the critical space. Whereas for (b), we apply
the Strichartz estimates for n. and apply (1.4) for w;'us. In this case, we cannot
prove the bilinear estimate at the critical space. As a result, we have to impose
more regularity:.

Next, we consider (1.2). Our main result is as follows.
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Theorem 1.3. Letd > 4,k = (d —3)/2,l = (d —4)/2. Then (1.2) is globally well-
posed for small data in H*(RY) x H (R?) x H'(RY). Moreover, the solution scatters
in HF¥(RY) x HY(RY) x H'(RY).

For more precise statement of Theorem 1.3, see Propositions 2.15, 3.12. (1.2)
does not have scaling invariant transformation because of the difference of dila-
tion transformations for the linear wave equation and the Schrodinger equation.
However, in [10], Ginibre, Tsutsumi and Velo introduced a critical exponent for
(1.2) which corresponds to the scaling criticality. The critical exponent is (k,[) =
((d —3)/2,(d — 4)/2). More precisely, see subsection 3.1. We apply U?,V? type
spaces to obtain Theorem 1.2. However, it seems difficult to prove the bilinear esti-
mates at the critical space only by applying U2, V2 type spaces. By the difference of
the dilation scale of the Schodinger equation and the wave equation, the effect by os-
cillatory integral for the Schrodinger equation works more effective than that of the
wave equation. Therefore, in our problem we have to use the endpoint Strichartz es-
timate for the Schrodinger equation, that is to say the case of (p1,¢1) = (2,2d/(d—2))
in Proposition 3.5. This causes the following problem: if we use the U? type func-
tion space and follow the argument by Hadac-Herr-Koch [19], then by the duality
argument (see Proposition 1.10) we need to estimate LfLid/ (@=2) horm by the V2
type norm. However, we can not get such estimate by Corollary 1.15 because the
V? type norm is slightly weaker than U? type norm. For this reason, we need the
function space weaker than the U? type and stronger than the V2 type. For that
purpose, we use an intersection space of V2 type space and E := LfLid/ (@=2) " See
the definition of [|u[[xx in Definition 4, which is the main idea. This is a joint work

with Professor K. Tsugawa.

1.2. Notations. In this section, we prepare some lemmas, propositions and nota-
tions. Notations related to UP and VP spaces are based on the definition in [19] and
[20]. A < B means that there exists C' > 0 such that A < C'B. Also, A ~ B means
A < Band B < A. Let u=u(t,z). Fyu, Fou denote the Fourier transform of u in
time, space, respectively. F; ;u = u denotes the Fourier transform of u in space and
time. Let Z be the set of finite partitions —oco = tg < t; < -+ < tg = oo and let
Zy be the set of finite partitions —oo <ty < t; < -+ < tg < .
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Definition 1. Let 1 < p < oo. For {t; }}<, € Z and {¢x}1—, C L? with ZkK:_Ol Prllye =
1, we call the function a : R — L2 given by

K
a= Z Lty 1 )1
k=1

a UP-atom. Furthermore, we define the atomic space

Ur -— {u — Z)\jaj ‘ a;j : UP-atom, \; € C such that Z || < oo}

j=1 j=1

with norm

l|wllor == inf{z I\ ]
j=1

Proposition 1.4. Let 1 < p < g < 0.

U= Z)\jaj, N €eCaj: Up—atom}.
j=1

(i) UP is a Banach space.

(ii) The embeddings UP C U? C L*(R; L2) are continuous.

(iii) For w € UP, it holds that lim,_; ¢ ||u(t) — u(to)||r2 = 0, i.e. every u € UP is
right-continuous.

(iv) The closed subspace UP of all continuous functions in UP is a Banach space.
The above proposition is in [19] (Proposition 2.2).

Definition 2. Let 1 < p < oo. We define VP as the normed space of all functions

v: R — L2 such that lim; ,1., v(f) exist and for which the norm

K 1/p
[ollve == sup (3 lutts) = vt

{t}0€2 N =1
is finite, where we use the convention that v(—o00) := lim;_,_, v(t) and v(c0) := 0.

Likewise, let V¥ denote the closed subspace of all v € V? with lim;_, ., v(t) = 0.
The definitions of V? and V*| see the erratum [20].

Proposition 1.5. Let 1 < p < g < 0.
(i) Let v : R — L2 be such that

K 1/p
lollvg == sup (3 llo(t) = vt 1), )
{te}io€20 “g=1
is finite. Then, it follows that v(t]) := limy ;. v(t) exists for all ty € [—00,00) and

v(ty ) = limy_y,— v(t) exists for all ty € (—o0, 00| and moreover,

[ollve = llollve-
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(ii) We define the closed subspace VE (V® ..) of all right-continuous VP functions
(VP functions). The spaces VP, V2 VP and V*,

(iii) The embeddings UP C V' . C U? are continuous.
(iv) The embeddings VP C V? and VE C VI are continuous.

o are Banach spaces.

The proof of Proposition 1.5 is in [19] (Proposition 2.4 and Corollary 2.6). Let
{F¢ Henl(2)}nez € S(R?) be the Littlewood-Paley decomposition with respect to
x, that is to say

©(§) >0,
supp (&) = {£]27" < J¢] < 2},

o

Pal€) == 0(277€), Y enl§) =1 (£#0), —1—2%

n=—oo

Let N =2" (n € Z) be dyadic number. Py and P.; denote

Fal Pnf1(§) = @(&/N)Falf1(§) = ¢n(§) Falf1(E),
FalPar f1(§) := (&) Falf1(E)-

Similarly, let @ be

FilQngl(1) := ¢(1/N)Filgl(r) = on(7) Filg)(7),

where {F¢,](t) }nez € S(R) be the Littlewood-Paley decomposition with respect
to t. Let Ki(t) = exp{Fit(l — A)Y/?} : L2 — L? be the Klein-Gordon unitary
operators such that F,[Ki(t)upl(§) = exp{Fit(§)} F.luo)(&). Similarly, we define
the wave unitary operators Wi.(t) = exp{Fict(—=A)/?} : L2 — L2 such that
FalWee(t)no] () = exp{Fict|¢|} Fulno](€), Wx(t) = exp{Fit(—A)"2} : L2 — L2
such that F,[W4 (t)ng](€) = exp{Fit|¢|} Fu[no)(£). Let S(t) = exp{itA}: L2 — L2
be the Schrodinger unitary operator such that F,[S(¢)ug|(€) = exp{—it|&|*} Fuluo](€).

Definition 3. We define
(1) U}'}i = K. (-)U? with norm ||u||Uf(i = [| K< (—)ul|ye,

(i) Vg, = K+(-)V? with norm HuHVz’éi = || KL(=)ul|vs.
For dyadic number N, M,
N=Ke(QnEL(—), Q%= > QnF, Qi =1d- Q%
N>M

Here summation over N means that summation over n € Z. Similarly, for A €

{S, Wy, Wi}, we define UL, VE, Q%, Q4,,, Q%
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Remark 1.1. For L? unitary operator A € {Ky, S, Wy, Wy},
Uz - V—z,rc,A - LOO(Rv L?})

holds by Proposition 1.4 (i) and Proposition 1.5 ().

Definition 4. For the Schrodinger equation, we define X as the closure of all u €
C(R; HF(RY)) N (fokV_% re.s (V,) "E with X norm, where

1/2
lull g = lullyg + ulles < o0, llullyg = [ Parallyz + (3 N*1|Prul2;)
N>1

1/2
el i= I1P<rulls + (3 N [Pwulig)

N>1

where F := LfLid/(dq). For A € {Ki, Wy, Wy}, we define Z4 (resp. Z4, Y4, Y1)
as the closure of all n € C(R; H.(R%) N |V,|'U3 (resp.n € C(R; HL(RY)) N
(V.)"'U3, n € C(R; HL(RY) N V|7V, n € C(R; HL(RY)) N (V,)'V3) with

1/2 1/2
Il = (D0 N IPwnls)  Inllzy, = I Paanllog + (32 N2 PanllEs)

N N>1

1/2 1/2
Iallgs o= (32 NPl ) Inllyg o= [Pl + (32 N Panl;)

N N>1

Definition 5. For a Hilbert space H and a Banach space X C C(R; H), we define

B.(H):={feHI||fllx<r}
X([0,7)) == {u € C([0,T); H) |a € X, a(t) = u(t),t € [0,T)}

endowed with the norm |jul| xo,r)) = inf{||a| x| a(t) = u(t),t € [0,T)}.

Lemma 1.6. Let a > 0. Then for A € {Ky, S, Wy, Wy}, it holds that

H(V:e>af”vj S Hf”){g-
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Proof. By L? orthogonality, we have

V) flSe S sup D (I1P<(A(=t) f(t:) = Al=tia) f(t-)) |22

{ti}o€Z =1

+ > N P (A(—ta) f(t:) = A(—tim) f(ti21)l[72)

S osup D [JA(=ti) P f(ti) — A(—tia) Paa f(tia)l[72
{ti¥o€Z i1
I

+ D N sup > |JA(=t) Py f(ti) — A(—tic) Py f(tic1) |72

I
N>1 {ti}ico€Z =1

S IF115-

Remark 1.2. Similarly, we see

Vel Fllvz < [[f1lve-

For the proof of the following propositions, see Proposition 2.7, Theorem 2.8 and
Proposition 2.10 in [19].

Proposition 1.7. Let p,p’ satisfy 1/p +1/p' = 1. Foru € U? and v € VP and a
partition t == {t;}!_, € Z we define

There is a unique number B(u,v) with the property that for all € > 0 there exists
t € Z such that for every t' Dt it holds

| By (u,v) — B(u,v)| < ¢,
and the asociated bilinear form
B:U? x VP 3 (u,v) — B(u,v) € C
satisfies the estimate
| B(u, v)| < lullue][o]ly-
Proposition 1.8. Let 1 < p < oo. We have

Uy =ve



SCATTERING AND WELL-POSEDNESS 9

i the sense that
T:VP — (UP)*, T(v):= B(-,v)
18 an isometric isomorphism.

Proposition 1.9. Let 1 < p < oo, u € V! be absolutely continuous on compact

intervals and v € V¥, Then,

Blu,v) = /Oo (W (1), 0(t)) 1 d.

By Propositions 1.8, 1.9, we have the following proposition (see also Remark 2.11
in [19]).

Proposition 1.10. u € V! C U? be absolutely continuous on compact intervals.

Then, ||ul|y2 = sup )/ (U'(t),v(t)) 2 dt|.

veVZ, [lully2=1
By the proposition above, we immediately have the following corollary.

Corollary 1.11. Let A € {Ky, S, Ws, Wi} and u € V!, C U3 be absolutely

continuous on compact intervals. Then,

lullog = s | [ G 0,00 ]

UEVA27 ||U||V§:1
For the following remark, see Remark 2.12 in [19].

Remark 1.3. For v € V2, it holds that

[ollve = sup  [B(u,v)].

u;U2-atom

For the proof of the following Lemma, see section 2.2 and section 3.2.

Lemma 1.12. Let ¢ > 0,c # 1 and 73 = 171 — 7o, & = & — & If |&| > (&) or
(&1) < |&), then it holds that

max { |71 + (&), |72 + (&), |75 £ cl&]|} 2 max{]&], |&(}, (1.5)
max { |7 + [&1°], |72 + 167, |73 £ &)} 2 max{]&?, 6]} (1.6)
Proposition 1.13. We have
Q3 ulliz vy S M~ lullve,  1Q2aullz, @ieny S M lullyz,  (17)
1QZpullve S Nlullvz,  1Q3ullvz S llullve,

Q2 yulloz < lulloz, Q2 pulluz S llulloz-
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The same estimates hold by replacing the Schrodinger operator S with the wave

operators Wy, W, the Klein-Gordon operators K .
For the proof of Proposition 1.13, see Corollary 2.18 in [19].

Remark 1.4. If we define M as the left-hand side of (1.5), a half derivative loss is
recovered by Lemma 1.12 and (1.7) in Proposition 1.13. Similarly, if we define M
as the left-hand side of (1.6), the first derivative loss is recovered by Lemma 1.12
and (1.7) in Proposition 1.13.

Proposition 1.14. Let Ty : L2 x---x L2 — L]

loc

Ae{Ky, S, Wy, Wy} Assume that for some 1 < p, q < oo, it holds that

(R%C) be a n-linear operator and

ITo(AC) 1, -, ACYou) | p@iraceay S [T illza-
i=1

Then, there exists T : UL x --+ x UL — LY(R; L1(RY)) satisfying
1T (us - - s un) || o ;e (ray) H HUiHUf,»
=1

such that T(uy, ..., u,)(t)(x) = To(ur(t),. .., u(t))(z) a.e.

See Proposition 2.19 in [19] for the proof of the above proposition. See section 2.2
and 3.2 for the Strichartz estimates for the Klein-Gordon equation, the wave equa-
tion and the Schrodinger equation. Combining the Strichartz estimate, Propositions

1.5 and 1.14, we have the following corollary.

Corollary 1.15. Let (p1, q1) satisfy the assumption in Proposition 3.5 and p > p;.

Then, U is continuously embedded in LY L.

Lemma 1.16. If f, g are measurable functions and A € {Ky, S}, Q" € {Q%2,,,Q4,,},
then it holds that
ft,2)Q4g(t, x)dwdt = (Qf(t,2))g(t, x)dxdt.
]R1+d ]R1+d

For the proof of Lemma 1.16, see section 3.2.

Acknowledgement. The author appreciate Professor K. Tsugawa for giving useful
advice to the author the whole of this paper. Also, in section 2, the author would
like to thank S. Kinoshita for telling the author about the radial Strichartz estimates

for the wave equation.
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2. WELL-POSEDNESS FOR THE CAUCHY PROBLEM OF
THE KLEIN-GORDON-ZAKHAROV SYSTEM IN FOUR AND MORE SPATIAL
DIMENSIONS

2.1. Introduction. We consider the Cauchy problem of the Klein-Gordon-Zakharov

system:

((8752—A+1)u:—nu, (t,z) € R x RY,
(02 — *A)n = Alul?, (t,z) € R x RY 2.1)

(U/, at“? n, atn> |t=0 = (U/O, Ui, No, nl)

€ HH(R?) x H*(RY) x H*(R?Y) x H~'(R%),

\

where u,n are real valued functions, d > 4,¢ > 0 and ¢ # 1. The physical model
of (2.1) is the interaction of the Langmuir wave and the ion acoustic wave in a
plasma. In the physical model, ¢ satisfies 0 < ¢ < 1. When d = 3, Ozawa,
Tsutaya and Tsutsumi [41] proved that (2.1) is globally well-posed in the energy
space H'(R?) x L*(R?) x L?(R®) x H~'(R?). They applied the Fourier restriction
norm method to obtain the local well-posedness. Then by the local well-posedness
and the energy method, they obtained the global well-posedness. For d = 3, Guo,
Nakanishi and Wang [17] proved scattering in the energy class with small, radial
initial data. They applied the normal form reduction and the radial Strichartz
estimates. If we transform uy := wyu + iQu,ne = n + i(cw) 1On,w; = (1 —
A2 = (=A)Y2 then (2.1) is equivalent to the following.

