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Spin Hall effect in a spinor dipolar Bose-Einstein condensate
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We theoretically show that the spin Hall effect arises in a Bose-Einstein condensate (BEC) of neutral atoms
interacting via the magnetic dipole-dipole interactions (MDDIs). Since the MDDI couples the total spin angular
momentum and the relative orbital angular momentum of two colliding atoms, it works as a spin-orbit coupling.
Thus, when we prepare a BEC in a magnetic sublevel m = 0, thermally and quantum-mechanically excited
atoms in the m = 1 and −1 states feel the Lorentz-like forces in the opposite directions. This is the origin for
the emergence of the spin Hall effect. We define the mass-current and spin-current operators from the equations
of continuity and calculate the spin Hall conductivity from the off-diagonal current-current correlation function
within the Bogoliubov approximation. We find that the correction of the current operators due to the MDDI
significantly contributes to the spin Hall conductivity. A possible experimental situation is also discussed.
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I. INTRODUCTION

Spin-orbit interaction (SOI) is one of the key ingredients for
the emergence of nontrivial transport phenomena such as the
anomalous Hall effect [1], the spin Hall effect [2,3], and robust
surface or edge states of topological insulators [4]. The spin-
orbit coupling phenomena are also intensively investigated
using cold atomic systems [5,6], since the synthetic spin-
dependent magnetic field has been experimentally realized
[7–11]. For example, various spin textures are predicted to
appear in a harmonically trapped Bose-Einstein condensate
(BEC) with the one- to three-dimensional SOIs [12–22], where
the experimental realizations of the spin-orbit coupled spin-1
system [23] and the two-dimensional SOI [24] have recently
been reported. The coupling between spin and orbital degrees
of freedom directly results in the observation of the spin Hall
effect [25]. When atoms are confined in an optical lattice,
the synthetic gauge field is expected to cause topological
band structures as in the case of solid-state materials. By
utilizing the unprecedented tunability of cold atomic systems,
the topological properties of the band structure have been
experimentally investigated [26–31].

Although the synthetic SOI in cold atomic systems induces
such interesting phenomena, they are basically understood
from the single-particle physics, because the synthetic SOI is
the one-body interaction of atoms with a static (non-Abelian)
gauge field. In the case of bosonic condensates, the role of the
s-wave interaction is discussed in Refs. [12–22,32]. Contrarily
to this, the magnetic dipole-dipole interaction (MDDI) is
regarded as a two-body SOI. The MDDI is the interatomic
interaction between atoms with magnetic moments and cou-
ples the total spin angular momentum and the relative orbital
angular momentum of two colliding atoms. In general, the
MDDI becomes prominent in atomic gases with large magnetic
moments, such as Cr [33], Dy [34], and Er [35], where
the long-range and anisotropic nature of the MDDI causes
exotic phenomena [36,37], some of which were experimentally
observed [38–45]. Even for alkali-metal atoms, by fine tuning
the experimental parameters the MDDI-induced phenomena,
such as the decoherence of an atomic interferometer [46], the
deformation of the condensate [47], inhomogeneous Larmor
precession due to the dipolar field [48], and the emergence

of the magnon energy gap [49], have been observed. Since
the MDDI couples the spin and orbital degrees of freedom,
it is also known to contribute to the magnetization relaxation
[50–53]. In particular, when we prepare a BEC in an ultralow
magnetic field, the MDDI is predicted to induce the Einstein–
de Haas effect [54–57].

In this paper, we theoretically show that the MDDI in a
spinor BEC induces the spin Hall effect. In a spinor system, the
geometric Hall effect has been observed [58], where the spin-
gauge symmetry of a ferromagnetic BEC creates a Lorentz-like
force from a skyrmionic spin texture. Here, we consider a
spin-1 BEC in the magnetic sublevel m = 0 (the polar state),
which preserves the time-reversal symmetry, and calculate
the spin Hall conductivity due to the thermally and quantum-
mechanically excited atoms in the magnetic sublevels m = ±1
using the Bogoliubov approximation. Though we calculate for
a spin-1 BEC for simplicity, our calculation can be applicable
for larger spins as far as the m = 0 condensate is stable.
Since the MDDI conserves the total, i.e., spin plus orbital,
angular momentum of two colliding atoms, the orbital angular
momenta of the atoms excited in the m = 1 and −1 states differ
by 2�. This is the origin of the spin Hall effect. According to the
linear response theory, the spin Hall conductivity is calculated
from the off-diagonal correlation of the mass- and spin-current
operators, which are defined from the equations of continuity.
We find that the corrections of the current operators due to the
MDDI are essential for the emergence of the spin Hall effect.

The rest of the paper is organized as follows. In Sec. II,
we introduce the Bogoliubov Hamiltonian for the polar state
of a spin-1 dipolar BEC and discuss the properties of the
excitations. In Sec. III, the mass- and spin-current operators
are defined from the continuity equations. The time derivative
of the mass-current operator shows that the MDDI causes
Lorentz-like forces that work in the opposite directions for
atoms excited in the m = 1 and −1 states. In Sec. IV, the
emergence of the spin Hall effect is demonstrated through
evaluating the spin Hall conductivity using the linear response
theory. We discuss the temperature and the quadratic Zeeman
energy dependence of the spin Hall conductivity, and evaluate
it for a realistic situation. Section V concludes the paper. A
detailed calculation of the spin Hall conductivity is given in
Appendix.
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II. BOGOLIUBOV HAMILTONIAN

