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Abstract

The investigation of the properties of baryons in low energy regions is an im-
portant issue in hadron physics. The Skyrme model provides a systematic way
to investigate baryon properties through meson dynamics. In low energy regions,
meson dynamics are well described by several effective theories, e.g., chiral per-
turbation theory (ChPT) and hidden local symmetry (HLS). The Lagrangian of
an original Skyrme model is a particular choice of ChPT. To construct a baryon
state from low energy constants, rho and omega mesons are also included within
the framework of HLS. However, the mass of a skyrmion obtained from HLS is
approximately 50% heavier than the lightest baryon. Later, it was observed that
including a dilaton-type scalar meson provides an attractive force, which drops
the mass of the skyrmion.

In this thesis, we study the effects of light scalar mesons on skyrmion proper-
ties. As an extension of HLS, we construct a mesonic model that includes two-
quark and four-quark scalar meson fields.

First, we switch off the four-quark scalar meson field. We then have two model
parameters: (i) the mass of the two-quark scalar meson field and (ii) the coupling
strength between the two-quark scalar and vector meson fields. On keeping the
coupling strength constant, we observe that the skyrmion mass decreases and the
skyrmion size increases when the mass of the scalar mason decreases. On keep-
ing the mass of the two-quark scalar meson field constant, we observe that the
skyrmion mass and baryon number density increase as the coupling strength in-
creases. Finally, we switch on the four-quark scalar meson field and investigate
the mixing of skyrmion properties between the two-quark and four-quark scalar
mesons. We observe that when the light scalar meson includes more of the two-
quark component, the skyrmion mass becomes lighter and its size becomes larger.
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Chapter 1

Introduction

Quantum chromodynamics (QCD) is a fundamental theory that describes the
dynamics of quarks and gluons. There are two important features of QCD: (i)
quark confinement and (ii) asymptotic freedom. These two features make it dif-
ficult to perform a perturbative calculation of QCD dynamics in a low energy
region. Therefore, instead of using QCD, many effective theories have been de-
veloped to probe meson and baryon dynamics in this region. For example, chiral
perturbation theory and hidden local symmetry are widely used to describe meson
dynamics, whereas the Skyrme model, the Massachusetts Institute of Technology
(MIT) bag model, and the chiral bag model are widely used to describe baryon
dynamics.

In the real world, some extreme conditions exist, e.g., high temperature and
high density. Figure 1.1 shows a phase diagram of a quark-gluon system in the
temperature-density plane (for review articles, see, e.g., [1–4]). At zero density,
lattice QCD is a powerful method to investigate the QCD dynamics. For exam-
ple, lattice calculations [5;6] show that as the temperature increases, there is a phase
transition between the hadronic phase and the quark-gluon-plasma phase. How-
ever, in the finite density region, lattice QCD is not an effective way to study QCD
properties because of the ‘sign’ problem. Therefore, great efforts have been made
to investigate the QCD dynamics in the dense region by using several effective
models [7–9].

In the very-high-density region, the baryons overlap each other; therefore, the
size effect of the baryon plays an important role when studying QCD dynamics.
There are several models that include the effect of baryon size, e.g., soliton mod-
els, the MIT bag model, and the chiral bag model. In this thesis, we focus on
soliton models, because they provide a systematic way to investigate the density
effect of QCD [10;11].

In 1962, T. H. R. Skyrme proposed the idea that a baryon could be identified
as a soliton solution of the mesonic theory [12]. Because this idea was originally
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Figure 1.1: QCD phase diagram

proposed by Skyrme, soliton models are generally called Skyrme models, and the
soliton solution is called the skyrmion. Since then, this idea has been widely ap-
plied in condensed matter, nuclear, and particle physics [13]. In the original Skyrme
model, where only the pion was considered, it was found that if we impose the
parameters from the pion properties, the Skyrme baryon is approximately twice
as heavy as the nucleon.

To reproduce the baryon properties consistently with the mesonic model, the
rho meson is introduced within the framework of HLS [14–16]. Inclusion of the vec-
tor meson generates a repulsive force, which stabilizes the soliton, and the baryon
mass and size become closer to the experimental values than those obtained in the
model including only the pion. Because the omega meson has a similar mass and
plays a similar role as the rho meson does, the omega meson is also introduced.
However, the repulsive force from the vector mesons is too strong, which makes
the skyrmion obtained from the HLS model approximately 50% heavier than the
nucleon [17;18]. The experimental values and model predictions of the mass and
radius of solitons from the π and πρω models are summarized in Table 1.1.

The scalar meson is expected to generate an attractive force, which balances
the repulsive force generated by vector mesons. As a result, the incorporation of
a scalar meson reduces the mass of a soliton. So far, in the Skyrme approach,
scalar mesons are introduced in two ways: (i) as the chiral partner of the pion,
i.e., a scalar meson made from two quarks [19] and (ii) as the Nambu-Goldstone
(NG) boson of the scale symmetry, i.e., the dilaton [20–25]. It is observed that scalar
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Table 1.1: The mass and radius of skyrmions from the π and πρω models
model soliton mass [MeV]

√
〈r2〉B [fm]

π [19] 1756.5 0.51
πρω [20] 1469.0 0.49
Experiment 939 0.72

mesons provide an attractive force and reduce skyrmion mass as shown in Ta-
ble 1.2.

Table 1.2: Mass and radius of the skyrmion from the πσ and πρωχ models
model scalar type soliton mass [MeV]

√
〈r2〉B [fm]

πσ [19] 2 quark 1364.5 0.56
πρωχ [20] glueball 1408.3 0.51

Comparing Tables 1.2 and 1.1, we observe that the scalar mesons play im-
portant roles to reproduce the mass and radius of the light nucleons. However,
the scalar meson made from two quarks is a p-wave state in the quark model and
its mass is approximately 1.3 GeV. Instead, several studies suggest that the scalar
mesons made from two quarks mix with those from four quarks [26;27]. Further-
more, the light glueball mass [20] is not consistent with Lattice predictions. Thus,
following [27], we consider light scalar mesons as mixing states of two-quark and
four-quark states.

In this thesis, we investigate the effect of scalar mesons on the mass and size of
a skyrmion. The model is constructed as a chiral effective model, which includes
the pion, rho, and omega mesons together with two-quark and four-quark scalar
mesons. In the present study, the parameters of the model are determined through
low energy experiment results.

Our findings are summarized as follows:

1. When we switch off the mixing between the two-quark and four-quark
scalar mesons, the four-quark component scalar state decouples from the
model; therefore, the scalar meson is a pure two-quark state. In such a case,
we find that:

(a) The skyrmion mass depends on the mass of the scalar meson; with
increasing scalar meson mass, the skyrmion mass and size decrease.

(b) The skyrmion mass depends on the coupling strength between the
scalar meson and the vector mesons. Thus, with an increasing cou-
pling strength, both the skyrmion mass and the charge radius of the
baryon number density increase.
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2. When we switch on the mixing between the two-quark and four-quark scalar
mesons, the mixing strength affects skyrmion properties. When the two-
quark component of the lighter scalar meson is increased, the skyrmion
mass becomes smaller and its size larger.

This thesis is organized as follows. In Ch. 2, we introduce, briefly, the basics
of QCD, chiral symmetry, and chiral symmetry breaking. In Ch. 3, we briefly
review the effective theories of QCD in the low energy region, i.e., the fundamen-
tal concepts and properties of ChPT and HLS. In Ch. 4, we review the Skyrme
model including the pion, rho, and omega mesons. In Sec. 4.3, we include the
scalar meson in the theory and analyze, numerically, the effects of scalar mesons
on skyrmion properties. In Ch. 5, we give a brief summary. Some details of the
calculations are given in the Appendices.



Chapter 2

QCD and its properties

In hadron physics, the fundamental elements are quarks and gluons. The glu-
ons carry color charge and both quarks and gluons interact through the exchange
of gluons. The theory that describes this dynamics is QCD. The strong interac-
tion (color force) of the quarks and gluons make up hadrons (such as the proton,
neutron, and pion). QCD is an important part of the Standard Model of parti-
cle physics and experimental evidence for QCD has been gathered over several
decades.

2.1 Symmetry and Conserved Current
In this section, we describe the relation between the symmetry and the con-

served quantities.
In nature, a physical system has a symmetry when the physical laws of the sys-

tem remain unchanged after a transformation. Noether’s theorem states that when
the system has a continuous symmetry, there exists a corresponding conserved
quantity.

Table 2.1: Symmetry and corresponding conserved quantity
invariance conserved quantity
translation in time energy
translation in space momentum
rotation in space angular momentum
coordinate inversion spatial parity
time reversal time reversal
charge conjugation charge parity

For example, when the system is invariant under time translation, the energy

5
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of the system is conserved. The momentum of the system is conserved when the
system is invariant under a space translation. Table 2.1 shows some symmetries
and the corresponding conserved quantities.

In the low energy region, mesons play a more important role than free quarks
do. The bilinear representation of the Dirac spinor is introduced as

S(x) = ψ̄(x)ψ(x) , (2.1)
V µ(x) = ψ̄(x)γµψ(x) , (2.2)
Aµ(x) = ψ̄(x)γµγ5ψ(x) , (2.3)

where µ is the Lorentz index with µ ∈ (0, 1, 2, 3), ψ̄(x) = ψ†γ0, and γµ denotes
the gamma matrices, which are expressed as

γ0 =

(
1 0
0 1

)
, ~γ =

(
0 ~τ
−~τ 0

)
, γ5 = γ5 ≡ iγ0γ1γ2γ3 =

(
0 1

1 0

)
.