(10 F s = £/ (ny +n )@ty +wile), (,7) ER X RY,
(10, F cwpne = (40 wlwiluy +witu P, (4a) ERXRY, (2.2
(Ui,ni)‘t:() = (Uio,nio) - HS(Rd) X HS(Rd)

Our main result is as follows.

Theorem 2.1. (i) Let d = 4. Then (2.2) is locally well-posed in HY*(R*) x
HY4(RY).

(ii) Let d > 5 and s = (d* — 3d — 2)/2(d + 1). Then (2.2) is locally well-posed in
H*(RY) x H*(RY).

(iii) Let d > 4,5 = s, = d/2 — 2 and assume the initial data (uig,nio) € H*(R?) x
H*(RY) is small and radial. Then, (2.2) is globally well-posed in H*(R?) x H*(R%).

Corollary 2.2. The solution obtained in Theorem 2.1 (iii) scatters as t — $00.
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For more precise statement of Theorem 2.1 and Corollary 2.2, see Propositions
2.15, 2.16. The scaling regularity of (2.2) is s. = d/2 — 2. We consider both the
radial case and the non-radial case. First, we consider the radial case. In the radial
case, the Strichartz estimates hold for a more wider range of (¢q,r). More precisely,
see Propostions 2.8, 2.9. On the other hand, we have to recover a half derivative
loss to derive the key bilinear estimates at the critial space. Thanks to ¢ > 0 and
c# 1, if [{] > |£'|, then it holds that

M’ = max{|7 + c[¢|

N ) I =7 £ =N} R €L (2.3)

Here, & (resp. ¢') denote frequency for the wave equation (resp. Klein-Gordon
equation) and 7 + c[¢| (resp. 7' £ (), 7 — 7 £ (£ — ') denote the symbol of the
linear part for the wave equation (resp. the Klein-Gordon equation). From (2.3)
and by applying the U?,V? type spaces, then we can recover the derivative loss.
Therefore, we can obtain the bilinear estimates at the critical space by applying the
radial Strichartz estimates and U?,V? type spaces. Next, we consider d = 4 and
the non-radial case. When d < 4, the Lorentz regularity s; is an important index
as well as the scaling regularity for the well-posedness for the wave equation. When
d = 4 with quadratic nonlinearity, the Lorentz regularity s, = 1/4. On the other
hand, s. = 0, so we need to consider s > s; = 1/4. When d = 4, we obtain local
well-posedness at s = s; = 1/4 by applying U?, V2 type spaces. Finally, we consider
d > 5 and the non-radial case. Since s. > s; when d > 5, we expect the local
well-posedness with s = s.. However, we only obtain the local well-posedness with
s =5S.+1/(d+1). It seems difficult to prove the bilinear estimate with s = s.. The
reason is as below. We observe the first equation of (2.2). We regard the nonlinearity
as n+(w; 'uy). Here, we consider the following cases. The case [¢| < |¢/| and the
case || > |¢'|, where £, & denote the frequency of ny,us respectively. For the
case [£] < €|, the nonlinearity does not have the derivative loss, so we can derive
the bilinear estimate at the critical space only by applying the Strichartz estimates.
However, for the case [¢]| > |£’|, we need to recover a half derivative loss by (2.3).
Here, there are three cases in (2.3). The cases (a) M’ = |r£c[¢||, (b)) M' = |7/ £ ()]
and (¢) M' = |1 — 7' £ (£ — &')|. For the case (a) or (c), we apply (2.3) for ny and
the Strichartz estimates for w; 'u+. Then we can obtain the bilinear estimate at the
critical space. Whereas for (b), we apply the Strichartz estimates for ny and apply
(2.3) for w; 'us. In this case, we cannot prove the bilinear estimate at the critical

space. As a result, we have to impose more regularity.
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In section 2.2, we prepare some notations and lemmas with respect to U?, V?| in
section 2.3, we prove the bilinear estimates and in section 2.4, we prove the main

result.

2.2. Notations and preliminary lemmas. We denote the Duhamel term

Irse.(n,v) = + /0 Loy () K e (¢ — )n(t') (wy o(t'))dt,

Iy (u,v) izi/o Lo,y () Wee(t — ) ((wy u(t)) (wy o(¥))) dt!

for the Klein-Gordon equation and the wave equation respectively.

Lemma 2.3. Let ¢ > 0,c # 1 and 73 = 11 — To, & = & — &, If |&] > (&) or
(&) < |&), then it holds that

+cl&l[} 2 max{l&l, &} (2.4)

max{‘ﬁ + (&), |2 £

Proof. We only prove the case [&] > (&) since the case (1) < || is proved by the

Salne manner.

(Lhs) 2 [(m £ (1 + &) = (2 £ (1 + &) — (73 £ c[&3])] (2.5)

If 0 < ¢ <1, then we take e, such that 0 <e. < (1 —¢)/(1+¢), |&]| < ecl&|. Then,
the right hand side of (2.5) is bounded by

(I+1&]) = (T +[&]) = clér — &l = [&i] —ecla] — e(1 + o)l Z &l

If ¢ > 1, then we take . such that 0 < &, < (¢—1)/(c+3),|&| < &, 16| > 1/é..
Then, the right hand side of (2.5) is bounded by

cléy =& = (L+1[&]) — (1 + &) = (1 = E)|&] — (T4 &) & — 28:/&] 2 1€
O

Lemma 2.4. Let M > 0 and QQ € {Q<M, ;ﬁ} For1<p<ooand f €V, , it
holds that

||Q(1[0,T]f)||L§’Lg 5 Tl/p”f”v,%i- (2-6>

Proof. By scaling, we only need to prove (2.6) for M = 1. We will show (2.6) for
Q= Q% . Put g:= Ki(—)f. Then (2.6) is equivalent to

QS (Lo K (9 luziz S T lgllv=- (2.7)
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By the unitarity of K., we have
1R (Lo K ()0l zpez = || 3 Ka()QuKa (=) (1pmKa()g)

N<1

= HZ Qn(10,119)

N<1
= [Q<1(1p19) | Lrr2- (2.8)
By the definition ()., there exists a Schwartz function ¢, it holds that
Qcih=¢* h
Hence by the Young inequality and the Holder inequality, we have
||Q<1(1[0,T}g)||LfL§ S ||¢||Lg||1[0,T]g||Lng

S Lo lleellgllze e
< TV g|ve. (2.9)

LYL:

LYL2

Collecting (2.8)—(2.9), we obtain (2.7). For the proof of (2.6) for @ = lei, we use
5 =1d - Q% and 11d(10119) I rrz S TV7|gllv=. O

~

Proposition 2.5. Let d > 3,2 <r < 00,2/q = (d—1)(1/2—1/r),(q,7) # (2,2(d —
1)/(d—3)) and s =1/q—1/r +1/2. Then it holds that

HWiC(t)fHL‘gW;”(RHd) 5 ||f||L§(Rd)-
For the proof of Proposition 2.5, see [23], [11].

Proposition 2.6. Let d > 3,2 <r < 00,2/q = (d—1)(1/2—1/r),(q,7) # (2,2(d —
1)/(d—3)) and s =1/q—1/r 4+ 1/2. Then, it holds that

K@) fllpawyor@ivay S 1 lz2we)-

For the proof of Proposition 2.6, see [37]. Combining Proposition 1.5, Proposition
2.5, Proposition 2.6 and Proposition 1.14, we have the following proposition.

Proposition 2.7. Let d > 3,2 <r < 00,2/q = (d—1)(1/2—1/r),(q,r) # (2,2(d —
1)/(d—3)) and s =1/q—1/r+1/2. If p < q, then it holds that

I coweor vy S Wfllv s I lowror@arey S I llvg, -

Proposition 2.8. Let d > 3. Then, for all radial functions f € L2(R?), it holds
that

IWee(t) Py fllpang ivay S NPV Py £ 12 gay, (2.10)
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if and only iof
(g,7) =(00,2) or 2<q¢<o0, 1/g<(d—1)(1/2—1/r). (2.11)
See Theorem 1.5 (a) in [18] for the proof of Proposition 2.8.

Proposition 2.9. Let d > 2. If2d/(d —1) < ¢ < oo,N > 1 and f € L2(R?) is
radial function, then it holds that

1K< (8) P fll o mivay S N2 Py £l 13 ay. (2.12)
Ifq> (4d+2)/(2d—1),N < 1 and f € L2(R?) is radial function, then it holds that
1K< (8) P fll e mivay S N2 2/ Py £l 13 a). (2.13)

See (3.13) in [18] for the proof of Proposition 2.9.

Proposition 2.10. Let d > 2 and (q,r) satisfy 2 < r < 2(d+ 1)/(d — 1),r <
¢, (1/2)(d—1)(1/2—1/r) < 1/qg < (d—=1)(1/2=1/r) and N > 1. Then, for all
radial function f € L2(R%), it holds that

I K£(t)Px fllporrmivay S NN Py £l 12 ey, (2.14)
Proof. When ¢ = r, (2.14) follows from (2.12). Interpolating L{, with L{°L2, we
obtain (2.14). O

Proposition 2.11. (i) Let d > 3,(q,r) satisfy (2.11) in Proposition 2.8 and s =
d(1/2—=1/r)—1/q. If p < q, then for all spherically symmetric function wu, it holds
that

||PNU”L;1W;”(R1+d) S ||PNUHV‘3’;,ic-

(ii) Let d > 2 and (q,r) satisfy the condition in Proposition 2.10. If p < q,N > 1
and sy = d(1/2 —1/r) — 1/q, then for all spherically symmetric function u, it holds
that

||PNU||L;1W;Slv’”(R1+d) 5 ||PNU||V};i- (2'15>
(i1i) Let d > 2. If p < q,N < 1 and sy = d/2 — (d + 2)/q, then for all spherically
symmetric function u, it holds that

Pl ssgacsy S I Pl (216)

Combining Proposition 1.5, Proposition 2.8 and Proposition 1.14, we have Propo-
sition 2.11 (z). Combining Proposition 1.5, Proposition 2.10 and Proposition 1.14,
we have Proposition 2.11 (i7). Combining Proposition 1.5, (2.13) and Proposition
1.14, we have Proposition 2.11 (7).



16 ISAO KATO

Proposition 2.12. (i) Let T > 0 and u € Y3, ([0,T]),u(0) = 0. Then, there exists
0<T' < (017 < e.

(i) Let T'> 0 and n € Yv‘i,ic([O,T]),n(O) = 0. Then, there exists 0 < T" < T such

([0,77]) <e.
For the proofs of (7) and (i), see Proposition 2.24 in [19].

Lemma 2 13. Let up, := 1o\ Pnu, On, = 1jo7)Prnyv, iy, = 1jo7) Py, @1, Q2 €
{Q<M, i} Qs € {szj\ij, Wi“ 8 = (d>—=3d—2)/2(d+1),s.:=d/2—2. Then
the followmg estimates hold for sufficiently small T > 0 if 8 > 0, and hold for all
0<T < o0 if@ =0 or spherically symmetric (u,v,n):

(i) If N3 < Ny ~ Ny, then

1) = / (i i, ) (@i ) (@i vl
R1+d
S TGN:fHUNle;;i lowallvz lInnsllva,

where (0,s) = (1/4,1/4) for d = 4 and (0,s) = (0,s.),(1/(d + 1),s") for d > 5.

Moreover, if (u,v,n) are spherically symmetric, then for d > 4,

d—8)/3 d+4)/6
L] S (N PN s vz lowa v llmalvz,

(i) It holds that

o S N = 0
b= | [ A D Pai)dadt] S Tl lollg, | Perulig,

where (0,s) = (1,1/4) for d = 4 and (8,s) = (0,s.),(1/(d + 1),s") for d > 5.

Moreover, if (u,v,n) are spherically symmetric, then for d = 4,

|1La| < ]

s el I Parellz,

(ZZ’I,) [le ~ Ng, then

= | [ (3 ) o oot 5 7
R1+d

N3 < N3

Y‘jviCHUN2HVf<i||uN1||V12<i7
where (0,s) = (1/4,1/4) for d = 4 and (0,s) = (0,s.),(1/(d + 1),s") for d > 5.
Moreover, if (u,v,n) are spherically symmetric, then for d =4,

113 < Inllvge losslv, o, vz,
(i) If Ny ~ N3, Ny > 1, M = &Ny and € > 0 is sufficiently small, then

11 S Tl v, ol s vz,
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where (0,s) = (1/4,1/4) for d = 4,i = 4,5,6 and (0,s) = (0,5s.) ford > 4,i = 4,6
and (0,s) = (1/(d+1),s") ford > 5,1 =4,5,6. Moreover, if (u,v,n) are spherically
symmetric, then for d > 4, it holds that

R R I e

where

/]R ZVA?MNS ( Z Qowy 'UN2> (Quiy, )dxdt,

No< Ny
:/ Q3nNs Z Q>Mw1 'UN2>(Q1'1~LN1)dZEdt,
Ri+ No< Ny
:/ Q3TZN3 Z Qawy UN2>(Q>MUN1)d5Edt
Ri* Na< Ny

Proof. We show (i) first. For f € Vi, A € {Ki, Wi}, we see

o fllvz S I1f kv (2.17)

First, we show it for d = 4. We apply the Hélder inequality, Proposition 2.7 (2.17)
and N3 < N; ~ Ny, then we have

1 % 1o lagllon™ oyl Ol ors e oo oo
S TV or il (V) o s v, IIVe ™ wiing vz,
S TN v, (N2Y T o g, N
S TN Dz, lonc llvz s llve,,
For d > 5, we apply the Holder inequality to have

13| S ey Mo, || s llwr O, | p2easn - l|lwfing || e (2.18)

We apply Proposition 2.7, (2.17) and the Sobolev inequality, then we have

i Fovll e san < (N2 fn vz, = N7 vz, (2.19)
||WﬁN3||L§flj1>/2 < |||Vx|d(d—5)/2(d—1)wﬁjv3||L§d+1)/2L§(d2—1)/(d2—9)
S Vel 2win,llvg,, (2.20)
< Ny g g, (221)

Collecting (2.18), (2.19), (2.21) and N3 < N; ~ N,, we obtain

1 S Ngellu v, llowsllvz, ling v,
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In (2.18), if we apply the Holder inequality, the Sobolev inequality and Proposition

2.7, then we have

oo, |l sz S o ll g llonas || e paen 2

< YD), | M@ A1) /2 1) “Lf*lLi(dL”/(dL“

< T1/(d+1) I ]Vz|(d2_3d_2)/2(d+1)w”N3 ||VV2V (2.22)
+ec

< TYEONT Ly, - (2.23)
+c
Collecting (2.18), (2.19), (2.23) and N3 < N; ~ Ny, we obtain
1] S TN s vz owallvz, s vz,

Next, we prove it for d > 4 and spherically symmetric functions (u,v,n). We apply

the Holder inequality to have
L] S lwr aw o, lwr o llg, lwinlleg (2.24)

We apply Proposition 2.11, (2.17) and N3 < Ny ~ Ny, then we have

-1~ d—2)/6—1 d—8)/6

i amlleg, S N umllvg, S (N Jum vz (2.25)
1~ d—

i g, S (N o, v, (2.26)
~ _ ~ d+4)/6

lwiingllzg, S NVal @ owitnallvz, S NSl v, - (2.27)

From (2.24)-(2.27), we obtain
d—8)/3 d+4)/6
L] S ) I ENG Y vz owallvg, lInsllvg, -

Next, we prove (ii). For d = 4, we apply the Holder inequality, the Sobolev inequal-
ity, Remark 1.1, (2.17), Remark 1.2, discarding w; ! and Lemma 1.6, we obtain
|| < ||1[0,T)||Lg||ﬁ||LgoL;6/7||W1_117||L§0L;6/7||P<1ﬂ||L;>°L§
S TVl e 2 [ (Va) ey 0] oo 12 || Vo2 Peyi]| e 2
~ 1/4 —
< TNV illyg, 10V o ollvz |1Paullve,
S Tlnllys NollysllPervlvz,

For d > 5, by the Holder inequality to have

|| < ||'fL||L§dZ+1)/2 ||w1_117||L$(;i+1)/(d71) ||P<1a||L$(;i+l)/(d71). (2.28)
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From Proposition 2.7, (2.20), Remark 1.2 and Lemma 1.6, we obtain

17ll pgasnrz S lInllyge (2.29)
lwr "0l 2 v S (V)™ llve, S IV vllve, S llollvge s (2.30)
1Pt p2arnsa-n S (Vo) Parullvg, S IP<vullvg, - (2.31)

Collecting (2.28)—(2.31), we obtain

12| < Il

mﬁM@ﬂﬂM@;

Also for d > 5, from (2.22), Remark 1.2, (2.28), (2.30) and (2.31) to have

Bl S T sy ollyy (1Pl

We prove it for d = 4 and spherically symmetric functions (u,v,n). Due to the

operator P.q,

1I2| S ‘/ ( > ﬁNg> (Z wflﬁNz,)(m)dxdt‘
R1+4 N S, 1 No<l

+ Z ’/ ( Z ﬁNg)(WflﬁNQ)(m)da:dt’
R1+4 Ny 5 Ny

No>1

= ]2,1 + 1272.

