
Optimal Control of Continuous and Discrete Time
Systems via Generating Functions

Dissertation

Submitted in partial fulfilment of the requirements

for the degree of Doctor of Philosophy of Nagoya University

by

Dijian Chen

Nagoya University

July 2016



ii



Abstract

Optimal control which deals with the problem of finding a control law for a given system

such that a certain optimality criterion is achieved, is one of the dynamic optimization techniques

popularly used in robotics, computer science, and operations research. There are two major tools

for studying optimal control problems, one is the minimum principle, and the other the dynam-

ic programming. After decades of the development, there have had many other methods for

studying optimally controlled systems, among which the recently proposed generating function

method which exhibits theoretical insights in solving optimal control problems and practical

implication for real world applications attracts increasing attention of the researchers. In theo-

ry, this method thoroughly exploit optimal control problems’ geometric structures, by utilizing

Hamiltonian systems’ characteristics, e.g. canonical transformation, symmetry, symplecticity,

and so on. In practical computation, the method moves a large amount of computational effort

to the off-line part such that it is substantially useful in on-line solutions repetitive generation

for different state boundary conditions.

So far, the generating function method has been studied in existing literature to solve a small

number of problems that there still has a large space for this thesis to develop the related theory

and extend the method for solving other typical problems in continuous and discrete time cases,

including extending the generating function method to solve continuous-time state constrained

problems, developing the double generating functions method for discrete-time LQ optimal con-

trol with numerical stability analysis of the optimal generators, and solving the discrete-time

nonlinear optimal control problems via generating functions.

First, this thesis extends the generating function approach to optimal control problems with

path and terminal state constraints. We design a penalized problem by employing penalties

that can converge to the original constrained problem under a mild condition, and prove that if

such employed penalties satisfy a sufficient condition, the generating function coefficients can

be solved recursively. Based on these two results, generating function method enables us to suc-

cessfully solve the penalized problem instead of the constrained problem to obtain approximate

solutions. Finally, we summarize how to design penalties suitable for the generating function

method and gives the algorithm for different boundary conditions.

Second, this thesis develops the double generating function approach to discrete-time LQ

optimal control problems. This method gives optimal generators only in terms of pre-computed

coefficients and boundary conditions that is useful for the on-line repetitive computation for

different boundary conditions. Moreover, since each generator contains inverse terms, the in-

vertibility analysis is also performed to conclude that the terms in the generators constructed by

double generating functions with opposite time directions are invertible under some mild con-

ditions, while the terms with the same time directions will become singular when the time goes



iv Abstract

infinity which may cause instabilities in numerical computations.

Last, this thesis develops the generating function approach to discrete-time nonlinear opti-

mal control problems. This method gives optimal input analytically as state feedforward control

in terms of the generating function. Since the generating function is nonlinear, we also develop

numerical implementations to find its Taylor series expression in tensor notations. This finally

gives optimal solutions expressed only in terms of the pre-computed generating function coeffi-

cients and state boundary conditions, such that it is useful for the on-demand optimal solutions

generation for different boundary conditions.



Acknowledgement

There are a number of individuals and organizations without whom I would not have made

it to the end of this thesis. I would like to express my sincere thanks to all of them.

Foremost, I would like to express my sincere gratitude to my two great advisors, Professor

Kenji Fujimoto of Kyoto University and Professor Tatsuya Suzuki of Nagoya University. I would

like to thank Professor Kenji Fujimoto for the continuous support of my Ph.D study and research,

for his patience, motivation, enthusiasm, and immense knowledge. His guidance helped me in

all the time of research and writing of this thesis. I could not have imagined having a better

advisor and mentor for my Ph.D study. I would like to thank Professor Tatsuya Suzuki for the

successive support towards the completion of my studies in Nagoya, for his encouragement,

insightful comments, and valuable suggestions. I am truly grateful to them.

I would like to express my sincere thanks to the senior alumni, Dr. Zhiwei Hao, now the

Lecturer of Harbin Institute of Technology, for his concrete guidance in my early research and

help in my daily life.

I would like to express my sincere gratitude to China Scholarship Council for its concrete

sponsorship. I would like to thank Nagoya University, Kyoto University, and Nagoya Interna-

tional Center for providing me comfortable dormitories.

I would like to express my sincere thanks to Associate Professor Shinkichi Inagaki and As-

sistant Professor Hiroyuki Okuda of Nagoya University, especially the former faculty member

Dr. Yuichi Tazaki now the Associate Professor of Kobe University, for their providing conve-

nience in my research and laboratory common issues. I am thankful to all the faculty members

and students of Suzuki laboratory of Nagoya University and Fujimoto laboratory of Kyoto Uni-

versity.

I would like to express my sincere gratitude to Professor Yoji Uno and Associate Professor

Toru Asai of Nagoya University and Professor Noboru Sakamoto of Nanzan University for their

careful review and thoughtful comments on my thesis.

Lastly, I am grateful to my fiancee Yan Zhao and to my parents Baixuan Chen and Yajuan

Mao for their patient and warm encouragement.



vi Acknowledgement



Contents

Abstract iii

Acknowledgement v

1 Introduction 1

1.1 Continuous-time state constrained LQ optimal control . . . . . . . . . . . . . . 3

1.2 Discrete-time LQ optimal control . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Discrete-time nonlinear optimal control . . . . . . . . . . . . . . . . . . . . . 5

1.4 Goals and contributions of the thesis . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Hamiltonian system and generating functions 9

2.1 Continuous-time case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Necessary and sufficient conditions for optimality . . . . . . . . . . . . 11

2.1.2 Hamilton–Jacobi equation and generating function . . . . . . . . . . . 11

2.1.3 Optimal solutions via generating functions . . . . . . . . . . . . . . . 15

2.1.4 Relation between generating function and value function . . . . . . . . 16

2.1.5 LQ optimal control problem . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Discrete-time case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Necessary conditions for optimality . . . . . . . . . . . . . . . . . . . 19

2.2.2 Hamilton–Jacobi equation and generating function . . . . . . . . . . . 20

2.2.3 Relation between generating function and value function . . . . . . . . 24

2.2.4 LQ optimal control problem . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Continuous-time state constrained LQ optimal control problem 27

3.1 Problem conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.1 Constrained problem and its convexity . . . . . . . . . . . . . . . . . . 28

3.1.2 Penalized problem and its convexity . . . . . . . . . . . . . . . . . . . 30

3.1.3 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Generating function method . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 Taylor series solution to Hamilton–Jacobi equation . . . . . . . . . . . 34

3.2.2 Recursive condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Penalty design and generating function based algorithm . . . . . . . . . . . . . 37

3.3.1 Penalty design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37



viii Contents

3.3.2 Algorithm for different boundary conditions . . . . . . . . . . . . . . . 38

3.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.1 Analytic scalar example . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.2 Constrained spacecraft rendezvous . . . . . . . . . . . . . . . . . . . . 42

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Discrete-time LQ optimal control problem 47

4.1 Problem setting and necessary conditions for optimality . . . . . . . . . . . . . 48

4.1.1 Problem setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1.2 Necessary conditions for optimality . . . . . . . . . . . . . . . . . . . 48

4.2 Double generating functions method . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.1 Generating functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.2 Optimal solutions via Double Generating Functions . . . . . . . . . . . 52

4.3 Invertibility Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.1 Properties of Generating Function Coefficients . . . . . . . . . . . . . 54

4.3.2 Invertibility Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 Discrete-time nonlinear optimal control problem 65

5.1 Problem setting and analytical solutions . . . . . . . . . . . . . . . . . . . . . 66

5.1.1 Problem setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1.2 Analytical solutions via generating functions . . . . . . . . . . . . . . 67

5.2 Numerical implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2.1 Taylor series solutions to Hamilton–Jacobi equation . . . . . . . . . . . 67

5.2.2 Algorithm for numerically optimal solutions . . . . . . . . . . . . . . 74

5.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Proof of Theorem 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Proof of Theorem 5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6 Conclusion 87

Bibliography 89

Published papers 95



Chapter 1

Introduction

In mathematics, computer science and operations research, mathematical optimization (al-

ternatively, mathematical programming or simply, optimization) consists of maximization or

minimization of a real function by systematically choosing input values within an allowed set

and computing the value of the function. There are two categories, the static optimization and

dynamic optimization. The static optimization makes choice at a single point of time. The text-

book of S. Boyd [1] provides the fundamental and comprehensive results of this research field.

The dynamic optimization deals with the problem over the time [2, 3, 4, 5]. Optimal control

theory, a mathematical optimization method for deriving control policies, is a special case of the

dynamic optimization. On the other hand, optimal control can also be seen as a control strate-

gy in control theory. There are two major tools for studying optimal control problems. One is

the minimum principle [6], formulated in 1956 by L.S. Pontryagin, is an extension of the vari-

ational principle. The other one is the dynamic programming [7] which was pioneered in the

1950s by R.E. Bellman. After decades of the development, there are many classical textbooks

[8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20] for concluding the basic results of the theory,

and also many new methods/tools [57, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32] for studying

optimally controlled systems. Particularly, since the initial time of optimal control problems is

fixed, then they can be classified into two kinds of problems according to the terminal time. The

one whose terminal time is taken in the limit∞ is called as the infinite horizon optimal control

problem, while the one whose terminal time is also finitely fixed the finite horizon problem.

The former infinite horizon problem is wildly used in industry applications [33]. In this thesis,

we study the latter finite horizon problems which can be well solved by the model predictive

control strategy [34]. However, since model predictive control is based on iteration, it increases

the online computational burden.

According to Pontryagin’s minimum principle, the necessary conditions for optimizing a

dynamic system can be treated as a standard Hamiltonian system with state-costate variables

(two point boundary value problem). The application of Hamiltonian mechanics can thoroughly

exploit optimal control problems’ geometric structures, by utilizing Hamiltonian systems’ char-

acteristics, e.g. canonical transformation, symmetry, symplecticity, and so on. Recently in 2004,

V.M. Guibout [35] proposed a new method by using generating functions also in the framework

of Hamiltonian mechanics to solve the two point boundary value problem for the spacecraft for-

mation. Later, the generating function method was deeply studied by C. Park [36, 37] to exhibit



2 Chapter 1

theoretical insights in solving optimal control problems and practical implication for aerospace

applications. It is presented that the two point boundary value problem can be simply solved by

algebraic manipulations of the generating functions, while exhibiting a method to solve optimal

control problems with various kinds of boundary conditions. Based on this, Z. Hao [38, 39, 40]

used a pair of different generating functions to generate optimal solutions. This method called as

the double generating functions method dramatically reduces the on-line computational effort for

different boundary conditions. Further for nonlinear problems, numerical implementations are

required to obtain approximate generating functions. For this field of research see [41, 42, 43].

There also have generating function related researches inH∞ control [44], receding-horizon con-

trol [45], optimal control problem with parameter variation [46], and so on [47]. These papers

are all about the continuous-time case. For the discrete-time optimal control see [48, 49, 50].

Besides, application of the generating function method see [51, 52, 53, 54, 56].

We will investigate these papers deeply in the following five items.

• Continuous and discrete time problems

There are more existing papers about the continuous-timecase than those about the discrete-

time case. All the papers above except [48, 49, 50] focus on solving the continuous-time

problems, including LQ optimal control problem, nonlinear optimal control problem, nu-

merical techniques of reducing Hamilton–Jacobi equation into ordinary differential equa-

tions for generating function coefficients, and so on. While in the discrete-time case, the

paper [48] developed a discrete analogue of the Hamilton–Jacobi theory in mechanics that

provides an appropriate way to study the discrete-time optimal control problem via gener-

ating fucntions. Based on this, the paper [50] developed the generating function method

for the discrete-time LQ optimal control problem, and applies it to the partitioned hybrid

systems. According to the investigation, there still has a large space for the development

of generating function method in the research field of discrete-time problems.

• Unconstrained and constrained problems

All the existing generating function related research papers above considered unconstrained

problems, none of them took account of inequality path constraints. Other than direct

methods, the generating function method belongs to indirect methods that are not good at

handling inequality path constraints. The reason is that for such methods a priori knowl-

edge of the optimal solution’s structure is required, which is difficult to be attained. Since

the research on constrained optimal control via generating functions is still blank, it is a

research field of significant potentiality.

• Single and double generating function(s) methods

As introduced, the single generating function method [36, 37, 50] uses only one generat-

ing function to give optimal input as state feedback control in terms of generating function

with boundary conditions of the state. Since the generating function can be obtained off-

line, this method performs efficient in on-line solutions generation for different boundary

conditions by integrating the dynamics. In order to further reduce the on-line computa-

tional effort, the double generating functions method [38, 39, 40] is proposed that it uses

a pair of different generating functions to give optimal solutions as algebraic expressions

of generating functions with state boundary conditions. Due to this structure, the method



1.1 Continuous-time state constrained LQ optimal control 3

only needs to perform algebraic manipulations on-line without integrating the dynamics,

such that it is more efficient in the on-line computation. Since such method is only de-

veloped for the continuous-time case, it is worth for researchers to develop the discrete

analogue of the double generating functions method.

• Numerical stability analysis of optimal generators

The optimal generators constructed by single/double generating function(s) method con-

tains inverse terms for both continuous and discrete time cases. If the singularity would

occur at some time steps or periods, it will cause the numerical instabilities. Therefore, the

numerical stability analysis of optimal generators should be preformed to help us select

the numerical stable generators. So far, only the paper [39] has given some preliminary

analysis to show that the developed generators for optimal solutions constructed by double

generating functions with the same time directions will cause instabilities when the time

interval increases. This field of research can be of interest for the researchers.

• Numerical implementations of solving Hamilton–Jacobi equation

For nonlinear problems, since the Hamilton–Jacobi equation is a nonlinear partial dif-

ferential equation, it is difficult to find its analytic solution so that we need numerical

implementations to find its approximate solution. So far, there have had two numeri-

cal implementations utilized for such a purpose. One is the Galerkin spectral technique

with Chebyshev polynomials [41], and the other is the Taylor series expansion technique

[35, 51, 43]. The first technique has the advantage of big region of convergence, but it

also has the disadvantage that it requires the Hamiltonian for the optimal control prob-

lem has a special form and can not achieve the recursiveness for the generating function

coefficients. The second technique has the advantage of recursive properties, but it also

has the disadvantage that it is only applicable to systems that are close to linear systems,

and it is inherently tied to the convergence of a power series for which it is difficult to

estimate the region of convergence. There is a trade-off between these two techniques,

so it is necessary for us to select the appropriate numerical implementation based on the

comprehensive and deep evaluation of the problems.

Based on the above deep investigation, this thesis is interested in extending the generating

function method to solve continuous-time state constrained problems, developing the double

generating functions method for discrete-time LQ optimal control with numerical stability anal-

ysis of the optimal generators, and solving the discrete-time nonlinear optimal control problem

via generating functions.

1.1 Continuous-time state constrained LQ optimal control

There exist two representative optimal control problem formulations, which are character-

ized by the types of terminal boundary conditions. One is called as the Hard Constraint Problem

that in its problem setting the terminal boundary condition for state is pre-specified to a fixed

point, while the other the Soft Constraint Problem that the terminal boundary condition for state

is not pre-specified, but is indirectly affected by minimizing the final time performance index

[36]. In this thesis, we focus on the former Hard Constraint Problem, which is more difficult to



4 Chapter 1

solve than the latter Soft Constraint Problem but definitely common and significant in the engi-

neering fields. Typical applications include the optimal rendezvous problem for the spacecraft

[35, 51, 52, 53], optimal gait generation for the biped walking robot [55, 56], and so on. Many

of conventional techniques work well to solve the Soft Constraint Problem, but are unavailable

for the Hard Constraint Problem. The recent technique called the generating function method

[36, 37] is developed particularly for the Hard Constraint Problem.