(2.4)
Here 1 and σ are the rank-2 unit matrix and Pauli matrices, respectively. The latter
are expressed as

1 =

(
1 0
0 1

)
, τx =

(
0 1
1 0

)
, τy =

(
0 −i
i 0

)
, τz =

(
1 0
0 −1

)
.

(2.5)
Under the Lorentz transformation, S, V , and A transforms similarly as a

scalar, vector, and axial vector, respectively. The time component of Eq. (2.2)
is expressed as

V 0(x) = ψ̄(x)γ0ψ(x) = ψ(x)†ψ(x) , (2.6)

which corresponds to the quark number density.
The left- and right-handed currents are

AµL(x) = ψ̄L(x)γµψL(x) =
1

2
(V µ + Aµ) , (2.7)

AµR(x) = ψ̄R(x)γµψR(x) =
1

2
(V µ − Aµ) . (2.8)

The Lagrangian of the free Dirac particles is written as

ψ̄(i∂µγµ −m)ψ . (2.9)

Under the axial vector transformation, ψ transform as ψ axial−−→ exp(i~t · ~θAγ5)ψ,
where ~θA = (~θL − ~θR) is an isospin transformation parameter, and ~t is the group
generator corresponding to ~θA. The mass term of the Dirac fields transforms in
the manner

mψ̄ψ
axial−−→ mψ† exp(−i~t · ~θAγ†5)γ0 exp(i~t · ~θAγ5)ψ
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= mψ̄ exp(2i~t · ~θAγ5)ψ . (2.10)

If m 6= 0, we observe that the mass term is not invariant under the axial vector
transformation. Therefore, the non-vanishing mass of the Dirac particle breaks the
chiral symmetry. We will discuss more regarding the relation between the Dirac
mass and chiral symmetry later.

2.2 QCD Lagrangian
The QCD Lagrangian is written as

L = ψ̄(iγµD
µ −m)ψ − 1

2
TrGµνG

µν , (2.11)

whereψ = (ψαi) denote the quark fields, α is the flavor index with α ∈ (u, d, s, c, b, t),
and i is the color index with i ∈ (1, 2, 3). Here,Gµν denotes the gluon field tensor,
which is expressed as

Gµν ≡ Ga
µνta ≡ (∂µA

a
ν − ∂νAaµ + gfabcA

b
µA

c
ν)ta , (2.12)

where g is a gauge coupling constant, Aaµ(x) are the gauge fields of the “gluon”,
ta is the generator of SU(Nc)c, and Nc is the number of colors. When Nc = 3, a
satisfies a ∈ (1, 2, 3 . . . , 8). m is the quark mass matrix, which is expressed as

m = diag(mu,md,ms,mc,mb,mt) . (2.13)

fabc is the structure constant, which is expressed as

fabc = −iTr

([
ta
2
,
tb
2

]
tc

)
. (2.14)

For the Nc = 3 case, the non-vanishing fabc are expressed as

f123 = 1 ,

f147 = −f156 = f246 = f257 = f345 = −f367 =
1

2
,

f458 = f678 =

√
3

2
. (2.15)

Note that ψαi is a 4-component Dirac spinor with the number of flavorsNf = 6
and the number of colors Nc = 3.

The gauge-covariant derivative is expressed as

Dµ = ∂µ − igAµ(x) , (2.16)
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where

Aµ(x) =
8∑

a=1

taA
a
µ(x) . (2.17)

The physics of the strong interaction of the quarks is invariant under the gauge
transformation, i.e.,

ψ(x)
gauge−−−→ ψ̃(x) = Uψ(x) , (2.18)

where U = exp[−iθa(x)ta] and θa(x) is a real function.
The infinitesimal gauge transformation for (2.18) is expressed as

U = exp[−iθa(x)ta] = 1− iθa(x)ta +O(θ2) . (2.19)

Up to terms linear in θa(x), the transformation of the gauge field is

Aµa(x)
gauge−−−→ Ãµa(x) = Aµa(x)− 1

g
∂µθa(x) + fabcθb(x)Aµc (x) . (2.20)

2.3 Chirality and Chiral Symmetry
If the quark mass is negligible, i.e., mq ∼ 0, the Lagrangian (2.11) can be

rewritten as

L = ψ̄(iγµD
µ)ψ − 1

2
TrGµνG

µν . (2.21)

In this case, the left- and right-handed quark fields are decoupled as

L = ψ̄(iγµD
µ)ψ − 1

2
TrGµνG

µν

= ψ̄LiγµD
µψL + ψ̄RiγµD

µψR −
1

2
TrGµνG

µν , (2.22)

where ψL and ψR denote the left- and right-handed quarks, respectively. They are
defined as

ψL =
1 + γ5

2
ψ , (2.23)

ψR =
1− γ5

2
ψ . (2.24)

The projector relations for ψL and ψR are

ψL = γ5ψL , (2.25)
ψR = −γ5ψR . (2.26)
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The chiral transformations for ψL and ψR are

ψL
chiral−−−→ exp(i~t · ~θL)ψL , ψR

chiral−−−→ exp(i~t · ~θR)ψR . (2.27)

Under the chiral transformation, the first term in Eq. (2.22),

ψ̄LiγµD
µψL

chiral−−−→ ψ†L exp(−i~t · ~θL)γ0iγµD
µ exp(i~t · ~θL)ψL

= ψ̄LiγµD
µψL , (2.28)

is chiral invariant. Similarly, we can show that the second term in Eq. (2.22) is
also chiral invariant. Therefore, when mq ∼ 0, the Lagrangian (2.11) is invariant
under a chiral transformation with separated left- and right-handed pieces. This is
called chiral symmetry.

2.4 Spontaneous Symmetry Breaking
When we look at the meson and baryon masses, we find that they are much

bigger than the current quark masses. For example, the nucleon mass is roughly
940 MeV, but the current masses are 2.3 and 4.8 MeV for the u and d quarks,
respectively. One possible origin of the mass generation is that the meson and
the baryon masses are dynamically generated from spontaneous chiral symmetry
breaking given as [28]

SU(Nf )L × SU(Nf )R → SU(Nf )V , (2.29)

where the number of flavors Nf ≤ 3. When the meson and baryon masses are
derived from the vacuum expectation value (VEV) of the scalar particle, like in the
Higgs mechanism, the shift of the vacuum value away from zero provides masses
for the meson and baryons. This non-vanishing value of VEV of the scalar particle
breaks the chiral symmetry and only the isospin symmetry remains in the vacuum.
In this scenario, we expect that the baryon and meson masses will vanish when we
approach the chiral restoration point. The restoration of the chiral symmetry and
the degeneration of the baryon and meson masses are discussed in many papers
[29–31].

The concept of spontaneous chiral symmetry breaking is discussed in the
Nambu-Jona-Lasinio (NJL) model [32]. For a review of the NJL model, please
see [33]. A lattice QCD calculation shows that chiral symmetry is spontaneously
broken in vacuum [34].

To estimate the mechanism of spontaneously symmetry breaking, we show
several types of potentials in Fig. 2.1. There are three patterns: (a) a stable vacuum
at the origin, (b) a stable vacuum on the circle around the origin, and (c) a stable
vacuum, which is located on the x-axis.
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(a) V = x2 + y2 (b) V = (x2 + y2)2 − (x2 + y2)

(c) V = (x2+ y2)2− (x2+ y2)−0.2x

Figure 2.1: The mechanism of spontaneously symmetry breaking

For QCD, there are two types of signatures that indicate that chiral symmetry
is spontaneously broken: (i) 〈q̄q〉 6= 0 (sufficient but not necessary condition)
and (ii) fπ 6= 0 (sufficient and necessary condition). Here, fπ is the pion decay
constant, which is defined by

〈0|Aµa(0)|πb(p)〉 = −ipµfπδab . (2.30)

In the following sections, we will discuss the chiral-symmetry-breaking pat-
tern more explicitly.



Chapter 3

Effective Lagrangian for mesons in
the low energy region

3.1 Chiral perturbation theory
For a certain energy scale Λ, the heavy degrees of freedoms are integrated

out while the light degrees of freedoms remain. Below the scale of spontaneous
chiral symmetry breaking, ChPT is a powerful and well-accepted method [35–38].
ChPT is based on the fact that for energies below 1 GeV, the relevant degrees
of freedom of QCD are not the quarks and gluons, but the mesons. Because the
pion is the lightest pseudoscalar meson, it is treated as the dynamical field in the
ChPT approach. The meson fields that are heavier than the pion, e.g., the vector
and scalar mesons, are treated as external fields. In the following subsections, we
briefly introduce the concepts of ChPT following Refs. [35–41].

3.1.1 Lowest order effective Lagrangian
We start by constructing the lowest order effective Lagrangian for the lightest

meson state. We limit the number of quark flavors to Nf = 2, with the pion as the
corresponding NG boson. The pion field is written as

π =
3∑
i=1

φi
τi
2

=
1

2

(
π0

√
2π+

√
2π− −π0

)
, (3.1)

where π+ = 1√
2
(π1 − iπ2), π− = 1√

2
(π1 + iπ2), π0 = π3, and πi = Tr(τiπ).

