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ABSTRACT 
For the development of vacuum interrupters for their higher voltage application in 

power transmission systems, it is necessary to clarify the discharge characteristics of 

composite insulation systems with a shield (floating electrode) and a solid insulator in 

vacuum. In this paper, we focus on the composite discharge patterns via the shield and 

the solid insulator. For cathode-shield-insulator-anode (c-s-i-a) and cathode-insulator-

shield-anode (c-i-s-a) electrode configurations, the discharge can be classified into two 

independent processes: breakdown in vacuum gap and surface flashover on the solid 

insulator. Furthermore, we have found that the breakdown development time increases 

with the increase in the gap length and the surface flashover development time depends 

on the voltage peak after flashover inception, which are consistent with discharge 

development characteristics for individual gap breakdown and surface flashover, 

respectively. These results are significant to understanding and discriminating the 

composite discharge patterns and discharge path in vacuum interrupters.  

   Index Terms — Vacuum, floating electrode, alumina ceramics, breakdown, surface 

flashover 

 

1   INTRODUCTION 

 VACUUM circuit breakers (VCBs) and vacuum interrupters 

(VIs) have many significant features such as simple structure, 

environment-friendliness, maintenance-free and so on. They have 

been utilized worldwide in medium voltage system and 

distribution power networks. Recently, VCBs/VIs are being 

developed for higher voltage application in order to substitute 

for SF6 gas insulated switchgears and to help solve global 

warming problems [1-3]. Therefore, the enhancement of 

electrical insulation performance and the clarification of the 

fundamental discharge mechanism in vacuum are necessary.  

   The internal insulation problems in VI mainly exist between the 

main contacts, between a contact and a shield, and along a solid 

insulator, as shown in Figure 1. When the internal insulation fails 

in VI, as a composite insulation system, the discharge has complex 

patterns for various discharge sites and paths. References [4-6] 

show combined discharge patterns for the composite insulation 

system in VI, where the pattern classification and development 

characteristics of vacuum discharge have not been clarified 

enough.  

We have been investigating the discharge characteristics for 

the breakdown in vacuum gap and the surface flashover on a 

solid insulator, respectively, and clarified the fundamental 

discharge development characteristics. In this paper, we focus 

on the discharge characteristics of composite insulation 

systems with both breakdown in vacuum gap and surface 

flashover on the solid insulator, which can contribute to the 

discrimination of discharge patterns of composite insulation 
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Figure 1. Composite discharge patterns in VI, when a stationary contact 

has a negative voltage to a moving contact. 

 

Manuscript received on X Month 2005, in final form XX Month 2005. 



 

system in VIs. As shown in Figure 1, cathode-shield-insulator-

anode (c-s-i-a) and cathode-insulator-shield-anode (c-i-s-a) 

represent the possible composite discharge patterns via the 

shield and the solid insulator. Correspondingly, composite 

electrode configurations were proposed and discharge pattern 

classification and development mechanisms were discussed.  

2  EXPERIMENTAL SETUP 

2.1 ELECTRODE CONFIGURATION 

 Figure 2 shows two kinds of electrode configuration to 

investigate the composite discharge patterns via a shield and a 

solid insulator. Figure 2a shows the electrode configuration 

simulating a path through a cathode-shield-insulator-anode (c-

s-i-a) in VI. The cathode and the anode has a rod shape with a 

diameter of 2 mm, and is made of stainless steel. The shield is 

also made of stainless steel with dimensions of 120 mm × 60 

mm × 2 mm
t
. The floating electrode as a shield is placed on 

the insulator. The insulator is alumina ceramic (Al2O3, purity: 

92%) with dimensions of 150 mm × 150 mm × 5 mm
t
. The 

anode is in contact with the insulator surface.  In addition, we 

set a grounded back electrode (70 mm × 20 mm) behind the 

insulator in order to control the discharge path. The vacuum 

gap length g between the cathode and the shield was set to 0.5 

mm. The surface distance on the insulator from the shield edge 

to the anode is 60 mm. 