We consider a system of spin-1 Bose atoms. For the sake
of simplicity, we neglect the confining potential and assume a
spatially uniform system with volume �. The Hamiltonian of
this system is given by

Ĥ =
∑
k,m

(εk + qZm2)â†
k,mâk,m + Ĥs + Ĥdd, (1)

where âk,m and â
†
k,m are the annihilation and creation operators

for spin-1 atoms with the momentum k in the magnetic
sublevel m = 1,0, and −1, εk = k2/2M with M being the
atomic mass, and qZ is the quadratic Zeeman energy per atom.
Here, we assume that the external magnetic field is absent
and qZ > 0 is tuned by applying a microwave field [59,60].
The short-range part of the interaction Ĥs is divided into the
density-density interaction and the spin-exchange interaction
and given by

Ĥs = 1

2�

∑
m1m2m3m4

∑
k1k2k3k4

{
c0δm1m4δm2m3

+ c1(F)m1m4
· (F)m2m3

}
δk1+k2 ,k3+k4

â†
k1m1

â†
k2m2

âk3m3
âk4m4

,

(2)

where F is the vector of the spin-1 matrices, and the interaction
coefficients are given by c0 = 4π (2a2 + a0)/3M and c1 =
4π (a2 − a0)/3M , with aF being the s-wave scattering length
of two colliding atoms with total spin F = 0 and 2. The
sign of c1 determines the magnetism of the ground state.
The condensate is ferromagnetic for c1 < 0 and polar (or
antiferromagnetic) for c1 > 0 [61,62]. The spin-1 87Rb atoms
and the spin-1 23Na atoms are known to be ferromagnetic and
polar, respectively. The MDDI Hamiltonian is given by

Ĥdd = cdd

2�

∑
m1m2m3m4

∑
k1k2k3k4

∑
νν ′

Q̃νν ′(k4 − k1)

(Fν)m1m4
(Fν ′)m2m3

δk1+k2,k3+k4
â†

k1m1
â†

k2m2
âk3m3

âk4m4
, (3)

where cdd = μ0g
2
F μ2

B/(4π ), with μ0 being the magnetic
permeability of the vacuum, μB the Bohr magneton, and gF

the Lande’s hyperfine g factor. For the case of spin-1 87Rb
atoms and spin-1 23Na atoms, which have nuclear spin 3/2
and electron spin 1/2, we have gF = 1/2. The kernel of the
MDDI Q̃νν ′(k) is given by

Q̃νν ′(k) = −4π

3
(δνν ′ − 3k̂ν k̂ν ′), (4)

where k̂ = k/|k|. Q̃νν ′ (k) is the Fourier transform of the MDDI
kernel in the real space

Qνν ′(r) = δνν ′ − 3r̂ν r̂ν ′

r3
, (5)

where r is the relative position of two dipole moments,
r = |r| and r̂ = r/r . From Eqs. (3) and (4), one can see
that the spin and orbital degrees of freedom are coupled, and
in this sense, the MDDI is regarded as an SOI. It is well
known that in solid-state ferromagnets, the MDDI induces
spatially varying magnetic structures, such as spin vortices
and magnetic bubbles [63]. Similar structures are predicted

to appear in ferromagnetic BECs [64,65]. On the other hand,
for polar BECs, nonuniform magnetic structures appear only
when condensates are highly oblate or the MDDI is stronger
than the spin-exchange interaction [64]. This is because the
MDDI is the interaction between local magnetizations and
the weak MDDI does not contribute to the ground state in
the mean-field level when the condensate has no spontaneous
magnetization. Hence, the leading contribution of the MDDI
to the polar BEC is in the excitation spectrum.

In the following calculation, we consider a polar BEC (c1 >

0) and assume that the atoms are condensed in the (k,m) =
(0,0) state. This is the ground state for weak MDDIs. The
stability of the ground state shall be confirmed by the excitation
spectrum obtained below. Following the Bogoliubov theory,
which describes excitations at low temperature, we expand the
Hamiltonian (1) up to the second order in fluctuations [i.e.,
âk,m and â

†
k,m with (k,m) �= (0,0)], obtaining the Bogoliubov

Hamiltonian

ĤB =
∑
k �=0

(εk + c0n)a†
k,0ak,0 + 1

2

∑
k �=0

c0n(ak,0ak,0 + a
†
k,0a

†
k,0)

+ 1

2

∑
k

�̂ψ†
kHk

�̂ψk, (6)

where n is the number density of the condensate. Here,
the m = 0 component and the other two components are
decoupled from each other, and their contributions to ĤB

are divided into the first two terms and the last term in the
right-hand side of Eq. (6). The former is not affected by
the MDDI and results in the conventional phonon spectrum,
Ek,0 = √

εk(εk + 2c0n). Since the m = 0 component is not
related to the spin current, whose definition will be given
in the next section, our main concern is the last term
of Eq. (6). Here, �̂ψ†

k and �̂ψk are vectors of the creation

and annihilation operators: �̂ψ†
k = (a†

k,↑,a
†
k,↓,a−k,↑,a−k,↓) and

�̂ψk = (ak,↑,ak,↓,a
†
−k,↑,a

†
−k,↓)T, where T denotes the transpose,

and here and hereafter we use m = ↑ and ↓ instead of m = 1
and −1. The 4 × 4 matrix Hk is generally written using
submatrices fk and gk as

Hk =
(

fk gk
g∗

−k f∗
−k

)
. (7)