The generating function method is one of the indirect methods which solves a two point

boundary value problem indirectly, instead of the original optimal control problem based on

the minimum principle. In the two point boundary value problem, unlike Hamilton’s equations

describing the time evolution of the state-costate, the generating function specifies coordinate

transformations of the state-costate from the boundary conditions. According to this, optimal

input can be given as the state feedback control in terms of the pre-computed coefficients and the

boundary conditions such that it is good at tackling the Hard Constraint Problems. In addition,

since the calculation of the coefficients can be implemented off-line, this method reduces the on-

line burden and is useful in the repetitive computation for a large numbers of different boundary

conditions. This is another advantage of the generating function method. The generating func-

tion method was studied and applied to Hard Constraint Problem first time by the paper [36] that

it proposed a framework for the optimal control by generating functions on the theoretical side.

On the computational side, the key point of the method is to solve the Hamilton–Jacobi equation

for the generating function numerically. Taylor series expansion is the most popular technique for

this purpose. The papers [35, 36] first time used this technique to calculate the generating func-

tion approximately. Further, the paper [43] deeply investigated the Hamilton–Jacobi equation

and presented in detail how to solve it successfully, which also made contributions. However,

all these generating function based methods are for the Hard Constraint Problems without the

general inequality path constraints. This limits the comprehensive application of the generating

function method.

Other than direct methods, the generating function method belongs to indirect methods that

are not good at handling inequality path constraints. The reason is that for such methods a priori

knowledge of the optimal solution’s structure is required [10], which is difficult to be attained.

In order to extend the indirect methods to the inequality constrained problems, the natural idea is

to convert the constrained problem to an unconstrained one such that we can avoid dealing with

constraints. The penalty function (barrier function) which is well developed in the mathematical

optimization [1] is a good candidate. There are many related theories and algorithms available

for optimization problems. However, the application of the penalty technique to optimal control

problems is few. The paper [57] applied an inverse penalty to the Mayer type optimal control

problem with inequality constraints and shows the convergence of the minimum value under

some mild conditions. The paper [58] extended this technique to the Lagrange type problem

with inequality constraints and shows additional convergence of the state and input. The paper

[59] extended the indirect shooting algorithm to the Bolza type problem with input inequality

constraints by utilizing the logarithmic penalties, and proves the convergence for the LQ case

and a specific nonlinear case. However, all these papers are for the Soft Constraint Problems that

can not be readily extended to the generating function method for the Hard Constraint Problems.



1.2 Discrete-time LQ optimal control 5

1.2 Discrete-time LQ optimal control

After years of development, there exist many methods that work well to solve optimal control

problems, e.g. dynamic programming [7], Riccati framework [60], and so on. However, most

of these methods do not pay much attention to the computational effort when dealing with a

large numbers of different boundary conditions which is common in the real applications. For

example, the on-demand control of biped walking robot in the complex environment needs to

adjust the step length and walking speed for each step [55, 56]. The conventional methods have

to implement the whole computation repetitively for each different boundary conditions. This

leads to heavy computational burdens.

Recently, the single generating function method for optimal control problems in continuous-

time case has been proposed [36]. This method gives the optimal input as state feedback control

with explicit pre-computed coefficients and boundary conditions. Such a structure enables us

to calculate coefficients off-line in advance, and to generate optimal solutions by integrating the

system equation on-line. From this viewpoint, it is useful for on-line repetitive computation

of optimal solutions for different boundary conditions. In order to further reduce the on-line

computational effort, the double generating function method was proposed [38, 39]. Compared

with the single method, the double generating functions method gives the optimal solutions as

algebraic equations in terms of pre-computed coefficients and boundary conditions based on a

pair of different generating functions. Hence in the on-line computation, we only need to read

saved coefficients and each set of boundary conditions to generate optimal solutions by algebraic

manipulations without integrating the system equation. This method doubles the off-line work,

but appears more efficient in on-line computation. Moreover, the paper [39] also gave some

preliminary analysis to show that the developed generators for optimal solutions constructed by

double generating functions with the same time directions will cause instabilities when the time

interval increases.

Interesting characteristics of the generating function in continuous-time case also attract re-

searchers to investigate the analogue in discrete-time case. In the field of mechanics, the paper

[48] developed a discrete analogue of Hamilton–Jacobi theory that it provided an appropriate

way to study the discrete-time optimal control problem via generating functions. The papers

[49, 50] developed the single generating function method for the discrete-time LQ optimal con-

trol problem with an application to hybrid system. Though it is similar to the continuous-time

case that the optimal input is also given as state feedback control, but this discrete analogue

[49, 50] has to compute coefficients of two different generating functions off-line and will cause

instabilities since the term needs to be inverted in the developed generator is singular. These two

problems limits the application of the discrete single generating function method.

1.3 Discrete-time nonlinear optimal control

Optimal control deals with the problem of finding a control law for a given system such

that a certain optimality criterion is achieved. After years of development, there exist many

classical methods to solve optimal control problems, e.g. the dynamic programming [7], the

shooting algorithm [61], and so on. However, most of these methods do not pay much attention

to the computational effort when dealing with a number of different boundary conditions which



6 Chapter 1

is common in the real applications. For example, the optimal spacecraft rendezvous with dif-

ferent initial positions [52]. The traditional methods have to implement the whole computation

repetitively for each different boundary position. This leads to heavy computational burdens.

Recently, the generating function method has been proposed for the continuous-time opti-

mal control problems [36, 37]. This method can provide the optimal input analytically as state

feedback control in terms of the boundary conditions. Due to this structure, it is useful for us

to efficiently generate optimal solutions for different boundary conditions. This is the advan-

tage of the generating function method in contrast with conventional methods. Further, for the

analytical solutions given by the generating function method, the key point is to find the cor-

responding generating function which satisfies the Hamilton–Jacobi equation. It is verified for

the LQ case that the related generating function also takes the quadratic form [35]. However for

the general nonlinear cases, it is almost impossible to find the explicit expression of generating

function by solving the nonlinear partial differential Hamilton–Jacobi equation. The numerical

implementations are needed to find its approximate expression. The paper [41] employed the

Galerkin spectral technique with Chebyshev polynomials to solve the Hamilton–Jacobi equation

for the generating functions. However, this technique requires that the Hamiltonian for the opti-

mal control problem has a special form and does not possess the recursiveness. The paper [43]

gave an algorithm via Taylor series expansion with Kronecker product to reduce the nonlinear

partial differential Hamilton–Jacobi equation to ordinary differential equations that allowed one

to solve them recursively for the generating function coefficients. However, this framework us-

ing Kronecker product notation can not well handle the Hamilton–Jacobi equation such that it

can not reduce the Hamilton–Jacobi equation into difference equations for generating function

coefficients.

Interesting characteristics of the generating function method for the continuous-time prob-

lems also attract researchers to investigate the analogue for the discrete-time cases. The paper

[48] developed a discrete analogue of Hamilton–Jacobi theory in the mechanics field provides

an appropriate way to study the discrete-time optimal control problem via generating functions.

Based on this, The papers [49, 50] developed the generating function method for the discrete-

time LQ optimal control problem, and applied it to the partitioned hybrid systems. For the

research on discrete-time nonlinear optimal control via generating functions, it is still blank.

1.4 Goals and contributions of the thesis

This thesis has three main contributions in extending the generating function method to solve

continuous-time state constrained problems, developing the double generating functions method

for discrete-time LQ optimal control with numerical stability analysis of the optimal generators,

and solving the discrete-time nonlinear optimal control problem via generating functions. They

are stated in detail in the following.

Firstly, this thesis extends the generating function method to the Hard Constraint Problem

with inequality path constraints, i.e. the classical path and terminal state constrained optimal

control problem [10]. First, we formulate and design the constrained problem and the penalized

Hard Constraint Problem respectively, show their convex properties, and further exhibit the con-

vergence of the minimum cost function value and optimal solutions between these two problems

under a mild condition. Second, due to the technique of Taylor series expansion, the partial



1.4 Goals and contributions of the thesis 7

differential Hamilton–Jacobi equation is reduced to ordinary differential equations for the gen-

erating function coefficients. We give the recursive condition to eliminate the coupling relations

between the coefficients with lower and higher indices in these ordinary differential equations so

that they can be solved recursively. This guarantees the penalized Hard Constraint Problem can

be successfully solved by the generating function method. Based on this, we summarize how

to design penalties which is suitable for the generating function method, and gives an algorithm

presents how to generate optimal solutions repetitively for different boundary conditions.

Secondly, this thesis develops the discrete analogue of double generating function method.

To clearly present the fundamental feature of this method and to make it convenient for further

extension to the nonlinear problems, this thesis investigates the classical discrete-time LQ opti-

mal control problem. First, we derive the left discrete Hamiltonian, Hamilton’s equations, and

the Hamilton–Jacobi equation for the LQ optimal control problem which is a counterpart to the

right ones in the references [49, 50] according to discrete mechanics [48]. Second, we choose

appropriate Hamilton–Jacobi equation, left or right, to solve for the forward type II, III, and

backward type III generating functions†. Then by selecting any two different generating func-

tions from the four single ones, we can construct six double generating functions which give six

generators for optimal solutions, respectively. These discrete generators maintain the advantage

of on-line efficient computation for different boundary conditions, which is presented by a fol-

lowed algorithm. Besides, since each generator contains inverse terms, we deeply perform the

numerical stability analysis to conclude that the terms in the generators constructed by double

generating functions with opposite time directions are invertible under some mild conditions,

while the terms with the same time directions will become singular when the time goes infinity

which may cause instability in numerical computations.

Thirdly, this thesis develops the generating function method for the general discrete-time

nonlinear optimal control problems. First, we give the analytically optimal solutions, which is

expressed as the state feedforward control in terms of the generating functions. Then in the nu-

merical implementations, we systematically perform three steps to solve the Hamilton–Jacobi

equation for the generating functions. In detail, we expand all the nonlinear functions in the

Hamilton–Jacobi equation as Taylor series about zeros in tensor notations such that they can

clearly present the detailed structure of the Hamilton–Jacobi equation later during the reduction.

Based on this, we again employ the Taylor series technique to successfully replace one variable

by the other two in the Hamilton–Jacobi equation to rewrite it by the addressed theorem in the

thesis. Due to this step, we achieve our objective that the Hamilton–Jacobi equation is reduced

to the difference equations for the generating function coefficients, and they can be solved re-

cursively with respect to the order of the Taylor series. The developed numerical framework

can give the optimal solutions in terms of the pre-computed generating function coefficients and

boundary conditions, such that we can divide the whole computation into two parts, the off-line

part calculates the coefficients in advance, and the on-line part efficiently generates optimal so-

lutions for different boundary conditions. From this viewpoint, it is useful for the on-demand

optimal solutions generation for different boundary conditions.

†Basically, there exist four types of generating functions, type I, II, III, and IV, and each type also has two kinds,

forward and backward [36, 39].



8 Chapter 1

1.5 Organization of the thesis

Chapter 2 introduces preliminaries of the Hamiltonian system and the generating functions.

For the continuous and discrete time optimal control problems, we give necessary and sufficient

(only for continuous-time case) conditions for optimality, derive Hamilton–Jacobi equations and

generating functions, provide optimal solutions (only for continuous-timecase), present relations

between the generating function and the value function, and exhibit the LQ cases.

Chapter 3 studies the continuous-time state constrained optimal control problem via gener-

ating functions. It first formulates the original and penalized problems and exhibits their convex

and convergent properties, then introduces the generating function approach, shows the recur-

sive condition that enables us numerically solve the Hamilton–Jacobi equation, and gives the

design principle of the penalty and the algorithm for different boundary conditions. At last, two

examples are presented to illustrate the effectiveness of the developed method.

Chapter 4 studies the discrete-time LQ optimal control problem via double generating func-

tions. It first formulates the discrete-time LQ optimal control problem and introduces the nec-

essary conditions for optimality. Based on this, it derives the forward and backward generating

functions, and develops generators for optimal solutions. Furthermore, it also performs the nu-

merical stability analysis. At last, two examples are presented to illustrate the effectiveness of

the developed method.

Chapter 5 studies the discrete-time nonlinear optimal control problem via generating func-

tions. It first formulates the discrete-time nonlinear optimal control problem and derives the

analytically optimal solutions via the generating function. Then, it addresses the Taylor series

based numerical implementations to give numerical generating functions and optimal solutions.

At last, two examples are presented to illustrate the effectiveness of the developed method.

Chapter 6 presents a brief conclusion of the research carried out in this thesis. This is fol-

lowed by summarizing remarks and suggestions for the future research.



Chapter 2

Hamiltonian system and

generating functions

According to Pontryagin’s minimum principle, the necessary conditions for optimizing a dy-

namic system can be considered as a standard Hamiltonian system for the state-costate variables.

This method thoroughly exploits optimal control problems’ geometric structures, by utilizing

Hamiltonian systems’ characteristics, e.g. canonical transformation, symmetry, symplecticity,

and so on [70].

In Hamiltonian system, the generating function satisfying Hamilton–Jacobi equation spec-

ifies a family of canonical transformations from boundary state-costate to current state-costate

that describe the dynamics of state-costate defined by Hamilton’s equations [48]. This recent

developed generating function framework [35, 51, 36, 52, 37, 41, 39, 48, 50] exhibits theoret-

ical insights and practical implication in solving continuous and discrete time optimal control

problems by using generating functions.

In order to enrich and develop the generating function method, we introduce the prelimi-

naries of Hamiltonian system and generating functions in this chapter. Particularly, Section 2.1

introduces the continuous-time case, where we formulate the continuous-time optimal control

problem, give the necessary and sufficient conditions for optimality in Section 2.1.1 by referring

to the lecture note of B. Chachuat [62]. Based on this, in Section 2.1.2, we derive the Hamilton–

Jacobi equation and generating function via coordinate transformations in the Hamiltonian sys-

tem by referring to H. Goldstein’s classical textbook [63]. In Section 2.1.3, we give optimal

solutions via both single generating function method by C. Park [36] and double generating

functions method by Z. Hao [40]. Though the generating function is derived under Pontryagin’s

minimum principle, it should has relations with the value function which is central to the dy-

namic programming that is another major tool for studying optimally controlled systems. This

is introduced in Section 2.1.4 by referring to the work of C. Park [36]. Finally in Section 2.1.5,

we introduce the LQ case which can clearly exhibit the feature and advantage of the generating

function method by referring to the work of Z. Hao [39].

Section 2.2 introduces the discrete-time case. Compared with the continuous-time case,

there is fewer literature that concentrates on the discrete-time field though it possesses unique

theoretical significance. First in Section 2.2.1, we give the necessary conditions for optimizing

the formulated discrete-time optimal control problem by referring to the work of T. Ohsawa



10 Chapter 2

[48]. Similarly in Section 2.2.2, we derive the discrete Hamilton–Jacobi equation and generating

function by referring to the work of T. Lee [50]. For the relation with the value function, we

ourself prove the related theorem in 2.2.3 to make the discrete-time part complete. Finally in

Section 2.2.4, we also introduce the discrete-time LQ case by referring to the work of T. Lee

[50].

2.1 Continuous-time case

Consider the following continuous-time optimal control problem.

Problem 2.1.

min
u

∫ tf

t0

(

Q (x(t)) +
1

2
u(t)TR (x(t)) u(t)

)

dt (2.1)

s.t. ẋ(t) = A (x(t)) +B (x(t)) u(t), t ∈ [t0, tf ] (2.2)

x(t0) = xinit, x(tf) = xterm (2.3)

where “s.t.” is the abbreviation of the phrase “subject to”, x ∈ R
n and u ∈ R

m are the state and

input variables, respectively. The functions Q : Rn → R, R : Rn → R
m × R

m, A : Rn → R
n,

and B : Rn → R
n×Rm. Moreover, the function Q < 0†, and the matrix R(x) ≻ 0, ∀x ∈ R

n. In

addition, all the functions Q, R, A, and B are continuous in x and have continuous first partial

derivatives with respect to x, ∀x ∈ R
n. In (2.3), xinit ∈ R

n and xterm ∈ R
n are the given initial

and terminal state values, respectively.