Figure 2b shows the electrode configuration of a cathode-

insulator-shield-anode (c-i-s-a), whose arrangement of 

insulator and the shield was changed from that in Figure 2a. 

The vacuum gap length g1 between the cathode and the 

insulator was set to 0.5 mm. The vacuum gap length g2 

between the shield and the anode was set to 0.5 mm. The 

surface distance on the insulator below the cathode to the 

shield edge is 60 mm.  

The average surface roughness of the alumina ceramic is 

0.69 μm. Before the experiment, the alumina and electrodes 

were cleaned with ethanol and dried in vacuum for over 12 

hours. 

2.2 TEST CIRCUIT 

Figure 3 shows the experimental setup with measurement 

systems. The vacuum pressure in the chamber is set to 10
−5

 Pa 

order. The impulse generator provides a negative standard 

lightning impulse voltage (1.2/50 μs). We applied the negative 

impulse voltage between the composite electrodes described in 

section 2.1 from the initial charging voltage of 10 kV with an 

increment of 2 kV. We carried out the voltage application 

more than 20 times for each electrode configuration. 

We measured the applied voltage waveform with a voltage 

divider (1/45900), the anode current with a high frequency 

current transformer (CT, 1-20 MHz), and the shield potential 

with a high voltage probe (input impedance: 100 MΩ). These 

waveforms are acquired by a digital oscilloscope (2.5 GHz, 40 

GS/s). In addition, still images of discharge were captured with 

a digital camera and the light intensity of discharge with a 

photomultiplier tube (PMT, 300-900 nm). 

3  EXPRIMENTAL RESULTS AND 

DISCUSSION 

3.1 DISCHARGE PROCESS BY WAY OF CATHODE-

SHIELD-INSULATOR-ANODE (c-s-i-a) 

In c-s-i-a electrode configuration, two discharge patterns 

were measured: partial breakdown (PB) as the gap discharge 

only between the cathode and the shield (c-s), and complete 

breakdown (BD) involving surface flashover along the 

insulator between the shield and the anode (c-s-i-a).  

Figure 4 shows the discharge pattern of PB between the 

cathode and the shield whose potential difference ΔV at PB 

inception is −15.4 kV (applied voltage: Va = −17.2 kVpeak). As 

shown in Figure 4a, weak light emission was observed only in 

the gap between the cathode and the shield. As shown in 

Figure 4b, the shield potential jumped up to the instantaneous 

cathode voltage, once PB occurred. The anode current was 

Grounded back electrode

Shield 

potential

CT

60 mm

ϕ 2 mm

g=0.5 mm

150 mm

Contacted

Alumina ceramic

H.V. probe

Floating electrode 

(Shield)

120 mm

70 mm

Anode

current

AnodeCathode

 
(a) Cathode-shield-insulator-anode (c-s-i-a) 
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(b) Cathode- insulator-shield-anode (c-i-s-a)  

Figure 2. Electrode configuration. 
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Figure 3. Experimental setup with measurement systems. 
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(b) Waveforms of applied voltage, shield potential, anode current and 

light intensity 

Figure 4. Still image and discharge waveforms for partial breakdown in 

c-s-i-a electrode system (g = 0.5 mm, Va = −17.2 kVpeak, ΔV = 15.4 kV). 
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(b) Waveforms of applied voltage, shield potential, anode current and light 

intensity. 

Figure 6. Still image and discharge waveforms for case-2 in c-s-i-a 

breakdown (g = 0.5 mm, Va = −31.8 kVpeak, ΔV1 = 11.1 kV, ΔV2 = 16.6 kV). 

ΔV1 and ΔV2: potential difference between the cathode and the shield at PB 

inception 
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(b) Waveforms of applied voltage, shield potential, anode current and 

light intensity 

Figure 5. Still image and discharge waveforms for case-1 in c-s-i-a 

breakdown (g = 0.5 mm, Va = −32.7 kVpeak, ΔV = 14.4 kV).  