In the present case, fk and gk are respectively given by

fk =
(

εk + c1n + qZ + d5,k d−,k
d+,k εk + c1n + qZ + d5,k

)
,

(8)

gk =
(

d−,k c1n + d5,k
c1n + d5,k d+,k

)
, (9)

where

d±,k = 2πcddn

k2
(kx ± iky)2,

d5,k = 2πcddn

3k2

(
k2 − 3k2

z

)
(10)

describe the contribution of the MDDI.
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We diagonalize Hk by introducing the Bogoliubov trans-

formation �̂ψk = Tk
�̂φk, where �̂φk = (b†k,↑,b

†
k,↓,b−k,↑,b−k,↓)T,

with b
†
k,↓ (bk,↓) being the creation (annihilation) operator of

quasiparticles. To ensure the bosonic commutation relations
between quasiparticles, Tk is a 4 × 4 pseudounitary matrix
satisfying T†

kσ3Tk = σ3, where σ3 is given by

σ3 =
(

12×2 0
0 −12×2

)
, (11)

with 12×2 being a 2 × 2 identity matrix. Rewriting Tk as

Tk =
(

Uk V∗
−k

Vk U∗
−k

)
(12)

and solving the Bogoliubov equation,

T†
kHkTk = Diag[Ek,↑,Ek,↓,E−k,↑,E−k,↓], (13)

we obtain the energy spectra

Ek,m =
√

(εk + qZ)(εk + qZ + 2cmn), (14)

where m = ↑ and ↓, and we define

c↑ = c1 + 4πcdd

3
(2 − 3 cos2 θ ), (15)

c↓ = c1 − 4πcdd

3
, (16)

and θ = tan−1(
√

k2
x + k2

y /kz). In the absence of the MDDI,
these two modes are degenerate (c↑ = c↓). In particular, when
qZ = 0, these modes become gapless magnon modes, which
are the Nambu-Goldstone modes associated with the sponta-
neous breaking of the spin-rotation symmetry in the ground
state. Since the excitations induce local magnetizations, which
then interact with each other via the MDDI, the MDDI lifts the
degeneracy of two magnons. For cdd > 3[c1 + qZ/(2n)]/(4π ),
the energy spectra become purely imaginary at long wave-
lengths and the system becomes dynamically unstable. In
other words, the condensate in the m = 0 state is stable for
cdd < 3[c1 + qZ/(2n)]/(4π ).

The role of the MDDI becomes clearer when we see the
corresponding eigenmodes, which are given by

Uk = (uk,↑ uk,↓) =
(−e−iφuk,↑ −e−iφuk,↓

−eiφuk,↑ eiφuk,↓

)
,

Vk = (vk,↑ vk,↓) =
(

eiφvk,↑ −eiφvk,↓
e−iφvk,↑ e−iφvk,↓

)
, (17)

with φ = tan−1(ky/kx) and

uk,m =
√

εk + qz + cmn + Ek,m

2Ek,m

, (18)

vk,m =
√

εk + qz + cmn − Ek,m

2Ek,m

. (19)

Note here that the eigenmodes have the spin-dependent
phase factor e±iφ . This is the consequence of the spin-
momentum locking due to the MDDI. To see this, we move to
the mean-field description. In the presence of the quasiparticle

FIG. 1. Schematic picture of the spin-density waves in the ↑/↓
modes propagating along the x direction. In the ↑ mode (↓ mode), the
spin density arises parallel (perpendicular) to the momentum k ‖ x̂.

b̂k,↑, for example, the mean-field order parameter is given by

�k,↑ ≡
⎛
⎝ �1

�0

�−1

⎞
⎠ =

⎛
⎝ 0√

n

0

⎞
⎠ −

⎛
⎝uk,↑e−iφ

0
uk,↑eiφ

⎞
⎠ei(k·r−Ek,↑t)

+
⎛
⎝vk,↑e−iφ

0
vk,↑eiφ

⎞
⎠e−i(k·r−Ek,↑t), (20)

from which the spin expectation value is calculated to be

〈F〉k,↑ ≡ �
†
k,↑F�k,↑

= −2
√

2(uk,↑ − vk,↑) cos(k · r − Ek,↑t)

⎛
⎝cos φ

sin φ

0

⎞
⎠.

(21)

Namely, the b̂k,↑ mode describes the spin-density wave
in which the spin orientation is parallel to the projected
momentum vector onto the xy plane k⊥ ≡ k − (k · ẑ)ẑ. In
a similar manner, the spin expectation value for the b̂k,↓ mode
is given by

〈F〉k,↓ = 2
√

2(uk,↓ − vk,↓) sin(k · r − Ek,↑t)

⎛
⎝− sin φ

cos φ

0

⎞
⎠.

(22)

In this case, the spin orientation is perpendicular to k⊥. Figure 1
shows the schematic picture of the spin-density waves. The
spin configuration for the ↓ mode always has negative MDDI
energy, whereas the MDDI energy for the ↑ mode depends on
the angle of k from the z axis. This is the underlying physics
of the energy spectra in Eq. (14). In both cases of the ↑ and ↓
modes, the spin orientation relative to the momentum vector is
locked, and this spin-momentum locking results in the nonzero
spin Hall conductivity, which we will show in Sec. IV.

III. MASS-CURRENT AND SPIN-CURRENT OPERATORS

Before calculating the spin Hall conductivity, we need
to define the mass-current and spin-current operators. Since
the atoms in the (k,m) state convey momentum �k and
spin m�, the naive definitions of the mass-current and spin-
current operators are given by

∑
k

∑
m=0,±1 �k/Mâ

†
k,mâk,m

and
∑

k

∑
m=0,±1 m�k/Mâ

†
k,mâk,m, respectively. This is
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correct in the absence of the MDDI. However, in the presence
of the MDDI, because of the momentum dependence of the
MDDI Hamiltonian the current operators should be modified
so as to satisfy the equation of continuity.