To reproduce the chiral-symmetry-breaking pattern, we introduce

U = e
(i 2π
F0

)
, (3.2)

11
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where F0 is the pion decay constant, which will be explained latter. U expands as

U = 1 + i
2π

F0

− (2π)2

2F 2
0

+ . . . . (3.3)

Under a chiral transformation, U , ∂µU , U †, and ∂µU † transform as

U → gLUg
†
R , (3.4)

∂µU → ∂µ(gLUg
†
R) = gL∂µUg

†
R , (3.5)

U † → gRU
†g†L , (3.6)

∂µU
† → ∂µ(gRU

†g†L) = gR∂µU
†g†L . (3.7)

Therefore, at the lowest order in the derivatives, the general effective Lagrangian
that respects chiral symmetry reads

L ChPT
2 =

F 2
0

4
Tr(∂µU∂

µU †) . (3.8)

The covariant derivative of U is

DµU = ∂µU − iLµU + iURµ

= ∂µU − iLaµtaU + iURa
µt
a , (3.9)

where L andR are the external fields.
The covariant version of Eq. (3.8) reads

L ChPT
2 =

F 2
0

4
Tr(DµUD

µU †) . (3.10)

From Eq. (3.10), we obtain the corresponding left and right currents as

JµLa =
∂L ChPT

2

∂Laµ
= −iF

2
0

2
Tr(τaU∂µU †) , (3.11)

JµRa =
∂L ChPT

2

∂Ra
µ

= i
F 2

0

2
Tr(τa∂µU †U) . (3.12)

The vector and axial-vector currents are the combination of Eqs. (3.11) and
(3.12), which are expressed as

JµV a =
JµLa + JµRa

2
= −iF

2
0

4
Tr(τa[U, ∂µU †]) , (3.13)

JµAa =
−JµLa + JµRa

2
= i

F 2
0

4
Tr(τa{U, ∂µU †}) . (3.14)
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The lowest order of the axial-vector current is obtained by inserting Eq. (3.3)
into (3.14), i.e.,

JµAa = i
F 2

0

4
Tr(τa{1 + . . . ,−i∂

µπaτa

F0

+ . . .}) = F0∂
µπaτa + . . . . (3.15)

Evaluating the axial-vector current between the vacuum and the NG boson state,
we get that

〈0|JµAa(x)|πb(p)〉 = F0∂
µe−ip·xδab + . . . = −ipµF0δabe

−ip·x + . . . . (3.16)

Comparing (3.16) and (2.30), we identify F0 as the pion decay constant fπ.

3.1.2 Spontaneously symmetry breaking by the quark masses
As stated in Sec. 2.1, the chiral symmetry is broken when the quarks have

finite mass. In this subsection, we introduce the quark masses to the theory and
discuss the symmetry-breaking pattern.

Recall that the mass term in the QCD Lagrangian (2.9) could be expressed as

L QCD
mq = −ψ̄LMψR − ψ̄RM†ψL , (3.17)

whereM is the quark mass matrix. When Nf = 2,M is expressed as

M =

(
mu 0
0 md

)
. (3.18)

Under the chiral transform, ψL,R transform as ψL,R → gL,RψL,R. Therefore,
Lmq is chiral invariant only ifM transforms as

M→ gLMg†R . (3.19)

Thus, at the lowest order ofM, the Lagrangian that contains the quark mass
term is expressed as

L ChPT
SB = F 2

0

B

2
Tr(MU † + UM†) , (3.20)

which breaks chiral symmetry spontaneously.
In vacuum, the chiral symmetry is spontaneously broken as

SU(Nf )L × SU(Nf )R → SU(Nf )V . (3.21)

Inserting Eq. (3.3) into (3.20), we get the mass term of the NG bosons as

L ChPT
SB = F 2

0

B

2
Tr(MU † + UM†)
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Operator Chiral transformation Charge conjugation Parity
U gLUg

†
R UT U †

DµU gLDµUg
†
R (DµU)T (DµU)†

χ gLχg
†
R χT χ†

Lµ gLLµg†L + igL∂µg
†
L −RT

µ Rµ

Rµ gRRµg
†
R + igR∂µg

†
R −LTµ Lµ

FRµν gRFRµνg
†
R −F T

Lµν F µν
L

FLµν gLFLµνg
†
L −F T

Rµν F µν
R

Table 3.1: Transformation properties of the ChPT operators

= −B(mu +md)π
+π− − B

2
(mu +md)π

0π0 + . . . . (3.22)

By comparing Eq. (3.22) to the kinetic term (3.10) we obtain that

m2
π = 2Bm̂ , (3.23)

where mπ is the pion mass and m̂ = mu = md.
For convenience we introduce

χ = 2B(s+ ip) , (3.24)

where s and p are the scalar and pseudoscalar external fields, respectively. Ex-
cluding the pseudoscalar external fields, χ is determined as

χ = 2B

(
mu 0
0 md

)
= 2B

(
m̂ 0
0 m̂

)
= m2

π

(
1 0
0 1

)
, (3.25)

in vacuum.

3.1.3 General Lagrangian
From the previous subsections, 3.1.1 and 3.1.2, we observe that ChPT has two

kind of expansions: (i) in the small momenta and (ii) in the quark masses mq

around the chiral limit. The independent operators of chiral perturbation theory
are summarized in Table 3.1.

From Table 3.1, we can construct the general Lagrangian that is invariant un-
der chiral transformation, charge conjugation, and parity. The most general La-
grangian for O(p2) is

L ChPT
2 =

f 2
π

4
Tr(DµUD

µU †) +
f 2
π

4
Tr(χU † + χ†U) , (3.26)
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where fπ is the pion decay constant.
For O(p4), the general operators are

P0 = Tr(DµUDνU
†DµUDνU †) , (3.27)

P1 = (Tr(DµU
†DµU))2 , (3.28)

P2 = Tr(DµU
†DνU) Tr(DµU †DνU) , (3.29)

P3 = Tr(DµU
†DµUDνU

†DνU) , (3.30)
P4 = Tr(DµU

†DµU) Tr(χ†U + U †χ) , (3.31)
P5 = Tr(DµU

†DµU(χ†U + U †χ)) , (3.32)
P6 = (Tr(χ†U + χU †))2 , (3.33)
P7 = (Tr(χ†U − χU †))2 , (3.34)
P8 = Tr(χ†Uχ†U + χU †χU †) , (3.35)
P9 = −iTr(LµνDµUDνU †) , (3.36)
P10 = Tr(U †LµνURµν) , (3.37)
Q1 = Tr(LµνLµν +RµνRµν) , (3.38)
Q2 = Tr(χ†χ) . (3.39)

The previous O(p4) operators are dependent. For the Nf = 2 case, we have the
following relations

P1 = −P0 + P3 , (3.40)
P2 = P0 + P3 , (3.41)

P5 =
1

2
P4 . (3.42)

Therefore, limiting the number of flavors to Nf = 2 and excluding the external
source fields, the Lagrangian of ChPT up to O(p4) is written as

L ChPT
O(p2)+O(p4) =

f 2
π

4
Tr(DµUD

µU †)

+l1 Tr(DµUDνU
†DµUDνU †)

+l2 Tr(DµU
†DµUDνU

†DνU) . (3.43)

The full Lagrangian up to O(p4) is given in Refs. [35;36;42]. A review article for
the ChPT Lagrangian up to O(p6) is given in Ref. [43].

The intrinsic parity of the Lagrangian shown in (3.43) is even. In QCD, there
are some processes that break parity, leading to a Lagrangian with an odd intrin-
sic parity part, i.e., the Wess-Zumino-Witten (WZW) term, given in Refs. [44–46].
Following Ref. [47], the WZW term is expressed as

ΓWZW = C

∫
M5

tr (α5)− 5Ci

∫
M4

tr
[
Lα3 +Rβ3

]
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− 5C

∫
M4

tr [(dLL+ LdL)α + (dRR+RdR) β]

− 5Ci

∫
M4

tr
[
dLdURU−1 − dRdU−1LU

]
+ 5Ci

∫
M4

tr
[
RU−1LUβ2 − LURU−1α2

]
+

5

2
Ci

∫
M4

tr
[
(Lα)2 − (Rβ)2] + 5Ci

∫
M4

tr
[
L3α +R3β

]
+ 5C

∫
M4

tr
[
(dRR+RdR)U−1LU − (dLL+ LdL)URU−1

]
− 5Ci

∫
M4

tr
[
R3U−1LU − L3URU−1 +

1

2

(
URU−1L

)2
]

+ 5Ci

∫
M4

tr
[
LURU−1Lα +RU−1LURβ

]
, (3.44)

where

C =
Nc

240π2
, L ≡ Lµdxµ , R ≡ Rµdx

µ ,

α ≡ 1

i
(∂µU)U−1dxµ , β ≡ U−1αU . (3.45)

3.2 Hidden local symmetry
In addition to the pion, the vector meson degrees of freedom are also included

in the theory to compare with low energy experiment [48]. In this section, we first
discuss HLS and then briefly review the procedure of how to construct the effec-
tive Lagrangian within the framework of HLS. Finally, we show that ChPT and
HLS have close connections, i.e., if we integrate out the vector meson contribu-
tion, we get the corresponding ChPT Lagrangian.

3.2.1 Gglobal ×Hlocal symmetry
In this subsection, we briefly review HLS, following [47;49–51].
Instead of U , the basic quantities needed to reproduce the Gglobal × Hlocal

symmetry are ξL and ξR, where

U = ξ†LξR . (3.46)

Under the Gglobal ×Hlocal symmetry, ξL,R transform as

ξL,R(x)→ h(x)ξL,R(x)g†L,R , (3.47)
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where

h(x) ∈ Hlocal , gL,R ∈ Gglobal . (3.48)

Generally, ξL,R are parameterized as

ξL,R = eiP/fPe∓iπ/fπ , (3.49)

where π represents the NG bosons of the G chiral symmetry, P the NG bosons of
theH hidden gauge, and fπ and fP are the relevant decay constants. In the unitary
gauge, i.e., P ≡ 0, ξL,R are written as

ξ†L = ξR = ξ = eiπ/fπ . (3.50)

The covariant derivatives of ξL,R are

DµξL = ∂µξL − iVµξL + iξLLµ , (3.51)
DµξR = ∂µξR − iVµξR + iξRRµ , (3.52)

where Vµ is the NG boson for the H hidden gauge, whereas L andR are external
fields.