TPB: PB development time i.e. rise time of shield potential  

TFO: surface flashover development time from flashover inception to 

formation of conductive channel 

Vp: voltage peak after surface flashover inception  

 

almost zero, because no discharge channel was formed on the 

insulator surface between the shield and the anode (s-a). 

In the case of higher voltage application, complete BD 

involving the surface flashover along the insulator occurred. 

For c-s-i-a BD, two cases (case-1 and case-2) could be 

distinguished by the discharge waveforms, as shown in Figures 

5 and 6.  

Figure 5 shows the still image and discharge waveforms for 

case-1 in c-s-i-a BD (Va = −32.7 kVpeak). As shown in Figure 

5a, light emissions both in the vacuum gap between the 

cathode and the shield and on the insulator surface could be 

observed. Figure 5b shows the discharge process for case-1 in 

c-s-i-a BD. After PB between the cathode and the shield, the 

shield potential jumped up to the instantaneous applied voltage, 

as well as in Figure 4b. By keeping the PB, the shield potential 

increased with the applied voltage. Afterwards, the surface 

flashover began to propagate between the shield and the 

insulator (s-i) with explosive electron emission (EEE) at the 

shield [7], then the applied voltage and the shield potential 

started to decrease. Finally, due to the formation of a 

conductive channel between the shield and the anode, the 

applied voltage and the shield potential decreased to almost 0 

V and the anode current exceeded 100 A which was limited by 

the impendence of the test circuit.  
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(b) Waveforms of applied voltage, shield potential, anode current and light 

intensity 

Figure 8. Still image and discharge waveforms for case-1 in c-i-s-a BD 

(g2 = 0.5 mm, Va = −44.7 kVpeak). 

 

Figure 6 shows the still image and discharge waveforms for 

case-2 in c-s-i-a BD (Va = −31.8 kVpeak). Unlike in case-1, after 

the PB between the cathode and the shield, the shield potential 

remained a constant value, though the applied voltage 

continued to increase. This is because that the PB was 

quenched and the shield was floated again before the flashover 

initiation, which might be due to the unstable cathode spot [8]. 

At 3.4 μs after the PB quenching, the surface flashover 

between the shield and the anode occurred and developed to 

the anode, which resulted in a decrease in the shield potential. 

The time delay of 3.4 μs may be attributed to the statistical 

phenomena of EEE inception at the shield edge. Due to the 

increase in potential difference between the cathode and the 

shield, PB occurred again. Hence, the shield potential jumped 

up to the instantaneous applied voltage one more time. Finally, 

in the same way as those in case-1, due to the formation of a 

conductive channel along the insulator, the applied voltage and 

shield potential decreased to almost 0 V.  

3.2 DISCHARGE PROCESS BY WAY OF CATHODE-

INSULATOR- SHIELD-ANODE (c-i-s-a) 

In c-i-s-a electrode configuration, two discharge patterns 

were measured: surface flashover (FO) between cathode and 

shield (c-i-s), and complete breakdown (BD) involving 

breakdown between shield and anode (c-i-s-a).  

Figure 7 shows the still image and discharge waveforms for 

the surface flashover between cathode and shield via insulator 

(c-i-s) (Va = −24.9 kVpeak). In Figure 7a, intense light emission 

near the cathode tip was confirmed and weak light emission 

was observed on the insulator surface between the cathode and 

the shield. As shown in Figure 7b, the surface flashover started 

with EEE at the cathode. Since the surface flashover 

developed toward the shield, the shield potential increased due 

to negative charging. The applied voltage began to decrease 

with the increase in the shield potential, nevertheless the 

discharge channel between the shield and the anode was not 

formed. This may be due to the discharge propagation from the 

charged shield.  

In the case of higher voltage application, the complete BD 

of c-i-s-a occurred. For this pattern, due to the difference in the 

discharge inception between the shield and the anode 

depending on the shield surface condition and its potential, 

three cases (case-1, case-2, and case-3) were found by the 

timing of breakdown occurrence between the shield and the 

anode, as shown in Figures 8-10. 
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(b) Waveforms of applied voltage, shield potential, anode current and light 

intensity 

Figure 7. Still image and discharge waveforms for c-i-s flashover in c-i-

s-a electrode system (g2 = 0.5 mm, Va = −24.9 kVpeak). 
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(b) Waveforms of applied voltage, shield potential, anode current and light 

intensity 

Figure 9. Still image and discharge waveforms for case-2 in c-i-s-a BD 

(g2 = 0.5 mm, Va = −48.1 kVpeak). 