Here, we start from the Fourier component of the number-
density operator and that of the z component of the spin-density
operator,

ρ̂M,S(q) =
∑

k

∑
m=↑,↓

XM,S
m â

†
k+ q

2 ,m
âk− q

2 ,m, (23)

where XM
m = 1 and XS

m = m, and the superscripts M and S
denote mass and spin, respectively. Since the phonon and
magnon excitations are decoupled, we omit the contribution
from the m = 0 component to the number-density operator.
The corresponding current operators ĴM,S

q are defined from the
Fourier transform of the equation of continuity:

∂ρ̂M(q)

∂t
= 1

i�
[ρ̂M(q),Ĥ ] = −iq · ĴM

q , (24)

∂ρ̂S(q)

∂t
= 1

i�
[ρ̂S(q),Ĥ ] = −iq · ĴS

q + T . (25)

Note that whereas the number of atoms is always a good
quantum number of the Hamiltonian (1), the z component
of the spin angular momentum is not conserved in the
presence of the MDDI. This is because the MDDI couples
the spin and orbital angular momenta of atoms, and the
angular-momentum-transfer process works as source and drain
of spin in the equation of continuity. T in Eq. (25) represents
such terms. We calculate the current operators in the long-
wavelength limit (q → 0) by approximating Ĥ with ĤB and
expanding the commutators in Eqs. (24) and (25) with respect
to q. The obtained results are given by

ĴM,S
q→0 =

∑
k

�̂ψ†
kJM,S

k
�̂ψk, (26)

JM
k =

(
1
�

∂fk
∂k 0

0 1
�

∂f∗
−k

∂k

)
, (27)

JS
k =

(
σz 0
0 σz

)
JM

k + i

�

∂d5,k

∂k

(
0 σy

−σy 0

)
, (28)

where σi(i = x,y,z) are the Pauli matrices given by

σx =
(

0 1
1 0

)
, σy =

(
0 −i

i 0

)
, σz =

(
1 0
0 −1

)
. (29)

The correction to the mass-current operator due to the MDDI
includes not only the diagonal terms ( ∂d5,k

∂k â
†
k,mâk,m) but also the

off-diagonal terms ( ∂d+,k

∂k â
†
k,↑âk,↓ and its Hermite conjugate).

The former is the correction of the dispersion due to the MDDI,
whereas the latter describes the process that atoms convey a
fixed momentum with changing their spin state. The same
terms also appear in the spin-current operator, but the off-
diagonal ones are canceled out by taking the summation with
respect to k in Eq. (26), which is consistent with our intuition.
The spin-current operator further includes the pairing terms
( ∂d5,k

∂k â
†
k,↑â

†
−k,↓ and its Hermite conjugate), which come from

the fact that the atoms in the (k,↑) state and those in the (−k,↓)
state convey the spin current in the same direction.

Here we comment that the torque term T in Eq. (25) does not
contribute to the spin Hall effect. In the calculation of the spin
Hall conductivity, we evaluate the correlation function between
ĴM

q→0 and ĴS
q→0 (see next section). When we consider the

correlation between ĴM
q→0 and T , it always vanishes because

the matrix elements of T in the Nambu spinor basis consist of
even functions of k, d±(k), whereas those of ĴM

q→0 consist of
odd functions of k. This result means that the dc mass current
cannot directly cause the time derivative of the spin density,
and vice versa.

An intuitive interpretation for the appearance of the spin
Hall effect is obtained by taking the time derivative of the
mass-current operator [Eqs. (26) and (27)]:

〈 ˙̂JM
q→0

〉 =
〈

1

i�

[
ĴM

q→0,ĤB

]〉

= 1

i�

∑
k

(
∂fk

∂k
fk − fk

∂fk

∂k

)
mm′

〈â†
k,mâk,m′ 〉

=
∑

k

[F+(k)〈â†
k,↑âk,↑〉 + F−(k)〈â†

k,↓âk,↓〉], (30)

where 〈...〉 means the expectation value under an eigenstate of
the Bogoliubov Hamiltonian ĤB, and

F+(k) ≡ 1

i�

(
∂fk

∂k
fk − fk

∂fk

∂k

)
↑↑

= − (4πcddn)2

�

∂φ

∂k
, (31)

F−(k) ≡ 1

i�

(
∂fk

∂k
fk − fk

∂fk

∂k

)
↓↓

= + (4πcddn)2

�

∂φ

∂k
= −F+(k). (32)

In Eq. (30), the contributions from the terms including 〈aa〉 and
〈a†a†〉 cancel with each other. Although the remaining terms
in the right-hand side of Eq. (30) also cancel with each other,
Eq. (30) indicates that the excited atoms from the condensate
are subjected to the spin-dependent Lorentz-like force F±(k)
whose direction is perpendicular to k⊥ as shown in Fig. 2. This
is the origin for the spin Hall effect.