Problem 2.1 is a Hard Constraint Problem‡, and the associated pre-Hamiltonian H̄ : Rn ×
R

n × R
m → R is given by adjoining the right hand side of the differential equation in (2.2) to

the cost integrand in (2.1) as

H̄(x, λ, u) : =
(

Q(x) +
1

2
uTR(x)u

)

+ λT

(

A(x) +B(x)u
)

(2.4)

where λ ∈ R
n is introduced as the costate. We denote the optimal state, costate, and input of

Problem 2.1 as x∗, λ∗, and u∗, respectively.

For Problem 2.1, we make the following assumption.

Assumption 2.1. Assume that in Problem 2.1, both the functions Q and R are (strictly) jointly

convex in x, ∀x ∈ R
n. Moreover, either the condition “A and B are (strictly) jointly convex

in x, ∀x ∈ R
n, and λ∗(t) > 0, ∀t ∈ [t0, tf ]” or the condition “A and B are (strictly) jointly

concave in x, ∀x ∈ R
n, and λ∗(t) 6 0, ∀t ∈ [t0, tf ]” holds.

†The positive semi-definiteness of the function Q implies that Q(0) = 0 and Q(x) > 0 for every non-zero

x ∈ R
n.

‡Other than the conventional Soft Constraint Problem where x(tf) is not prescribed but indirectly affected by

minimizing the terminal cost, Problem 2.1 is called as the Hard Constraint Problem where the terminal state is

prescribed.



2.1 Continuous-time case 11

2.1.1 Necessary and sufficient conditions for optimality

The first-order necessary conditions for minimizing Problem 2.1 can be derived by the min-

imum principle which was formulated by the Russian mathematician L.S. Pontryagin in 1956.

This is presented in the following theorem.

Theorem 2.1 ([62]). For Problem 2.1, there is a vector function λ∗ of class C1 such that the

triple (x∗, λ∗, u∗), where x∗ is of class C1 and u∗ is of class C0, satisfies (t ∈ [t0, tf ])

ẋ =
∂H̄(x, λ, u)

∂λ
, x(t0) = xinit, x(tf) = xterm (2.5)

λ̇ = −
∂H̄(x, λ, u)

∂x
(2.6)

u = argmin
ū

H̄(x, λ, ū) ≡ −R(x)−1B(x)Tλ. (2.7)

Note that the optimal input in (2.7) given by the necessary conditions is the local minimizer

of Problem 2.1. Substitution of (2.7) into the pre-Hamiltonian (2.4) and the Hamilton’s equations

(2.5)–(2.6) gives the Hamiltonian system for the state and costate

H(x, λ) = Q(x) + λTA(x)−
1

2
λTB(x)R(x)−1B(x)Tλ (2.8)

ẋ =
∂H(x, λ)

∂λ
(2.9)

λ̇ = −
∂H(x, λ)

∂x
. (2.10)

Further, we expect to determine the global minimizer that achieves the global minimum

cost function value, not only the local minimizer that gives the local minima. Conditions under

which the necessary conditions are also sufficient for minimizing Problem 2.1 is presented in

the following theorem (called as Mangasarian sufficient conditions).

Theorem 2.2 ([62]). Under Assumption 2.1, for Problem 2.1, if there is a vector function λ∗ of

class C1 such that the triple (x∗, λ∗, u∗), where x∗ is of class C1 and u∗ is of class C0, satisfies

(2.5)–(2.7), then u∗ is a (strict) global minimizer of Problem 2.1.

As is presented, Theorem 2.2 requires the convexity or concavity of the functions in Problem

2.1 and also the sign of the optimal costate (Assumption 2.1).

2.1.2 Hamilton–Jacobi equation and generating function

In the Hamiltonian system (2.8)–(2.10), the state x and the costate λ are the canonical co-

ordinates [63]. Now, consider the new canonical coordinates x̂ ∈ R
n and λ̂ ∈ R

n governed by

the new Hamiltonian Ĥ : Rn × R
n → R. For the old and new Hamiltonians, there exists the

following relation to connect them

λTẋ−H(x, λ) = λ̂T ˙̂x− Ĥ(x̂, λ̂) +
dF

dt
(2.11)



12 Chapter 2

where F : Rn × R
n × [t0, tf ] → R is the generating function. By selecting one variable from

the old coordinates and the other the new coordinates, there mainly have four kinds of gener-

ating functions F1(x, x̂, t), F2(x, λ̂, t), F3(λ, x̂, t), and F4(λ, λ̂, t). Here, we are only interested

in the constant new coordinates, e.g. (x(t0), λ(t0)) and (x(tf), λ(tf)), that lead to zero Hamil-

tonian Ĥ = 0. We call those with initial coordinate variables as forward generating functions

(with “f” in the subscript), while terminal coordinate variables backward generating functions

(with “b” in the subscript). In view of this, there totally have eight different kinds of generat-

ing functions F1f(x, x(t0), t), F2f(x, λ(t0), t), F3f(λ, x(t0), t), F4f(λ, λ(t0), t), F1b(x, x(tf), t),
F2b(x, λ(tf), t), F3b(λ, x(tf), t), and F4b(λ, λ(tf), t). There exist Legendre transformations [36]

between forward generating functions

F1f(x, x(t0), t) = F2f(x, λ(t0), t)− λ(t0)
Tx(t0) (2.12)

F1f(x, x(t0), t) = F3f(λ, x(t0), t) + λTx (2.13)

F1f(x, x(t0), t) = F4f(λ, λ(t0), t) + λTx− λ(t0)
Tx(t0) (2.14)

and between backward generating functions

F1b(x, x(tf), t) = F2b(x, λ(tf), t)− λ(tf)
Tx(tf) (2.15)

F1b(x, x(tf), t) = F3b(λ, x(tf), t) + λTx (2.16)

F1b(x, x(tf), t) = F4b(λ, λ(tf), t) + λTx− λ(tf)
Tx(tf). (2.17)

By substituting generating function into (2.11), we can get basic relations and Hamilton–

Jacobi equations for the eight kinds of generating functions. This is presented in the following

proposition.

Proposition 2.1 ([36, 40]). For Problem 2.1

(i) The generating function F1f(x, x(t0), t) satisfying the Hamilton–Jacobi equation

∂F1f(x, x(t0), t)

∂t
+H

(

x,
∂F1f(x, x(t0), t)

∂x

)

= 0 (2.18)

specifies the family of forward canonical transformations (x(t0), λ(t0)) 7→ (x(t), λ(t)),
t ∈ [t0, tf ], by the basic relations

λ =
∂F1f(x, x(t0), t)

∂x
(2.19)

λ(t0) = −
∂F1f(x, x(t0), t)

∂x(t0)
. (2.20)

(ii) The generating function F2f(x, λ(t0), t) satisfying the Hamilton–Jacobi equation

∂F2f(x, λ(t0), t)

∂t
+H

(

x,
∂F2f(x, λ(t0), t)

∂x

)

= 0 (2.21)

specifies the family of forward canonical transformations (x(t0), λ(t0)) 7→ (x(t), λ(t)),
t ∈ [t0, tf ], by the basic relations

λ =
∂F2f(x, λ(t0), t)

∂x
(2.22)



2.1 Continuous-time case 13

x(t0) =
∂F2f(x, λ(t0), t)

∂λ(t0)
. (2.23)

(iii) The generating function F3f(λ, x(t0), t) satisfying the Hamilton–Jacobi equation

∂F3f (λ, x(t0), t)

∂t
+H

(

−
∂F3f(λ, x(t0), t)

∂λ
, λ

)

= 0 (2.24)

specifies the family of forward canonical transformations (x(t0), λ(t0)) 7→ (x(t), λ(t)),
t ∈ [t0, tf ], by the basic relations

x = −
∂F3f (λ, x(t0), t)

∂λ
(2.25)

λ(t0) = −
∂F3f (λ, x(t0), t)

∂x(t0)
. (2.26)

(iv) The generating function F4f(λ, λ(t0), t) satisfying the Hamilton–Jacobi equation

∂F4f(λ, λ(t0), t)

∂t
+H

(

−
∂F4f(λ, λ(t0), t)

∂λ
, λ

)

= 0 (2.27)

specifies the family of forward canonical transformations (x(t0), λ(t0)) 7→ (x(t), λ(t)),
t ∈ [t0, tf ], by the basic relations

x = −
∂F4f (λ, λ(t0), t)

∂λ
(2.28)

x(t0) =
∂F4f (λ, λ(t0), t)

∂λ(t0)
. (2.29)

(v) The generating function F1b(x, x(tf), t) satisfying the Hamilton–Jacobi equation

∂F1b(x, x(tf), t)

∂t
+H

(

x,
∂F1b(x, x(tf), t)

∂x

)

= 0 (2.30)

specifies the family of backward canonical transformations (x(tf), λ(tf)) 7→ (x(t), λ(t)),
t ∈ [t0, tf ], by the basic relations

λ =
∂F1b(x, x(tf), t)

∂x
(2.31)

λ(tf) = −
∂F1b(x, x(tf), t)

∂x(tf )
. (2.32)

(vi) The generating function F2b(x, λ(tf), t) satisfying the Hamilton–Jacobi equation

∂F2b(x, λ(tf), t)

∂t
+H

(

x,
∂F2b(x, λ(tf), t)

∂x

)

= 0 (2.33)



14 Chapter 2

specifies the family of backward canonical transformations (x(tf), λ(tf)) 7→ (x(t), λ(t)),
t ∈ [t0, tf ], by the basic relations

λ =
∂F2b(x, λ(tf), t)

∂x
(2.34)

x(tf) =
∂F2b(x, λ(tf), t)

∂λ(tf)
. (2.35)

(vii) The generating function F3b(λ, x(tf), t) satisfying the Hamilton–Jacobi equation

∂F3b(λ, x(tf), t)

∂t
+H

(

−
∂F3b(λ, x(tf), t)

∂λ
, λ

)

= 0 (2.36)

specifies the family of backward canonical transformations (x(tf), λ(tf)) 7→ (x(t), λ(t)),
t ∈ [t0, tf ], by the basic relations

x = −
∂F3b(λ, x(tf), t)

∂λ
(2.37)

λ(tf) = −
∂F3b(λ, x(tf), t)

∂x(tf)
. (2.38)

(viii) The generating function F4b(λ, λ(tf), t) satisfying the Hamilton–Jacobi equation

∂F4b(λ, λ(tf), t)

∂t
+H

(

−
∂F4b(λ, λ(tf), t)

∂λ
, λ

)

= 0 (2.39)

specifies the family of backward canonical transformations (x(tf), λ(tf)) 7→ (x(t), λ(t)),
t ∈ [t0, tf ], by the basic relations

x = −
∂F4b(λ, λ(tf), t)

∂λ
(2.40)

x(tf) =
∂F4b(λ, λ(tf), t)

∂λ(tf)
. (2.41)

Remark 2.1. The forward canonical transformation (x(t0), λ(t0)) 7→ (x(t), λ(t)) at initial time

t = t0 is the identity transformation (x(t0), λ(t0)) 7→ (x(t0), λ(t0)). It is clear from Propo-

sition 2.1 that such identity transformation can be specified by the relations (2.22)–(2.23) of

F2f , or the relations (2.25)–(2.26) of F3f . However, it can neither be specified by the relations

(2.19)–(2.20) of F1f , nor be specified by the relations (2.28)–(2.29) of F4f . This implies the

functions F2f and F3f are well-defined at initial time, while F1f and F4f are not well-defined

at initial time. Similar for the backward generating functions, F2b and F3b are well-defined at

terminal time, while F1b and F4b are not well-defined at terminal time. In summary, we have

F2f(x, λ(t0), t)|t=t0 = λ(t0)
Tx(t0), F3f(λ, x(t0), t)|t=t0 = −λ(t0)Tx(t0), F2b(x, λ(tf), t)|t=tf =

λ(tf)
Tx(tf), and F3b(λ, x(tf), t)|t=tf = −λ(tf)

Tx(tf).



2.1 Continuous-time case 15

2.1.3 Optimal solutions via generating functions

As stated in Remark 2.1, the four generating functionsF2f , F3f , F2b, andF3b are well-defined†

such that each of them can be employed to generate optimal solutions of Problem 2.1. Here, we

only set the example of using F2b (the others are similar), which is presented in the following

theorem. Since only one generating function is used, we call the method as single generating

function method.

Theorem 2.3 ([36]). The optimal input of Problem 2.1 is given as the state feedback control

u∗(t) = −R(x)−1B(x)T
∂F2b(x, λ(tf), t)

∂x
, t ∈ [t0, tf ] (2.42)

where the terminal costate λ(tf) is determined by solving the following equation

x(tf) =
∂F2b(x, λ(tf), t)

∂λ(tf)

∣
∣
∣
∣
t=t0

. (2.43)

In Theorem 2.3, if we can find the explicit expression of the generating function, we readily

get the optimal input by (2.42). Since the Hamilton–Jacobi equation (2.33) is a nonlinear partial

differential equation, it is difficult to get its analytic solution, i.e. the analytic generating function,

so that we need the numerical implementations to get its approximate solution, for example the

Galerkin spectral technique, the Taylor series expansion technique, and so on. For the details

see [41, 43].

Further, a method using a pair of different generating functions (double generating functions

method) is proposed in [40] to generate optimal solutions. This is presented in the following

theorem (using the pair of F3f and F3b).

Theorem 2.4 ([40]). The optimal state and input of Problem 2.1 are given as

x∗ = −
∂F3f(λ, x(t0), t)

∂λ

∣
∣
∣
∣
λ=λ∗

or −
∂F3b(λ, x(tf), t)

∂λ

∣
∣
∣
∣
λ=λ∗

(2.44)

u∗ = −R(x∗)−1B(x∗)Tλ∗ (2.45)

respectively, where λ∗ is the solution of the following equation

∂

∂x
(F3f(λ, x(t0), t)− F3b(λ, x(tf), t)) = 0. (2.46)

Unlike the single generating function method presented in Theorem 2.3, the double gen-

erating functions method in Theorem 2.4 gives optimal input in terms of generating functions

with state boundary conditions algebraically. This is useful for numerical computations. For the

details see [40].

†The first and fourth kinds of generating functions can also be used to generate optimal solutions, prior to

which they have to be obtained via Legendre transformations [36] from other well-defined generating functions as

introduced in Chapter 2. This is relatively complicated, hence for the sake of convenience, we here only consider

the well-defined generating functions.



16 Chapter 2

2.1.4 Relation between generating function and value function

There are two major tools for studying optimally controlled systems. Besides the Pontrya-

gin’s minimum principle introduced in Section 2.1.1, the other one is the dynamic programming

which was pioneered in the 1950s by R.E. Bellman.

The Hamilton–Jacobi–Bellman equation

∂V (x, t)

∂t
= −min

u

((

Q(x) +
1

2
uTR(x)u

)

+
∂V (x, t)

∂x

T(

A(x) +B(x)u
))

(2.47)

is a partial differential equation that is central to the dynamic programming. Here, the solution

V (x, t) : = min
u[t,tf ]

∫ tf

t

(

Q (x(τ)) +
1

2
u(τ)TR (x(τ)) u(τ)

)

dτ (2.48)

is called as the value function, where the notation u[t,tf ] indicates that the control u is restrict-

ed to the interval [t, tf ]. The Hamilton–Jacobi–Bellman equation is a necessary and sufficient

condition for the optimality when it is solved over the whole state space [18].

Though we introduce the generating function based on the Hamiltonian system via the Pon-

tryagin’s minimum principle, it should also have connections with the value function. This is

presented in the following theorem.