TFO: surface flashover development time from flashover inception between 

cathode and shield to the shield potential increase up to the cathode voltage 

TBD: BD development time i.e. fall time of shield potential  

Vp: voltage peak after surface flashover inception  

Vs: shield potential at BD inception 



 

Figure 8 shows the still image and discharge waveforms for 

case-1 in c-i-s-a BD (Va = −44.7 kVpeak). In Figure 8a, light 

emissions both on the insulator and in the vacuum gap between 

shield and anode were observed. Figure 8b shows the 

discharge waveforms for case-1 in c-i-s-a BD. Before the 

shield potential reached the applied voltage, discharge between 

the shield and the anode occurred. Figure 9 shows case-2 in c-

i-s-a BD. When the shield potential reached the applied 

voltage, discharge between the shield and the anode occurred. 

In case-3 as shown in Figure 10, at 280 ns after the shield 

potential reached the applied voltage, discharge between the 

shield and the anode occurred.  

3.3 DISCUSSION ON DISCHARGE DEVELOPMENT 

CHARACTRISTICS 

 For the above results of two electrode configurations (c-s-i-

a, c-i-s-a) in Figure 2, the discharge can be classified into two 

processes: breakdown in vacuum gap and surface flashover on 

the solid insulator. Here, by comparison with the individual 

discharge process, we discuss the discharge development 

characteristics for breakdown in vacuum gap and surface 

flashover on the solid insulator, respectively.  

3.3.1 Breakdown characteristics in vacuum gap 

Firstly, we focus on the discharge inception between the 

cathode and the shield. Figure 11 shows the potential 

differences between the cathode and the shield at the first PB 

(ΔV1 in Figure 6) and at the PB after flashover inception (ΔV2 

in Figure 6). The error bar represents the maximum and 

minimum values of ΔV1 and ΔV2. Though ΔV1 and ΔV2 have a 

relatively large scattering, a significant or substantial 

difference cannot be found between ΔV1 and ΔV2. Thus, the 

occurrence of discharge between the cathode and the shield 

can be independent of the onset of surface discharge between 

the shield and the anode. 

Next, in order to discuss the discharge development 

characteristics for breakdown in vacuum gap, we defined the 

rise time of shield potential as PB development time TPB as 

shown in Figure 5b, and the fall time of shield potential as BD 

development time TBD in Figure 9b, respectively. Figure 12 

shows TPB at various potential difference ΔV between the 

cathode and the shield in Figure 5b and TBD at various shield 

potential Vs when BD occurred between the shield and the 

anode in Figure 9b. Since both cases mean breakdown in 

vacuum gap with the gap length of 0.5 mm, ΔV and Vs 

represent potential difference in the vacuum gap at breakdown 

inception. The average breakdown development time TPB and 

TBD are 32 ns, irrespective of ΔV and Vs. In these periods, 

cathode plasma can be produced at the cathode or shield 

surface and expand to the anode [9]. The cathode plasma 

expansion velocity is calculated to be in the order of 10
4 

m/s, 
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(b) Waveforms of applied voltage, shield potential, anode current and light 

intensity 

Figure 10. Still image and discharge waveforms for case-3 in c-i-s-a BD 

(g2 = 0.5 mm, Va = −46.4 kVpeak). 
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Figure 11.  Potential difference between cathode and shield for case-2 

in c-s-i-a BD. 
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Figure 12.  Breakdown development time TPB at various potential 

difference ΔV between cathode and shield and TBD at various shield 

potential Vs between shield and anode for vacuum gap discharge at gap 

length of 0.5 mm 
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Figure 13. Breakdown development time characteristics for c-s in c-s-i-a, 

s-a in c-i-s-a, and c-a in rod-rod electrode configuration.  