IV. SPIN HALL CONDUCTIVITY

In this section, the spin Hall conductivity is calculated by
using the linear response theory. We first calculate the off-
diagonal current-current response function Q(iω) defined by

Q(iωn) =
∑
k,k′

∫ β

0

〈
Tτ

�̂ψ†
k(τ )JM

k,x
�̂ψk(τ ) �̂ψ†

kJS
k′,y

�̂ψ†
k

〉
eiωnτ dτ,

where ωn = 2πn/β, β = 1/(kBT ), Tτ represents the ordering
with respect to the imaginary time τ , and the average 〈...〉
is taken as 〈...〉 ≡ ∑

n〈n|e−βĤB ...|n〉/∑
n〈n|e−βĤB |n〉, with

|n〉 being the eigenvector of the Bogoliubov Hamiltonian

ĤB (ĤB|n〉 = En|n〉). Moving to the quasiparticle basis �̂φk

and using 〈b†k,mbk,m〉 = nk,m = 1/(eβEk,m − 1), the response
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FIG. 2. The directions of spin-dependent Lorenz-like force F+(k)
acting on spin-up atoms in the momentum space.

function is obtained as

Q(iωn) =
∑

k

(nk,↑ − nk,↓)
4i�ωnS(k)

−(i�ωn)2 + (Ek,↑ − Ek,↓)2

+
∑

k

(1+nk,↑+nk,↓)
8i�ωnP (k)

−(i�ωn)2+(Ek,↑+Ek,↓)2
,

(33)

where

S(k) ≡ −i
8cddn

�
(uk,↑uk,↓ − vk,↑vk,↓) sin2 θ sin2 φ

×
{

8πcddn

3

cos2 θ

k2
(uk,↑ − vk,↑)(uk,↓ − vk,↓)

+ 2
�

2

M
(uk,↑uk,↓ + vk,↑vk,↓)

}
, (34)

P (k) ≡ −i
8cddn

�
(uk,↑vk,↓ − vk,↑uk,↓) sin2 θ sin2 φ

×
{
−8πcddn

3

cos2 θ

k2
(uk,↑ − vk,↑)(uk,↓ − vk,↓)

+ 2
�

2

M
(uk,↑vk,↓ + vk,↑uk,↓)

}
. (35)

The detailed derivation of Eqs. (33)–(35) is given in Appendix.
The first term in Eq. (33) describes the contribution from the
scattering between thermally excited Bogoliubov particles,
while the second term comes from the virtual process of
creation and annihilation of pairs of Bogoliubov particles. The
fact that Q(iωn) becomes zero when cdd = 0 indicates that the
spin Hall effect in our system is purely induced by the MDDI.

To see the spin Hall effect, we apply a magnetic field
gradient in the y direction (B = B ′yẑ), which induces a spin
current along the y direction, and calculate the responding
mass current in the x direction. Namely, this is the inverse
spin Hall effect. (The usual spin Hall effect also occurs when

we apply a potential gradient; the spin Hall and inverse spin
Hall effects are essentially the same.) The Hamiltonian of this
perturbation is given by

H ′ = −gF μB

∫
drB ′yρ̂S(r)

= −gF μBB ′ lim
qy ,ω→0

ρ̂S(−qy)e−iωt − ρ̂S(qy)eiωt

2iqy

. (36)

According to the linear response theory, the spin Hall conduc-
tivity is derived as

σ SH
xy =

〈
JM

x

〉
gF μBB ′ = lim

ω→0

QR(ω) − QR(0)

−iω
(37)

= 4i
∑

k

[
nk,+ − nk,−

(Ek,+ − Ek,−)2
S(k)

+ 1 + nk,+ + nk,−
(Ek,+ + Ek,−)2

2P (k)

]
, (38)

where QR(ω) is the retarded two-body Green’s function given
by analytical connection from Eq. (33). The same conductivity
also describes the response of the spin current to an applied
potential gradient, i.e., 〈J S

y 〉 = σ SH
xy V ′, for an applied potential

V (r) = V ′x.
We numerically evaluate the integral with respect to k in

Eq. (38), and calculate the dependence of σ SH
xy on cdd/c1 and

c1n/(kBT ). The result for qZ/(c1n) = 0.01 is shown in Fig. 3,
where the σ SH

xy is scaled in units of (�ξ )−1 with ξ ≡ �/
√

2Mc1n

being the spin healing length. In Fig. 3, the range of the
vertical axis is 0 � cdd/c1 � 3[2 + qZ/(c1n)]/(8π ), beyond
which the polar BEC is no longer stable. As expected, the
stronger MDDI leads to the larger σ SH

xy . The conductivity also
becomes larger for higher temperature. This is because the
current-current correlation in the present system comes from
the correlation between excited atoms. We find that even at
absolute zero, the spin Hall conductivity remains nonzero due
to quantum fluctuations. For the case of spin-1 23Na atoms, we
have cdd/c1 = 1.3 × 10−2, where we have used the scattering
lengths measured in Ref. [66]. The temperature dependence
of the spin Hall conductivity of a 23Na BEC is depicted in
Fig. 3(b).

Figure 4 shows the qZ dependence of the conductivity,
from which we see that the σ SH

xy diverges as qZ goes to zero.
This is because the energy gaps of the magnon modes �m =√

qZ(qZ + 2cmn) (m = ↑,↓) become zero at qZ = 0. Since
there are no impurities in the present system, an infinitesimal
perturbation can infinitely excite gapless magnon modes and
the response to the perturbation diverges.