Theorem 2.5 ([36]). For Problem 2.1, the relation between the value function and the generating

function is†

V (x, t) = F1b(x, x(tf), t) (2.49)

where the value function V (x, t) satisfies the Hamilton–Jacobi–Bellman equation (2.47) (∀t ∈
[t0, tf) and ∀x ∈ R

n) and the terminal condition V (x, t)|t=tf = 0 on x(tf) = xterm.

Remark 2.2. According to the Legendre transformation (2.15), the relation (2.49) in Theorem

2.5 can be rewritten as

V (x, t) = F2b(x, λ(tf), t)− λ(tf)
Tx(tf). (2.50)

At time t = tf , we have V (x, t)|t=tf = (F2b(x, λ(tf), t) − λ(tf)
Tx(tf))|t=tf = 0 (according to

Remark 2.1) which verifies the terminal condition presented in Theorem 2.5.

2.1.5 LQ optimal control problem

If we reduce Problem 2.1 into the LQ case, it can clearly exhibit the feature and advantage

of the generating function method. This will be exhibited in this subsection.

First, consider the following continuous-time LQ optimal control problem.

†The generating function here is defined as F1b(x, x(tf ), t) : =
∫ tf

t
(H(x(τ), λ(τ)) − λ(τ)Tx(τ))dτ , while

in [36], the generating function is defined as F1b(x, x(tf ), t) : = −
∫ tf

t
(H(x(τ), λ(τ)) − λ(τ)Tx(τ))dτ , so the

relation here is negative to the original version.



2.1 Continuous-time case 17

Problem 2.2.

min
u

∫ tf

t0

1

2

(
x(t)TQx(t) + u(t)TRu(t)

)
dt (2.51)

s.t. ẋ(t) = Ax(t) +Bu(t), t ∈ [t0, tf ] (2.52)

x(t0) = xinit, x(tf) = xterm (2.53)

where the constant matrices Q ∈ R
n×n, R ∈ R

m×m, A ∈ R
n×n, and B ∈ R

n×m. Moreover, the

matrices Q < 0 and R ≻ 0.

For the LQ case, we can get the exact expressions of the generating functions by solving the

corresponding Hamilton–Jacobi equations. This is presented in the following proposition (only

well-defined generating functions F2f , F3f , F2b, and F3b).

Proposition 2.2 ([39, 38]). For Problem 2.2

(i) The generating function F2f(x, λ(t0), t) has the expression of

F2f(x, λ(t0), t) =
1

2
xT

U2f(t)x+ λ(t0)
T
V2f(t)x+

1

2
λ(t0)

T
W2f(t)λ(t0) (2.54)

where the time-varying coefficients U2f(t) = U2f(t)
T ∈ R

n×n, V2f(t) ∈ R
n×n, and

W2f(t) = W2f(t)
T ∈ R

n×n are the solutions of the ordinary differential equations (t ∈
[t0, tf ])

U̇2f(t) = −U2f(t)
TA−AT

U2f(t) + U2f(t)
TGU2f(t)−Q (2.55)

˙V2f(t) = V2f(t)GU2f(t)− V2f(t)A (2.56)

Ẇ2f(t) = V2f(t)GV2f(t)
T (2.57)

with boundary conditions U2f(t0) = 0, V2f(t0) = I , and W2f(t0) = 0.

(ii) The generating function F3f(λ, x(t0), t) has the expression of

F3f(λ, x(t0), t) =
1

2
λT

U3f(t)λ+ x(t0)
T
V3f(t)λ+

1

2
x(t0)

T
W3f(t)x(t0) (2.58)

where the time-varying coefficients U3f(t) = U3f(t)
T ∈ R

n×n, V3f(t) ∈ R
n×n, and

W3f(t) = W3f(t)
T ∈ R

n×n are the solutions of the ordinary differential equations (t ∈
[t0, tf ])

U̇3f(t) = AU3f(t)−U3f(t)
TAT −U3f(t)

TQU3f(t) +G (2.59)

˙V3f(t) = −V3f(t)QU3f(t) + V3f(t)A
T (2.60)

Ẇ3f(t) = −V3f(t)QV3f(t)
T (2.61)

with boundary conditions U3f(t0) = 0, V3f(t0) = −I , and W3f(t0) = 0.



18 Chapter 2

(iii) The generating function F2b(x, λ(tf), t) has the expression of

F2b(x, λ(tf), t) =
1

2
xT

U2b(t)x+ λ(tf)
T
V2b(t)x+

1

2
λ(tf)

T
W2b(t)λ(tf) (2.62)

where the time-varying coefficients U2b(t) = U2b(t)
T ∈ R

n×n, V2b(t) ∈ R
n×n, and

W2b(t) = W2b(t)
T ∈ R

n×n are the solutions of the ordinary differential equations (t ∈
[t0, tf ])

U̇2b(t) = −U2b(t)
TA− AT

U2b(t) + U2b(t)
TGU2b(t)−Q (2.63)

˙V2b(t) = V2b(t)GU2b(t)− V2b(t)A (2.64)

Ẇ2b(t) = V2b(t)GV2b(t)
T (2.65)

with boundary conditions U2b(tf) = 0, V2b(tf) = I , and W2b(tf) = 0.

(iv) The generating function F3b(λ, x(tf), t) has the expression of

F3b(λ, x(tf), t) =
1

2
λT

U3b(t)λ+ x(tf)
T
V3b(t)λ+

1

2
x(tf)

T
W3b(t)x(tf) (2.66)

where the time-varying coefficients U3b(t) = U3b(t)
T ∈ R

n×n, V3b(t) ∈ R
n×n, and

W3b(t) = W3b(t)
T ∈ R

n×n are the solutions of the ordinary differential equations (t ∈
[t0, tf ])

U̇3b(t) = AU3b(t)−U3b(t)
TAT −U3b(t)

TQU3b(t) +G (2.67)

˙V3b(t) = −V3b(t)QU3b(t) + V3b(t)A
T (2.68)

Ẇ3b(t) = −V3b(t)QV3b(t)
T (2.69)

with boundary conditions U3b(tf) = 0, V3b(tf) = −I , and W3b(tf) = 0.

Here, G : = BR−1BT and I ∈ R
n×n is the identity matrix.

Remark 2.3. By substituting (2.62) into Theorem 2.3, we get the optimal solutions of Problem

2.2 by single generating function method [36] as

u∗(t) = −R−1BT
(
U2b(t)x+ V2b(t)

Tλ(tf)
)
, t ∈ [t0, tf ] (2.70)

where

λ(tf) = W2b(t0)
−1 (x(tf)− V2b(t0)x(t0)) . (2.71)

Remark 2.4. By substituting (2.58) and (2.66) into Theorem 2.4, we get the optimal solutions

of Problem 2.2 by double generating functions method [39] as

[
x∗(t)
u∗(t)

]

=

[
U3b(t) (U3f(t)−U3b(t))

−1
V3f(t)

T,

R−1BT (U3f(t)−U3b(t))
−1

V3f(t)
T,

−U3f(t) (U3f(t)−U3b(t))
−1

V3b(t)
T

−R−1BT (U3f(t)−U3b(t))
−1

V3b(t)
T

] [
x(t0)
x(tf)

]

, t ∈ [t0, tf ] (2.72)



2.2 Discrete-time case 19

Remark 2.5. Notice the inverse term (U3f(t) − U3b(t))
−1 in (2.72). It is necessary for us to

analyze its invertibility. Besides (2.72), there have another five generators for optimal solutions

constructed by selecting each two different generating functions among F2f , F3f , F2b, and F3b.

It is proven in [38] that the terms in the generators constructed by double generating functions

with same time directions will become singular when the time goes infinity which may cause

instability in numerical computations. Therefore, when we select optimal generators, the ones

constructed by the pair of generating functions with same time direction should be avoided.

2.2 Discrete-time case

Consider the following discrete-time optimal control problem.

Problem 2.3.

min
u

N−1∑

k=0

(

Q(xk) +
1

2
uT

kR(xk)uk

)

(2.73)

s.t. xk+1 = A(xk) +B(xk)uk, k = 0, 1, · · · , N − 1 (2.74)

x0 = xinit, xN = xterm (2.75)

where k is the time step, xk ∈ R
n and uk ∈ R

m are the state and input variables, respectively.

Functions Q : Rn → R, R : Rn → R
m×m, A : Rn → R

n, and B : Rn → R
n×m. Moreover, the

function Q < 0, and the matrix R(xk) ≻ 0, ∀xk ∈ R
n. In (2.75), xinit ∈ R

n and xterm ∈ R
n are

the given initial and terminal state values, respectively.

2.2.1 Necessary conditions for optimality

As introduced in [48], the first-order necessary conditions for minimizing Problem 2.3 can

be represented by the right Hamiltonian or the left Hamiltonian.

We first introduce the right one which is more general. The right pre-Hamiltonian H̄+ : Rn×
R

n × R
m → R is given by adjoining the right hand side of the difference equation in (2.74) to

the cost in (2.73) as

H̄+(xk, λk+1, uk) : =
(

Q(xk) +
1

2
uT

kR(xk)uk

)

+ λT

k+1

(

A(xk) +B(xk)uk

)

(2.76)

where λk+1 ∈ R
n is introduced as the costate. We denote the optimal state, costate, and input of

Problem 2.3 as x∗
k, λ

∗
k, and u∗

k, respectively.

Now, we give the first-order necessary conditions represented by the right Hamiltonian.

Theorem 2.6 ([48]). For Problem 2.3, there is a vector functionλ∗
k such that the triple (x∗

k, λ
∗
k, u

∗
k)

satisfies (k = 0, 1, · · · , N − 1)

xk+1 =
∂H̄+(xk, λk+1, uk)

∂λk+1
, x0 = xinit, xN = xterm (2.77)

λk =
∂H̄+(xk, λk+1, uk)

∂xk

(2.78)



20 Chapter 2

uk = argmin
ūk

H̄+(xk, λk+1, ūk) ≡ −R(xk)
−1B(xk)

Tλk+1. (2.79)

Substitution of (2.79) into the right pre-Hamiltonian (2.76) and the Hamilton’s equations

(2.77)–(2.78) gives the right Hamiltonian system for the state and costate

H+(xk, λk+1) = Q(xk) + λT

k+1A(xk)−
1

2
λT

k+1B(xk)R(xk)
−1B(xk)

Tλk+1 (2.80)

xk+1 =
∂H+(xk, λk+1)

∂λk+1
(2.81)

λk =
∂H+(xk, λk+1)

∂xk
. (2.82)

The first-order necessary conditions can also be represented by the left Hamiltonian H̄− : Rn×
R

n × R
m → R, which is presented in the following theorem.

Theorem 2.7 ([48]). For Problem 2.3, there is a vector functionλ∗
k such that the triple (x∗

k, λ
∗
k, u

∗
k)

satisfies (k = 0, 1, · · · , N − 1)

xk = −
∂H̄−(λk, xk+1, uk)

∂λk
, x0 = xinit, xN = xterm (2.83)

λk+1 = −
∂H̄−(λk, xk+1, uk)

∂xk+1
(2.84)

uk = argmin
ūk

H̄−(λk, xk+1, ūk). (2.85)

Unlike the right pre-Hamiltonian, the left pre-Hamiltonian here is unknown, so we can not

give the exact right Hamiltonian system by the substitution of (2.85). However, the exact left

Hamiltonian can be obtained through Legendre transformation from the right Hamiltonian [48]

H−(λk, xk+1) = H+(xk, λk+1)− λT

kxk − λT

k+1xk+1. (2.86)

Based on this, we can give the left Hamiltonian system for the state and costate

xk = −
∂H−(λk, xk+1)

∂λk

(2.87)

λk+1 = −
∂H−(λk, xk+1)

∂xk+1
. (2.88)

For nonlinear problems, the exact left Hamiltonian can hardly be found by the above Legen-

dre transformation (2.86), so the right Hamiltonian is of priority.

2.2.2 Hamilton–Jacobi equation and generating function

Similar as the continuous-time case, there also have forward and backward generating func-

tions in the discrete-time case. Each of them also has four kinds of functions by selecting each t-

wo different variables from the current state-costate and the boundary state-costate. Totally, there

are eight kinds of discrete generating functions F1f(xk, x0, k), F2f(xk, λ0, k), F3f(λk, x0, k),
F4f(λk, λ0, k), F1b(xk, xN , k), F2b(xk, λN , k), F3b(λk, xN , k), and F4b(λk, λN , k).



2.2 Discrete-time case 21

Similarly, there also exist Legendre transformations [49] between forward generating func-

tions

F1f(xk, x0, k) = F2f(xk, λ0, k)− λT

0 x0 (2.89)

F1f(xk, x0, k) = F3f(λk, x0, k) + λT

kxk (2.90)

F1f(xk, x0, k) = F4f(λk, λ0, k) + λT

kxk − λT

0 x0 (2.91)

and between backward generating functions

F1b(xk, xN , k) = F2b(xk, λN , k)− λT

NxN (2.92)

F1b(xk, xN , k) = F3b(λk, xN , k) + λT

kxk (2.93)

F1b(xk, xN , k) = F4b(λk, λN , k) + λT

kxk − λT

NxN . (2.94)

Then, we give the basic relations and Hamilton–Jacobi equations for the eight kinds of dis-

crete generating functions in the following proposition.

Proposition 2.3 ([50]). For Problem 2.3

(i) The generating function F1f(xk, x0, k) satisfying the Hamilton–Jacobi equation

F1f(xk−1, x0, k − 1) =F1f(xk, x0, k)−

(
∂F1f(xk, x0, k)

∂xk

)T

xk

+H+

(

xk−1,
∂F1f(xk, x0, k)

∂xk

)

(2.95)

specifies the family of forward canonical transformations (x0, λ0) 7→ (xk, λk), k =
0, 1, · · · , N , by the basic relations

λk =
∂F1f (xk, x0, k)

∂xk
(2.96)

λ0 = −
∂F1f (xk, x0, k)

∂x0
. (2.97)

(ii) The generating function F2f(xk, λ0, k) satisfying the Hamilton–Jacobi equation

F2f(xk−1, λ0, k − 1) =F2f(xk, λ0, k)−

(
∂F2f(xk, λ0, k)

∂xk

)
T

xk

+H+

(

xk−1,
∂F2f(xk, λ0, k)

∂xk

)

(2.98)

specifies the family of forward canonical transformations (x0, λ0) 7→ (xk, λk), k =
0, 1, · · · , N , by the basic relations

λk =
∂F2f(xk, λ0, k)

∂xk
(2.99)

x0 =
∂F2f (xk, λ0, k)

∂λ0
. (2.100)



22 Chapter 2

(iii) The generating function F3f(λk, x0, k) satisfying the Hamilton–Jacobi equation

F3f(λk+1, x0, k + 1) =F3f(λk, x0, k)− λT

k

(
∂F3f(λk, x0, k)

∂λk

)

−H+

(

−
∂F3f (λk, x0, k)

∂λk
, λk+1

)

(2.101)

specifies the family of forward canonical transformations (x0, λ0) 7→ (xk, λk), k =
0, 1, · · · , N , by the basic relations

xk = −
∂F3f (λk, x0, k)

∂λk
(2.102)

λ0 = −
∂F3f (λk, x0, k)

∂x0

. (2.103)

(iv) The generating function F4f(λk, λ0, k) satisfying the Hamilton–Jacobi equation

F4f(λk+1, λ0, k + 1) =F4f(λk, λ0, k)− λT

k

(
∂F4f(λk, λ0, k)

∂λk

)

−H+

(

−
∂F4f (λk, λ0, k)

∂λk

, λk+1

)

(2.104)

specifies the family of forward canonical transformations (x0, λ0) 7→ (xk, λk), k =
0, 1, · · · , N , by the basic relations

x = −
∂F4f(λk, λ0, k)

∂λ
(2.105)

x0 =
∂F4f(λk, λ0, k)

∂λ0
. (2.106)

(v) The generating function F1b(xk, xN , k) satisfying the Hamilton–Jacobi equation