First, we estimate I55. We apply the Holder inequality to have

|hﬂ§§:”§:ﬁm

N2>1 N3 < N2

g oy "o [l 2 | Pexill iz - (2.32)
, T

By Proposition 2.11, (2.17), N3 < Ny ~ N; and the Cauchy-Schwarz inequality,

then we have

H Z R L

N3 5 N2 b N3 < N VV%/i
973\ 1/2 1/2
(X M) (X Inwmlia )
N3 < No N3 < No ¢
< NP nly (2.33)
~ Y2 Y., :

From (2.25) and (2.26), we see

- 1~ —2/3
|Paviileg, S IPaullvg,  llwr'owlleg, S (Vo)™ llow,llv, - (2.34)
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Collecting (2.32)—(2.34), Ny > 1 and applying the Cauchy-Schwarz inequality, we

obtain

—-1/3
< DN Plinllyg, llomlive, I1P<rullvg,
No>1 ¢

< Il lellvg, IPaullyz, (2:35)

Next, we estimate I5;. By the Holder inequality to have

1] < H Z . )Zwl o |P<1u||L3 . (2.36)
From d = 4, (2.33), (2.34) and discarding w; ', we see
| 30wl Sl || e, S 0Pavl, @37)
N3 S 1 @ ¢ Nao<1 z
Collecting (2.34), (2.36) and (2.37), we have
124l S lInllyg P<vlivg [Paullve, S linllyg [lvllve, IP<ullve - (2:38)

From (2.35) and (2.38), we obtain |I5| < ||n| Ve ||v] vie
+c
for d = 4 below. We apply the Holder inequality, Proposition 2.7 and (2.17), then

P<1u||VI2(i. We prove (i)

we have

113] S 1ol

>
|53

N3 < N2

VST |, R ez, (V) g, (2:39)

N3 S N2 We

20705 lwi o, ||L§0/3Lg/2 [, ||L§0/3Lg/2
xT

< T1/4

By the Cauchy-Schwarz inequality, we have

3/4
[N RAND DTS I S (I

N3 < N2 Wae N3 5 N2
1/2 1/9 1/2
SO W) (X Ml )
N3 < N2 N3 S N2 ‘
1/2
< Ny2lInlgs - (2.40)
Wie

Collecting (2.39), (2.40) and Ny ~ Ny, we obtain

1I3] < T1/4HnHyV1V/ﬁCHUN2Hv§iHUMHVIgi-
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We prove it for d > 5. We apply the Hélder inequality, (2.20), (2.19), Remark 1.2
and N; ~ Ny, then we have

I3 < H Z TN, (d+1)/2”w;lﬁN2|’L2(d+1)/(d—1)H'a]\[l”LZ(d«H)/(d—l) (2.41)
N 5 Ny Lt,z t,x t,x
~ —1/2 1/2
S{wer >0 a0 ol ) sz,
N3 < N Wie

< Inllyge, llowa vz, o vz, -

Similar to (2.22) and Remark 1.2, we have

| 5=

N3 < N2

S TVl (242
+c

d+1)/2 ~Y
L/

Collecting (2.19), (2.41) and (2.42), we obtain

1) S TV Dl o vz llusalvg, -

When d = 4 and (u,v,n) are spherically symmetric functions, we apply the Holder

inequality to have

IS || D2 |, leor owallag, li s, (2.43)
N3 5 ]V2 t,x
From (2.25), (2.26), we see
~ 1/3 —1~ —2/3
lan [z, S (N2) / ||UN1||V,2(i7 |5 1UJVQHL;”;I < (Ny) ||UN2||v§i~ (2.44)

Collecting (2.43), (2.33) and (2.44), we obtain

1] S lInl

v, o vzl vz,

We prove (iv). The estimate for I is obtained from the same manner as the estimate
for Iy, so we only estimate Iy, I5. First, we estimate I, for d = 4. We apply the
Holder inequality, Proposition 1.13, the Sobolev inequality, Lemma 2.4, Proposition

2.7, (2.17), (N;) ~ Ny > 1 and Lemma 1.6 to have

Wie ~ 1~
1] S Q% ez, || 30 Qoo o,
NagN1

—1/2) ~ 1~
S N P, (V7Y Qu o,
N2 Ny

<V$>5/4 Z wl_lqu\b

No< Ny

L?L}E(;/S ||Q1aN1 ||L%1L3166/5

(V)2 Quiin, || s

LiLs

—1/2
S Nyl g, T

1/2
o (Pl

S T1/4HnN3HvV2VﬂHUHY;(QHUNIHvlgi-
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Next, we prove it for d > 4 and non-radial case. We apply the Holder inequality to

have

L] < HQWﬂﬁN3HL2 d+1HQ1UN1HL2(d+1)/(d 1. (2.45)

‘ Z Qawi U,

N2 N1

By Proposition 1.13, (2.19) and (2.17), we have

-1
Q25 isllzz, S Ny /||”N3||V2 K (2.46)

1@rtin, || 2anra-n S (N)Y ||UN1||v§i- (2.47)

We apply the Sobolev inequality, Proposition 2.7, Proposition 1.13, (2.17) and

Lemma 1.6, we have

2 : Q d(d 3)/2(d—1) z : Q
2CL)1 UN2 d+1 N 2(-4-]1 UNQ Ld+1 2(d2 1)/(d2—5)
No< N1 No< Ny
d(d—3)/2(d—1)+1/(d—1)—1 ~
= H<vw> o),
NaN1 Kx
S vl Ve (2.48)

Collecting (2.45)—(2.48) and N; > 1, we obtain

1740 5 linalv, Mollvis s vz

For d > 5 and non-radial case, in (2.45), if we apply the Sobolev inequality, Propo-

sition 1.13, Lemma 2.4 and Lemma 1.6, then we have

dd 1)/2(d+1)
H Z Q2w1 UNQ d+1 ~ H (@072 Z Q2W1 UNz L2
Nao< Ny No< Ny
d?2—3d—2)/2(d+1 -
< Y+ ((Vx>( DS G .
Na< Ny +
< l/(d+1) )
S TV ol (249)

Collecting (2.45)—(2.47), (2.49) and N; > 1, we obtain

L] S TV D, llvg,, o]

Yf(/:t HuNl HVE(i :

Next, we prove I5. When d = 4, by the Holder inequality, the Sobolev inequality,
Lemma 2.4, Proposition 2.7, (2.17), Proposition 1.13, Ny ~ N3 and Lemma 1.6, we
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have

Ky 1~
E Q> w1 Un

No< N1
S NVl 2Quinlapns | (V) D" Qs o,
N2<<N1 t,z

1/2 —1/2 5/4 1~
S NP, N[0 N Wit |, T
N2<Ny K

15| < 1Qsn | 1205 fLiﬁ/gHQlﬁNlHLng

T vz,

s vz,

< T1/4||nzv3||vv2vﬂ||v||Y1/4IIUN1||v2
For d > 5, by the Holder inequality, we have

5] < ||Q3nN3||L2(d+1)/(d 1>H Z Q>Mw_117N2
Na<Ny

Similar to (2.47), N3 ~ N; and Lemma 2.4, we have

@1, HLd+1L2. (2.50)

L2 d+1

||Q37~1N3||L§’<§+1>/<d—1> S <N1>1/2||nN3||VV2ViCa (2.51)
HQlﬁMHLf“Lg S Tl/(dH)HUMHV,%i- (2.52)

We apply the Sobolev inequality, Proposition 1.13, (2.17) and Lemma 1.6, we have

—1~ d—1)/2(d+1 1~
H Z Q>MW o, L2Ld+1 S H(V ) ey Z Q>MW "o, 12
No<M1 e Na< N1 £
—1/2 d?2—3d—2)/2(d+1
5 N; / H<v$>( )/2(d+1) Z UN, y
No< Ny Kt
S Nl (2.53)

Collecting (2.50)—(2.53) and N; > 1, we obtain

15 S TV g e el

ve vz,

Finally, we prove it for spherically symmetric functions (u,v,n) and d > 4. By the
Holder inequality, Proposition 2.11, (2.17), the Sobolev inequality, 1 < N; ~ N,

Proposition 1.13 and Lemma 1.6, we have

5] < ||Q3nN3||L4L2d/(d 1>H Z Q>Mw1_117N2

farg 1Quan, || 4 p2ara-)

No< Ny

1/4 d—2)/2 K 1~ 1/4

S N mallvg, (VST Qe |, N v,
No< Ny te

1/2 —1/2 d—2)/2 —1~

< NP llve,. NV SN it ||l Dz
+c NaeN Vf%i +
2 1

< g, [0y Nz
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2.3. Bilinear estimates.

Proposition 2.14. (i) Let (0,s) = (1/4,1/4) ford =4 and (0,s) = (1/(d+1), (d*—
3d—2)/2(d+ 1)) ford>5. Forany0 < T <1,

s (s 0)llz, S T0lnllyg,, lvllv, - (2.54)
w01 25, S Tllullvg, Tollvg, (2.55)

(1) We assume that (u,v,n) are spherically symmetric functions. Then for d > 4
and for all 0 < T < 00, (2.54), (2.55) also holds with (6,s) = (0,d/2 — 2).

Proof. We denote ty, := 1j97)Pn,u, Uy, = ljo7)Pn,v, iy, = 1o Prnyn. First, we
prove (2.54).

|17,k (1, v)|

3
7, S 2

where

o= | [ o) ate — )Pt ) )

U2
Ji= Y NP / Loy(E)Ke(t—) Y Y Py, (i, (wr 'ow,) (#)d||
Ni>1 0 Na~Ni N3 < N Uiy
t
-y / Lom(@) Kt =) S S Pay (g (i o)) @]
N12>1 0 N2< N1 N3~N1 UKi
t
SO IR | TR NTETI S S N T
Ni1>1 0 N2>N1 N3~N3 UKi
By Corollary 1.11, we have
J2 < sup / ﬁ(wl’lfj)(Pd&)d:cdt‘. (2.56)
g, =1!Ri+d

For d = 4 and s = 1/4, from (2.56), Lemma 2.13 (i) and [[P<iullyz < [ullyz , we
+ +

obtain
1/2
T S Tl ol
We apply Corollary 1.11 to have

Ji < Z N sup Z / an3 (wy UN2)uNlda:dt (2.57)
R+

Nzt bz —1 N2~N1 Ns <
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Ford =4 and s = 1/4, by (2.57), N ~ No, Lemma 2.13 (iii) and [[un, [[y2 < [ullvz ,
+ +
we have
1/2
S YN TI/QHTLHQM lomllve, S T2 0050 0l
Wte Ky
No > 1

For the estimate of J5, we take M = eN; for sufficiently small ¢ > 0. Then, from

Lemma 3.4, we have

((szj\i/[c ~N3)(Q§]T4w;16N2))

=[P (@i (@ ) )] =0

when Ny > (N). Therefore,
NG (wflﬁNz) = Z F;,

where Q1, Q2 € {Q<M’ } Qs € {QZVAJ;[C7 Wic
Fy = Ql(( ZVJ\i/IC”Ns)(QQC‘Jflf’Nz))a Iy = Q1<(Q3nN3)(Q>MW_1@N2))
Fy = Q%5 ((Qsiin, ) (Qowy oy, ).