For the realization of the inverse spin Hall effect in exper-
iment, the strength of the external magnetic field should be
controlled carefully, because the atomic spins rotate due to the
linear Zeeman effect at the Larmor frequency �ωL = gF μBB.
When �ωL � cddn, the effect of the MDDI is time-averaged
over the Larmor precession period and the spin-orbit coupling
effect is smeared out. So the external magnetic field gradient
B ′ must be prepared so as to satisfy

gF μBB ′L < cddn, (39)
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FIG. 3. (a) Spin Hall conductivity σ SH
xy as a function of tem-

perature c1n/(kBT ) and the MDDI strength cdd/c1 at the quadratic
Zeeman energy of qZ/(c1n) = 0.01, where c1 is the strength of the
spin-exchange interaction and n is the number density of the system.
The conductivity is scaled in units of (�ξ )−1, where ξ ≡ �/

√
2Mc1n

is the spin healing length of the condensate. The system of spin-1
23Na atoms traces the yellow solid line in (a) at cdd/c1 = 1.3 × 10−2.
(b) The same as (a) but for fixed cdd/c1 = 1.3 × 10−2.

where L is the system size in the y direction. For the
case of spin-1 23Na atoms, which have the small MDDI
of cddn ∼ � × 4.7 Hz for a characteristic number density
n ∼ 2.3 × 1020 m−3, we obtain B ′ < 1.0 × 10−1 mG/mm for
L = 10 μm. Recent experimental technique makes it possible
to control such a low magnetic field [52,53].

Figure 5 shows the transverse velocity of the excited atoms
〈J M

x 〉/N ex at various temperatures in response to the magnetic
field gradient of B ′ = 1.0 × 10−2 mG/mm, where N ex denotes
the number of atoms excited in the m = ±1 states. Here, we
have used the mass of the 23Na atom and the number density
n = 2.3 × 1020 m−3. Because N ex becomes larger for smaller
c1n/(kBT ), the mean velocity 〈J M

x 〉/N ex becomes smaller as
c1n/(kBT ) becomes smaller. As we can see from Fig. 5, the
transverse velocity becomes up to a few micrometers at small
qZ. For example, at qZ = � × 1 Hz and c1n/(kBT ) = 3.5 ×
10−3, which correspond to T/TBEC ∼ 0.3 and N ex/N ∼ 0.3,
the transverse velocity becomes 6.1 μm/s. Suppose that the
size of the BEC in the x direction is 10 μm. Then, most of the
excited atoms are accumulated in the positive x region within
a second, which may be observed in experiments, although the

FIG. 4. The spin Hall conductivity σ SH
xy as a function of the

quadratic Zeeman energy qZ/(c1n) at c1n/(kBT ) = 0.01 and cdd/c1 =
1.3 × 10−2. The conductivity diverges at qZ = 0 because the magnon
modes become gapless (see text).

effect of the finite size as well as the trapping potential should
be included for a quantitative discussion.

So far, we have discussed the spin Hall effect in a spin-1
BEC. The same argument is applicable for larger spin systems
as far as the condensate in the m = 0 state is stable. In the case
of a BEC of 52Cr atoms in the m = 0 state, for example, the
excitations in the m = ±1 states, m = ±2 states, and m = ±3
states are decoupled from each other. Though the last one
is dynamically unstable [55], the instability can be removed
by applying a laser-induced quadratic Zeeman effect [60]. In
this case, the effective interaction between the condensate and
the m = ±1 components is given by c̃1 = 4π�

2(25a6 − 3a4 −
11a2 − 11a0)/(77M), where the scattering lengths are given in
Refs. [67,68]. On the other hand, since the g factor for the 52Cr
atom is 2 and the F in Eq. (3) becomes a vector of the spin-3
matrices, d±,k and d5,k defined in Eq. (9) are multiplied by 96,
i.e., the effective MDDI for 52Cr atoms is given by c̃dd = 96cdd.
As a result, we have c̃dd/c̃1 = 0.08 for 52Cr atoms, and hence
the higher spin Hall conductivity is expected.

We also comment that although we have calculated within
the Bogoliubov approximation, the motion of the normal
component will be expected to excite the motion of the

FIG. 5. The transverse velocity 〈J M
x 〉/N ex of the excited atoms in

response to the magnetic field gradient of B ′=1.0 × 10−2 mG/mm.
Calculated for a spin-1 23Na BEC with the number density n =
2.3 × 1020 m−3. Here, N ex is the number of atoms excited in the
m = ±1 states, and the red (solid), purple (dashed), and blue
(dash-dotted) curves show the results for c1n/(kBT ) = 0.1, 0.01, and
0.001, respectively.
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condensate. For example, an oscillating magnetic field gradient
may excite the center-of-mass oscillation of the condensate in
the perpendicular direction, which will be detected more easily.
Such a coupled dynamics of the condensate and noncondensate
remains for a future study.

V. CONCLUSION

In this paper, we have shown that the MDDI, a long-range
and anisotropic two-body interaction, induces the spin Hall
effect in a spinor BEC. This spin-orbit coupled transport phe-
nomenon is mediated by thermally and quantum-mechanically
excited atoms from the condensate.

We first considered the polar state of a spin-1 BEC (a
condensate in the magnetic sublevel m = 0) and investigated
the properties of the excitations. We found that the spin and
momentum degrees of freedom are locked in the Bogoliubov
excitations. We then derived the correction of the mass- and
spin-current operators due to the MDDI, where the current
operators were defined from the equations of continuity. The
time derivative of the mass-current operator indicates that
the excited atoms in the m = ±1 states feel spin-dependent
Lorentz-like force. This is the origin of the spin Hall effect.

According to the linear response theory, the spin Hall
conductivity σ SH

xy is calculated from the off-diagonal corre-
lation function between spin current and mass current. We
investigated the dependence of σ SH

xy on the strength of the
MDDI, temperature, and the quadratic Zeeman energy. As
expected, the conductivity becomes larger for stronger MDDI.