F1b(xk−1, xN , k − 1) =F1b(xk, xN , k)−

(
∂F1b(xk, xN , k)

∂xk

)T

xk

+H+

(

xk−1,
∂F1b(xk, xN , k)

∂xk

)

(2.107)

specifies the family of backward canonical transformations (xN , λN) 7→ (xk, λk), k =
0, 1, · · · , N , by the basic relations

λk =
∂F1b(xk, xN , k)

∂xk
(2.108)

λN = −
∂F1b(xk, xN , k)

∂xN
. (2.109)



2.2 Discrete-time case 23

(vi) The generating function F2b(xk, λN , k) satisfying the Hamilton–Jacobi equation

F2b(xk−1, λN , k − 1) =F2b(xk, λN , k)−

(
∂F2b(xk, λN , k)

∂xk

)T

xk

+H+

(

xk−1,
∂F2b(xk, λN , k)

∂xk

)

(2.110)

specifies the family of backward canonical transformations (xN , λN) 7→ (xk, λk), k =
0, 1, · · · , N , by the basic relations

λk =
∂F2b(xk, λN , k)

∂xk
(2.111)

xN =
∂F2b(xk, λN , k)

∂λN

. (2.112)

(vii) The generating function F3b(λk, xN , k) satisfying the Hamilton–Jacobi equation

F3b(λk+1, xN , k + 1) =F3b(λk, xN , k)− λT

k

(
∂F3b(λk, xN , k)

∂λk

)

−H+

(

−
∂F3b(λk, xN , k)

∂λk
, λk+1

)

(2.113)

specifies the family of backward canonical transformations (xN , λN) 7→ (xk, λk), k =
0, 1, · · · , N , by the basic relations

xk = −
∂F3b(λk, xN , k)

∂λk

(2.114)

λN = −
∂F3b(λk, xN , k)

∂xN
. (2.115)

(viii) The generating function F4b(λk, λN , k) satisfying the Hamilton–Jacobi equation

F4b(λk+1, λN , k + 1) =F4b(λk, λN , k)− λT

k

(
∂F4b(λk, λN , k)

∂λk

)

−H+

(

−
∂F4b(λk, λN , k)

∂λk
, λk+1

)

(2.116)

specifies the family of backward canonical transformations (xN , λN) 7→ (xk, λk), k =
0, 1, · · · , N , by the basic relations

x = −
∂F4b(λk, λN , k)

∂λ
(2.117)

xN =
∂F4b(λk, λN , k)

∂λN
. (2.118)



24 Chapter 2

Remark 2.6. Note that all the Hamilton–Jacobi equations in the above proposition are repre-

sented in terms of the right Hamiltonian. We can also write these Hamilton–Jacobi equations in

terms of the left Hamiltonian by the substitution of the Legendre transformation [48]

H+(xk, λk+1) = H−(λk, xk+1) + λT

kxk + λT

k+1xk+1. (2.119)

into (2.95), (2.98), (2.101), (2.104), (2.107), (2.110), (2.113), and (2.116) to get

F1f(xk+1, x0, k + 1) = F1f(xk, x0, k)−

(
∂F1f(xk, x0, k)

∂xk

)T

xk +H−

(
∂F1f(xk, x0, k)

∂xk

, xk+1

)

(2.120)

F2f(xk+1, λ0, k + 1) = F2f(xk, λ0, k)−

(
∂F2f(xk, λ0, k)

∂xk

)T

xk −H−

(
∂F2f(xk, λ0, k)

∂xk

, xk+1

)

(2.121)

F3f(λk−1, x0, k − 1) = F3f(λk, x0, k)− λT

k

(
∂F3f(λk, x0, k)

∂λk

)

−H−

(

λk−1,−
∂F3f(λk, x0, k)

∂λk

)

(2.122)

F4f(λk−1, λ0, k − 1) = F4f(λk, λ0, k)− λT

k

(
∂F4f(λk, λ0, k)

∂λk

)

+H−

(

λk−1,−
∂F4f(λk, λ0, k)

∂λk

)

(2.123)

F1b(xk+1, xN , k + 1) = F1b(xk, xN , k)−

(
∂F1b(xk, xN , k)

∂xk

)T

xk+H
−

(
∂F1b(xk, xN , k)

∂xk

, xk+1

)

(2.124)

F2b(xk+1, λN , k + 1) = F2b(xk, λN , k)−

(
∂F2b(xk, λN , k)

∂xk

)T

xk−H
−

(
∂F2b(xk, λN , k)

∂xk

, xk+1

)

(2.125)

F3b(λk−1, xN , k − 1) = F3b(λk, xN , k)−λT

k

(
∂F3b(λk, xN , k)

∂λk

)

−H−

(

λk−1,−
∂F3b(λk, xN , k)

∂λk

)

(2.126)

F4b(λk−1, λN , k − 1) = F4b(λk, λN , k)−λT

k

(
∂F4b(λk, λN , k)

∂λk

)

+H−

(

λk−1,−
∂F4b(λk, λN , k)

∂λk

)

. (2.127)

Remark 2.7. Similar as the continuous generating functions, the discrete generating functions

F1f and F4f are not well-defined at initial time, and F1b and F4b are not well-defined at termi-

nal time, while the discrete generating functions F2f , F3f , F2b, and F3b are all well-defined at

boundary times. In summary, we have F2f(xk, λ0, k)|k=0 = λT

0 x0, F3f(λk, x0, k)|k=0 = −λT

0 x0,

F2b(xk, λN , k)|k=N = λT

NxN , and F3b(λk, xN , k)|k=N = −λT

NxN .

2.2.3 Relation between generating function and value function

The Bellman equation

V (xk, k) = min
uk

((

Q(xk) +
1

2
uT

kR(xk)uk

)

+ V
(

A(xk) +B(xk)uk, k + 1
))

(2.128)

is central to the discrete dynamic programming. Here, the solution

V (xk, k) : = min
u[k,N−1]

N−1∑

i=k

(

Q(xi) +
1

2
uT

i R(xi)ui

)

(2.129)

is called as the value function, where the notation u[k,N−1] indicates that the discrete control uk

is restricted to the interval [k,N − 1].
Similar as the continuous-time case, there also have relations between the generating function

and the value function. This is presented in the following theorem.



2.2 Discrete-time case 25

Theorem 2.8. For Problem 2.3, the relation between the value function and the generating

function is

V (xk, k) = F1b(xk, xN , k) (2.130)

where the value function V (xk, k) satisfies the Bellman equation (2.128) (∀k = 0, 1, · · · , N −1
and ∀xk ∈ R

n) and the terminal condition V (xk, k)|k=N = 0 on xN = xterm.

Proof. From (2.129), we have

V (xk, k) : = min
u[k,N−1]

N−1∑

i=k

(

Q(xi) +
1

2
uT

i R(xi)ui

)

= min
u[k,N−1]

N−1∑

i=k

((

Q(xi) +
1

2
uT

i R(xi)ui

)

+ λT

i+1

(

A(xi) +B(xi)ui − xi+1

))

= min
u[k,N−1]

N−1∑

i=k

(
H̄+(xi, λi+1, ui)− λT

i+1xi+1

)

=
N−1∑

i=k

(
H+(xi, λi+1)− λT

i+1xi+1

)
.

According to [50], the generating function F1b has the expression of

F1b(xk, xN , k) =

N−1∑

i=k

(
H+(xi, λi+1)− λT

i+1xi+1

)
.

Therefore, we have

V (xk, k) = F1b(xk, xN , k)

which is (2.130). Here, the value function V (xk, k) satisfies the Bellman equation (2.128) (∀k =
0, 1, · · · , N−1 and ∀xk ∈ R

n) and the terminal conditionV (xk, k)|k=N = 0 on xN = xterm.

Remark 2.8. According to the Legendre transformation (2.92), the relation (2.130) in Theorem

2.8 can be rewritten as

V (xk, k) = F2b(xk, λN , k)− λT

NxN . (2.131)

At time k = N , we have V (xk, k)|k=N = (F2b(xk, λN , N) − λT

NxN )|k=N = 0 (according to

Remark 2.7) which verifies the terminal condition presented in Theorem 2.8.

2.2.4 LQ optimal control problem

So far, for the case of discrete-time problems, the generating functions have only been applied

to LQ optimal control, which we will introduce here.

First, consider the following discrete-time LQ optimal control problem.



26 Chapter 2

Problem 2.4.

min
u

N−1∑

k=0

1

2

(
xT

kQxk + uT

kRuk

)
(2.132)

s.t. xk+1 = Axk +Buk, k = 0, 1, · · · , N − 1 (2.133)

x0 = xinit, xN = xterm (2.134)

where the constant matrices Q ∈ R
n×n, R ∈ R

m×m, A ∈ R
n×n, and B ∈ R

n×m. Moreover, the

matrices Q < 0 and R ≻ 0.

For the LQ case, we can get the explicit expressions of the generating functions by solving

the corresponding Hamilton–Jacobi equations. The reference [50] only gives the expressions of

F1b and F2b. Since F1b is not well-defined at terminal time according to Remark 2.7, we here

only present F2b in the following proposition.

Proposition 2.4 ([50]). The generating function F2b(xk, λN , k) for Problem 2.4 has the expres-

sion of

F2b(xk, λN , k) =
1

2
xT

kU2b,kxk + λT

NV2b,kxk +
1

2
λT

NW2b,kλN (2.135)

where the coefficients U2b,k = U T

2b,k ∈ R
n×n, V2b,k ∈ R

n×n, and W2b,k = U T

2b,k ∈ R
n×n are the

solutions of the difference equations (k = N,N − 1, · · · , 1)

U2b,k−1 = AT(I + U2b,kG)−1
U2b,kA+Q (2.136)

V2b,k−1 = V2b,k(I +GU2b,k)
−1A (2.137)

W2b,k−1 = W2b,k − V2b,k(I +GU2b,k)
−1GV

T

2b,k (2.138)

with boundary conditions U2f,N = 0, V2f,N = I , and W2f,N = 0.

Based on the generating function presented in Proposition 2.4, we can use it to generate

optimal solutions of Problem 2.4 by the single generating function method. This is presented in

the following theorem.

Theorem 2.9 ([50]). The optimal input of Problem 2.4 is given as the state feedforward control

u∗
k = −R

−1BT
(
U2b,k+1xk+1 + V

T

2b,k+1λN

)
, k = 0, 1, · · · , N − 1 (2.139)

where

λN = W
−1
2b,0 (xN − V2b,0x0) . (2.140)

2.3 Summary

This chapter introduces preliminaries of the Hamiltonian system and the generating func-

tions. For both the continuous and discrete time optimal control problems, we give necessary

and sufficient (only for continuous-time case) conditions for optimality, derive Hamilton–Jacobi

equations and generating functions, provide optimal solutions (only for continuous-time case),

present relations between the generating function and the value function, and exhibit the LQ

cases. The latter Chapters 3, 4, and 5 are all developed based on these preliminaries.



Chapter 3

Continuous-time state constrained

LQ optimal control problem

The generating function method is effective in solving the Hard Constrained Problem as

introduced in Chapter 2. In Hard Constrained Problem, there only has the terminal state con-

straint, but does not contain any general inequality constraints, especially the inequality state

constraints. So far, none of the existing literature has studied the optimal control problem with

inequality constraints by using the generating function methods.

Our goal of this chapter is to extend the generating function method to the inequality state

constrained problem. However, the generating function is one of the indirect methods that are

difficult in handling inequality constraints in contrast with the direct methods. The idea here is

to convert the constrained problem to an unconstrained problem such that we can avoid dealing

with constraints. We employ the penalty function to achieve the goals. There exist several related

papers [57, 58, 59]. However, all of them are for the Soft Constrained Problem that can not be

readily extended to the generating function method for the Hard Constrained Problem.

This chapter extends the generating function method to the Hard Constrained Problem with

inequality state constraints, i.e. the classical path and terminal state constrained LQ optimal

control problem [10]. First in Section 3.1, we formulate and design the constrained problem and

the penalized Hard Constrained Problem respectively, show their convex properties, and further

exhibit the convergence of the minimum cost function value and optimal solutions between these

two problems under a mild condition. Second in Section 3.2, due to the technique of the Taylor

series expansion, the partial differential Hamilton–Jacobi equation is reduced to the ordinary

differential equations for the generating function coefficients. We give the recursive condition to

eliminate the coupling relations between the coefficients with lower and higher indices in these

ordinary differential equations so that they can be solved recursively. This guarantees the penal-

ized Hard Constrained Problem to be successfully solved by generating function method. Based

on this, in Section 3.3, we summarize how to design penalties which is suit for the generating

function method, and gives an algorithm presents how to generate optimal solutions repetitively

for different boundary conditions. At last in Section 3.4, we give two examples to illustrate the

effectiveness of the developed method. Section 3.5 summarizes this chapter.



28 Chapter 3

3.1 Problem conversion

In this section, we formulate and design the constrained and penalized problems, show their

convexities in Section 3.1.1 and 3.1.2, respectively. Based on this, we exhibit in Section 3.1.3

the convergence of the minimum value and optimal solutions as the penalty factor goes to zero.

In light of this, we can select a rather small factor such that we convert the constrained problem

to the penalized problem, which is possible to be solved by the generating function method.

3.1.1 Constrained problem and its convexity

Consider the following continuous-time state constrained LQ optimal control problem.

Problem 3.1.

min
u

∫ tf

t0

1

2

(
x(t)TQx(t) + u(t)TRu(t)

)
dt (3.1)

s.t. ẋ(t) = Ax(t) +Bu(t), t ∈ [t0, tf ] (3.2)

x(t0) = xinit, x(tf) = xterm (3.3)

Ck (x(t)) 6 0, k = 1, 2, · · · , s, ∀t ∈ [t0, tf ] (3.4)

where the state path constraint is defined as Ck : R
n → R, k = 1, 2, · · · , s.

For the state path constraint, we make the following assumption.

Assumption 3.1. Assume that

(i) Ck is a convex function, ∀k = 1, 2, · · · , s;

(ii) Ck(xinit) < 0 and Ck(xterm) < 0, ∀k = 1, 2, · · · , s.

Notice the problem (3.1)–(3.3), it is a standard Hard Constraint Problem [36], since the ter-

minal boundary condition is prescribed to a fixed point. Together with the inequality state con-

straints in (3.4) along the time interval t ∈ [t0, tf ], we form a path and terminal state constrained

LQ optimal control problem. The generating function method will be developed to solve such

Problem 3.1 later in the chapter.

Now to study Problem 3.1, we give the following assumption which will be used to prove

Theorem 3.3 in the next subsection.

Assumption 3.2. Assume that the optimal input of Problem 3.1, i.e. u∗(t), is continuous in t.

It is easy to know that for each input u, the dynamics (3.2) satisfying the initial boundary

condition x(t0) = xinit in (3.3), i.e. the initial value problem, has a unique solution xu. Based

on this, we then give the following definition that will be used throughout this chapter.

Definition 3.1. Define three sets

(i) U f : = {u ∈ L∞([t0, tf ],R
m) | xu(tf) = xterm}

(ii) Up : = {u ∈ L∞([t0, tf ],R
m) | Ck(x

u(t)) 6 0, k = 1, 2, · · · , s, ∀t ∈ [t0, tf ]}



3.1 Problem conversion 29

(iii) Up0 : = {u ∈ L∞([t0, tf ],R
m) | Ck(x

u(t)) < 0, k = 1, 2, · · · , s, ∀t ∈ [t0, tf ]}

For these sets, we have the following assumption.

Assumption 3.3. Assume that the sets U f , Up0, and their intersectionU f ∩Up0 are all nonempty.

Remark 3.1. Based on Assumption 3.3, it is straightforward to know that the set Up and another

intersection U f ∩ Up are also nonempty.

Next, we will show the convexity of Problem 3.1. To this end, we first reformulate the original

problem as the following Problem 3.1′.