For the estimate of Fi, we apply Corollary 1.11 and Lemma 1.16 to have

>N 1[0T( VEo(t—t) Y Y PyF(t)

2

Ni>1 N2« N1 N3~Np Vies
2s Wi ~ 1 (O 2
< Z N;*°  sup Z / Sa1 0Ny ) (Qawy O, ) (Qrtiy, )dxdt |
Ni>1 H“Hv? _1 N2< N1 N3~Ny

(2.58)

For d = 4,s = 1/4, from Lemma 2.13 (iv) and ||UN1||V12(i < ||u||V}z(j[7 the right-hand
side of (2.58) is bounded by

1/2
T2 3 NPl el S T2l ys ol (2:59)

K
N321 +c +

For the estimate of Fy, we apply Corollary 1.11 and Lemma 1.16 to have

3 N /1[”(')[@(75_1:') S Y PRt

N1>1 N2< N1 N3~Ni U%(i
2
SN s |3 [ (@)@ o) @i, )dad

d
Ni>1 HUHVQ =1 N2 N1 N3~Ny Ri+

(2.60)
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For d = 4,s = 1/4, we apply Lemma 2.13 (iv) and [lun,[lvz < [lullyz , then the
+ +
right-hand side of (2.60) is bounded by

T 3 NPl el S T Iy el (2.61)

N3 > 1

For the estimate for F3, we apply Corollary 1.11 and Lemma 1.16 to have

>N /1[07T)(t’)Ki(t—t') > > PyF(t)dt

Ni>1 No< Ny N3~N; Kt
—_— 2
SYNE s |3 [ (Quin)(@a (@i
Ni>1 H“Hv2 =1 Ny Ny Ny~ Y RIFE
(2.62)

For d = 4,s = 1/4, we apply Lemma 2.13 (iv) and ||u]\;1||VI%i < HUHVIQ(i7 then the
right-hand side of (2.62) is bounded by

TV Y7 Nyl Noliye £ T2l el (2.63)
N3 > 1

Collecting (2.59), (2.61) and (2.63), we obtain J, < T1/2HnH§./1/4 HUH;M. By Corol-
Wie Kt
lary 1.11 and the triangle inequality to have

Js S Z N2s sup ‘ Z Z /RHanJ Wy UNQ)UNleL‘dt)

Ni>1 ||U||V2 =1\ SNy N
S Z N25< Z Z sup ‘/ g (Wi sz)uNlda:dtD (2.64)
Ni>1 N2>>N7 N3~No ||u||V2 =1/ JR1+d

In the same manner as (2.39), for d =4, s = 1/4, we have
~ 1~ = 1/4
‘/wa Ty (wy IUNQ)UNldﬁdt‘ < TVAN/ Innsllva, lowallve llunillve - (265)
From (2.65), the right-hand side of (2.64) is bounded by
2
1/4 1/4

S > NN g, llowellvz, )

N1>1 N2>Nj N3~Na
Hence, || - [[izn S || - ||z and the Cauchy-Schwarz inequality to have

12 1/92 1/9
SR DD D () DI e i T R T )

N2 2 1 N3~Nz2 N1<KN2

1/4 x+1/4
STV 3 0 NNl lowallvz,

Ny > 1 N3~Ny

< T1/4HnHYv1V/ﬁC HUHYI/4
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We prove (2.55). By Corollary 1.11, we only need to estimate K; (i = 1,2, 3):

Ky:=) N3°
1 ; 37 sup Z Z /1+d Wy My ) (wi M) (Wit )
3

Inllvg, =1 N, ~Na Ni<N

c

2

2

Ky = Z N??S Sup Z /Rl+d “i UNI)(wl 11}1\72)(0-1”1\73)

N3 HnHVx?Viczl N2< N3 N1~N3

K=Y N2 = )d dt‘
3 Z i sup Z Z /1+d Wy M, ) (wi Mo ) (Wit )da

Ns H"“vgvic_l Ny > N3 Ni~N;

First, we estimate K;. Put K; = K;; + K2 where

Kl,l = Z N2s su ’ Z Z /H—d 1 u]\h llf)Nz)

N3 <1 ”””v2 U Ny~ N3 Ni< N3

2
X (wn, )dzdt

KLQ = Z N2s sup ’ Z Z / d(wflﬂNl)(wflﬁNz)(wﬁN3)dxdt
R1+

N3>1 ”"”v2 —1 Na~N3 N1 < N3

(2.66)

2

For d = 4,s = 1/4, by the same manner as the estimate for Lemma 2.13 (i) and
N; < N3 < 1, we find

‘/IRl+4 Z Wi UN1>(W1 On, ) (W) d$dt‘

N1< N3
< H]‘OT)HL4H Z wl uNl 20/3 5/2” 1 UN2HL20/3 5/2HW7”LN3HL20/9L5
N1< N3
1/4 —1~ 1/4 —1~ ~
STV S wrti, o (V) e o vz, Vel winsllvg,,
N1 < N3 K
ST ST | (N ol N v,
N1< N3 Vicy

< T ullygallomallvg, s
Hence,

Kin $ 0 NI ulyanlonslive, ) < TVl allol
Ny <1

We take M = N, for sufficiently small € > 0. Then, from Lemma 3.4, we have

<M 1 ((Q<walﬁN2)<QZ/A:tJCWﬁN3))

- i’

T1="2+73,81=2+E3
=0

—

(@57 00 (72, 62) Q0 ) (73, €3) )
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when Ny > (Np). Therefore,
(wl_lﬁNz)(w rﬁ'Ns) = Z Gi,

where Q1, Qs € {Q%5,,Q%5},Qs € {QE/J\?7 i
Gy = Q;f@((@w;lm)(@gw iN,)),  Gai= &((Q?ﬁwf 1N, ) (Qsw i),
Gs = Ql((szflm)(Q%‘w fing))-

Hence, it follows that

Kio < Kis1+Kigo+ K3

where
. 2
Kipi= Y Ni* sup | > > / (wi iy, )Grdadt| | (2.67)
Ns>1 o Imlhvg - =UN Ny Ny R
2
Kipoi= SN2 s [S20%0 / (wp Vi, )Gadadt| . (268)
N3>1 Inllvz, =1 NN Ny Vg /R
2
Kig3 = Z Ny?s sup Z Z / (wy uN1 ngxdt ) (2.69)
N3>1 Inllve, =1 NynNg NiNg 7RI

By Lemma 1.16,

Kipn S Z N3*  sup (QZiwr Vi) (Qawy 'Oy, )
Na>1 o Il —1 N2~N3 N1<<N Ri+d
X (QgW’FZNg) (270)

By the same manner as the estimate for Lemma 2.13 (iv),i =5, for d = 4,5 = 1/4,
we find

/ (Y Qe in ) (Quwr "on,) @iy )dadt

Ri+e N1<N3
S Tl gllor ol ol - @)

Hence, from (2.70) and (2.71), we have

1/2
Ki21 S Z Ns/ sup Q>MW1 UN1)<Q2W1 UNz)
Nay>1 ||”||v2 *1 N2~N3 N1<<N Ri+4
X (Q3WﬁN3)

< Y M@ el ) S Tl ol
N2>1
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By Lemma 1.16,

K122 ~ Z NZS Sup ‘ Z Z /Ru-d 1wy uNl)(Q>MW;117N2)

Na>1 |"||v2 =1 Ny N3 Ny < N3

X (Q?)WﬁNs )

By the same manner as the estimate for Lemma 2.13 (iv),i = 6, for d = 4,s = 1/4,

we find

(2.72)

‘/Rm > Qi “N1> QL wy 'O, ) (Qawity, ) ddt

Ny <<N3

S T1/4||U||YI1(/E||WIIUNQ||v12<i lonngllva, - (2.73)
Hence, from (2.72) and (2.73), we have

Kiz2 Sy N su ’ > > (@iwr i) (Q w1 'O,

Na1 IInllvz =L Ny~ N Ny YR
x (ngﬁN3)dxdt)

S 3 A ulgyallonalig, S Tl yelol e
No>1

By Lemma 1.16,

Kips < Z N3 sup ‘ Z Z (Quwy ", ) (Qowry O, )

Ny>1 ||"||v2 71 N~ N3 Ni<N Ri+d
x (QYwin, )d at|’ (2.74)
Sh Wi )dadt| )

By the same manner as the estimate for Lemma 2.13 (iv),i = 4, for d = 4,s = 1/4,
we find

| / S Quer i, ) (@owr o) (Qig it

N1 N3

S T1/4||U||y11(/i4||w1_ sz”Vf{i ||wnN3||VV2ViC' (2.75)

Hence, from (2.74) and (2.75), we have

1/2 e N DT
Kips S Z Ng/ Su ‘ Z Z /R1+4(Q1w1 Yy, ) (Qawy 0N, )

Ny>1 ||”||v2 =1 Ny N3 Ny < N3

Wi
X (Q>]T:4 wnN3)

$ 3 Wl aallolivg, ) S TVl yallol

No>1
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By symmetry, the estimate for K5 is obtained by the same manner as the estimate

for Ki. We estimate K3. By the triangle inequality, we have

- —_— — 2y1/2
KPR YA S N sw | ) o o) @ dode] ]

Ny Ni~Ny Ny < N, Imllvg

c

(2.76)

For d = 4,s = 1/4, we apply Lemma 2.13 (i) and the Cauchy-Schwarz inequality,
the right-hand side of (2.76) is bounded by

1/2 1/4 1/2
S M@ AN ez, s vz, )

N2 Ni~N2 N3 < Na

STHY Y (NzHUNlH%/IgiHUNQHQVIgi)l/Q

N Ni~Na

1/2
ST N 2wz ) (50 N2 llowllz,)
+ +
N N

1/2

Since

D NPllunllte < > NVHIPaulity S lIPauli,

N<1 N<1
we obtain Ké/z < T1/4HuHY1/4HUHY1/4.
K4 K4

Next, we prove (2.54) for d > 5 and s = ' = (d* — 3d — 2)/2(d + 1) by the same
manner as the proof for d = 4,s = 1/4. From (2.56) and Lemma 2.13 (i), we have

JS/Q S Tl/(d-i—l)Hn'

YVSVIic |v] Yg’i

By (2.57), Ny ~ N,, Lemma 2.13 (7i7) and HuNlHVz%i < ||u||VIz<i, we have

IS Y NPT )

2 2 < 2/(d+1)
v ] n
‘ 2 ) YS/ic” N2||‘/12(:t ~ || |

2 2
v, N

From Lemma 2.13 (iv) and H“NlHV}%i S HuHVI%i, the right-hand side of (2.58) is
bounded by

T2/ (d+1) N2\l |12 ol < THEEDIn12 )2 . 2.77
Ngl 57| N3||V3Vic|| | T 7| vsvic” | 2, (2.77)

From Lemma 2.13 (iv) and [[un,[ly2 < [ullyz , the right-hand side of (2.60) is
+ +
bounded by

T N N:??S/”nNSH%/V%,iCHM

N3 > 1

2 / < T2/(d+1) 2‘ ! 2 . 2.
Lo ST, ol . (279
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From Lemma 2.13 (iv) and [[un,[ly2 < [ullyz , the right-hand side of (2.62) is
+ +
bounded by

T2/(d+1) Z N325’||nN3||%/‘/2Vi ||v||2;</i 5 T2/(d+1)|ln|

?/S/ ||U||251 . (279)
Ns =1 Wic Ky

Collecting (2.77)-(2.79), we obtain J, < T%@+D|n||2, |v||2. . By the same man-
Wie K4

ner as the estimate for Lemma 2.13 (7ii), we obtain
~ —1 ~ -~ d /
| / i ey B Vi ddt]| S TN g v o vz, llu g, - (280)

From (2.80), the right-hand side of (2.64) is bounded by

/ Sl 2
S Y MTEON g, owalvz, )

N1>1 N2>Nj N3~N3

Hence, || - [[izn S || - |Ji2 and the Cauchy-Schwarz inequality to have

1/9 o o 1/2
RS S S (X NETHEONE e owll )

Ny 2 1 N3~Na2 N1<KN2
! !
STV S S NN ol ol
No > 1 N3~No

< Tl/(d+1)|’n|

Y, [v] YE,

We prove (2.55) for d > 5,5 = s’ = (d* — 3d — 2)/2(d + 1) by the same manner as
the proof for d = 4, s = 1/4. By the Hélder inequality to have

)/Rlﬁ( Z wflaN1><m)(Wj\@)dxdt

N1< N3

1~
S H § Wy UN,

N1< N3

L?(;Hl)/(dil) ||w1—1f)N2 ||Li(;z+1)/(d—1) HwﬁN3 HLiji:-l)/Q. (2.81)

By Proposition 2.7, N; < N3 < 1 and discarding w; * to have

1~
H Z Wi Un,

N1< N3

< 1/2 —1 ~
[20@+1)/(d=1) ~ H<VI> Z Wi Un
B N1< N3

<) 5%
N1<N3
S HP<1U”V};i- (2.82)

V2
Ky

V2
K4
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From (2.66), (2.81), (2.82), (2.19), (2.23) and N» ~ N3 < 1, we obtain
K1 S NX; N228/(T1/(d+1)<N2>71/2N5/+1||P<1u||V}2(i ||UN2||VI2(i )2
!

/
ST Parulie > N llomllv,
N2 51

< T a2, o2, .
K4 K
By the same manner as the estimate for Lemma 2.13 (iv),i = 5, we see

’/RHd Z Q>Mw1 uN1>(me3UJﬁNg)d$dt

N1< N3

ST d+1)||u||YIS<'i”wl_lszHVf(i||wnN3||VV%,ic' (2.83)

From (2.70) and (2.83), we have

Kion S ) N3 sup (Q 3 wr i, ) (Qawy "O,)
Ng>1 Inlly2, ;1 N2~N3 N1<<N Ri+d
X (QSWﬁNs)
/
D M@ Nl flow, vz, )? S T ull, ||v||25/ :
No>1
By the same manner as the estimate for Lemma 2.13 (iv),i = 6, we see

‘/RH—d Z Quwy uN1>(m)(Q3WHN3)dxdt

N1<K N3

ST d“)HUHYIs(;IwalvNQva(iHwnzv3||vgvic- (2.84)

From (2.72) and (2.84), we have

, ey
Kipp S DN sup | ) ) / (Quuwy i, ) (QS 5wy iy
—1 Na~N3 N1< N3

N3>>1 ”n”VV2V e

2
X (ngﬁNg)dxdt‘

25/ (o1 /(d+1) 2 2 2
S Y NI(T lullyy owallvz, ) v Ivlls,
No>1
By the same manner as the estimate for Lemma 2.13 (iv), i = 4, we see
Q 1~ =~ 1~ /A Wie ~
‘/ 1wy uNl)(Q2wl UNQ)(QZM wnN3>dIdt
R N <N
S Tl o om v, o, (2.85)
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From (2.74) and (2.85), we have

Kios S Y N2 su ]Z S (Qre ™ in, ) (Qow Vo)

d
N3>1 Inlly2, C—l No~N3 Ni< N3 Y R
W
X (Qz3rwi,) da:dt)

S D NETY I ullyy llowsllve,)

No>1

?f;(’iHU %/

By symmetry, the estimate for K5 is obtained by the same manner as the estimate
for K7. We apply Lemma 2.13 (i) and the Cauchy-Schwarz inequality, the right-hand
side of (2.76) is bounded by

/ y 1/2
S S S NEEEON fux, g, lovalve, )2}

N2 Ni~N2 N3 < Na

No Ni~N2
1/(d+1) 25’ 2 1/2 25’ 2 1
STV (SN Junlt, ) (30 N lowli, )
N N

Since s’ > 0, we have

! /
D N unllve S Y N Paullyy < I1Paulli -

N<1 N<1

Thus, we obtain K3/* < V@D ully.. [|v]|,
+

Finally, we prove (2.54) for d > 4,s = s, = d/2 — 2 and spherically symmetric

functions (u,v,n) by the same manner as the proof of d = 4,s = 1/4. From (2.56)

and Lemma 2.13 (ii), we obtain

Jl /2

< Inllggelvllyzs

By (2.57), Ny ~ Ny, Lemma 2.13 (4i7) and ||uN1||VIz<i < HuHV;%i’ we have

S D Nl

Ny > 1

Ve, lomallvy S lInllgze Tl -
From Lemma 2.13 (iv) and [jun,[lvz < Hu“Vz%i’ the right-hand side of (2.58) is
+

bounded by

vl Mol S Inllige Ilollyge - (2.86)

Z N2sc

Ng > 1
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From Lemma 2.13 (iv) and [[un,[lv2 < [ullyz , the right-hand side of (2.60) is
+ +
bounded by

> N§Sc|\nzv3||%/v2vic\|v!