For the Nf = 2 case, Vµ is expressed as

Vµ =
g

2

(
ωµ + ρ0

µ

√
2ρ+

µ√
2ρ−µ ωµ − ρ0

µ

)
. (3.53)

Instead of ξL,R, it is convenient to define the Maurer-Cartan 1-forms as

α̂⊥µ = (DµξRξ
†
R −DµξLξ

†
L)/(2i) ,

α̂‖µ = (DµξRξ
†
R +DµξLξ

†
L)/(2i) . (3.54)

In HLS, the adjoint representation of χ is expressed as

χ̂ = ξLχξ
†
R . (3.55)

The HLS gauge boson and external field are defined as

Vµν = ∂µVν − ∂νVµ − i[Vµ, Vν ] ,

V̂µν =
1

2
(ξRRµνξ

†
R + ξLLµνξ†L) ,

Âµν =
1

2
(ξRRµνξ

†
R − ξLLµνξ

†
L) . (3.56)

The operators for HLS under charge conjugation, parity, and gauge transform
are summarized in Table 3.2.
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Operator G×H Charge conjugation Parity
α̂⊥µ h(x)α̂⊥µh(x)† α̂T⊥µ −α̂µ⊥
α̂‖µ h(x)α̂‖µh(x)† −α̂T‖µ α̂µ‖
χ̂ h(x)χ̂h(x)† χ̂T χ̂†

Vµν h(x)Vµνh(x)† −V T
µν V µν

V̂µν h(x)V̂µνh(x)† −V̂Tµν V̂µν
Âµν h(x)Âµνh(x)† ÂTµν −Âµν

Table 3.2: Transformation properties of HLS operators

3.2.2 General Lagrangian
Using the operators listed in Table 3.2, we construct the lowest order HLS

Lagrangian up to O(p2) as

L HLS
2 = f 2

π Tr(α̂⊥µα̂
µ
⊥) + ahlsf

2
π Tr(α̂‖µα̂

µ
‖ )

− 1

2g2
Tr(VµνV

µν) +
1

4
f 2
χ Tr(χ̂+ χ̂†) , (3.57)

where ahls is a real dimensionless parameter, g the gauge coupling constant of the
HLS, and fχ = fπ at tree level.

For even intrinsic parity parts, the order O(p4) HLS Lagrangian is given in
Refs. [47;52]. The odd intrinsic parity terms of the Lagrangian Lanom are related to
the U(2)L × U(2)R chiral anomaly, which is given as [47;53;54]

∫
d4xLanom = ΓWZW +

Nc

16π2

∫
M4

3∑
i=1

ciLi , (3.58)

where ΓWZW is given in Eq. (3.44),M4 represents the four-dimensional Minkowski
space, and

L1 = iεµνσρ Tr (αLµαLναLσαRρ − αRµαRναRσαLρ) ,
L2 = iεµνσρ Tr (αLµαRναLσαRρ) ,

L3 = εµνσρ Tr [FV µν (αLσαRρ − αRσαLρ)] ,

L4 = εµνσρ Tr
[
(F̂Lµν + F̂Rµν) (αLσαRρ − αRσαLρ)

]
, (3.59)

in terms of the 1-form and 2-form notation. Here, αL = α̂‖− α̂⊥, αR = α̂‖ + α̂⊥,
FV = dV − iV 2, F̂L,R = ξL,RFL,Rξ

†
L,R , FL = dL − iL2, and FR = dR− iR2.
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3.2.3 Relations between HLS and ChPT
Previously, we discussed the general formula of the HLS and ChPT Lagrangians.

These two types of Lagrangians are closely related if we integrate out the vector
meson contribution. This will be shown in this subsection.

Note that α̂⊥µ and Vµν can be rewritten as

α̂⊥µ = − i
2
ξLDµUξ

†
R , (3.60)

and

Vµν = V̂µν + i[α̂⊥µ, α̂‖ν ] +
1

m2
ρ

O(p4)

= ξL(
1

2
URµν +

1

2
Lµν +

i

4
DµUDνU

† − i

4
DνUDµU

†)ξ†L

+
1

m2
ρ

O(p4) . (3.61)

Insert Eqs. (3.60) and (3.61) into Eq. (3.57). For the Nf = 2 case, we get that

f 2
π Tr(α̂⊥µα̂

µ
⊥) =

f 2
π

4
Tr(DµU

†DµU) , (3.62)

ahlsf
2
π Tr(α̂‖µα̂

µ
‖ ) = O(p6) , (3.63)

− 1

2g2
Tr(VµνV

µν) =
1

16g2
Tr(DµUDνU

†DµUDνU †)

− 1

16g2
Tr(DµU

†DµUDνU
†DνU)

−i 1

4g2
Tr(LµνDµUDνU † +RµνD

µU †DνU)

− 1

4g2
Tr(LµνURµνU †)

− 1

8g2
Tr(LµνLµν +RµνRµν) , (3.64)

1

4
f 2
χ Tr(χ̂+ χ̂†) =

f 2
π

4
Tr(χU † + χ†U) . (3.65)

By comparing the Lagrangians of HLS (O(p2)) and ChPT (O(p4)), we conclude
that they are consistent with each other when we integrate out the vector meson
contributions.



Chapter 4

Skyrme model

In this chapter, we consider the baryon as the soliton solution of mesonic mod-
els.

The original idea was proposed by Skyrme in 1962, and it has since been ex-
tended widely in several studies. The original idea was to identify the topological
solution of the nonlinear sigma model with the baryon. In the beginning the La-
grangian is a particular choice from ChPT up to O(p4). To construct a realistic
way to reproduce the meson and baryon properties, the ρ and ω mesons are intro-
duced within the framework of HLS to build the baryon state.

However, the appearance of the ω meson generates a strong repulsive force,
which raises the lightest baryon mass by approximately 50%. Introducing a dilaton-
type scalar meson shows that the attractive force made from the scalar meson
drops the baryon mass.

In this chapter, we review baryon properties in the skyrmion model. In Sec. 4.3,
based on our study in Ref. [55], we discuss the baryon properties with scalar mesons.

4.1 Skyrme model with the pion
The original skyrmion model only contains the pion degrees of freedom, con-

structed within the framework of ChPT. We start the discussion from ChPT and
then consider the baryon properties for a single skyrmion.

4.1.1 The model
In 1962, Skyrme proposed a way to construct the baryon as the soliton of the

pion [12].

20
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The action of the model is written as

Γ =

∫
d4xL + ΓWZW , (4.1)

where ΓWZW ≡
∫
d4xLWZW is the WZW term (3.44), and the Lagrangian L is

a particular choice of the ChPT Lagrangian (3.43), as

L =
f 2
π

16
Tr(DµU

†DµU) +
1

32g2
sky

Tr([U †DµU,U
†DνU ]2) . (4.2)

Here gsky is a dimensionless coupling constant.
The baryon number current of the model is obtained by a functional derivative

of the WZW term with VBµ, i.e.,

jµB =
∂LWZW

∂(VBµ)
|VBµ→0 , (4.3)

where VBµ is the external gauge field of the U(1)V baryon number.
To perform the calculation, Skyrme proposed the hedgehog ansatz to correlate

the spin and isospin as

U = eiτ ·r̂F (r) . (4.4)

The demonstration of the hedgehog ansatz is shown in Fig. 4.1.
The baryon number NB is obtained as

NB =

∫
d3xj0

B

=

∫
dr

(
−4πr2F

′ sin2(F )

2π2r2

)
=

sin(F (r)) cos(F (r))− F (r)

π

∣∣∣F (∞)=0

F (0)=nπ

= n , (4.5)

where the boundary conditions F (∞) = 0 and F (0) = nπ are imposed. In the
following discussions, we consider the single baryon state with n = 1.

Inserting the ansatz equation (4.4) in the Lagrangian (4.2) and after performing
the scale transformation r → asky

gskyfπ
r, we get the static mass for the skyrmion as

Msol =

∫
dr
πfπ

(
r2
(
F ′2
(
r2a2

sky + 8 sin2 F
)

+ 2a2
sky sin2 F

)
+ 4 sin4 F

)
2r2askygsky

.(4.6)
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Figure 4.1: Hedgehog ansatz

The equation of motion for F (r) is

F ′′ =
r2
(
a2

sky (sin(2F )− 2rF ′)− 4F ′2 sin(2F )
)

+ 8 sin3(F ) cos(F )

r4a2
sky + 8r2 sin2(F )

. (4.7)

The equation of motion shown in (4.7) is very complicated, but we can get the
solution of F (r) numerically. It is shown in Fig. 4.2.

The baryon mass (4.6) depends on the parameter gsky. Therefore we adjust the
skyrmion mass by controlling the parameter gsky.