The conductivity also becomes larger for higher temperatures.
This is because the spin-orbit coupled transport is mediated
by excited atoms. We also found that the conductivity remains
finite even at absolute zero because of quantum fluctuations.
The dependence on the quadratic Zeeman energy qZ is more
significant: The spin Hall conductivity diverges at qZ = 0. This
is because the magnon excitations become gapless at qZ = 0
and hence an infinitesimal perturbation can excite an infinite
number of gapless magnons.

In a realistic situation of a spin-1 23Na BEC, in response to
a magnetic field gradient, the transverse velocity of excited
atoms becomes up to 6.1 μm/s, which may be observed
as an accumulation of excited atoms in the one side of the
condensate. When we apply the above results to a spin-3
52Cr BEC, the larger spin Hall conductivity is expected, where
the effective strength of the MDDI compared with the spin-
exchange interaction is enhanced by a factor of 5.7. For the
quantitative estimation, more detailed calculation, including
the effect of the trapping potential, the finite size effect, and
the coupled dynamics of the condensate and noncondensate,
is required, which will be a future work.
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APPENDIX: THE CALCULATION OF THE OFF-DIAGONAL CURRENT-CURRENT RESPONSE FUNCTION (33)

We show how to calculate correlation function (33) in detail. We first rewrite Q(iω) using the creation and annihilation
operators of the Bogoliubov particles as

Q(iω) =
∑
k,k′

∫ β

0
〈Tτ φ̂†

α(τ )φ̂β(τ )φ̂†
α′ φ̂β ′ 〉eiωnτ dτ

(
T†

kJM
k,xTk

)
αβ

(
T†

k′JS
k′,yTk′

)
α′β ′ ,

where the subscripts α and β take (±k,↑ or ↓), denoting the indices for the combined Nambu and spin space, and the repeated
indices implicitly summed over. There are six types of expectation value

∫ β

0 〈Tτ φ̂†
α(τ )φ̂β(τ )φ̂†

α′ φ̂β ′ 〉eiωnτ dτ . The first four types,

∫ β

0
〈Tτ b̂

†
α(τ )b̂β(τ )b̂†α′ b̂β ′ 〉eiωnτ dτ = − nα − nβ

iωn + (Eα − Eβ)/�
δα,β ′δβ,α′ , (A1)∫ β

0
〈Tτ b̂

†
α(τ )b̂β(τ )b̂α′ b̂

†
β ′ 〉eiωnτ dτ = − nα − nβ

iωn + (Eα − Eβ)/�
δα,α′δβ,β ′ , (A2)∫ β

0
〈Tτ b̂α(τ )b̂†β(τ )b̂†α′ b̂β ′ 〉eiωnτ dτ = nα − nβ

iωn + (Eβ − Eα)/�
δα,α′δβ,β ′ , (A3)∫ β

0
〈Tτ b̂α(τ )b̂†β(τ )b̂α′ b̂

†
β ′ 〉eiωnτ dτ = nα − nβ

iωn + (Eβ − Eα)/�
δα,β ′δβ,α′ , (A4)

are the contributions from the scattering process of thermal excitations, and the others,

∫ β

0
〈Tτ b̂

†
α(τ )b̂†β(τ )b̂α′ b̂β ′ 〉eiωnτ dτ = 1 + nα + nβ

iωn + (Eβ + Eα)/�
(δα,α′δβ,β ′ + δα,β ′δβ,α′ ), (A5)∫ β

0
〈Tτ b̂α(τ )b̂β(τ )b̂†α′ b̂

†
β ′ 〉eiωnτ dτ = − 1 + nα + nβ

iωn − (Eβ + Eα)/�
(δα,α′δβ,β ′ + δα,β ′δβ,α′ ), (A6)
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are from pair creation or annihilation processes. We now calculate the matrix elements of VX
k,μ ≡ T†

kJX
k,μTk (X = M or S). They

can be separated into 2 × 2 matrices as

VX
k,μ =

(
V X

1,k,μ V X
2,k,μ

V X
3,k,μ V X

4,k,μ

)
. (A7)

The elements of each matrix satisfy the following relations:

(
VM

1,k,μ

)
↑↓ = −(

VM
1,k,μ

)
↓↑ = (

VM
4,k,μ

)
↑↓ = −(

VM
4,k,μ

)
↓↑ = 1

�

(
∂d+,k

∂kμ

e−2iφ − ∂d−,k

∂kμ

e2iφ

)
(uk,↑uk,↓ − vk,↑vk,↓), (A8)

(
VM

2,k,μ

)
↑↓ = −(

VM
2,k,μ

)
↓↑ = (

VM
3,k,μ

)
↑↓ = −(

VM
3,k,μ

)
↓↑ = 1

�

(
∂d+,k

∂kμ

e−2iφ − ∂d−,k

∂kμ

e2iφ

)
(uk,↓vk,↑ − uk,↑vk,↓), (A9)

(
VS

1,k,μ

)
↑↓ = (

VS
1,k,μ

)
↓↑ = −(

VS
4,k,μ

)
↑↓ = −(

VS
4,k,μ

)
↓↑ = 2

�

{
∂d5,k

∂kμ

(uk,↑ − vk,↑)(uk,↓ − vk,↓) + ∂εk

∂kμ

(uk,↑uk,↓ + vk,↑vk,↓)

}
,

(A10)

(
VS

2,k,μ

)
↑↓ = −(

VS
2,k,μ

)
↓↑ = −(

VS
3,k,μ

)
↑↓ = (

VS
3,k,μ

)
↓↑ = 2

�

{
∂d5,k

∂kμ

(uk,↑ − vk,↑)(uk,↓ − vk,↓) − ∂εk

∂kμ

(uk,↓vk,↑ + uk,↑vk,↓)

}
.