N3 > 1

e Sl

3;1 : (2.87)

b o

From Lemma 2.13 (iv) and H“NlHV}%i S HuHVIz{i, the right-hand side of (2.62) is
bounded by

2. 2 2 2 2
> Ny sl Il S lInllyge 1ol - (2.88)
N3 21
Collecting (2.86)-(2.88), we have J, < ||n/|2.. [[v[[{ . By the same manner as the
Wie Kyt
estimate for Lemma 2.13 (iii), we obtain
[ o o o] S Ngwlig, Jowdvz, lomllg - 259

From (2.89), the right-hand side of (2.64) is bounded by

(X X Ny

N1>1 N2>Nj N3~N3

2
malvg, lowallvz, )

Hence, when d > 4, by s. > 0, || - [[izn < || - ||;12 and the Cauchy-Schwarz inequality

to have

/
s lomal?s )

,]31/2 5 Z Z ( Z NfscN??SC

Na > 1 N3~Na Ni<No

S S

S E E Ny Ny°
Na > 1 N3~Ns

S linl

nxlva, llowsllvz,

Y;VciCHU’ Yo -

If d = 4, then we apply (2.25)—(2.27) and 1 < N; < Ny ~ N3 to have

~ 1~ = 1/3 77—1/3
/R g 7 B i dadt]| S NN P, ol llusa vz, (2:90)

From (2.90), (2.64) and the Cauchy-Schwarz inequality to have

1/2 2/3 n7—2/3 1/2
RS S S (X MNP Il vl

Nz 2 1 N3~Na Ni1<KN2

<Y Inwlvgllowlve,

No Z 1 N3~N>

S lnllye Mlvllvg, -
Wie +
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We prove (2.55) for d > 4,s = s. = d/2 — 2 and spherically symmetric functions
(u,v,n) by the same manner as the proof of d = 4, s = 1/4. By the Hélder inequality

to have
‘/ wl_lﬂ]\h)(wfI@NQ)(wﬁNS)dxdt
R+ N <N
S DI W A PN = (2.91)
N1<N3

Discarding w; ', then N; < N3 < 1 and the same manner as (2.25), we find

(d-8)/6 .
S 2R D

N1<N3 ' N1< N3 Kt

<SPl (292)

Collecting (2.66), (2.91), (2.92), (2.26), (2.27) and N ~ N3 < 1, we obtain

Sc - d+4
Kia S 3D NEw(IParulug, (Vo) o,z NSO

Ny <1

S IPaulty >7 N3

Ny <1

UNQH%/I%i

<l

|U|§/;(ci-

By the same manner as the estimate for Lemma 2.13 (iv),i = 5, we obtain

[ (3 @t )@ @it
R1+d

N1 N3
S llul

vie lor o llvz_llwonllvg._ (2.93)

From (2.70) and (2.93), we have

Kion S S0 NE sup \Z 3 / Qo i, ) (Qaion i)

Ny>1 Inllvz, =1 NanNs Ni<Ng
X (Q?)WﬁNs)
S D N (lullvgs lowallve, ) < llulle ol
No>1
By the same manner as the estimate for Lemma 2.13 (iv),7 = 6, we obtain

‘/RM Z Qiwy UN1> QL iwr ow, ) (Qswity, ) dudt

N1< N3
S el

vie llwr UNQHVI%;i HwnN?,HVVQViC' (2.94)
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From (2.72) and (2.94), we have

Kizp S ), Ni™  su ) QS wr o)

ot ||n||vz U Ny Ny Ni<Vs “d
X(Q?)Wfl]\%)

S S0 N (lullye llowllve ) S Nl ol -

N 2 yKi Ny VKi ~ YKC:t yse

Na>>1
By the same manner as the estimate for Lemma 2.13 (iv),i = 4, we obtain

‘/RIM Z Qrwy uNl) (Qawy 16N2)(Q;VﬁCWﬁN3)dxdt

N1< N3
S vl

vee o o llvzllwonng g, - (2.95)

From (2.74) and (2.95), we have

Ki23 S Z N3*  su ‘ Z Z (Quwr i, ) (Qawi 'O,

d
N3>1 oz, ;1 Na~N3 Ny<Ns /R
T
X (Qs i witn, dxdt‘

S > NPl

Sc
Ky
No>1

[oma llve, )" S llullvge llvllvze -

By symmetry, the estimate for K5 is obtained by the same manner as the estimate
for K;. For d = 4, from (2.76), Lemma 2.13 (¢) and the Cauchy-Schwarz inequality

to have

1/2 — 4/3 1/2
K233 (N g s vz, )

N2 Ni~N2 N3 < Na

—8/3 \78/3 1/2
<D0 2 (TN um b llow 5 )

No Ni~Na

B 1/2 3 1/2
< (O N ity )T (D0 0N e, )
N N

By (N)™** < 1, we have

N) /3 N4/3 N3\ P <|P .
> (N)” un]ly 2, <> | <1U||v2 I <1U||v2

N<1 N<1

Hence, for d = 4, we obtain

1/2
Ky S llullvg, lllvg, - (2.96)
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For d > 4, from (2.76) and Lemma 2.13 (i), we have

1/2 s ) (@=8)/3 py(d40)/6 1/2
K75 Y S {3 M N vz oz, )7

Ng Ni~Nz N3 < Na

~

1/2
4(d—-2)/3 d—8)/3
S NN s owliE )

Na Ni~Na Ns < N

2(d—2)/3 d—
S D NI v lvna vz - (2.97)

N3 Ni~Naz

AN

For d < 8, then (N,) /% < Néd_g)/?’. Hence by (2.97) and the Cauchy-Schwarz
inequality, for 4 < d < 8, we have

1 2
< Z Y N umllvz, llowllvz,

N1~N>
N ||U||Y;<Ci [ollvze - (2.98)

For d > 8 and N, < 1, it holds that (Ny) < 1. Hence, by (2.97) to have

1/2 2(d—2)/3
K753 Y N vz, llowllvz,

N2<1 N1~Na

N ||7~L||Y;<i P<1UHVI2<£ (2.99)

For d > 8 and N, > 1, it holds that (No)“@™8/3 ~ N{*®/% Thus by (2.97) and the

Cauchy-Schwarz inequality to have

1/2 _
K7 S D N umlvz, llomallvg,

N2>1 N1~N2
S Nullyze [1ollvze - (2.100)

Collecting (2.96), (2.98)(2.100), we obtain K3/ < ||ul

vl

sc se > 4.
YKi YKi for d = 4

2.4. The proof of the main theorem. By the Duhamel principle, we consider
the following integral equation corresponding to (2.2) on the time interval [0, 7] with
0<T <o0:

uy = Py(ug,ni,n_), ng = Py(ng,uy,u), (2.101)
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where

B(uw s n ) = Ka(thuso + (1/A{Trse, (nes u)(t) + Trc (n u)(8)
+ Iy (N ug )(8) + Iy (no, us) (1)},
Oy (na, up,u) 1= Wae(t)nzo + (4e) " {Irw, (wy, up) () + Irw (ug, us)(2)
+ Iy (v, up)(t) + Iy, (u—, u)(t)}.
Proposition 2.15. (i) Let s =1/4 ford =4 or s = (d*—3d—2)/2(d+1) ford > 5.

Let § > 0 be arbitrary. Then, for any initial data (us, no) € Bs(H®*(RY) x H*(R%)),
there exists T > 0 and a unique solution of (2.101) on [0,T] such that

(us,ne) € Yie, ([0,7]) x Yyy., (10, T]) € C([0,T]; H*(RY)) x C([0, T); H*(RY)).

Moreover, let d > 4,s = s. = d/2—2 and § > 0 be sufficiently small. If (uto, o) €
Bs(H*(RY) x H*(RY)) be radial, then for all 0 < T < oo, there exists a unique
spherically symmetric solution of (2.101) on [0,T] such that

(uz,ns) € Y, ([0,T]) x Vi, ([0,7]) € C([0,T); H*(R%) x C([0,T]; H*(R%).

(ii) The flow map ?btained by (i): .
Bg(Hs(Rd)) X Bg(HS(Rd)) > (uio,nio) — (ui,ni) € Ylgi([O,T]) X YVSViC([O,T]) 18

Lipschitz continuous.

Remark 2.1. Due to the time reversibility of the Klein-Gordon-Zakharov equation,

Porpositions 2.15 also holds in corresponding time interval [—T, 0]

Remark 2.2. By (i) in Proposition 2.15 and Remark 2.1, for any 7" > 0, we have solu-
tions to (2.101) (u4(t),n+(t)) on [0, T] and [T, 0]. If radial initial data (u4q, n4o) €
Bs(H*(R%) x H*(R%)), then we can take T arbitrary large and by uniqueness, spheri-
cally symmetric function (u+(t),n+(t)) € C((—o0, 00); H*(R%))xC((—00, 00); H*(R?))

can be defined uniquely.

Proposition 2.16. Let the spherically symmetric solution (uy(t),n.(t)) to (2.101)
on (—o0,00) obtained by Proposirion 2.15, Remark 2.1 and Remark 2.2 with radial
initial data (uso,nwo) € Bs(H*(RY) x H*(RY)). Then, there ezist (Ut too, Nt 1o0)
and (Us, oo, Nt o) in H3(RY) x H*(RY) such that

|us(t) — Ki(t)u+ 1ool

HE(RY) + ||ni<t> - W:tc(t)n:l:,+oo| H;(Rd) —0

ast — +o00 and

Jus(t) — Ki(t)us, ool

Hs(Rd) T [n4(t) — Wae(t)ns, oo Hs(Rd) 7 0
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ast — —oo.

proof of Proposition 2.15. First, we prove (). By Proposition 2.7, there exists C' > 0
such that

| K+ (t)uso

vi, S Clluo]

s, [ Weee(t)

We denote time interval I := [0, T]. If (uso, n1o) € Bs(H*(RY) x H*(RY), (ug,ns) €
B,.(Yi, (1) x va,ic(l)), then by Proposition 2.14, for (6,s) = (1/4,1/4),d = 4 or for
(0,5) = (1/(d+1),(d* —3d —2)/2(d +1)),d > 5, it holds that

||‘I)1(Ui,”+a”—)||yg (I

S C||U:|:0|Hs (1/4)CT9<

||U+| Yie, (1)||U—| Y (D)
Hlin-llyg, allusllve, o+ HWHY;H(I)\IUJ vi ()
< C§+CT"?,
o0l
< Cllngollas + (CT? JAc)(||us | %f;(+(1) + 2[[u | Y,~3+(I)||U—| ve (1t llu-| %/;(_(1))

< C5+ T e.
We take r = 2C'd and T' > 0 satisfying
40T < min{1, c}. (2.102)
Then we have

chl(uiv ny, n*)’

Yf{i(]) <, Hq)Z(niau#»au*)HY‘fVic(I) <

Hence, (@1, ®,) is a map from B, (Y2, ([0,T]) x Vi3, ([0,7])) into itself. Similarly,
we assume (Uio, Mao) € Bs(H*(RY) x H*(RY)), (v, ms) € B.(Y, (1) x Vi, (1)),
then it holds that

[P (s, g, no) = Pa(ve, my, m)llve )

< (/D) (M7 rs (ns g ) () — Irpee (M, v4)(8) ||y
+ M7 ks (g u ) (8) — Irrey (me, v (¢ )”Yf< (1)
+ M res (ne u ) (1) = Ingc (ms 0 ) (D)lve ()
+ s (0, u)(t) = Irpes (moy v ) D) llve () (2.103)
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By Proposition 2.14, we have

7 pcs (ng, wg ) () = T (M, v4) () v, ()

< CT%(||ny — m+HYVsV+C(1)||U+| v, T [m| YVSV+C(I)’|U+ — U4 Yf(+(1))- (2.104)

Similarly, we have

Mz pes (s u ) (8) = T ey (Mg, v ) (0) vz )

< CT(|ns —m.|

v, llu-lve_ @ +llmellyg, olle-—v-lvi o), (2.105)

Mz pcs (ny ug ) (8) = Trres (m, v ) () [lvi

< CTO(an - meY;Vﬂ(I)HUH Yii (D) + HmeYstic(z)Hu+ — v

ve ). (2.106)
7 re(n—yu)(t) = Irre (M, v_)(t)]

< CT(|ln- —m-|

Vi, (D

vy ollu-lvi o +lm-lly;, pllu-=v-lvi @) (2.107)

Hence from [lus([vg ) <, HmiHYVsViC(,) <7, (2.103)(2.107) and (2.102), we have
1P (uz, gy o) = Po(vae, My, mo )y, )

< (1/8)(lug — vy |

+ [[ny — my|

vie, i+ llu-=o-llvi_a

Vi, (D) + [[n- —m_|

Similarly, we have

H(I)2(niau+7u_) - qD?(mi?er?v*)HYVSV (1)
+c

= (40) 7 (Hrwe (ws, ur ) (1) = Irwe, (vs, 02) (1)) Vi, ()
e, (e, u) () = Irwe. (00, 0-) Oy, o)
e (umy ws ) () = Irwe (-, v) Ollyg, o)
e, (e u)(#) = Irwe. (0-,v-) Ollyg, | (1)- (2.109)

By Proposition 2.14, we have

Hrw. (e i) (8) = Irwee (0, v ) Ollyg, o)

< OT?(||u| vi, (- (2.110)

Yi, ()T v | Y§+(1))||U+ — vy
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Similarly, we have

Mz (ug, u) () = Iy, (ve, v-) (F)]
< CT(|luy — villvie, illu-llve_a + llosllve, illu- = v-llvz_m), (2.111)
(

7w, (u_, ug )(t) = Inwy, (v-, vy )(1)]

Yﬁ/ﬁ:c (1)

Vi, (D
< CT(lug = villyg, llusllve, @ + lo-llvg_mllu- —v-llvg_ @), (2.112)
M. (umy u)() = Irwe. (0, v-) Ol )
< CT6(||U |ys + ||U—|YI§_(I))||U— _'U—|YIS{+(I)‘ (2113)
From ||uy| Vi, () ST || Vi, () ST (2.109)—(2.113) and (2.102), we obtain

[Pa(nt, ug, u—) — Po(ms, v v)llye (1
+ec
< (/) ([Jlut — v+ Ye (1)) (2.114)

Therefore, (®1,®,) is a contraction mapping on B,(Y3, ([0,T]) x va,ic([O,T])).
Hence, by the Banach fixed point theorem, we have a solution to (2.101) in it.

vi (ot [

Next, we prove uniqueness. Let (u+,n+), (ve,ms) € Y, ([0,T]) x YVSViC([O,T])

are two solutions satisfying (u+(0),n4(0)) = (v4£(0),m+(0)). Moreover,
T :=sup{0 < t < Tius(t) = ve(t),ne(t) = me(t)} <T.