Problem 3.1′.

min
u∈U f∩Up

(

J(u) : =

∫ tf

t0

1

2

(

(xu(t))T Q (xu(t)) + u(t)TRu(t)
)

dt

)

Then, it is easy for us to show its convex properties, including convexities of the set U f ∩Up

and the cost function J .

Proposition 3.1. Under Assumptions 3.1 and 3.3, the set U f ∩ Up of Problem 3.1′ is a convex

set of the input u .

Proof. To prove this theorem, we give two inputs u1 and u2 ∈ U f ∩ Up, and the parameter

0 < θ < 1. Due to the linear dynamics (3.2), we have

xθu1+(1−θ)u2

(tf) = θxu1

(tf) + (1− θ)xu2

(tf) = x(tf) = xterm. (3.5)

Further, since the constraint function Ck is convex due to Assumption 3.1, we have

Ck

(

xθu1+(1−θ)u2
)

= Ck

(

θxu1

+ (1− θ)xu2
)

6 θCk

(

xu1
)

+ (1− θ)Ck

(

xu2
)

6 0. (3.6)

In summary, (3.5) and (3.6) imply θu1 + (1 − θ)u2 ∈ U f ∩ Up such that the set U f ∩ Up of the

input u is a convex set.

Proposition 3.2. Under Assumption 3.3, the cost function J(u) of Problem 3.1′ is a strongly

convex function in u, ∀u ∈ U f ∩ Up, i.e. it satisfies

J(θu1 + (1− θ)u2) 6 θJ(u1) + (1− θ)J(u2)−
1

2
rθ(1− θ)

∥
∥u1 − u2

∥
∥
2

L2 , ∀u1, u2 ∈ U f ∩ Up

(3.7)

for some r > 0 and 0 < θ < 1.

Proof. For the two inputs u1 and u2 ∈ U f ∩ Up, and the parameter 0 < θ < 1, we have

inequalities

θJ(u1) + (1− θ)J(u2)− J(θu1 + (1− θ)u2)

=
1

2

∫ tf

t0

θ(1− θ)
(

(xu1

− xu2

)TQ(xu1

− xu2

) + (u1 − u2)TR(u1 − u2)
)

dt



30 Chapter 3

>
1

2

∫ tf

t0

θ(1− θ)(u1 − u2)TR(u1 − u2)dt

>
1

2
rθ(1− θ)

∫ tf

t0

∥
∥u1 − u2

∥
∥2 dt

=
1

2
rθ(1− θ)

∥
∥u1 − u2

∥
∥2

L2

where the positive r can be assigned as r 6 σmin(R). By summarizing the inequalities, we have

(3.7) so that the cost function J(u) is a strongly convex function in u, ∀u ∈ U f ∩ Up.

This strongly convex property will be used to prove Theorem 3.2 about the convergence in

the next subsection.

Remark 3.2. Since strong convexity is stronger than strict convexity, Proposition 3.2 also im-

plies that the cost function J(u) is a strictly convex function in u, ∀u ∈ U f ∩ Up. Then, by

summarizing Propositions 3.1 and 3.2, we know that Problem 3.1′ is the problem minimizing a

strictly convex cost function of u over a nonempty convex set U f∩Up in u space. Hence Problem

3.1′ (Problem 3.1) has unique global minimizer u∗ [17].

3.1.2 Penalized problem and its convexity

We design the following penalized Hard Constraint Problem by adding a penalty term in the

cost function.

Problem 3.2.

min
u

∫ tf

t0

(
1

2

(
x(t)TQx(t) + u(t)TRu(t)

)
+ µP (x(t))

)

dt (3.8)

s.t. ẋ(t) = Ax(t) +Bu(t), t ∈ [t0, tf ]

x(t0) = xinit, x(tf) = xterm

where µ is a positive factor which penalizes the closeness to the constraint boundaries, and the

penalty function P (x) ≡ P ′(C(x)) where C(x) = [C1(x), C2(x), · · · , Cs(x)]
T and P ′ : Rs →

R. For this general penalty function, we need the following assumption.

Assumption 3.4. Assume that

(i) P (x) is a convex function of x ∈ X p0

(ii) P (x) > 0, ∀x ∈ X p0

(iii) P (x)→ +∞ when x approaches the boundary of X p0 from its interior

where X p0 : = {x ∈ L∞([t0, tf ],R
n) | Ck(x) < 0, k = 1, 2, · · · , s} is the set of the state satis-

fying the strict path constraint.



3.1 Problem conversion 31

Remark 3.3. In Problem 3.2 with starting and ending points (xinit and xterm) in the interior,

the value of the penalty grows sharply when x (driven by u) approaches the boundary of the

path constraint such that it can prevent the state trajectory violating the constraints. This implies

u ∈ U f ∩ Up0 in Problem 3.2 in fact [58], which is the goal achieved by adding the penalty.

Correspondingly, the augmented cost function in (3.8) then can be minimized in the absence of

the path constraint, yielding a biased estimate of the solution of Problem 3.1. It is natural to

imagine that we can set the factor µ small enough to reduce the bias such that there may exist

the convergence. This will be discussed in the next subsection.

Now, to show the convexity of Problem 3.2, we reformulate it as well in the following.

Problem 3.2′.

min
u∈U f

(

Jp(u, µ) : =

∫ tf

t0

(1

2

(

(xu(t))T Q (xu(t)) + u(t)TRu(t)
)

+ µP (xu(t))
)

dt

)

. (3.9)

Then, we exhibit the convex properties in the following theorem, including convexities of

the set U f and the cost function Jp.

Proposition 3.3. Under Assumption 3.3, the set U f of Problem 3.2′ is a convex set of the input

u.

The proof here is straightforward by (3.5).

Proposition 3.4. Under Assumptions 3.1, 3.3, and 3.4, the penalized cost function Jp(u, µ) of

Problem 3.2′ is strictly convex in u, ∀u ∈ U f and ∀µ > 0.

Proof. Since Q < 0 and R ≻ 0, the first two terms 1
2
(xu)TQxu and 1

2
uTRu in the integrand

of (3.9) can be treated as convex and strictly convex functions respectively. Further, under As-

sumption 3.4(i) and (ii) for the penalty with the positive factor µ, it is clear for us to know that

Jp(u, µ) is strictly convex in u, ∀u ∈ U f and ∀µ > 0.

Remark 3.4. Propositions 3.3 and 3.4 show that Problem 3.2′ is the problem minimizing a

strictly convex cost function of u over a nonempty convex set U f in u space. Hence Problem 3.2′

(Problem 3.2) has unique global minimizer u∗
p(µ) for each specified µ.

3.1.3 Convergence

We will exhibit the convergent properties of minimum cost function value and the optimal

solutions in this subsection. Before this, notice the definition of Jp in (3.9), we can rewrite it as

Jp(u, µ) = J(u) +

∫ tf

t0

µP (xu)dt (3.10)

for the sake of clarity. Now first, we denote J∗ as the minimum cost function value of Problem

3.1, and present the following theorem as a preparation.

Theorem 3.1. Under Assumptions 3.1, 3.3, and 3.4, for the penalized cost function of Problem

3.2, we have the following convergent properties



32 Chapter 3

(i) lim
µ→0

J(u∗
p(µ)) = J∗;

(ii) lim
µ→0

∫ tf

t0

µP (xu∗
p(µ))dt = 0.

For the proof see [57, 58, 64], since these proofs also work for the case of Problem 3.2.

Theorem 3.1 presents the convergences of the two summands in the right hand side of (3.10).

Second, we will exhibit the three main convergences. By combining Theorem 3.1(i) and (ii),

we have the following corollary readily.

Corollary 3.1. Under Assumptions 3.1, 3.3, and 3.4, for the minimum cost function values of

Problems 3.1′ and 3.2′, we have the convergence

lim
µ→0

Jp

(
u∗
p(µ), µ

)
= J∗.

Theorem 3.2. Under Assumptions 3.1, 3.3, and 3.4, for the optimal inputs of Problems 3.1′ and

3.2′, we have the convergence

lim
µ→0
‖u∗

p(µ)− u∗‖L2 = 0. (3.11)

This theorem can be proven mainly based on Proposition 3.2, which is an assumption in [58].

Under such assumption, [58] proves the convergence of the input. Since the logic is similar, we

present the proof here in brief to make the theorem self-contained.

Proof. Letting θ = 1
2
, u1 = u∗ ∈ U f ∩ Up, and u2 = u∗

p(µ) ∈ U
f ∩ Up in Proposition 3.2, then

(3.7) reads

r

8

∥
∥u∗ − u∗

p(µ)
∥
∥
2

L2 6
1

2
J(u∗) +

1

2
J(u∗

p(µ))− J

(
u∗ + u∗

p(µ)

2

)

(3.12)

where
u∗+u∗

p(µ)

2
∈ U f ∩ Up as well. Further, we know

J(u∗) 6 J

(
u∗ + u∗

p(µ)

2

)

. (3.13)

Then by the substitution of (3.13), (3.12) leads to

r

8

∥
∥u∗ − u∗

p(µ)
∥
∥2

L2 6
1

2
J(u∗

p(µ))−
1

2
J(u∗).

Now, by using Theorem 3.1(i) (note that J∗ = J(u∗)), we prove (3.11).

Theorem 3.3. Under Assumptions 3.1–3.4, for the optimal states of Problems 3.1′ and 3.2′, we

have the convergence

lim
µ→0
‖xu∗

p(µ) − xu∗

‖L∞ = 0. (3.14)



3.2 Generating function method 33

Proof. We know the explicit expression of xu is

x(t) = eA(t−t0)x0 +

∫ t

t0

eA(t−τ)Bu(τ)dτ

then to prove (3.14) amounts to proving

sup
t06t6tf

∥
∥
∥
∥

∫ t

t0

eA(t−τ)B
(
u∗(τ)− u∗

p(µ, τ)
)
dτ

∥
∥
∥
∥

(3.15)

going to zero as µ going to zero. This is definitely the case, because the term can be estimated

as (the following first inequality holds due to the continuity of u∗ and u∗
p by Assumption 3.2 and

Theorem 2.1, respectively)

∥
∥
∥
∥

∫ t

t0

eA(t−τ)B
(
u∗(τ)− u∗

p(µ, τ)
)
dτ

∥
∥
∥
∥

6

∫ t

t0

∥
∥eA(t−τ)B

(
u∗(τ)− u∗

p(µ, τ)
)∥
∥dτ

6K‖B‖

∫ t

t0

∥
∥u∗(τ)− u∗

p(µ, τ)
∥
∥ dτ

where K is the upper bound of the semigroup generated by A (any semigroup has an upper

bound on time intervals of finite length), such that

(3.15) 6 K‖B‖
∥
∥u∗ − u∗

p(µ)
∥
∥
L1 .

Since L2([t0, tf ]) norm is stronger than L1([t0, tf ]) norm, we can deduce ‖u∗ − u∗
p(µ)‖L1 → 0

from ‖u∗−u∗
p(µ)‖L2 → 0 (Theorem 3.2). Therefore, as µ→ 0, (3.15) goes to zero. This proves

(3.14).

Note that the proof of Theorem 3.3 here is more clear and targeted than the one in [58].

In summary, by the convexity and convergence analysis in this section, we know that both

Problem 3.1 and 3.2 are strictly convex problems such that they have unique global minimizers,

moreover the minimum cost function value as well as the optimal input and state of Problem

3.2 converge to the ones of Problem 3.1 as the factor µ → 0. Hence we can select a rather

small factor µ to form a penalized problem approximating the constrained problem. From this

viewpoint, we convert the constrained Problem 3.1 to the penalized Problem 3.2. Such problem

conversion enables us to solve the original problem by the generating function method indirectly.

3.2 Generating function method

In this section, based on the introduction of Taylor series solution to Hamilton–Jacobi equa-

tion in Section 3.2.1, we develop a recursive condition that guarantees the designed Problem 3.2

can be successfully solved via generating functions in Section 3.2.2.



34 Chapter 3

3.2.1 Taylor series solution to Hamilton–Jacobi equation

Theorem 2.3 gives the optimal input of Problem 3.2 analytically as the state feedback control

via the generating function. If we can solve the Hamilton–Jacobi equation for the generating

function, it is easy for us to generate the optimal input by (2.42). Since the Hamilton–Jacobi

equation (2.33) is a nonlinear partial differential equation, it is difficult to find its analytic solution

so that we need the numerical implementations to find its approximate solution. As mentioned

in Section 2.1.3, Taylor series expansion is the most popular numerical method utilized for such

a purpose [36, 43, 35], so here we will also use this technique.

First, we expand the nonlinear functions in the Hamilton–Jacobi equation (2.33), i.e. the gen-

erating function† and the penalty function, as Taylor series in their arguments about the origin.

To do so, the following assumption is needed.

Assumption 3.5. Assume that for Problem 3.2

(i) F2b(x, λ(tf), t) is an analytic function of x and λ(tf) in their neighborhoods of the origin

in R
2n;

(ii) P (x) is an analytic function of x in its neighborhood of the origin in R
n;

(iii) The set X p0 is equal to or a subset of a neighborhood of the origin for the state x.

Based on this, we expand both F2b(x, λ(tf), t) and P (x) as Taylor series in their arguments

about the origin up to a fixed order N as‡

N∑

i=0

i∑

j=0

(

F(i,j)(t) ·
(
x⊗(i−j) ⊗ λ(tf)

⊗j
) )

(3.16)

N∑

i=0

(

P(i) · x
⊗i
)

(3.17)

where F(i,j)(t)·
(
x⊗(i−j) ⊗ λ(tf)

⊗j
)
≡ F(i,j)(x, λ(tf), t) and P(i)·x

⊗i ≡ P(i)(x). Here, F(i,j)(t)
is the coefficient of the (i, j)-th Taylor series termF(i,j)(x, λ(tf), t) of the functionF (x, λ(tf), t),
and P(i) is the coefficient of the i-th Taylor series term P(i)(x) of the function P (x). Here,⊗ is

the Kronecker product [65, 66]. For example, if Y is an m× n matrix and Z is a p× q matrix,

then the Kronecker product Y ⊗ Z is the mp× nq block matrix

Y ⊗ Z =






y11Z · · · y1nZ
...

. . .
...

ym1Z · · · ymnZ






where yij denotes the (i, j)-th element of the matrix Y . Moreover

Y ⊗i = Y ⊗ Y ⊗ · · · ⊗ Y
︸ ︷︷ ︸

i

.

†According to Theorem 2.3, we will use the generating function F2b in this chapter.
‡In this chapter, only the generating function F2b is used, so we do not add the subscript 2b in its Taylor series

terms and coefficients for convenience.



3.2 Generating function method 35

In (3.16) and (3.17), note that the generating function coefficients F(i,j)(t)’s are undetermined,

while the penalty function coefficients P(i)’s are known. The objective here is to determine the

unknown F(i,j)(t)’s.

By substituting the Taylor series of F2b and P , i.e. (3.16) and (3.17), into the Hamiltonian†

(with λ = ∂F2b(x,λ(tf ),t)
∂x

by (2.34))

H(x, λ) =
1

2
xTQx+ λTAx−

1

2
λTGλ+ µP (x) (3.18)

we get its power series form

N∑

i=0

i∑

j=0

(

H(i,j)

(
F(·,·)(t)

)
·
(
x⊗(i−j) ⊗ λ(tf)

⊗j
)
≡ H(i,j)

(

x,
∂F(·,·)(x, λ(tf), t)

∂x

))

where H(i,j) is the coefficient of the (i, j)-th power series termH(i,j) of the Hamiltonian. Based

on this, by collecting the terms with the same variable
(
x⊗(i−j) ⊗ λ(tf)

⊗j
)

from the Hamilton–

Jacobi equation (2.33), we get the expanded Hamilton–Jacobi equation

N∑

i=0

i∑

j=0

(
∂F(i,j)(x, λ(tf), t)

∂t
+H(i,j)

(

x,
∂F(·,·)(x, λ(tf), t)

∂x

))

= 0 (3.19)

Based on the above expansions, now we present the following theorem to determine the

generating function coefficients F(i,j)(t)’s.