4.1.2 Quantize the skyrmion
The original Skyrme model only contains the baryon number NB. However,

the physical baryon state preserves spin and isospin. To introduce the spin and
isospin states, Adkins-Nappi-Witten proposed a systematic way to quantize the
skyrmion [56]. We review the properties of the quantized skyrmion by following
Ref. [56].
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Figure 4.2: Profile function for F (r)

The starting point is to introduce the time dependent rotation of U as

U = A(t)ŨA(t)† = Ũ(R(t)−1r) , (4.8)

where A(t) and R(t) are SU(2) and SO(3) matrices, respectively. The isospin
rotation T and spin rotation Ω are

A−1Ȧ =
i

2
Taτa , (R−1Ṙ)ij = εijkΩk . (4.9)

For the present purpose, and because spin and isospin are related to each other,
Ω and T are dependent. For convenience, here we choose to consider only the T
rotation for convenience.

Inserting (4.8) into (4.2) we get that∫
d3rL = −Msol +

1

2
Λ
(
T 2

1 + T 2
2 + T 2

3

)
, (4.10)

where

Λ =

∫
dr

2πasky sin2(F )
(
a2

skyr
2 + 4r2F ′2 − 2 cos(2F ) + 2

)
3g3

skyfπ
. (4.11)

The isospin and spin angular moment are obtained as

Ii = Ji =
∂L

∂Ti
= ΛiTi . (4.12)

Thus, the Hamiltonian up to O(N−1
c ) can be expressed as

H = Msol +
I2

1 + I2
2 + I2

3

2Λ
. (4.13)
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The isospin and spin operators are expressed as

Ik =
i

2
(a0

∂

∂ak
− ak

∂

∂a0

− εklmal
∂

∂am
) , (4.14)

Jk =
i

2
(ak

∂

∂a0

− a0
∂

∂ak
− εklmal

∂

∂am
) , (4.15)

where k ∈ (1, 2, 3), a0 = 1
2

Tr(A(t)), and ak = 1
2

Tr(A(t)τk).
The normalized wave functions for some physical baryon states are given by

|p ↑〉 =
1

π
(a1 + ia2) , |p ↓〉 = − i

π
(a0 − ia3) , (4.16)

|n ↑〉 =
i

π
(a0 + ia3) , |n ↓〉 = − 1

π
(a1 − ia2) , (4.17)

|∆++, sz =
3

2
〉 =

√
2

π
(a1 + ia2)3 , (4.18)

|∆+, sz =
1

2
〉 = −

√
2

π
(a1 + ia2)(1− 3(a2

0 + a2
3)). (4.19)

The mass of the skyrmion for a given state is obtained as

〈X|H|X〉 = Msol +
1

2Λ
I(I + 1) , (4.20)

whereX represent the physical baryon state and I the corresponding isospin quan-
tum number.

For the nucleon and delta, the isospins are I = 1
2

and I = 3
2
, respectively.

Thus, the masses of the nucleon and delta are obtained as

mN = Msol +
1

2Λ

3

4
, (4.21)

m∆ = Msol +
1

2Λ

15

4
. (4.22)

Treating the masses of the nucleon and delta as inputs, we determine the parameter
set: fπ = 127MeV, asky = 1, and gsky = 5.34. The inputs and predictions of the
quantized skyrmion are summarized in Table 4.1. From Table 4.1, we observe
that the prediction of the baryon properties are consistent with experiment results
within 1/Nc ∼ 30%.

4.2 Skyrme model with π, ρ, and ω mesons
In the last section, we briefly reviewed the original skyrmion, which only con-

tains pion fields. In addition to the pion, the vector meson are also introduced to
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Quantity Prediction Experiment
mN input 939 MeV
m∆ input 1232 MeV
fπ 127 MeV 92.4 MeV
〈r2〉1/2I=0 0.59 fm 0.72 fm
〈r2〉1/2M,I=0 0.92 fm 0.81 fm

Table 4.1: Inputs and predictions of the quantized skyrmion

construct the skyrmion model [14–17;57]. As shown in subsection 3.2.3, vector me-
son exchange plays a role similar to that of theO(p4) Lagrangian in the skyrmion
model (4.2). The benefit of including the vector meson is that, instead of the model
parameter gsky, we can determine the parameters from the low energy constant of
HLS.

4.2.1 The model
Following Refs. [14–17], we start constructing the Skyrme model in the frame-

work of HLS.
The action of the model is written as

Γ =

∫
d4xL +

∫
d4xLanom , (4.23)

where
∫
d4xLanom is the anomaly term given in Eq. (3.58). Here, the Lagrangian

L is the HLS Lagrangian (3.57), which reads

L = f 2
π Tr(α̂⊥µα̂

µ
⊥) + ahlsf

2
π Tr(α̂‖µα̂

µ
‖ )

− 1

2g2
Tr(VµνV

µν)− (VSB − V̄SB) , (4.24)

where

VSB = −1

4
f 2
π Tr(χ̂+ χ̂†)

= −1

4
f 2
πm

2
π Tr(U + U †) . (4.25)

Here, V̄SB is the vacuum state of VSB, which is expressed as

V̄SB = −1

4
f 2
πm

2
π Tr(1 + 1) . (4.26)
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To study the properties of the skyrmion obtained from the Lagrangian (4.24),
we take the standard parameterizations for soliton configurations. Following Refs. [12;58],
we take the ansatz for the π, ρ, and ω fields:

U = eiτ ·r̂F (r) , (4.27a)

ρ =
G(r)

gr
(r̂ × τ ) , (4.27b)

ωµ = W (r)δµ0 . (4.27c)

For the solutions with the baryon number NB = n, the wave functions F (r),
G(r), and W (r) satisfy the following boundary conditions:

F (0) = nπ, F (∞) = 0,

G(0) = − 1 + (−1)n, G(∞) = 0,

W ′(0) = 0, W (∞) = 0. (4.28)

In this study, we consider only the NB = 1 case, with n = 1.

4.2.2 Collective quantization of the skyrmion
By rotating the K = I + J spin of the skyrmion, we get the corresponding

masses of mN and m∆.
Following Ref. [58], we introduce the collective quantization as

U(r, t) = A(t)U(r)A†(t) , (4.29)

~τ · ~ρ0(r, t) =
1

g
A(t)~τ · [~Tξ1(r) + r̂ ~T · r̂ξ2(r)]A†(t) , (4.30)

~ω(r, t) =
1

2

ξ3(r)

r
~T × r̂ , (4.31)

~τ · ~ρi(r, t) = A(t)~τ · ~ρiA†(t) , (4.32)

where
A−1Ȧ =

i

2
Taτa . (4.33)

Performing a procedure similar to that in Sec. 4.1.2, we quantize the skyrmion.
Following Ref. [58], we summarize the baryon properties of the model in Table 4.2.

From Table 4.2, we observe that the skyrmion mass mN obtained from the
model is approximately 50% heavier than the experimental observation. This im-
plies that only considering the dynamics of the pion, rho, and omega mesons is
not enough to reproduce the physical baryon properties.
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Quantity Prediction Experiment
mN 1575 MeV 939 MeV
m∆ −mN 437 MeV 293 MeV
fπ input 92.4 MeV
g 5.85 (input) 5.80± 0.91
ahls 2 (input) 2.07± 0.33

〈r2〉1/2E,p 0.98 fm 0.86± 0.01 fm
〈r2〉1/2E,n −0.25 fm −0.119± 0.004 fm
〈r2〉1/2M,p 0.94 fm 0.86± 0.06 fm
〈r2〉1/2M,n 0.93 fm 0.88± 0.07 fm

Table 4.2: Inputs and predictions of the collective quantized skyrmion when ahls =
2

4.3 Skyrme model with light scalar mesons
From the previous section, we observe that the skyrmion mass obtained from

the model that contains the pion, rho, and omega mesons is approximately 50%
heavier than the mass of the lightest baryon [17;58]. Later on, it was observed that
the attractive effect of the dilaton scalar drops the skyrmion mass by approxi-
mately 100 MeV [20]. In this section, we study the effects of light scalar mesons
on the skyrmion following Ref. [55].

4.3.1 The model
Instead of the dilaton [20], we study the scalar meson within the framework of

the quark model [27]. In the Nf = 2 case, the two-quark state has 4 scalar (σ,
~a0) and 4 pseudoscalar (~π, η) states. The four-quark state has 1 scalar φ and 1
pseudoscalar η0 state. For the present purpose, we only consider σ, ~π, and φ.

We start by constructing a chiral effective model that includes two- and four-
quark scalar states. In the Nf = 2 case, we write the two-quark field M(2) at the
quark level as (

M(2)

)j
i
∼ q̄R i qL j . (4.34)

Here i, j are the flavor indices with i, j ∈ (1, 2).
At the hadron level, Eq. (4.34) is rewritten as

M(2) =
1

2
(σ + i~π · ~τ) , (4.35)

where ~τ is the Pauli matrices, σ is the isosinglet scalar field and π the isotriplet
pseudoscalar fields.
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The chiral transformation of the matrix M(2) is

M(2) → gLM(2)g
†
R , (4.36)

where gL,R ∈ SU(2)L,R.
At the quark level, the four-quark field is written as

φ ∼ q̄Liq̄Ljε
ij qkRq

l
Rεkl . (4.37)

The two- and four-quark states are separated using theZ2 symmetry, a remnant
of the U(1)A transformation. Under the Z2 symmetry, qL and qR transforms as

qL → −qL , (4.38)
qR → qR , (4.39)

respectively. Therefore, the hadron field M(2) and φ transform as

M(2) → −M(2) . (4.40)
φ → φ . (4.41)

Combining the chiral and Z2 symmetries, we construct the Lagrangian

L = Tr
(
∂µM(2)∂

µM †
(2)

)
+

1

2
∂µφ∂

µφ

−
(
V0 − V̄0

)
−
(
VSB − V̄SB

)
, (4.42)

where V0 represents the potential term of the scalar mesons and VSB is the explicit
chiral symmetry breaking term. In vacuum, the potentials V0 and VSB sponta-
neously breaks. As a result, they have VEVs of V̄0 and V̄SB, respectively.