By a translation in ¢, it suffices to consider 77 = 0. Fix 0 < 7 < T sufficiently small.
From (2.103)—(2.107) and Proposition 2.12, we obtain

lus = vllvi (o)

< ()CT {(lutllv, o) + lu-]

v (0.7])

X ([|ny —my| Vi, (o) T+ I v, (lo.7]))

vi (04)}

+(Hm+Hy,.;+<[oT] +lmllve o) Ulur = vrllve o + llu-
< (1/8)(||n+ —m+|

vi, (o) + lu- =]

_ ([0,7])
Ye ([0.))- (2.115)

Vi, (07) + |[n—

+ [Jus — vy

From (2.115), we obtain

luy = villvie, o)

Ye (0.)-
(2.116)

< /D =mallyg, oy + 0= =m-llyy o + llu- —v-]
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Similarly, we have

Ju——v-llvg (o)

< (1/7)(lIny — m+HYVsV+C([o,T}) + |ln- — meYstfc([o;]) + luy — vy Y;;+([0,T]))-

(2.117)
From (2.109)-(2.113) and Proposition 2.12, we have

[+ — m|

Vi, (07]) S (1/4)([Jug — v vi (or))- (2.118)

c

vie, (o) + [[u- —o-|

Hence, collecting (2.115)—(2.118), we obtain
Ut = Vg, Ni =Mt

on [0, 7]. This contradicts the definition of 7.
If (uro,nyo) € Bs(H*(RY) x H5(RY)) is radial, s = s, = d/2 — 2 with d > 4 and
(us,ns) € B (Y, (I)x szvic(f)) is spherically symmetric, then by Proposition 2.14,

we have

[®1(us, ny,n)| Ve (D)

< 05+ (Al o +Insllvg,olelive o

+ |In—| YVSV_C(I)||U+HYIS<+(I) + [In-| YVE{,_C(I)||U—||YIS<7(I))>

[ Po(ns, up,u)l Yiv, (D

< O3+ (ClA)(llurllyy, (o + 2usllve, lle-lvi_ o + el a)-
Taking 6 = r? and r = min{1, ¢} /(4C), then we have

1P1 (s, e )l on <7y ([ P2ngs uss u)llyy, gy <7

Hence, (®1, ®3) is a map from B, (Y3, ([0,77]) x Yﬁ/ic([O,T])) into itself. If we also
assume (vs9, mig) € Bs(H*(RY)) x H*(R?)) is radial and (vy,my) € B, (Y2, (I) x
Yv‘ﬁ,ﬂ(l )) is spherically symmetric, then by the same manner as the estimate for
(2.108) and (2.114), we have

H@l(Ui, Ny, n—) - (Dl(vj:, my, m_)HYIS(i(I)

< (1/8)(lus = vy ]

Vi, () +[u- — v YE (D)
e =millyy, o +lin- —m-lly; p),

H(I)Q(nia U, u_) - (I)Q(mi? U4, v*)HYVSViC(I)

< (1/4)([luy — v

v, +llu- = ollve i)
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Thus, (@1, ®;) is a contraction mapping on B,(Y3, ([0,T]) x Yv‘ﬁ,ﬂ([O, T])). Hence,
by the Banach fixed point theorem, we have a solution to (2.101) in it. We assume
that (u+(0),n+(0)), (v£(0), m4(0)) are both radial and s = s, = d/2 —2 with d > 4.
Let (us,n+), (ve,ms) € Y, ([0,T]) x Yvi,ic([O,T]) are two spherically symmetric
solutions satisfying (u+(0),n+(0)) = (v+(0),m+(0)). Then by the same manner
as the proof for non-radial initial data, the uniqueness of the solution (uy,n4) is

showed. (ii) follows from the standard argument, so we omit the proof. O]

Finally, we prove Proposition 2.16. The proof is the same manner as the proof

for Proposition 4.2 in [24].

Proof. There exists M > 0 such that for all 0 < T < o0,

lusllvi, o + Inellyg, oy < M,

lusllvi, @=roy +lInsllyy,  oroy <M

holds since 7 in the proof of Proposition 2.15 does not depend on T'. Take {t;}5_, €
Zyand 0 < T < oo such that —T < tg,tx < T. By L? orthogonality,

(Z (V) (K (—te)us(tr) — Kio(—tp—1)us(te-1)) ||%§>1/2

S H<Vx>suiHV,3i([o,T]) + H<Vﬂc>suiHV§i([7T,O])

S Musllvi, oy + llusllvi, (-rop

< 2M.

Thus,
K . . L \1/2
sup (> (V) Ka(—tp)us(te) — (Vo) Ki(—tk—l)ui(tk—l)HLg) < 2M.
{te}fo€20 " =1
Hence, there exists fi = limy 400 (Vo) Ki(—t)us(t) in L2(RY). Then put uie, =
(V) " fx, we obtain

(V) Ko (=t us(t) — fillzz = lus(t) — Ki(t)tiool

as t — +o0o. The scattering result for the wave equation is obtained similarly.
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3. SCATTERING AND WELL-POSEDNESS
FOR THE ZAKHAROV SYSTEM AT A CRITICAL SPACE
IN FOUR AND MORE SPATIAL DIMENSIONS

3.1. Introduction. We consider the Cauchy problem for the Zakharov system:

i0u + Au = nu, (t,z) € R x RY,
9?n — An = Alul?, (t,z) € R x RY, (3.1)
(u(0),1(0),9n(0)) = (ug,n0,m1) € H*R?) x H'(RY) x H"Y(R?),

where u = u(t, x) is complex valued, the slowly varying envelope of electric field and
n = n(t,x) is real valued, the deviation of ion density from its mean background
density. (3.1) describes the Langmuir turbulence in a plasma. We consider well-
posedness for (3.1) in spatial dimension d > 4. (3.1) does not have scaling invariant
transformation because of the difference of dilation transformations for the linear
wave equation and the Schrédinger equation. However, in [10], Ginibre, Tsutsumi
and Velo introduced a critical exponent for (3.1) which corresponds to the scaling
criticality in the following sense. We transform n into ny as ny = n+iw 'on, w =
v/—A. Then (3.1) is rewritten into

i0u+ Au=u(ny +n_)/2, (t,x) € R x RY,
(10 F w)ng = Lwlul?, (t,z) e R xR, (3.2)
(u(0),14(0),1n-(0)) = (ug, 740, -0)-

In the second equation of (3.2), if we disregard the second term of the left-hand

side, then (3.2) is invariant under the dilation
u— uy = N Pu(\z, \2),  n —ny = Nz, \%),

and the the scaling critical exponent is (k,1) = ((d — 3)/2,(d — 4)/2). Our main
result is the scattering and the small data global well-posedness for (3.2) at the

critical exponent in spatial dimension d > 4.

Theorem 3.1. Let d > 4,k = (d—3)/2,l = (d —4)/2. Then (3.2) is globally well-
posed for small data in H*(R?) x H'(R®) x H (R?) (resp. H*(R?)x H'(R?) x H'(R?)).
Moreover, the solution scatters in H*(R?) x HY(R?) x HY(R?) (resp. HFR?) x
HYRY) x HY(RY)).

Remark 3.1. Note that (ny,n_) € H'(R?) x H(RY) (resp. H'(RY) x H'(RY)) is
equivalent to (n,dn) € H(R?) x H"(RY) (resp. (n,w 'dn) € H(RY) x H'(RY)).
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For more precise statement of Theorem 3.1, see Propositions 3.11, 3.12. Here,
we briefly mention the known results for the Cauchy problem for (3.1). There are
many results for 3 > d > 1. For the well-posedness and the scattering on R,
see [2], (3], [6], [7], [9], [10], [13], [14], [16], [21], [22], [27], [34], [38], [39], [42],
[43]. For the case on T? see [5], [28], [29], [45]. All these results are for the
sub critical case. For d > 4, Ginibre-Tsutsumi-Velo [10] proved the local well-
posedness of (3.1) when the initial data is in H*(R?) x H'(RY) x H'"'(RY) with
2k > 1+ (d—2)/2,1l > (d—4)/2,l+1 > k > [, which is the sub critical case.
Recently, Bejenaru, Guo, Herr and Nakanishi [1] have proved the small data global
well-posedness and the scattering in a range of (k,[) for d = 4, which includes the
critical case (k,l) = (1/2,0) and the energy space (k,l) = (1,0).

The main difficulty in the study of the well-posedness of the Zakharov system
arise from so called “derivative loss”. The both nonlinear terms of (3.2) have a
half derivative loss when & = [ + 1/2. To recover the derivative loss, Ginibre-
Tsutsumi-Velo [10] applied the Forier restriction norm method, which is introduced
by Bourgain [4]. However, it seems difficult to apply the method to the critical
case. Bejenaru, Guo, Herr and Nakanishi [1] used the normal form reduction and
transformed (3.2) into a system which does not have derivative loss. Our proof is
more direct than their proof. We use the U?, V? type spaces, which are introduced
by Hadac-Herr-Koch [19] to study the small data global well-posedness and the
scattering for the KP-II equation at the scale critical space. There are two merits
for using these function spaces. One is that we can recover the derivative loss,
by combining Lemma 3.4 and (1.7) in Proposition 1.13. The other is that we can
employ the Strichartz estimate (see Proposition 3.5) by Colollary 1.15 and we gain
some integrability. Actually, the L* Strichartz estimate was used in [19]. On the
other hand, by the difference of the dilation scale of the Schodinger equation and
the wave equation, the effect by oscillatory integral for the Schrédinger equation
works more effective than that of the wave equation. Therefore, in our problem
we have to use the endpoint Strichartz estimate for the Schrodinger equation, that
is to say the case of (p1,q1) = (2,2d/(d — 2)) in Proposition 3.5. This causes the
following problem: if we use the U? type function space and follow the argument
by Hadac-Herr-Koch [19], then by duality argument (see Proposition 1.10) we need

L2062 horm by the V? type norm. However, we can not get such

to estimate L?
estimate by Corollary 1.15 because the V? type norm is slightly weaker than U?
type norm. For this reason, we need the function space weaker than the U? type

and stronger than the V2 type. For that purpose, we use an intersection space of V2
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type space and E = L2L2¥(@2),

See the definition of [lu[|xx in Definition 4, which
is the main idea in the present paper.

Finally, we refer to the plan of the rest of the paper. We introduce function
spaces, their properties and some lemmas in Section 2. In section 3, we derive the
key bilinear estimate for the homogeneous case, Proposition 3.9. As a corollary,
we also prove the bilinear estimate for the inhomogeneous case, Corollary 3.10. In

section 4, we mention the detail of main theorem and its proof.
3.2. Notations and preliminary lemmas.

Proposition 3.2. Let 1 < p < oo,v € V1 be absolutely continuous on compact
intervals and u be a U -atom. Then,

B(u,v) = /OO (u(t), v'(t)) 2 dt — lim (u(t), v(t)) 12 (3.3)

€T
00 t—o00

Proof. By Corollary 2.6 in [19], we have v € VP. Therefore, the left-hand side
of (3.3) make sense. From our assumption, it follows that o' € L'(R;L2?) with

V'] Lrirz) < [Jv]lyr < oo and

K
U= Z 1[tk—17tk)¢k71
k=1

with {t,}2, € 2o, {o}2 € L2 and Y1 H(ka’gQ = 1. By the definition of B,
for any € > 0, there exists t ={t:}V, € 2 Such that for any Z, > ¢ = {t,}M, D¢

the estimate
| By (u,v) — B(u,v)| < ¢

holds where
M

By(u,v) Z u(ty_q), v(ty,) — U(ﬂc—l))Lg

k=0
Put ¢ = {t; }5, U {tx }2,. Since u(s) = u(t, ;) on s € [t!

(u(t, ), 0(t) = o(th ) e = | (uls),0'(5)) ads

1, t), we have

when ¢/, # oo and

(u(tn 1), o(ty) = vty 1))y = lim (u(ty, 1), v(t) = v(t, 1)), — lim (u(t, ), v(1)

_ /t " {ul(s),0/(8))ds — Tim {u(t), v(t)),
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when ¢/, = co. Thus, we conclude

t—o00 z

‘/_00 (u(s),v'(s)) p2ds — lim (u(t),v(t)) 2 — B(u,v)| <e.

Combining Remark 1.3 and Proposition 3.2, we have the following corollary.

Corollary 3.3. Let A =S or Ws and v € V! , C V2 , be absolutely continuous

on compact intervals. Then,

[v]lvz < sup
ueU3, \\u||U%:1

[ wle), AW (A=10) 0t~ Jim (), 0(0)

z
0o T t—o00

Lemma 3.4. Let 73 = 71 — T2, & = & — & If |&1] > (&) or (&) < |&, then it
holds that

max{‘ﬁ + &2

re 16| | £ 16]|} 2 max{l&f, &} (3.4)

Proof. We only prove the case of |{;| > (£). By triangle inequality, 73 = 7 — 7

and &3 = & — &, we have
(LHS of (34)) 2 |1 + & *| + |72 + 1&[*| + |73 £ |&l|
> }Tl +af = (m+ &) — (£ |f3’)’
= |l = & 716 — &l|. (3.5)

Since |&| > (&), we see that |§ — & ~ |&]. Hence

(3:5) 2 &l
O
We define the Duhamel terms as follows.
Definition 6.
Trsn.0)(0) = =i/2 | Lom(?)S( — ()t dr. (3.6)
It w, (u,0)(t) =+ /Ot Lioq (¢ )Wo(t — ') w(u(t)o(t)) dt’ (3.7)

where w = (—A)Y/2.

The following statement is the Strichartz estimate for the Schrédinger equation.
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Proposition 3.5. Let d > 3 and (p1,q1), (pe2,q2) satisfy 2 < q; < 2d/(d — 2) and
2/pi=d(1/2 —1/q) fori=1,2. ph, q¢b satisfy 1/pa+1/py =1, 1/go+ 1/, = 1.

Then, it holds that
ISE fllpripes S Nfllez,  i=1,2, (3.8)

H/ S(t —t)g(t')dt'

Moreover, by duality, we have

5 “g”LféLg/Q' (3‘9)

P1 ra1
L

||IT,S(”»U)(t)||L$1Lgl 5 sup ‘// 1[0,T]nmidxdt.
lull, p2 ;a2 =1 R4

For the proofs of (3.8) and (3.9), see [47], [12] and [26].

Proposition 3.6. Let d >4, k= (d—3)/2 and |l = (d —4)/2.

(i) Let T > 0 and u € X&([0,T]), w(0) = 0. Then, for any € > 0, there exists
0<T" <T such that [[ul| xx o) <&

(ii) Let T > 0 and u € YE([0,T)), w(0) = 0. Then, for any € > 0, there exists
0<T" <T such that [[ullyz o) <€

(i1i) Let T > 0 and n € YVZV ([0,T7), (resp. Yy, ([0,T7)), n(0) = 0. Then, for any
e >0, there exists 0 < T'" < T such that HnHYl (o)) (resp- HnHYéVi([OvT/D) <e.