Theorem 3.4 ([43]). Under Assumptions 3.1 and 3.3–3.5, for Problem 3.2, the coefficients

F(i,j)(t)’s of the generating function F2b are determined by solving the following ordinary d-

ifferential equations (t ∈ [t0, tf ])

Ḟ(i,j)(t) = −H(i,j)

(
F(·,·)(t)

)
, j = 0, 1, · · · , i and i = 0, 1, · · · ,N (3.20)

with their terminal conditions

F(i,j)(tf) =

{

I, i = 2, j = 1

0, other cases
(3.21)

where I ∈ R
1×nn with all its elements equal to one.

By using Taylor series numerical techniques, the partial differential Hamilton–Jacobi equa-

tion (2.33) is reduced to ordinary differential equations (3.20). Once we obtain the generating

function coefficients F(i,j)’s, we obtain the generating function. Finally by substituting it into

Theorem 2.3, we get the optimal input. This is the whole procedure how we generate optimal

solutions by the generating function method.

†In fact, the Hamiltonian should be expressed as H(x, λ, µ). However, since µ is treated as a parameter (not a

variable) in this section, we write the Hamiltonian as H(x, λ) for convenience.



36 Chapter 3

3.2.2 Recursive condition

Notice the ordinary differential equations (3.20), in its right hand side there exist coeffi-

cients F(·,·)(t) whose index are greater than (i, j), e.g. F(i+1,j)(t). Due to this, we can not

solve F(i,j)(t)’s recursively from (i, j) = (0, 0) to the truncated order (N ,N ). However, the

recursiveness can be achieved by adding a mild condition. This is presented in the following

theorem.

Theorem 3.5. Under Assumptions 3.1 and 3.3–3.5, for Problem 3.2, if the penalty function

coefficient P(1) = 0, the ordinary differential equations (3.20) can be solved recursively for the

generating function coefficients F(i,j)(t) with respect to the Taylor series order index (i, j).

Proof. In principle, to prove Theorem 3.5, we should concentrate on the ordinary differential

equation (3.20). But here we focus on (3.19) instead, for the reason that it can present clearer

coupling relations.
We first show the exact expression of (3.19) in the following where we will use F(i,j) and

P(i) short for F(i,j)(x, λ(tf), t) and P(i)(x), respectively

∂F(0,0)

∂t
=− µP(0) (3.19a)

∂F(1,0)

∂t
=
1

2

(
∂F(1,0)

∂x

)T

G

(
∂F(2,0)

∂x

)

+
1

2

(
∂F(2,0)

∂x

)T

G

(
∂F(1,0)

∂x

)

−

(
∂F(1,0)

∂x

)T

Ax− µP(1) (3.19b)

∂F(1,1)

∂t
=
1

2

(
∂F(1,0)

∂x

)T

G

(
∂F(2,1)

∂x

)

+
1

2

(
∂F(2,1)

∂x

)T

G

(
∂F(1,0)

∂x

)

(3.19c)

∂F(2,0)

∂t
=
1

2

(
∂F(1,0)

∂x

)T

G

(
∂F(3,0)

∂x

)

+

(
∂F(2,0)

∂x

)T

G

(
∂F(2,0)

∂x

)

+
1

2

(
∂F(3,0)

∂x

)T

G

(
∂F(1,0)

∂x

)

−

(
∂F(2,0)

∂x

)T

Ax−
1

2
xTQx− µP(2) (3.19d)

...

∂F(i,j)

∂t
=







1

2

i+1∑

i1=1

(
∂F(i,0)

∂x

)T

G

(
∂F(i+2−i1,0)

∂x

)

−

(
∂F(i,0)

∂x

)T

Ax− µP(i) , j = 0

1

2

i+1∑

i1=1

min{i1,j}∑

j1=max {0,j+i1−i−2}

(
∂F(i1,j1)

∂x

)T

G

(
∂F(i+2−i1,j−j1)

∂x

)

−

(
∂F(i,j)

∂x

)T

Ax, other cases

1

2

i+1∑

i1=1

(
∂F(i1,i1−1)

∂x

)T

G

(
∂F(i+2−i1,j−i1+1)

∂x

)

, j = i

(3.19e)

...

To clearly show the structure of (3.19e), we expand the three formulae in its right hand side as







1

2

(
∂F(1,0)

∂x

)T

G

(
∂F(i+1,0)

∂x

)

+
1

2

(
∂F(2,0)

∂x

)T

G

(
∂F(i,0)

∂x

)

+ · · ·

+
1

2

(
∂F(i,0)

∂x

)T

G

(
∂F(2,0)

∂x

)

+
1

2

(
∂F(i+1,0)

∂x

)T

G

(
∂F(1,0)

∂x

)

−

(
∂F(i,0)

∂x

)T

Ax− µP(i), j = 0

1

2

(
∂F(1,0)

∂x

)T

G

(
∂F(i+1,j)

∂x

)

+
1

2

(
∂F(2,0)

∂x

)T

G

(
∂F(i,j)

∂x

)

+ · · ·

+
1

2

(
∂F(i,j)

∂x

)T

G

(
∂F(2,0)

∂x

)

+
1

2

(
∂F(i+1,j)

∂x

)T

G

(
∂F(1,0)

∂x

)

−

(
∂F(i,j)

∂x

)T

Ax, other cases

1

2

(
∂F(1,0)

∂x

)T

G

(
∂F(i+1,j)

∂x

)

+
1

2

(
∂F(2,1)

∂x

)T

G

(
∂F(i,j−1)

∂x

)

+ · · ·

+
1

2

(
∂F(i,j−1)

∂x

)T

G

(
∂F(2,1)

∂x

)

+
1

2

(
∂F(i+1,j)

∂x

)T

G

(
∂F(1,0)

∂x

)

, j = i



3.3 Penalty design and generating function based algorithm 37

From the above expressions, now it is easy to find that the higher index coefficient, i.e.

F(i+1,j), exists in the (i, j)-th equation (3.19e). This means F(i,j) is coupled with F(i+1,j), i.e.

Ḟ(i,j)(t) is coupled with F(i+1,j)(t). Such phenomenon occurs in all the equations from (3.19b)–

(3.19e) and so on. Hence after we reduce (3.19) to the ordinary differential equations (3.20), we

can not solve them for the generating function coefficients recursively from (i, j) = (0, 0) to the

truncated order (N ,N ).
Further, it can be found that F(i+1,j) is multiplied by F(1,0), which is the only manner that

F(i+1,j) exists in (3.19e). This is also the same in the first three equations (3.19b)–(3.19d).

Based on the above, now notice the equation (3.19b), if P(1) = 0 (so that P(1) = 0) then

each term in its right hand side has the factor F(1,0). After we reduce (3.19b) to the ordinary

differential equation

Ḟ(1,0) = F(1,0) ·Υ

where Υ is an expression. It is clear that F(1,0) is locally Lipschitz so that the above ordinary

differential equation for F(1,0) has unique solution locally around the origin. Accordingly, it

can be known that the solution is F(1,0) = 0 (so that F(1,0) = 0). Based on this, terms with

both F(1,0) and F(i+1,j) are disappeared such that F(i,j) will not be coupled with F(i+1,j) again

in (3.19), i.e. Ḟ(i,j)(t) will not be coupled with F(i+1,j)(t) in (3.20). Therefore, the ordinary

differential equations (3.20) can be solved recursively for the generating function coefficients

F(i,j)(t) with respect to the Taylor series order index (i, j).

This theorem shows that if the penalty satisfies the presented condition P(1) = 0, we can

solve the ordinary differential equations (3.20) recursively for the generating function coeffi-

cients such that the designed penalized Problem 3.2 can be successfully solved by the generating

function method.

3.3 Penalty design and generating function based algorithm

We exhibit how to design penalties for the generating function method in Section 3.3.1,

and give an algorithm summarizing how to generate optimal solutions repetitively for different

boundary conditions by generating functions in Section 3.3.2.

3.3.1 Penalty design

In our developed generating function method, the penalty plays the most important roles

that how to design the penalty (penalized problem) suitable for the generating function is the

key point. In this chapter, when we design the penalty function, we should pay attention to

Assumption 3.4, Assumption 3.5(ii), and the recursive condition in Theorem 3.5. According to

these conditions, we can design it by selecting the conventional penalty, e.g. inverse penalty or

logarithmic penalty, and subtracting its first order Taylor series term with respect to the variable

x. Specifically, we can design the penalty function as

P (x) =
s∑

k=1

(

−
1

Ck(x)
+
( ∂

∂x

1

Ck(x)

∣
∣
∣
∣
x=0

)T

· x

)

(3.22)



38 Chapter 3

based on the inverse penalty, or

P (x) =

s∑

k=1

(

− log
(
− Ck(x)

)
+
( ∂

∂x
log
(
− Ck(x)

)
∣
∣
∣
∣
x=0

)T

· x

)

(3.23)

based on the logarithmic penalty.

For the convexity of the above designed penalties, since the second term in the bracket of

(3.22) or (3.23) is linear, the convexity of the penalty function depends on the first term. Then

according to the fact that the reciprocal of a real positive concave function is a convex function,

and the logarithm of a real positive concave function is a concave function, it is clear that both

(3.22) and (3.23) are convex functions.

3.3.2 Algorithm for different boundary conditions

It can be found from the above section that generating function (coefficients) are the same

for different boundary conditions x0 and xf . In light of this, we can move the computation of

these generating function (coefficients) to the off-line part, i.e. compute and save them in ad-

vance. Later, during the on-line calculation, we only need to read these generating function

(coefficients) and substitute them to (2.42) to generate different optimal solutions for different

boundary conditions. This method does not need to resolve the Hamilton–Jacobi equation repeti-

tively for each different boundary conditions like the conventional dynamic programming. From

this viewpoint, the method reduces the computational burden and is useful for on-line repetitive

solutions generation for different boundary conditions. This is the computational advantage of

the generating function method.

The detailed procedure about how to generate optimal state and input for different boundary

conditions is summarized in the following two algorithms.

1 µ← µ0; /* set penalty factor */

2 N ← N0; /* set truncated Taylor series order */

3 if (i, j) = (2, 1) then

4 F(i,j)(tf)← I; /* set terminal conditions */

5 else

6 F(i,j)(tf)← 0;

7 end

8 for i = 0, 1, · · · ,N0 do

9 for j = 0, 1, · · · , i do

10 for t = tf to t0 do

11 solve Ḟ(i,j)(t) = −H(i,j)

(
F(·,·)(t)

)
; /* calculate coefficients */

12 end

13 end

14 end

Algorithm 3.1: Off-line part, calculate generating function coefficients.



3.4 Examples 39

1 if there is a computational demand for boundary conditions (xinit, xterm) then

2 x(t0)← xinit, x(tf)← xterm; /* set boundary conditions */

3 solve λ(tf) from x(tf) =
∂F (x,λ(tf),t)

∂λ(tf )

∣
∣
∣
t=t0

; /* calculate terminal costate */

4 for t = t0 to tf do

5 solve ẋ = Ax−G∂F (x,λ(tf ),t)
∂x

; /* generate optimal state */

6 end

7 for t = t0 to tf do

8 u← −R−1BT ∂F (x,λ(tf ),t)
∂x

; /* generate optimal input */

9 end

10 else

11 goto 1; /* on-demand */

12 end

Algorithm 3.2: On-line part, generate optimal solutions.

In above two algorithms, optimal solutions will be more accurate if we select greaterN0, i.e.

expand functions as Taylor series up to higher orders. Since the computation of the coefficients is

implemented off-line by Algorithm 3.1, it is free of us to choose any particular orders. From this

viewpoint, though the penalized problem is a nonlinear problem, we can still obtain its optimal

solutions accurately. On the other side, when we increase N0, the total number of ordinary

differential equations in the off-line part for the coefficients also increases. Therefore, when we

selectN0, both the demand of the accuracy and the computational ability of the computer should

be taken into account.

3.4 Examples

In this section, we will give two examples. One is to compare results by generating function

method with analytic solutions in Section 3.4.1, the other is to illustrate the effectiveness of

the generating function method for different boundary conditions by Algorithms 3.1 and 3.2 in

Section 3.4.2.

3.4.1 Analytic scalar example

Example 3.1. Consider the minimum energy problem with a second order state variable in-

equality constraint [10]

min
a

∫ 1

0

1

2
a(t)2dt (3.24)

s.t. v̇(t) = a(t), ẋ(t) = v(t), t ∈ [0, 1] (3.25)

v(0) = 1, x(0) = 0, v(1) = −1, x(1) = 0 (3.26)

x 6 0.1. (3.27)

This is a typical path and terminal state constrained problem. For this problem, [10] gives



40 Chapter 3

the exact minimum energy J∗ = 40/9 and the analytic solutions

v(t) =







(

1−
t

0.3

)2

, 0 6 t 6 0.3

0, 0.3 6 t 6 0.7

−

(

1−
1− t

0.3

)2

, 0.7 6 t 6 1

, x(t) =







0.1 − 0.1

(

1−
t

0.3

)3

, 0 6 t 6 0.3

0.1, 0.3 6 t 6 0.7

0.1 − 0.1

(

1−
1− t

0.3

)3

, 0.7 6 t 6 1

a(t) =







−
2

0.3

(

1−
t

0.3

)

, 0 6 t 6 0.3

0, 0.3 6 t 6 0.7

−
2

0.3

(

1−
1− t

0.3

)

, 0.7 6 t 6 1

.

To compare with these solutions, we will implement the developed generating function method

to solve the problem. First, we design the penalty as

P (x) =
1

0.1− x
−

x

0.12
(3.28)

according to (3.22) based on inverse penalty. Assigning four decreasing values 10−1, 10−2, 10−3,

and 10−4 to the factor µ, we show the value of the product µP (x) in Figure 3.1. It is easy to

find that µP (x) with smaller µ comes closer to the boundary of the path constraint 0.1, which

should give more accurate solutions than the other greater factors.

0.099 0.0993 0.0995 0.0998 0.1
0

100

200

300

400

500

state x

pe
na

lty
 te

rm
 µ

P
(x

)

 

 

µ=10−1

µ=10−2

µ=10−3

µ=10−4

Figure 3.1: Penalty term µP (x) with factors µ = 10−1, 10−2, 10−3, 10−4.

Table 3.1: Minimum cost function value for µ = 10−1, 10−2, 10−3, 10−4, and exact one by

comparison.

µ = 10−1 µ = 10−2 µ = 10−3 µ = 10−4 Exact

minimum J 8.0242 5.2206 4.6467 4.6270 4.4444



3.4 Examples 41

0 0.2 0.4 0.6 0.8 1
−1

−0.75

−0.5

−0.25

0

0.25

0.5

0.75

1

time t

st
at

e 
v

 

 

µ=10−1

µ=10−2

µ=10−3

µ=10−4

(a) State v generated by generating function method

0 0.2 0.4 0.6 0.8 1
−1

−0.75

−0.5

−0.25

0

0.25

0.5

0.75

1

time t

st
at

e 
v

(b) Exact state v

0 0.2 0.4 0.6 0.8 1
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

time t

st
at

e 
x

 

 

µ=10−1

µ=10−2

µ=10−3

µ=10−4

(c) State x generated by generating function method

0 0.2 0.4 0.6 0.8 1
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

time t

st
at

e 
x

(d) Exact state x

0 0.2 0.4 0.6 0.8 1
−10

−8

−6

−4

−2

0

2

time t

in
pu

t a

 

 

µ=10−1

µ=10−2

µ=10−3

µ=10−4

(e) Input a generated by generating function method

0 0.2 0.4 0.6 0.8 1
−10

−8

−6

−4

−2

0

2

time t

in
pu

t a

(f) Exact input a

Figure 3.2: Comparison between optimal solutions by generating function method (with µ =
10−1, 10−2, 10−3, 10−4) and exact ones.