In the present analysis, following Ref. [27], we impose some limitations on the
potential V0 and VSB: (i) no derivative interactions appears, (ii) the number of
fields included in each vertex is less than or equal to four, and (iii) the number of
quarks appearing in each vertex is less than or equal to eight. Thus, the potential
take the form

V0 = λTr
(
M(2)M

†
(2)M(2)M

†
(2)

)
−m2

2 Tr
(
M(2)M

†
(2)

)
+

1

2
m2

4φ
2

+
√

2A
(

det
(
M(2)

)
+ det

(
M †

(2)

))
φ , (4.43)

where λ, m2, m4, and A are model parameters. For the explicit chiral symmetry
breaking potential VSB, recall that in the HLS case we have the formula given by
Eq. (4.25). For the present purpose, we adopt the potential VSB in the simplest
form as

VSB = − 1

2
fπ Tr

(
χM †

(2) + χ†M(2)

)
, (4.44)
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where χ = 2BM, B a constant with dimension one, and M the quark mass
matrix. In the present analysis, we also impose isospin symmetry to simplify the
problem. Thus, we have M = diag(m̄ , m̄), where m̄ = (mu + md)/2. The
parameter B is determined from Eq. (3.23), so VSB is expressed as

VSB = − 1

2
fπm

2
π Tr

(
M †

(2) +M(2)

)
. (4.45)

In this thesis, we also include the rho and omega mesons within the framework
of HLS [47;51]. For the present purpose, we take the polar decomposition of M(2)

as M(2) = 1
2
ξ†LσξR, where ξL and ξR are given in Eq. (3.49). Here, we consider

the unitary gauge of HLS, where ξL and ξR are expressed by the pion fields based
on Eq. (3.50).

Then, the Lagrangian (4.42) is rewritten as

L =
1

2
∂µσ∂

µσ + σ2 Tr (α̂⊥µα̂
µ
⊥) +

1

2
∂µφ∂

µφ

−
(
V0 − V̄0

)
−
(
VSB − V̄SB

)
+ LV , (4.46)

where α̂⊥µ is given in Eq. (3.54) and the newly introduced term LV represents the
Lagrangian for the vector meson component, which will be given explicitly later.
The potentials V0 and VSB are rewritten as

V0 =
1

8
λσ4 − 1

2
m2

2σ
2 +

1

2
m2

4φ
2 +

1√
2
Aσ2φ,

VSB = − 1

4
m2
πfπσTr

(
U + U †

)
, (4.47)

where U is given in Eq. (3.2).
The potential V0 and V = V0 + VSB are similar to the patterns (ii) and (iii),

respectively, and are shown in Fig. 2.1. Therefore, the potential V is broken spon-
taneously. The stationary conditions of the system are obtained by taking the first
derivative of the potential V with respect to σ and φ:

∂V

∂σ
=

1

2
λσ3 −m2

2σ +
√

2Aσφ−m2
πfπ , (4.48)

∂V

∂φ
= m2

4φ+
1√
2
Aσ2 . (4.49)

From Eq. (4.48), we observe that, after a suitable choice of the model param-
eters λ, m2, m4, and mπ, σ obtains a VEV σvac. When A is a nonzero value, φ
interacts with σ. From Eq. (4.49), we observe that φ acquires a VEV φvac.

The physical scalar meson fields are the fluctuations around the VEVs. Then
we have the relation that

σ = fπ + σ̃ , (4.50)
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φ = φvac + φ̃ , (4.51)

where φvac = − Af2π√
2m2

4

, which is shown in Eq. (A.4).
The mass matrices for σ and φ are obtained by taking the second-order deriva-

tive of the corresponding fields, i.e.,(
m2
σ m2

σφ

m2
φσ m2

φ

)
=

(
λf 2

π +m2
π

√
2Afπ√

2Afπ m2
4

)
. (4.52)

The two- and four-quark states σ and φ are related to the physical states f500 and
f1370 through the rotation(

f500

f1370

)
=

(
cos θ − sin θ
sin θ cos θ

)(
σ̃

φ̃

)
, (4.53)

where θ is the mixing angle. Some relations among the parameters and the phys-
ical quantities are shown in Appendix A. From Eq. (4.53), one can observe that:
(i) when cos θ → 0, the physical state f500 is almost a four-quark state and f1370 is
almost a two-quark state and (ii) when cos θ → 1, f500 is dominantly a two-quark
state, but f1370 is dominantly a four-quark state.

Next, we describe the vector meson components of the Lagrangian. We use
the following form:

LV = LV0 + Lanom , (4.54)

where LV0 is the Lagrangian with even intrinsic parity terms, whereas Lanom is the
Lagrangian with odd intrinsic parity terms, given in (3.58).

Explicitly, the even intrinsic parity Lagrangian LV0 is expressed as

LV0 = ahls(s0σ
2 + (1− s0)F 2) Tr(α̂‖µα̂

µ
‖ )

− 1

2g2
Tr(VµνV

µν) , (4.55)

where α̂µ‖ and Vµν are defined as (3.54) and (3.56), respectively. Here s0 is a real
dimensionless parameter, and F is a constant of dimension one.

When we take VEV of σ as σvac = fπ, the mass term for the vector meson is
expressed as

m2
V = ahlsg

2(s0f
2
π + (1− s0)F 2) . (4.56)

Equation (4.56) has two parts, the first part, ahlsg
2s0f

2
π , represents the vector me-

son mass obtained by spontaneous chiral symmetry breaking, whereas the sec-
ond part, ahlsg

2(1 − s0)F 2, represents the chiral invariant mass. In this sense, s0

represents the magnitude of the vector meson mass related to spontaneous chiral
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symmetry breaking. In this thesis, we take F = fπ. Therefore, the vector meson
mass is written as

m2
V = ahlsg

2f 2
π , (4.57)

which is consistent with the standard form of the vector meson mass given in
HLS [47;51]. Note that we already have imposed the Z2 symmetry. Therefore, the
term linear in the σ field is excluded in LV0 . Additionally, s0 can be both positive
and negative in the present analysis.

The low energy constants c1, c2, and c3 in the anomaly term (3.58) are usually
estimated from the experimental data [47]. In this section, the focus is on the effect
of light scalar mesons on skyrmion properties. Therefore, we choose the set of
parameters c1 = − c2 = − 2/3 and c3 = 0, which provides ωµBµ [58].

4.3.2 The ansatz
In the Skyrme approach, we need to specify the spin and isospin indices. The

ansatz for the pion, rho, and omega mesons is given in Eq. (4.27).
In the present analysis, we have two scalar meson fields σ and φ, which do

not contain spin and isospin indices but hold VEVs. Therefore, we parameterize
σ and φ as

σ = fπ (1 + σ̄(r)) , (4.58a)
φ = φvac

(
1 + φ̄(r)

)
, (4.58b)

where σ̄(r) and φ̄(r) are dimensionless functions.
Substituting Eqs. (4.27) and (4.58) into the Lagrangian (4.46), the equations

of motion for the profile functions F (r), G(r), W (r), σ̄(r), and φ̄(r) are obtained.
Detailed expressions are given in Appendix B.

The boundary conditions for the pion, rho, and omega mesons are given in
(4.28). The boundary conditions for the scalar mesons are determined as follows:
(i) when r →∞, both σ̄(r) and φ̄(r) must vanish to reproduce VEVs of the scalar
meson fields, i.e.,

σ̄(∞) = 0 , φ̄(∞) = 0 (4.59)

and (ii) when r → 0, the second-order derivatives σ̄′′ and φ̄′′ should be nonsingu-
lar. The last term in each of Eqs. (B.6) and (B.7) show that

σ̄′(0) = 0 , φ̄′(0) = 0 . (4.60)

By taking a functional derivative of the total Lagrangian (4.46) with respect to
Vµ, we obtain the baryon number current. Here, Vµ represents the U(1) external
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gauge field corresponding to the baryon number. After an explicit calculation, we
obtain the time component of the baryon number density j0 as

j0 = − 2

3gr2

{
f 2
πg

2r2ahlsW
[
s0σ̄

2 + 2s0σ̄ + 1
]

+ F ′
[
α2 − 2G (−α2 + α3 + α2 cosF ) + α2 cos2 F

− 2α2 cosF + (α2 − α3)G2
]

− 2α3 sinFG′ + α1 sin2 FF ′
}
− sin2 F

2π2r2
F ′ , (4.61)

where α1, α2, and α3 are combinations of c1, c2, and c3 given in Eq. (B.2). The
baryon number density could be simplified using the equation of motion for W in
Eq. (B.5)

j0 =
1

r2

d

dr

(
4α3 sinF (cosF −G− 1)

3g
− 2r2W ′

3g
+

sin(2F )

8π2
− F

4π2

)
, (4.62)

which is consistent with that obtained in Ref. [59]. Note that by combining the
baryon number current (4.62) and the boundary condition (4.28), NB is obtained
as

NB =

∫ ∞
0

d3rj0(r)

= 4π

(
4α3 sinF (cosF −G− 1)

3g
− 2r2W ′

3g
+

sin(2F )

8π2
− F

4π2

) ∣∣∣r→∞
r→0

= 1 . (4.63)

This shows that the baryon number is correctly normalized to one.
In this analysis, the baryon current could be simplified by inserting c1+c2 = 0,

c1 − c2 = 3/4, and c3 = 0 into Eq. (4.61):

j0 = − 2

3gr2
f 2
πg

2r2ahlsW
[
s0σ̄

2 + 2s0σ̄ + 1
]
. (4.64)

In this study, we also investigate the root-mean-square (RMS) radii of the
baryon number (〈r2〉1/2B ) and energy (〈r2〉1/2E ) densities, which are defined as

〈r2〉1/2B =

√∫ ∞
0

d3rr2j0(r) ,

〈r2〉1/2E =

√
1

Msol

∫ ∞
0

d3rr2Msol(r) , (4.65)
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Quantity Values
fπ 92.4 MeV
mπ 139.57 MeV
Nc 3
c1 + c2 0
c1 − c2 − 4/3
c3 0
g 5.80± 0.91
ahls 2.07± 0.33

Table 4.3: Parameters of the model

where Msol and Msol(r) are the skyrmion mass and the corresponding energy
density, respectively. They are given in Eq. (B.1).