Proof. For the proofs of (i) and (éi7), see Proposition 2.24 in [19]. For the proof of

(i), we only see that ||u|| gk ) < €, which follows from ||u|| g7y < oo O

Lemma 3.7. If f, g are measurable functions, then

/ f(t,x) >Mg(t x)dxdt = / Q>Mf (t x)) (t, x)dzdt. (3.10)
R4 Rd

Proof. From the definition of Qg A We obtain

= Z e P F [Fo o (r) RIS (=gl (7)]] (£, €)
— Z e Hlel -1 (6 (T) T [ei~|£\2 Fl9l] (D)) (. €)
= Y P (FE N pn] xy € Folgl) (2,6 (3.11)

on>M
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Applying the Plancherel theorem and (3.11), we obtain that the left-hand side of
(3.10) is equal to

/ Folf1(t ) Fo[Q2,9](t, £)dedt

_ (=l — —
Z/// V4, )t € 8~ PTGl e

2n>M

> [ L[ m e o7 e -l Oardgar

2n>M

In the last line, we used F-1[¢,|(t — ') = F;[pu](t' — t), which holds because ¢,
is real valued. Applying the Plancherel theorem and (3.11), we obtain that the
right-hand side of (3.10) is equal to

// Fol Q2 f1(8, ) Fulgl(t, €)dedt

> [ [ E o s R ORI e
on>n /R JRE
= [ [ [ a7 ol - ¢ FIG Sardeae.
2n>M
Thus, we conclude (3.10). O
Lemma 3.8. Let d > 4, k = (d — 3)/2 =(d—-4)/2, fn, = Pn,f, gn, =

PNgga hN3 = PN3h7 Q‘I/V S {Q<M7 } Q27 Q?) € {Q<M7 gM} Then, th@
following estimates hold:

g [ [ tmanFisddt] < Nllvg, loxa sl
R
(i) L ) ahdade] 5 171y, losallelo e
RO N <y
iii) If Ny < Ny ~ N3, N; > 22, M =eN? and € > 0 is small, then
1
[ @ ( 3 o) wdod] < N7Vl g
Re Ny Ny

(i) If Ny < Ny ~ N3, Ny > 2% M =eN? and ¢ > 0 is small, then

[ [ @ (3 o) @Ehiduat] < N7 1wl Il vz

Nao< Ny

(v) If Ny < Ny ~ N3, Ny > 2% M =eN? and € > 0 is small, then

!/ / (@it ( 3= @ Jdade| S N7 vl Nl

Na< Ny
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(vi) If Ny < Ny ~ N3, Ny > 2% M =eN? and ¢ > 0 is small, then

[ [ @no( D @2uam. ) @mldndt] 871wl lalls o .

No< Ny

Here, the implicit constants may depend on €.

Proof. First, we show (7). By the Hélder inequality, we have

(LHS of (Z)) § Hle HL?oLg/QH.g]\b||L?L§d/(d—2) HhN3||L?Lid/(d—2)‘ (312)

The Sobolev inequality and Remark 1.1 gives

1wl e vz S MVl o | e o S M2 i, - (3.13)

Hence, from (3.12) and (3.13), we obtain (i). By L2 orthogonality,

R VR ] (O D A N

N1<N2 N1< N2
1/2
SO M)
N1< N2
Thus, we obtain (i) in the same manner as (7). Next, we show (ii7). By the Holder

inequality, the Sobolev inequality and Proposition 1.13, we have

(LHS of (i) HQ fN1HL2 ’ Z A || N3||L2L2d/(d 2)
e (3.14)
szv;lr|fN1quzViH|vxrd*2 . Z 90| .. o sl
No< Ny
By Remark 1.1, we have
[V 57 o[ S WPaaglliens S IPaglive S lolhy (315)
No<1 *

By L? orthogonality and Remark 1.1, we have
_ - 1/2 1/2
w22 5™ g oS (0D M Elanale) S NPl (3.6)
1<N2<N; v 1<N2 <Ny
Collecting (3.14)—(3.16), we obtain (iii). Next, we show (iv). Applying the Holder
inequality, we have

(LHS of () S 1Q%5 willezrz| D ol ,

No< Ny

@Sl (317)

By Remark 1.1 and Proposition 1.13, we have

Q%5 fvillgerz S 11QF; ahmllvg, S Iimllvg, s (3.18)
QS nhw, Iz, < N3 [l lvz- (3.19)
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By the Bernstein inequality (see e.g. (A.6) on page 333 in [46]), we have

d—2)/2
DR S (Al SN (3.20)
No Ny e No< N1 L
By Mihlin-Hérmander’s multiplier theorem, we have
[19:19272 37 g | S I1Paglle: (3.21)

No<1

By Mihlin-Hormander’s multiplier theorem and the Cauchy-Schwarz inequality, we

have
_ d—2)/2
|72 3 gn| s > N gnls
1§N2<<N1 1§N2<<N1
1/2 3 1/2
(X ™) (X M) 32
1<Na <Ny 1<N2 <Ny

< Nl
Collecting (3.17)—(3.22) and N; ~ N3, we obtain (iv). Next, we show (v). Applying
the Holder inequality, the Sobolev inequality and (3.18), we have

(LHS of (v)) S Q%5 v lezerz | 30 Qs

No< Ny

s 1Fonvs | 2 2ar a2

(3.23)
S w1722 57 Q2asgma[, Il
No< N1
By Proposition 1.13, we have
[i1va127 37 Q2o S 1QEwPagliz. S NIPaglhe (329
Na<1
By L2 orthogonality and Proposition 1.13, we have
1/2
v 3 @tuon],, £ (X IV Q%u0n )
1< Ny Ny 1< NNy '
o 1/2
> M 2N12||gN2||%/§) (3:25)
1<N2<Ny

~1/2
SN / ||9||Ysk

From (3.23)-(3.25), we obtain (v). Finally, we show (vi). By the Holder inequality,
the Bernstein inequality, (3.18) and (3.19), we have

(LHS of (vi)) S 1Q%5 fa sz || Y Q3ugn,

No< Ny

S Il 19217232 QSun,

No< N1

OOHQthNs”L?w
:1:

(3.26)

L, N3l
t,x
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By Proposition 1.13, we have
vax‘dﬂ Z QgMgNg
No<1

S
< ||o%u

o SNTPagly (320

Lt
By L2 orthogonality and Proposition 1.13, we obtain

1/2
v 3 Q%o < (X ISl )

1<N2<K Ny 1<N2 <Ny
1/2
_ 2
S NN g ) (3.28)
1<N2< Ny

1/2
< Mgy

From (3.26)—(3.28) and N; ~ N3, we obtain (vi). O

3.3. Bilinear estimates. In thissection, we give bilinear estimates for the Duhamel
terms (3.6) and (3.7).

Proposition 3.9. Let d > 4, k = (d —3)/2 and | = (d — 4)/2. Then for all
0 < T < o0, it holds that

Hrs(n,0)llxg S Ny, llvllxs, (3.29)
[ (w0l 2, S Mlullxellollxe- (3.30)

Proof. Let uy, = Pynyu, vy, = Pn,v, nn, = Py,n. First, we prove (3.29). Since

I Ilxs = Il - llyg + I - |+, we need to show
[Hz,s(n,v)[px S lInflye fvllxs, (3.31)
+
Hr.s(n 0)llve S linllyg, lvllxs- (3.32)

By the definition of E*¥ norm, we have

(LHS of (3.31))* < || Pailr,s(n, )5 + D N3\ Pry Irs(n, v)|3- (3.33)
Ni>1
Put
t
Jl,E = Z N1d_3 /0 ]—[OT t—t Z Z PN1 TLN3 ’UNQ( /)) E’
N1>1 Na~N1 N3 N2
t
g = 3 N / Lon®)St—t) 33 Pa (ng(#)ow ()t ||
Ni>1 0 N2 2 Ni N3~Na E
t
J37E = Z Nld_3 /0 ]-[0,T t—t Z Z PN1 nN3 UNQ( /)) E'

Ni>1 Ny Ny N3~Ny
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We will prove J; g < ||n||§/év ||v||§(é for i = 1,2,3 below. By Proposition 3.5 and
+

Lemma 3.8 (i7), we have

Jl,ES ZNldig sup Z // 1[0T]nN3UN2uN1d$dt

N1>1 HUHE 1 Na~Nj N3 N2
< lnlis. oY N owllE sup [luw, I
W N1>1 Na~Nj |u||E_

Since supy, 1 [|[un |z S 1, we obtain

Tue S IInllyy > N omE S I, Nl

Ny > 1

By the triangle inequality, Proposition 3.5 and Lemma 3.8 (i), we have

b S Y N 3( >y H/ 011 (t)S(t — ') Pu, (nvy (Yo, (V)

2
/ >
E

Ni21 Ny > Ni N3~Na
d—3 2
S Z Ny < Z Z sup ‘ 1[0,T]”N3UN2UN1d$dtD
N1>1 Ny = Nj N3~Na |lulle=1"JR JR4

2
d—3)/2 d—4)/2
SO X NN o e, ) -

NIZ]- N2 2 N1 N3NN2

Since || - || < || - [|erez, by the Cauchy-Schwarz inequality, we obtain

1/9 - _ 1/2
BES Y D (X NN owll el )

Ny > 1N3~N2 N; < Ny

d—3)/2 d—4)/2
S D Y MTVENTIE om sl v,

No Z 1 N3~Na

S lInllyg,, 1ollxy-

Next, we consider the estimate of J3 ;. We take M = eN7? for sufficiently small

€ > 0. Then, from Lemma 3.4, we have

((Q<MnN3)(QiMUN2))

—Qsu[F () (@) (@) )| =0

when N; > (Ns). Therefore,

4
NN UN, = E F;,
i=1
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where

Fy = (QZV]:\E/[nNS)UNQ? Fy = Q;M((Qz/]\i/lnNS)sz)7
(Q<MnN3)(Q§MUN2)v Fy = _QgM((Q<MnN3)(Q§MUN2))'

For the estimate of F}, we apply Proposition 3.5 and Lemma 3.8 (iii) to have

Nd SH/ OT] t—t Z Z PN1F1

N >1 N2 Ny N3~Ny
<SS N osup | YYD / / Loy (Q25mns) nguNldxdt’
Ni>1 ”“”E 1N2<<N1 N3~Ny
d— 3 —1/2 2
S >N Insllvg,, lvllvg)
Ny > 1

< Il ol

For the estimate of I3, we apply Corollary 1.15, Corollary 1.11, Lemma 1.16, Lemma,
3.8 (iv) and

prunlive S llumllve < llullvz (3.34)

to have

> N 3”/ Lon(t)SE—t) > > Py Pyt Z

Ni>1 Na< N1 N3~Ny

< DN H/ Lon(t)St—1) > Y PyF
Ni>1 N2 N1 N3~Ny

< ZNd 3 sup Z // 1o Q>M (Q<M”N3)UN2))UN1
N1>1 HuHV2 1 N2 Ny N3~N;

S D NN P lnsllvg, llolse)”
N3 > 1

S lInlfyy Mol
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For the estimate of F3, we apply Proposition 3.5 and Lemma 3.8 (v) to have

Nd 3H/ ]-[OT t—t Z Z PNng
N>1

N2 N1 N3~Nip

<SS N s [ 3OY / / 011(Q e (QF o, Vs dedt|

Ni>1 ||“||E 1 No<< Ny Ny~N;
S > N P lnsllvg, llollye)”
N3 > 1

< linlly, o1

For the estimate of F}y, we apply Corollary 1.15, Corollary 1.11, Lemma 1.16, Lemma
3.8 (vi) and (3.34) to have

> N H/ Lon()S(E—1) > > Py Fy

N1>1 No< Ny N3~Ny

< N‘“’H/ wn®)SC—1) 3 Y Pk

Ni>1 N2<N1 N3~Ni1

S ZNii_S sup )Z Z // Lo,y Q>M((Q<MnN3)(Q>MUNz) >UN1d$dt‘

Ni>1 H“HVQ U Ny Ny Ny~

—~1/2 2
S D NNl Ilvllyg)

N3 > 1

< Il ol

Collecting the estimates of F1, Fy, F3 and Fy, we obtain Js 5 < [[n[|3,  [[v/[5. Thus,
Wy S

> M P, 0)[E S lnlly ol (3.35)

Ni>1

Note that we also have

Z Nd 3||PN1]T5'(n U)HLOOL? S ||”||yl ||U||Xk (3,36)

Ni>1

in the same manner as the proof of (3.35) since (p1,q1) = (00,2) also satisfies the

assumption of Proposition 3.5. Next, we show
1Patrs(no)lle S lnlyg, llvllxe: (3.37)

In the same manner as the proof of Lemma 3.8 (ii), we have

1/2
(d—4)/2 2l 2 _ .
Inllzzrg S |91 }NjPNnHM S (NPl ) = I,
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Thus, by Proposition 3.5 and the Hélder inequality, the left-hand side of (3.37) is

bounded by
sup / / 1o v Pojudzdt
lull =1 St (3.38)
S nllzerallolle sup |[Paulle S lnlly, llvlle:
lull p=1 *
Thus, we obtain (3.37). From (3.33), (3.35) and (3.37), we conclude (3.31).
Next, we prove (3.32). By the definition of || - [|yx, we only need to show
> NP Ins(n,0)lfe S Ml ol (3.39)
Ni>1 *
1P<iIrs(n,v)llve < lInll3, ol (3.40)
+

By Corollary 3.3 and Remark 1.1, the left-hand side of (3.39) is bounded by

2 N Supzl)/ " (u(t), S8 (S (=) P Irs(m. ) (8)

2
— lim (u(t), PNllT,S(naU»Lg

)
t—o00

2
s SN0 s (| [ [ vgmmomsdsat] + Julf e Padrstn,) )
Ni>1 ||UHU§:1 R JRY
2
s YN sup | [ [ tpmmommdade] + 30 NG Py st ) o
R JR4

Ny >1 llullyz =1 Ny >1

3
S Jiv+ > NPy Irs(n, )| Teer2

i=1 Ni>1
where
2
iy = ZNld’S sup Z Z // Lo, N, UN, dadt |
Ni>1 lellyg =1 Ny oy Ny, VR R
2
Joy = ZNfl_3 sup Z Z // Lo, rnNs N, UN, dxdE]
Ni>1 ||u||U§:1 No > Ny Ns~N, /R JR?
2
ngy = Z N{l_3 sup Z Z // 1[07T]TLN3UN2U_N1dCL’dt
Ni>1 lullyz=1" Ny« Ny NgNy /R /RY

By Corollary 1.15 and Remark 1.1, it follows that
ulle S llullvz,  Nullve S llullvz- (3.41)

We obtain Jiy < [|nl[%, [v]l%: in the same manner as the estimates for J; p with
Wi S

i =1,2,3 if we use (3.41). Collecting (3.36) and the estimates above, we conclude
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(3.39). Next, we show (3.40). By Corollary 3.3 and Remark 1.1, we have

[ P<tIr,s(n,v)llve

/ " (), () (S(—) PerIns(n, 0)) (1))t

x
—0o0

= sup
U =1
Il

— lim <U(t), (P<1]T,S(na U))(t)>L2

t—o00

N

sup
lullyz =1

//d OT]TLUP<1udIdt’ + HU||L00L2 ||P<1ITS(TL U)||L°°L2>
R

< swp | / [ VonyoPerudadt] + [P s, o)1z (3.42)
Rd

lull =1
By Proposition 3.5, we have
|Paalrs(n )llierz < swp | / | v Perudodr| (3.43)
[ull =1 R4

Collecting (3.42), (3.43) and (3.38), we obtain (3.40). From (3.39) and (3.40), we
obtain (3.32). From (3.31) and (3.32), we conclude (3.29).