(A11)

The other components are zero. In the definition of current operators, the matrix elements V X
1,k,μ,V X

2,k,μ,V X
3,k,μ, and V X

4,k,μ are the

coefficients of b̂
†
k,l b̂k,m, b̂−k,l b̂k,m, b̂

†
k,l b̂

†
−k,m, and b̂−k,l b̂

†
−k,m, respectively. Hence, the contribution from the (A1)-type terms, for

example, is calculated as

∑
k,k′

∫ β

0
〈Tτ b̂

†
k,m(τ )b̂k,l(τ )b̂†k′,m′ b̂k′,l′ 〉eiωnτ dτ

(
VM

1,k,x

)
ml

(
VS

1,k,y

)
m′l′

= −
∑
k,k′

nk,m − nk,l

iωn + (Ek,m − Ek,l)/�
δk,k′δm,l′δl,m′

(
VM

1,k,x

)
ml

(
VS

1,k,y

)
m′l′

= −
∑
k,k′

(nk,↑ − nk,↓)

[
1

iωn + (Ek,↑ − Ek,↓)/�
+ 1

iωn + (Ek,↓ − Ek,↑)/�

](
VM

1,k,x

)
↑↓

(
VS

1,k,y

)
↓↑

=
∑
k,k′

(nk,↑ − nk,↓)

[
2i�2ωn

−(i�ωn)2 + (Ek,↑ − Ek,↓)2

]
8πcddn

i�

sin θ sin φ

k
(uk,↑uk,↓ − vk,↑vk,↓)

× sin θ sin φ

�

{
8πcdd

3

cos2 θ

k
(uk,↑ − vk,↑)(uk,↓ − vk,↓) + 2

�
2k

M
(uk,↑uk,↓ + vk,↑vk,↓)

}

= −i
∑
k,k′

(nk,↑ − nk,↓)

[
2i�ωn

−(i�ωn)2 + (Ek,↑ − Ek,↓)2

]
8πcddn

�
(uk,↑uk,↓ − vk,↑vk,↓)sin2 θ sin2 φ

×
{

8πcdd

3

cos2 θ

k2
(uk,↑ − vk,↑)(uk,↓ − vk,↓) + 2

�
2

M
(uk,↑uk,↓ + vk,↑vk,↓)

}

=
∑

k

(nk,↑ − nk,↓)
2i�ωnS(k)

−(i�ωn)2 + (Ek,↑ − Ek,↓)2
. (A12)

The (A4)-type contribution has the same value as (A12), whereas the contributions from the (A2)- and (A3)-type terms cancel with
each other. So the total contribution from the scattering process of thermal excitation is twice that of (A12), which corresponds
to the first term of Eq. (34). The contributions from (A5)- and (A6)-type terms are also calculated in the same manner:

∑
k,k′

∫ β

0
〈Tτ b̂

†
k,m(τ )b̂†−k,l(τ )b̂−k′,m′ b̂k′,l′ 〉eiωnτ dτ

(
VM

2,k,x

)
ml

(
VS

3,k′,y
)
m′l′

=
∑
k,k′

1 + nk,m + nk,l

iωn + (Ek,m + Ek,l)/�
(δk,−k′δm,m′δl,l′ + δk,k′δm,l′δl,m′ )

(
VM

2,k,x

)
ml

(
VS

3,k′,y
)
m′l′
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= −4
∑
k,k′

1 + nk,↑ + nk,↓
iωn + (Ek,↑ + Ek,↓)/�

(
VM

2,k,x

)
↑↓

(
VS

3,k′,y
)
↑↓

= 4i
∑
k,k′

1 + nk,↑ + nk,↓
iωn + (Ek,↑ + Ek,↓)/�

8πcddn

�
(uk,↑uk,↓ − vk,↑vk,↓)sin2 θ sin2 φ

×
{
−8πcdd

3

cos2 θ

k2
(uk,↑ − vk,↑)(uk,↓ − vk,↓) + 2

�
2

M
(uk,↑vk,↓ + vk,↑uk,↓)

}

= −
∑
k,k′

1 + nk,↑ + nk,↓
iωn + (Ek,↑ + Ek,↓)/�

4P (k). (A13)

∑
k,k′

∫ β

0
〈Tτ b̂−k,m(τ )b̂k,l(τ )b̂†k′,m′ b̂

†
−k′,l′ 〉eiωnτ dτ

(
VM

3,k,x

)
ml

(
VS

2,k′,y
)
m′l′ = 4

∑
k,k′

1 + nk,↑ + nk,↓
iωn − (Ek,↑ + Ek,↓)/�

(
VM

3,k,x

)
↑↓(VS

2,k′,y)↑↓

= −
∑
k,k′

1 + nk,↑ + nk,↓
iωn − (Ek,↑ + Ek,↓)/�

4P (k). (A14)

The summation of these contributions reduces to the second term of Eq. (34).
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Gorceix, and L. Vernac, Phys. Rev. Lett. 109, 155302
(2012).

[43] A. de Paz, A. Sharma, A. Chotia, E. Maréchal, J. H. Huckans, P.
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