In this study, the parameters are determined from low energy experiments. In
Table 4.3, we summarize the parameters of the model.

4.3.3 Effects of scalar mesons when A = 0

In this subsection, we study the effects of scalar mesons on skyrmion proper-
ties when A = 0. From Eq. (4.47), we observe that when A = 0, φ only has a
trivial solution. Therefore, the scalar meson is a pure two-quark state. In this case,
the Lagrangian (4.46) is reduced to

L =
1

2
∂µσ∂

µσ + σ2 Tr(α⊥µα
µ
⊥)

− (Vσ − V̄σ)− (VSB − V̄SB) + LV , (4.66)

where Vσ = 1
8
λσ4− 1

2
m2

2σ
2. The parameters λ and m2

2 determine the masses of σ
and π through

m2
σ = −m2

2 +
3

2
λf 2

π ,

m2
π = −m2

2 +
1

2
λf 2

π . (4.67)

Here, mσ denotes the scalar meson mass. In the following discussions, we treat
mσ and s0 as free parameters of the model and study the effect of these two pa-
rameters on skyrmion properties.

Effects of the parameter mσ on skyrmion properties

To study the effects of the parameter mσ, we keep s0 constant, s0 = 0. In this
case, the vector meson part is the standard HLS Lagrangian (3.57). We plot the
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mσ dependence of the skyrmion mass and radii in Fig. 4.3.
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Figure 4.3: mσ dependence of the skyrmion mass and radii with A = s0 = 0
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Figure 4.4: mσ dependence of the profile functions with A = s0 = 0 for mσ =
1 GeV (green curve) and mσ = 1.4 GeV (red dash-dotted line)

In Fig. 4.3 we show the mσ dependence of the skyrmion mass msol and the
RMS radii

√
〈r2〉B and

√
〈r2〉E . In Fig. 4.4 we show the profile functions for

several values of mσ.
As shown in Fig. 4.3, when the magnitude ofmσ increases, the skyrmion mass

msol increases. This tendency can be understood from the profile function of σ̄ in
Fig. 4.4: when the scalar meson mass mσ is heavy, the magnitude of σ̄ decreases.
Because σ̄ < 0 as mσ increases, the magnitude of σ = fπ(1 + σ̄) becomes large.
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Consequently, the contribution of σ2 Tr(α⊥µα
µ
⊥) to the skyrmion mass (4.46) be-

comes large. The physical explanation is that when the scalar meson mass mσ is
larger, the attractive force produced by the scalar meson is suppressed. Therefore,
the skyrmion mass is larger.

In addition, from Fig. 4.3, we observe that when mσ is large, the RMS radii√
〈r2〉E and

√
〈r2〉B are both small. This tendency can be understood from the

profile functions in Fig. 4.4. When mσ becomes heavy, the profile for σ̄ becomes
narrow. Physically, the scalar meson σ provides an attractive force, whereas the
vector meson ω provides a repulsive force. When σ becomes narrow, the corre-
sponding ω needs to be narrow to maintain the balance between the attractive and
repulsive forces. From the expression for the skyrmion mass, (B.1), we observe
that the shape of energy distribution is dominated by the shape of the σ and ω.
Thus, the narrow σ and ω correspond to a small RMS radius

√
〈r2〉E .

Next, we investigate the radius of baryon number density
√
〈r2〉B. From

Eq. (4.64), we observe that when s0 = 0, the profile of the baryon number den-
sity is proportional to the profile of the omega meson W . Therefore, a narrow W
corresponds to a small radius

√
〈r2〉B. Physically speaking, when mσ is large,

the effective ranges of the attractive and repulsive forces provide by σ and ω,
respectively, are suppressed. As a result, the skyrmion size

√
〈r2〉B is small.

Effects of the parameter s0 on skyrmion properties

From Eq. (4.56), we observe that the chiral invariant vector meson mass is
controlled by the parameter s0. Here, we investigate the effects of s0 on skyrmion
properties by keeping the scalar meson mass at a typical value mσ = 1.37 GeV.
We plot the s0 dependence of the skyrmion mass and radii in Fig. 4.5.

From Fig. 4.5, we observe that a high value of s0 corresponds to a heavy
msol and a broad

√
〈r2〉B. As shown in Eq. (4.56), ahlsg

2
ω (f 2

π(1− s0) + s0σ
2(r))

plays the role of the effective vector mesons mass inside the soliton. From the
profile functions shown in Fig. 4.6, we observe that −1 < σ̄(r) ≤ 0, therefore
σ(r) ≤ fπ. As a result, the effective vector meson mass is smaller than the value
of the vector meson mass mω =

√
ahlsgωfπ in vacuum. This causes two effects:

(i) For a large s0, the effective strength of the repulsive force supplied by the ω
meson is strong. In the present analysis, the soliton energy is dominated by the
vector mesons, therefore a large s0 corresponds to a large skyrmion mass. (ii)
For a large s0, the effective range of the repulsive force generated by ω is long.
Because the ω meson is the gauge boson of the U(1)V baryon number symmetry, a
large s0 causes the RMS radius of the baryon number density

√
〈r2〉B to be large.

There is an alternative explanation for the relation between s0 and
√
〈r2〉B. As

shown in Eq. (4.64), the baryon number density is determined from both ω and
σ. When s0 is large, the magnitude of the ω profile function is broad to maintain
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Figure 4.5: s0 dependence of the skyrmion mass and radii for mσ = 1.37 GeV

the conservation of baryon number (4.63). Consequently, the RMS radius of the
baryon number density

√
〈r2〉B is large.

Next we investigate the s0 dependence of the RMS radius of the energy density√
〈r2〉E . The numerical error for the present analysis is approximately 1-3%; thus,

from the third graph in Fig. 4.6 we conclude that the RMS radius
√
〈r2〉E is not

sensitive to the changes in s0. This result implies that the contributions of ω and
σ cancel each other.

4.3.4 Effects of scalar mesons when A 6= 0

In this subsection, we investigate the scalar meson mixing effect on skyrmion
properties when A 6= 0. For the present purpose, we fixed two values of s0, i.e.,
s0 = 0 and s0 = − 0.5, and treat the mixing angle θ as a free parameter to study
the mixing effect on the mass and radii of the skyrmion. The mixing angle θ is
defined in Eq. (4.53).

In Figs. 4.7 and 4.8 we show the main numerical results.
From Figs. 4.7 and 4.8, we observe that the decreasing and increasing tenden-

cies of the mass and RMS radii are the same. From Eq. (4.53), we read that a
larger cos(θ) corresponds to a lighter “effective mass” of the two-quark compo-
nent scalar meson and a larger magnitude of the two-quark component included
in f500. If we compare the “effective mass” of the two-quark component scalar
meson and the mσ shown in Fig. 4.3, we conclude that their tendencies are the
same, i.e., the large cos θ in Figs. 4.7 and 4.8 corresponds to the small mass mσ in
Fig. 4.3.
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Figure 4.6: Profile functions with s0 = − 0.5 (green curve) and s0 = 0 (red
dash-dotted line)

From Figs. 4.7 and 4.8, we observe that the solution disappears in the regions
of cos θ > 0.6 when s0 = 0 and cos θ > 0.25 when s0 = − 0.5, i.e., the small
s0 corresponds to a small maximal value of cos θ. We can understand this fact as
follows. From Eq. (4.53) we observe that a large value of cos θ means that f500

includes a large magnitude of the two-quark component, or equivalently a strong
attractive force provide by the scalar meson. In the present analysis, keeping s0

constant means that the total repulsive force does not change and adjusting cos θ
means that we adjust the total attractive force. Because the soliton collapses when
the total attractive force is larger than the total repulsive force, the soliton survives
for a certain range of cos θ. For the parameter s0, a small s0 means that a weak
repulsive force is provided by the ω meson, as we stated above. As a result, a
small s0 corresponds to a narrow range of cos θ.
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Figure 4.7: Dependence of skyrmion properties on the mixing angle between two
scalar mesons for s0 = 0
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Figure 4.8: Dependence of skyrmion properties on the mixing angle between two
scalar mesons for s0 = − 0.5



Chapter 5

Discussion and Conclusion

In this thesis, we first reviewed the basic QCD properties and then two chiral
effective models to describe meson properties in the low energy region. Then
we investigated the baryon properties through meson dynamics in the Skyrme
approach.