Finally, we prove (3.30). By Corollary 1.11, we only need to estimate K; < ||u||‘2Xg ||?J||?X§
for i =1, 2,3, where

K, ::Z]\fgl*4 sup Z Z //Rdl[OTuNlUNanNS

Inlly2 =1 > ~
N3 Wy N2 2 N3 Ni~Na

Ky ::Z]\/gl’4 sup Z Z // Lo myun, Un, @0 To;,
N3

”n”VVQVi =L Ny Ny NN,

Ky _ZNd4 sup Z Z //Rd1[0Tu]\/lvz\/z(,um\/3

Inllve, =1 Np<Ng Ni~Ns

By the triangle inequality, Lemma 3.8 (i) and the Cauchy-Schwarz inequality, we
have
LY TS M

2y 1/2
l[O,T]UN1UN2wnN3 }
Ny Ni~Ny N3 < N3 Il 3 ~1/R R4

_ d—4)/2 1/2
CX ST M sl

N2 Ni~N2 N3 < Np

<SS (NES a3 o, 1)

Nz Ni~Na

B 1/2 3 1/2
S (V) (D Nl
N N
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By Mihlin-Hérmander’s multiplier theorem, it follows that

SNl £ S0 N Pauly S 1| Parull (3.44)

N<1 N<1

Thus, we conclude K1 < [Ju|3. [|v[|5%:- Next, we estimate Kp. Put Ky = Ky1+ Ko
S S

where
Kyq = Nd 4 1 TN, W TUN-
2,1 *= [0,T)UN; UN,W TNy
N3 S 1 ”””v2 =1 Ny~ Ng N1 <N, Re
Kyy:= Y Ng™*
2,2 -— 3 0 T]UN, UNyW TN
Ng>>1 ”””v2 *1 N2~N3 N1<No R?
By Lemma 3.8 (i), we have
Ky, < NI (N2, ’
2,1 2 2 2 Un, E||UN2||E
Ny <1 N1 < Ng
2 2d—6 2
SHPauly D Niow,|lE (3.45)
No <1

< Nl ol

For the estimate of Ky, we take M = N2 for sufficiently small € > 0. Then, from

Lemma 3.4, we have

S ((Q<MU1\72)(Q<M(’u nN3))

= QS |F (/ﬂ b, 1= s Q10w (72, £2)(Q 50 e (73, 0) ) | = 0,

when Ny > (Np). Therefore,

4
UN,W TNy = E Gi,

where
Gy = UN, (Qg/ﬂi/[w nN3)> Go = QL;M (UN2(QZVJ\i/[w nN3>)7
Gs = (Q5yvw,)(QYiwny,),  Gii=—Q%,(Q%vwm) QY wny,)).

Therefore, it follows that

Koo < K9 + K3 + K59 + K
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where

_ 2

Kélz) = ZN§—4 sup Z Z // 1o mun, Grdzdt| |
N3>1 ”n”V‘fVi:l Na~Ns Ny<N, /R /R

. 2

K=Y N s |[S% / / 1o 1yun, Godrdt|
N3>1 ”n”V‘fVi:l Na~Ns Ny<N, /R /R

_ 2

K=Y N s |[S% / / 1jo1yun, Gadodt| |
N3>1 ||n||VV2Vi:1 Na~Ns Ny<N, /R /R

. 2

K=Y N s |[S% / / 1jo7yun, Gadrdt| .
N3>1 ”n”VVQVizl Na~Ns Ny<N, /R /R

Note that N3 > 1 and Ny ~ N3 implies Ny > 22. By Lemma 3.8 (ii4), we have

1 _ —1/2 2
K39 S Y NN, N fullyelow, )

No>22

<3 Nl ol S ull2y ol (3.46)
]\[2>22

We apply Lemma 1.16, Lemma 3.8 (v) and (3.34), then we have

2 _ —1/2 2
K3 S Y Ny (N P Nllullygllonsle)” S lulfellolfe. (3.47)

~

No>22
By Lemma 3.8 (iv), we have
3 — —1/2 2
K5y S D N (NG P Nllullpelomsllvz)” S el ol (3.48)
Np>22
Applying Lemma 1.16, Lemma 3.8 (vi) and (3.34), we obtain
4 - —1/2 2
K9S Y Ny (N P Nllullyellowallve)® S llullyallollya (3.49)
N2>22

Hence, collecting (3.45), (3.46), (3.47), (3.48) and (3.49), we have Ky S ||ull%, [[v[/ %

S S

By symmetry, we also obtain K3 < [Juf|%.[|v[|% in the same manner as the estimate
S S

of KQ. O

Next, we consider the inhomogeneous case for the wave equation.

Corollary 3.10. Letd >4, k= (d—3)/2 and | = (d—4)/2. Then for all0 < T <
o0, it holds that

7w (u, v) S lullxgllvllxs-

||lei
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Proof. From Proposition 3.9, we have

| Pt~ | Pxtnw o], S Rulglell
N>1 ZW:!:

N>1

Hence, we only need to show the following.
[Parlrw (w,0)lluz, S llullxgllolxg- (3.50)

By Corollary 1.11 and Holder’s inequality, we have

(LHS of (3.50)) sup ‘// 1[0TuvP<1wnd:1:dt
||n|| 2. =1 R4
N ” ”SUP [ullellv]l el P<iwnl| ;oo pare- (3.51)
nll,,2 =1 e
Vi,

Since

1/2 1/2
el < 1Pl + (30 N-2) 7 (D0 N Pyull})

N>1 N>1

by the Cauchy-Schwarz inequality, we have
lulle S llullxe,  lolle < llvllxe (3.52)
By the Sobolev inequality and Remark 1.1, we have
[Pawnll epge S 1Vl 2 Pawnl| ey S I1Pamllizre S linllvg, - (3.53)
Hence, collecting (3.51), (3.52) and (3.53), we obtain (3.50). O

3.4. The proof of the main theorem. By the Duhamel principle, we consider
the following integral equation corresponding to (3.2) on the time interval [0, 7] with

0<T < o0:
(u,ne) = (P1(u, ), Pos(u)), (3.54)
where

D1 (u, ng) = S(H)uo + Ir,s(n, u)(t) + Ir,s(n-, u)(1),
Doy (u) := Wi(t)ngo + Irw, (u, uw)(t).
Proposition 3.11. Letd > 4,k = (d—3)/2 and | = (d — 4)/2.
(i) (existence) Let § > 0 be sufficiently small. Then, for any 0 < T < oo and any

itial data

(10, n0) € Bs(H(R?) x H'(RY)) (resp. Bs(H*(RY) x H'(RY))),
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there exists a solution to (3.54) on [0,T] satisfying
(u,n2) € XE([0,T) x Vi, (10,7)) € C(0, T]; H*(®?) x C([0,T); H'(R)
(resp. (u,ns) € X5(0,T)) x Vi, (10,T]) € C(0,T); H*(®Y) x C([0,T]; H'R) ).
(ii) (uniqueness) Let

(w,n2), (v, ms) € XE(0,T]) x Vi ((0.T]) (resp. € X(0,T]) x Vi, ([0, 7))

be solutions to (3.54) on [0,T] for some T > 0 with the same initial data. Then
(ut),ns (1)) = (v(t), m(£)) on t € [0,T],

(iii) (continuous dependence of the solution on the initial data) The flow map ob-
tained by (1):

Bs(H*(R?) x H'(RY)) 3 (ug, nao) = (u,na) € X5([0,T)) x Vit ([0, T])

(resp. Bs(H*(R?) x H'(R?)) 2 (ug,nso) — (u,ny) € XE(0,T]) x Yy, ([0,T]))
15 Lipschitz continuous.
(iv) (persistence) Let 6 > 0 be sufficiently small and
(u07n:|:0) c Bg(Hk(]Rd) % Hl(Rd)) N Hk+a(Rd) < Hl+a(]Rd)
for some a > 0. Then, the solution (u,ny) obtained by (i) is in
Xg"((0,T]) x Y/e([0,T1) € C([0, T]; H**(R)) x C([0, T); H**(R7))
for any 0 <T < o0.

Remark 3.2. Due to the time reversibility of the Zakharov equation, Porposition

3.11 holds on corresponding time interval [T, 0].

Remark 3.3. By (i) in Proposition 3.11 and Remark 3.2, we have solutions to (3.54)
on [0,7] and [—T,0] for any 7" > 0. Since we can take any large 7" and have the
uniqueness, the solution (u(t), n+(t)) € C((—o0, 00); H*(R%))x C((—o0, 00); H'(R?))
(resp. C((—00,00); HE(R?)) x C((—o00,00); H(R?))) can be defined uniquely when
(uo, nxo) € Bs(HF(RY) x H'(RY)) (resp. Bs(H*(R?) x H'(R))).

Proposition 3.12. (scattering) Let (u(t), n.(t)) be the solution to (3.54) with (ug, n+o) €
Bs(H*(RY) x H'(R?)) on (—oco,00) obtained by Proposition 3.11, Remark 3.2 and
Remark 3.3. Then, there exist (Uyoo, Nt oo) AN (U_oo, N+ —oo) in HF(RY) x H'(R?)
such that

[u(t) = S@)ttrool [ + [[22£() = W ()12t 00| g = 0
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ast — oo and
[u(t) = S u—collr + [[n2:(t) = We(t)ns ool 1 — 0
as t — —oo. The similar result holds for the inhomogeneous case.

Proof of Proposition 3.11. We will show only the case (ug,nio) € Bs(H*(R?) x
H'(R%)) because the proof of the case (ug, n1o) € Bs(H*(R%) x H'(R%)) follows from
the same argument if we use (3.30) instead of Corollary 3.10.

First, we prove (). We denote I := [0,7]. By Proposition 3.5 and the definition
of X§, Y}, , there exists C' > 0 such that

1S (#)uollxgry < Clluollar, [Wet)nzollyy, 1) < Cllnsolla-

Assume that (up,nio) € Bs(H¥(RY) x H(R?)), (u,ny) € B (X§(I) x Vi, (I)).
Then, by Proposition 3.9, Corollary 3.10 and || - [[y. < ||+ [z, . we have
+ +
191 (u, )l x50y < Cllwollzs + Clinzllyy, nllullxgay < €6 +Cr?,
o)l ) < Clinsall + Clul3ag,) < C6+ Cr.
We choose § = r?, r = 1/4C, then we have
19 (s ) [ ) + 1Pz () lyy, 1y <7

Hence, (@1, ®,4) is a map from B,(X§([0,7]) x Yy, ([0,7])) into itself. Note
that 7 does not depend on T. Moreover, we assume (vg,mig) € Bs(H*(RY) x
HY(RY)), (v, ma) € B,(XE(T) x Y, (1)), then

[@1(u, ns) — P1(v, mas)| xxry

= [Hz.s(ne, u)(t) = Ir.s(m, 0) ()| x50

< Urs(ne,u =)l xs) + [Hr,s(ne — ma, v) || xx

< C(HniHYJVi(I)HU - UHX@(I) + [|ne — miHY‘ﬁVi(I)HUHXg(I)) (3.55)
< (1/4)(JJu - UHXg(I) + [Ins — m:ﬁ:”Y‘fVi(I))»

192 (u) = P2(v) Iy, )

= | Irw (u, u)(t) — Irw (v, U)(t)HYVlVi(I)

< C(||“HX§(I) + ||U||X§(I))||u - U||X§(1) (3.56)

< (1/2)]lu = vllxxn)-
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Therefore, (1, Poy.) is a contraction mapping on B, (X ([0, T]) x Yy, ([0,T])). Thus,
by the Banach fixed point theorem, we have a solution to (3.54) in it.

Next, we prove (ii) by contradiction. Let (u,n), (v,m<+) € X§([0,T]) %Yy, ([0,T7)
are two solutions satisfying (u(0),n4(0)) = (v(0),m+(0)). Assume that

T :=sup{0 <t < T;u(t) =v(t),ne(t) =ms(t)} <T.

By a translation in ¢, it suffices to consider the case 7" = 0. Fix 0 < 7 < T
sufficiently small. From (3.55) and Proposition 3.6, we obtain

Ju— U”X’“ (o) = C(H”inyl (o llu— UHXk (o + llne — m:t||Yl ([0,7]) ||U||X’“(O'r}))
< (/4)(llu vl xsgom + s —msllvg,_o)-
Hence, we obtain
lu— vllxgomy < (U3 —mall,_(or)- (3.57)
Similarly, by (3.56) and Proposition 3.6, we obtain
e = mellyy, oy < Cllullxsqom + Iollxsqom)lle = vixgmom
< (1/2)[Ju = vl xx(0,71)- (3.58)

Hence, from (3.57) and (3.58), we obtain u(t) = v(t), n+(t) = m+(t) on [0, 7], which
contradicts to the definition of 7".
We omit the proof of (iii) because it follows from the standard argument. Finally,

we prove (iv). Fix 0 < T < oco. Since (§)* < (£ — &) + (&), we easily have
1 sl S sl lullxs + sl Nellgsso, (359
v )l g S Molsoe (3.60)

from Proposition 3.9 and Corollary 3.10. Thus, by a similar argument as (i), we

obtain

||U||X§+a(1) < Clluol|rsa + CT(||U||X§+G(I) + ”n+||lev+f(1) + ||”—||yvlv+j(1)),
Inellygze < Cllnzollarra + Crllull e

for the solution to (3.54) such that (u,ny) € B.(X§(I) x Yy, (I)). Since 4Cr = 1,

we conclude

lall xrary + lIntllygacry < Cllluollmra + lIngollive).

Finally, we prove Proposition 4.2.
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Proof. Since r in the proof of Proposition 3.11 does not depend on T, it follows that
lull x5 0.0y + HniHYVlVi([o,T]) < M,
lull x50y + ||nﬂ:||YVlVi([—T,O]) <M

for any 7' > 0, where the constant M does not depends on T'. For any {t;}2 , € Z,
we can take 0 < T' < oo such that —T' < ty and tx < T. Then, by Lemma 1.6, we

have

(32 A S(—tu(te) — S(—tiyultei)3:)

k k
S KV ullvzorny + IKV2) " wllvz-ra
S lullxsory + lullxs—ropy < 2M.

Therefore, we have

K 1/2

swp (D2 IV S(=tulte) — (Va) S(=teulte)lF) < 2.
{tr}i0€20 k=1

By Proposition 1.5, fi = lim;_ 1. (VQ’“S(—t)u(t) exists in L2, Put ui =

(V) " fi. Then, we conclude

(V) S(—=t)u(t) — fillrze = [[u(t) = S()usoc||gr — 0  as t — +oo.

Similarly, we obtain the scattering result for the wave equation. 0
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