  



 

which is determined by the electrode material, and 

independent of the potential difference between the cathode 

and the shield, i.e. electric field strength [10, 11]. Figure 13 

shows the breakdown development time for c-s in c-s-i-a, s-a 

in c-i-s-a at the gap length of 0.5 mm, together with our 

preliminary results for c-a in rod-rod electrodes at the gap 

lengths of 0.25-0.75 mm. At a gap length of 0.5 mm, TPB in c-

s-i-a and TBD in c-i-s-a are consistent with the BD development 

time in c-a (rod-rod), which suggests the independence of the 

electrode configuration.  

3.3.2 Surface flashover characteristics 

In our preliminary experiments, we also investigated the 

surface flashover development characteristics on the solid 

insulator for cathode-insulator-anode (c-i-a), and found that 

TFO is proportional to Vp
-2

 based on the electron-stimulated 

outgassing model [12]. According to this model, after surface 

flashover inception, with electron-stimulated outgassing from 

the insulator, the plasma density above the insulator surface 

increases with gaseous ionization, and eventually leads to the 

formation of a conductive channel [13-15]. The electron-

stimulated outgassing can be promoted with higher voltage, 

which makes a shorter TFO. For the parallel plane electrode 

configuration, the electron-stimulated outgassing depends on 

the electric field Ey on the insulator surface perpendicular to 

the insulator which is produced by charge on the insulator 

surface, and TFO is proportional to Ey
-2

 [13]. On the other hand, 

in our electrode configuration, Ey is mainly decided by the 

applied voltage, i.e. Vp. Hence, TFO is proportional to Vp
-2

 also 

in our electrode configuration.  

Here, as shown in Figure 5b, we define the time from the 

flashover inception between s-i to the formation of a 

conductive channel as the surface flashover development time 

TFO. In Figure 9b, we define the time from the flashover 

inception between c-i to the shield potential increase up to the 

cathode voltage as the surface flashover development time TFO. 

In addition, we define the voltage peak after the surface 

flashover inception as Vp. As shown in Figure 14, the surface 

flashover development time TFO for c-s-i-a in Figure 5b and c-

i-s-a in Figure 9b are consistent with the surface flashover for 

c-i-a configuration.  

In summary, for the composite insulation system with 

floating electrode and solid insulator, the composite discharge 

patterns can be regarded as the combination of vacuum gap 

breakdown and surface flashover, whose discharge 

characteristics are consistent with those in the individual 

discharge processes. These results and discussions are 

expected to be useful to understand the discharge patterns and 

path in vacuum interrupters with composite insulation system. 

4  CONCLUSION 

Through the measurement and analysis of discharge 

waveforms (applied voltage, anode current and shield 

potential), we investigated the discharge characteristics of 

composite discharge patterns in vacuum.  

   The main results are summarized as follows: 

(1) In both of the cathode-shield-insulator-anode (c-s-i-a) 

and cathode-insulator-shield-anode (c-i-s-a) electrode 

configurations, discharge waveforms enable us to classify two 

independent discharge patterns: breakdown in vacuum gap and 

surface flashover on the solid insulator.   

(2) For the partial breakdown (PB) between cathode and 

shield in c-s-i-a BD, the occurrence of PB is independent of 

the onset of surface discharge. The PB development time TPB 

does not depend on the potential difference between cathode 

and shield.  

(3) The discharge development characteristics in composite 

discharge patterns are consistent with the individual discharge 

patterns. In the breakdown development process, the 

breakdown development time increases with the increase in the 

gap length. In the surface flashover development process, the 

surface flashover development time is inversely proportional 

to the square of voltage peak Vp after the surface flashover 

inception.        

These discharge characteristics are significant to understand 

the discharge patterns and discharge path when an insulation 

failure occurs in the composite insulation system of vacuum 

interrupters. These results will contribute to the identification 

of the insulation weak points in vacuum interrupters as well as 

contribute to advanced and reliable insulation design of 

vacuum circuit breakers.     
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