We found that the skyrmion constructed in an effective meson model contain-
ing the pion, rho, and omega mesons has the critical problem that the mass of the
skyrmion is approximately 50% heavier than the lightest physical baryon state. To
solve this problem, we constructed an effective model that includes the pion, rho,
and omega mesons together with two- and four-quark scalar mesons.

First, we switched off the mixing between the two- and four-quark scalar
meson fields. In this case, the pure four-quark meson decouples from the other
mesons. We investigated the effect of the mass of the two-quark scalar meson on
skyrmion properties and found that when the mass of the scalar meson becomes
light the skyrmion mass becomes light, whereas the root-mean-square radii of the
baryon number density

√
〈r2〉B and the energy density

√
〈r2〉E become large.

We then investigated the effect of coupling between scalar and vector mesons
on skyrmion properties. The result shows that when the coupling is large, the
skyrmion mass and radii are large. We finally switched on the mixing between the
two-quark and four-quark scalar mesons, and investigated skyrmion properties.
We found that when the lighter scalar meson contains a larger percentage of the
two-quark component, the skyrmion mass is smaller, and the RMS radii (

√
〈r2〉B

and
√
〈r2〉E) are larger.

The results obtained from previous studies and our current findings are sum-
marized in Tables 5.1 and 5.2. From Table 5.1, we observe that the mass and
radius of the soliton depend on how the scalar meson is introduced. From Ta-
ble 5.2, we observe that at the leading order, the mass and radius of the soliton
obtained from the present analysis are closer to the experimental values.
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Table 5.1: The parameter dependence of mass and radius of the skyrmion (♦’s
denote the previous analysis and �’s denote the present analysis.)

model scalar type parameter soliton mass [MeV]
√
〈r2〉B [fm]

♦ πσ [19] 2 quark mσ(↗) ↗ ↘
♦ πρωχ [20] glueball mχ(↗) ↗ ↘
� πρωσ [55] 2 quark mσ(↗) ↗ ↘
� πρωσ [55] 2 quark s0(↗) ↗ ↗
� πρωσφ [55] 2 + 4 quark cos θ(↗) ↘ ↗

Table 5.2: The mass and radius of the skyrmion from the leading order (♦’s denote
the previous analysis and � denotes the present analysis)

model scalar type parameter soliton mass
√
〈r2〉B

Experiment - - 939 MeV 0.72 fm
♦ π [19] - - 1756.5 MeV 0.51 fm
♦ πσ [19] 2 quark mσ = 560 MeV 1364.5 MeV 0.56 fm
♦ πρω [20] - - 1469.0 MeV 0.49 fm
♦ πρωχ [20] glueball mχ = 720 MeV 1408.3 MeV 0.51 fm
� πρωσφ [55] 2 + 4 quark cos θ = 0.6 [27] 1180 MeV 0.72 fm

Table 5.3: The mass and radius of the skyrmion from the O(p4) terms of HLS
model scalar type parameter soliton mass

√
〈r2〉B

πρω [25] - - 1188.8 MeV 0.43 fm
πρωχ [25] glueball mχ = 720 MeV 1138.0 MeV 0.43 fm

The present study shows that, even though both the two-quark and four-quark
scalar mesons are included, the skyrmion mass is still approximately 300 MeV
larger than the lightest nucleon mass. In Ref. [25], it was shown that the O(p4)
terms of HLS also modify the mass and size of the skyrmion, as in Table 5.3.
Therefore, to reproduce the baryon and meson properties in a single model, we
need to extend the model by including, e.g., another scalar meson as a dilaton,
O(p4) terms of HLS for the vector mesons [25], and so on. We leave these studies
as future projects.
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Appendix A

The mass mixing matrix for the
scalar meson

The masses of f500 and f1370 are expressed as

m2
f500

=
1

2

(
−
√

2f 2
π (4A2 − λm2

4 + λm2
π) + f 4

πλ
2 + (m2

4 −m2
π) 2

+f 2
πλ+m2

4 +m2
π

)
, (A.1)

m2
f1370

=
1

2

(√
2f 2

π (4A2 − λm2
4 + λm2

π) + f 4
πλ

2 + (m2
4 −m2

π) 2

+f 2
πλ+m2

4 +m2
π

)
. (A.2)

The mixing angle θ is obtained as

θ = arctan

√
m2
f1370
−m2

4

m2
4 −m2

f500

= arccos

√
m2

4 −m2
f500

m2
f1370
−m2

f500

. (A.3)

From Eqs. (4.48), (4.49), (A.1), and (A.2), one gets

A2 =
(m2

f1370
−m2

4)(m2
4 −m2

f500
)

2f 2
π

,

λ =
m2
f500

+m2
f1370
−m2

4 −m2
π

f 2
π

,

φvac = − Af 2
π√

2m2
4

,

m2
2 =

1

2

(
m2
f500

m2
f1370

m2
4

− 3m2
π

)
, (A.4)

with m2
f500

< m2
4 < m2

f1370
.
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Appendix B

Skyrmion mass and the equations of
motion for the profile functions
F (r), G(r),W (r), σ̄(r), and φ̄(r)

Substituting the ansatz Eqs. (4.27) and (4.58) into the Lagrangian (4.46), we
obtain the skyrmion mass as

Msol = 4π

∫ ∞
0

drr2Msol(r)

= − 4π

∫ ∞
0

dr
{1

8
r2
{

4f 2
πg

2s0ahlsW
2σ̄(σ̄ + 2)− 4f 2

π (σ̄ + 1)2 F ′2

+f 2
π

[2
(
m2

4 −m2
f500

) (
m2
f1370
−m2

4

)
(σ̄ + 1)2 (φ̄+ 1

)
m2

4

−
(
m2
f500

+m2
f1370
−m2

4 −m2
π

)
(σ̄ + 1)4

+
2
(
m2
f500

m2
f1370
− 3m2

4m
2
π

)
(σ̄ + 1)2

m2
4

+

(
m2

4 −m2
f500

) (
m2

4 −m2
f1370

) (
φ̄+ 1

)2

m2
4

+ 8m2
π (σ̄ + 1) cos(F )

]
+
f 2
π

(
m2

4 −m2
f500

) (
m2

4 −m2
f1370

)
φ̄′2

m4
4

− 4f 2
π σ̄
′2 + 4f 2

πg
2ahlsW

2

−
f 2
π

(
m2
f500

m2
f1370

+ 3m2
4m

2
π

)
m2

4

+ 4W ′2
}

− 1

2g2

{
8f 2

πg
2ahlsG sin2

(
F

2

)(
s0σ̄

2 + 2s0σ̄ + 1
)
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−4f 2
πg

2σ̄2 sin2

(
F

2

)
((s0ahls − 1) cos(F )− s0ahls − 1)

−8f 2
πg

2σ̄ sin2

(
F

2

)
((s0ahls − 1) cos(F )− s0ahls − 1)

+2f 2
πg

2ahlsG
2
(
s0σ̄

2 + 2s0σ̄ + 1
)

+8f 2
πg

2ahls sin4

(
F

2

)
− f 2

πg
2 cos(2F ) + f 2

πg
2 + 2G′2

}
−α3

(
2G (WF ′ − sin(F )W ′) +G2WF ′

+2 sin(F ) ((cos(F )− 1)W ′ +WG′)
)

+α2WF ′(− cos(F ) +G+ 1)2

+α1WF ′ sin2(F )− G2(G+ 2)2

2g2r2

}
, (B.1)

with

α1 =
3gNc

16π2
(c1 − c2) , α2 =

gNc

16π2
(c1 + c2) , α3 =

gNc

16π2
c3 . (B.2)

The equations of motion for F (r), G(r),W (r), σ̄(r), and φ̄(r) are

F ′′ =
1

f 2
πr

2(1 + σ̄)2

×
{

2G
(
f 2
πs0ahlsσ̄

2 sinF + 2f 2
πs0ahlsσ̄ sinF + f 2

πahls sinF

− α2 cosFW ′ − α3 cosFW ′ + (α2 − α3)(WG′ +W ′))

− f 2
π σ̄ sinF

(
4s0ahls cosF − 4s0ahls − 4 cosF − r2m2

π

)
− 2f 2

π σ̄
2 sinF (s0ahls cosF − s0ahls − cosF )− f 2

πahls sin(2F )

− 2f 2
πr

2F ′σ̄′ − 2f 2
πrσ̄

2F ′ − 2f 2
πrσ̄F

′ (rσ̄′ + 2) + 2f 2
πahls sinF

− 2f 2
πrF

′ + f 2
πm

2
πr

2 sinF + f 2
π sin(2F )

− 2α2W cosFG′ + 2α3W cosFG′

− 1

2
α1 cos(2F )W ′ − 2α2 cosFW ′ +

1

2
α2 cos(2F )W ′

− 2α3 cosFW ′ + 2α3 cos(2F )W ′ + 2α2WG′

− 2α3WG′ + (α2 − α3)G2W ′ +
1

2
α1W

′ +
3

2
α2W

′
}
, (B.3)

G′′ = − f 2
πg

2ahls
(
s0σ̄

2 + 2s0σ̄ + 1
)

(cosF −G− 1)

−α3g
2 (WF ′(cosF −G− 1) + 2 sinFW ′)

+ α2g
2WF ′(cosF −G− 1) +

G (G2 + 3G+ 2)

r2
, (B.4)



45

W ′′ = f 2
πg

2ahlsW
(
s0σ̄

2 + 2s0σ̄ + 1
)
− 2W ′

r

+
1

r2

{
− α3
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F ′
(
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2 +m2
f500

+m2
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