42 Chapter 3

Second, we write down the Hamilton–Jacobi equation according to (2.33), expand the gen-

erating function and the penalty (3.28) in Hamilton–Jacobi equation as Taylor series up to sixth

order. Note that the first order Taylor term of the penalty 3.28 is equal to zero, which satis-

fies the recursive condition and is suitable for the generating function. Due to the Taylor series

expansion, we reduce the Hamilton–Jacobi equation (2.33) to ordinary differential equations

(3.20). With the boundary conditions (3.21), we can solve the generating function coefficients

F(i,j)(t)’s recursively. Finally, by substituting the numerical generating function into (2.42),

we obtain the optimal solutions of the penalized problem, which is the approximation of the

constrained problem (3.24)–(3.27). We present the results in Figure 3.2 and Table 3.1.

Figure 3.2(a), (c), and (e) are the optimal v, x, and a solved by the generating function method

(with factors µ = 10−1, 10−2, 10−3, 10−4), respectively. Correspondingly, Figure 3.2(b), (d), and

(f) exhibit the analytic solutions. Table 3.1 gives the related minimum cost function values. It

can be found from these results that as µ approaches zero, the minimum J and optimal state

and input approach the exact ones. This verifies Corollary 3.1 and Theorems 3.2 and 3.3 about

the convergence. Moreover, by employing the designed penalty and selecting small factor, the

developed generating function method can generate accurate solutions. This demonstrates the

effectiveness of the method.

3.4.2 Constrained spacecraft rendezvous

x

y z

R0
Refenrece

Follower

Circular Orbits Earth

Figure 3.3: Local Vertical Local Horizontal Frame.

The relative orbit between spacecrafts can be described by the Hill–Clohessy–Wiltshire e-

quations [67]. In this model, a so-called reference spacecraft is considered that orbits the Earth

in a circular trajectory in Figure 3.3, where ω = (µe/R
3
0)

1/2 is the orbit rate, µe = GMe is the

gravitational parameter of the Earth, G is the universal gravitational constant, Me is the mass

of the Earth, and R0 is the orbital radius of the reference spacecraft (much larger than the rel-

ative distance between the spacecrafts). The motion of the follower spacecraft is studied from

a reference frame (x, y, z) fixed at center of the reference spacecraft, where x, y, and z are the

radial, along-track, and cross-track directions, respectively. This set of coordinate axes is called

the Local Vertical Local Horizontal Frame. The relative motion in this frame is given by

ẍ =2ωẏ + ω2(R0 + x)−
µ

R3
(R0 + x) + ux

ÿ =− 2ωẋ+ ω2y −
µ

R3
y + uy

z̈ =−
µ

R3
z + uz



3.4 Examples 43

where R = ((R0 + x)2 + y2 + z2)1/2. After nondimensionalization with reference length R0

and time 1/ω, and linearization about (x, y, z) = (0, 0, 0), we have the Hill–Clohessy–Wiltshire

equations

ẍ =2ẏ + 3x+ ux

ÿ =− 2ẋ+ uy

z̈ =− z + uz.

For the sake of simplicity, we only consider the first two in-plane motions (independent of the

third out-plane motion)







ẋ1

ẋ2

ẋ3

ẋ4






=







0 0 1 0
0 0 0 1
3 0 0 2
0 0 −2 0













x1

x2

x3

x4






+







0 0
0 0
1 0
0 1







[
u1

u2

]

(3.29)

where [x1, x2, x3, x4]
T = [x, y, ẋ, ẏ]T = [x, y, vx, vy]

T and [u1, u2]
T = [ux, uy]

T.

Consider the follower spacecraft satisfies the dynamics (3.29) with the specified initial state

boundary conditions, and transits to the origin (reference) in fixed amount of time [t0, tf ]. Our

objective is to find optimal input to minimize the energy considered cost function

J =
1

2

∫ tf

t0

uTudt.

This is the optimal rendezvous problem. More generally, we should consider the obstacle avoid-

ance problem for the spacecraft, and also the velocity limit during transitions. All these cases

can be treated as the state constraints.

We set the example from [52]: the follower spacecraft starts from the initial positions locating

along the radius 0.15 and velocities identically zero (specifically [0.15 cos θ, 0.15 sin θ, 0, 0]T

with θ varying from 0 to 2π by the step π/8), transits to the origin [0, 0, 0, 0]T in one unit time.

Additionally, we also consider the velocity constraints†

−0.2 6 vx 6 0.2, −0.2 6 vy 6 0.2. (3.30)

We apply Algorithms 3.1 and 3.2 to this velocity constrained rendezvous problem. For the

constraints (3.30), we design the penalty

1

vx + 0.2
+

1

0.2− vx
+

1

vy + 0.2
+

1

0.2− vy

and select the penalty factor 10−6. In the off-line part, we expand the functions as Taylor series

up to sixth orders, calculate and save the generating function coefficients in advance. During

on-line computations, we read these coefficients to efficiently generate trajectories for different

specified boundary conditions.

†Due to the formulation of Problem 3.1, various of constraints, e.g. velocity limits or position obstacles or

these two mixed constraints and so on, can be well tackled by the developed method for the spacecraft, here we only

set the velocity limits example.



44 Chapter 3

Results are presented in Figure 3.4, where figures in the left column are the position and

velocity trajectories for the above constrained problem, while figures right column are the results

in [52] for the problem without velocity limits (3.30). The off-line and on-line computational

time is 0.0054 [s] and 0.0037 [s] according to Algorithms 3.1 and 3.2, respectively. These results

well demonstrate the computational efficiency of the generating function method for different

boundary conditions, especially the number of the boundary condition is large. Note that this

advantage is not only limited to different boundary conditions, but also different time intervals.

Furthermore, by the comparison, we successfully extend the generating function method to state

constrained problems and well solve this constrained rendezvous application problem.

−0.15 −0.1 −0.05 0 0.05 0.1 0.15

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

position x

po
si

tio
n 

y

(a) Constrained position trajectories

−0.15 −0.1 −0.05 0 0.05 0.1 0.15

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

position x

po
si

tio
n 

y

(b) Unconstrained position trajectories

−0.2 −0.1 0 0.1 0.2

−0.2

−0.1

0

0.1

0.2

velocity v
x

ve
lo

ci
ty

 v
y

(c) Constrained velocity trajectories

−0.2 −0.1 0 0.1 0.2

−0.2

−0.1

0

0.1

0.2

velocity v
x

ve
lo

ci
ty

 v
y

(d) Unconstrained velocity trajectories

Figure 3.4: Comparison between optimal constrained trajectories (by the developed method)

and unconstrained trajectories (from [52]).



3.5 Summary 45

3.5 Summary

This chapter extends the generating function method to the LQ optimal control problems

with path and terminal state constraints by employing penalties. The penalized problem with a

general penalty is introduced to approximate the original constrained problem. We show that

both of them are convex problems and optimal solutions of penalized problem will converge to

the ones of original constrained problem when the penalty factor approaches zero. Moreover, a

recursive condition is presented to eliminate the coupling relation between the generating func-

tion coefficients with lower and higher indices in the ordinary differential equations so that they

can be solved recursively. This finally enables us to solve the penalized problem by generating

function method. Based on this, we summarize how to design penalties that is suitable for the

generating function method, and give an algorithm presents how to generate optimal solutions

repetitively for different boundary conditions. This framework is able to give accurate solution-

s, and also possesses the significance in online repetitive computation for different boundary

conditions. Examples illustrate the effectiveness of the developed method.



46 Chapter 3



Chapter 4

Discrete-time LQ

optimal control problem

For the case of continuous-time problems, [36, 37] use only one generating function† to

generate optimal solutions. This method gives the optimal input as state feedback control, and

enables us to calculate generating function coefficients off-line in advance, and to generate op-

timal solutions by integrating the system equation on-line. From this viewpoint, it is useful for

on-line repetitive computation of optimal solutions satisfying different boundary conditions. In

order to further reduce the on-line computational effort, the double generating functions method

is proposed [39]. Compared with single method, the double generating functions method gives

the optimal solutions as algebraic expressions in terms of pre-computed coefficients and bound-

ary conditions based on a pair of different generating functions. Hence in on-line computation,

we only need to read saved coefficients and each set of boundary conditions to generate optimal

solutions by algebraic manipulations without integration of the system equation. This method

doubles the off-line work, but is more efficient in on-line computation. For the case of discrete-

time problems, there is only one paper [50] that develops the single generating function method

for the LQ optimal control problem.

Further, by careful investigating the generators developed by single/double generating func-

tion(s) method, we will find there exist inverse terms. If the singularity would occur at some

time steps or periods, it will cause the serious numerical instabilities. Therefore, the invert-

ibility analysis of the inverse terms should be preformed to help us select the numerical stable

generators. So far, only [39] has given some preliminary analysis on this issue to show that the

developed generators for optimal solutions constructed by double generating functions with the

same time directions will cause instabilities when the time interval increases.

This chapter develops the discrete analogue of double generating functions method. To clear-

ly present the fundamental feature of this method and to make it convenient for the further ex-

tension to nonlinear problems, this chapter investigates the classical discrete-time LQ optimal

control problem. First in Section 4.1, we derive the left discrete Hamiltonian, Hamilton’s equa-

†The reference chapters [36, 37] use the generating function F1f to generate optimal solutions. Before the

solution generation, since F1f is not well-defined at initial time, [36, 37] employ the Legendre transformation to

obtain F1f from F2f at first. Though two generating functions are used in this framework in fact, it is still called as

single generating function method.



48 Chapter 4

tions, and the Hamilton–Jacobi equation for the LQ optimal control problem which is a coun-

terpart to the right ones in [50] according to discrete mechanics [48]. Second in Section 4.2,

we choose appropriate Hamilton–Jacobi equation, left or right, to solve for the forward type II,

III, and backward type III generating functions. Then by selecting any two different generating

functions from the four single ones, we have six pairs of generating functions which give six gen-

erators for optimal solutions, respectively. These discrete generators maintain the advantage of

on-line efficient computation for different boundary conditions, which is presented by a followed

algorithm. Besides, since each generator contains inverse terms, we deeply perform the invert-

ibility analysis in Section 4.3 to conclude that the terms in the generators constructed by double

generating functions with opposite time directions are invertible under some mild conditions,

while the terms with the same time directions will become singular when the time goes infinity

which may cause instabilities in numerical computations. Examples in Section 4.4 illustrate the

effectiveness of the developed method. Section 4.5 summarizes this chapter.

4.1 Problem setting and necessary conditions for optimality

This section presents the problem setting in Section 4.1.1, and the necessary conditions for

optimality in terms of right and left discrete Hamiltonians in Section 4.1.2.

4.1.1 Problem setting

In this chapter, we study the discrete-time LQ optimal control problem, i.e. Problem 2.4

formulated in Section 2.2.4. We here present it again in the following to make this chapter self-

contained and convenient for the reading.

Problem 4.1.

min
u

N−1∑

k=0

1

2

(
xT

kQxk + uT

kRuk

)
(4.1)

s.t. xk+1 = Axk +Buk, k = 0, 1, · · · , N − 1 (4.2)

x0 = xinit, xN = xterm (4.3)

where the constant matrices Q ∈ R
n×n, R ∈ R

m×m, A ∈ R
n×n, and B ∈ R

n×m. Moreover, the

matrices Q < 0, R ≻ 0, and A is invertible.

4.1.2 Necessary conditions for optimality

According to Theorem 2.6, the necessary conditions for optimizing Problem 4.1 represented

by the right discrete Hamiltonian is

xk+1 =
∂H+(xk, λk+1)

∂λk+1

(4.4)

λk =
∂H+(xk, λk+1)

∂xk

(4.5)



4.1 Problem setting and necessary conditions for optimality 49

uk = −Mλk+1 (4.6)

where the right discrete Hamiltonian

H+(xk, λk+1) =
1

2
xT

kQxk + λT

k+1Axk −
1

2
λT

k+1Gλk+1

the matrices M : = R−1BT, and G : = BR−1BT < 0.

On the other hand, the necessary conditions for optimality can also be represented by the left

discrete Hamiltonian

xk = −
∂H−(λk, xk+1)

∂λk
(4.7)

λk+1 = −
∂H−(λk, xk+1)

∂xk+1
(4.8)

uk = −Mλk+1

where the left discrete Hamiltonian

H−(λk, xk+1) : = −
1

2
xT

k+1Qxk+1 − λT

kAxk+1 +
1

2
λT

kGλk.

Here, we will derive the expression of H−, i.e. expressions for the unknown matricesA,Q, and

G ∈ R
n×n, through Legendre transformation (2.119) from H+

H−(λk, xk+1) = H+(xk, λk+1)− λT

kxk − λT

k+1xk+1.

After substitution of (4.7) into the above Legendre transformation, we have

A =(A+GA−TQ)−1

Q =− (AT +QA−1G)−1(QA−1GA−TQ+Q)(A +GA−TQ)−1

G =− (A +GA−TQ)−1(GA−TQA−1G +G)(AT +QA−1G)−1.

Remark 4.1. The above three expressions need the formula A+GA−TQ (and its transpose) to

be invertible. This can be proven by the following: ∃y ∈ R
n such that

(A +GA−TQ)y = 0

⇒ y + A−1GA−TQy = 0 (4.9)

⇒ Qy +QA−1GA−TQy = 0

⇒ (I +QA−1GA−TQ)Qy = 0

⇒ Qy = 0. (4.10)

Combining (4.9) and (4.10), we get y = 0 which implies thatA+GA−TQ is nonsingular. More-

over, the fact Q 4 0 and G 4 0 can also be verified. First, we know that QA−1GA−TQ < 0
by the definition of positive semi-definite. Further, it is known that the sum of two positive

semi-definite matrices QA−1GA−TQ + Q < 0. Based on these, we have Q = −(AT +
QA−1G)−1(QA−1GA−TQ + Q)(A + GA−TQ)−1 4 0 also by the definition. The result G =
−(A + GA−TQ)−1(GA−TQA−1G + G)(AT + QA−1G)−1 4 0 can also be obtained by the

similar way.



50 Chapter 4

In this chapter, we make a standard assumption that (A,G) and (A,G) are controllable,

(Q,A) and (Q,A) are observable. Note that (A,G) controllable and (Q,A) observable are

equivalent, while (A,G) controllable and (Q,A) observable are equivalent.

The two sets of necessary conditions in this subsection are equivalent, and are the bases for

the next section. The right Hamilton’s equations (4.4) with boundary conditions (4.3), or the

left Hamilton’s equations (4.7) with boundary conditions (4.3) compose the two point boundary

value problem. Evaluating the optimal trajectory of Problem 4.1 corresponds to solving the two

point boundary value problem. The double generating functions method will be developed in

the remainder to solve this problem.

4.2 Double generating functions method

In this section, We give exact expressions of the generating functions F2f , F3f , F2b, and F3b

in Section 4.2.1. Based on this, we finally give six generators for optimal solutions only in

terms of pre-computed coefficients and boundary conditions by six different pairs of generating

functions, respectively in Section 4.2.2.

4.2.1 Generating functions

Since T. Lee [50] only gives the exact expression of F2b in Proposition 2.4, we here derive

the other three generating functions F2f , F3f , and F3b in the following proposition (also present

F2b).

Proposition 4.1. For Problem 4.1

(i) The generating function F2f(xk, λ0, k) has the expression of

F2f(xk, λ0, k) =
1

2
xT

kU2f,kxk + λT

0 V2f,kxk +
1

2
λT

0 W2f,kλ0 (4.11)

where the coefficients U2f,k = U T

2f,k ∈ R
n×n, V2f,k ∈ R

n×n, and W2f,k = U T

2f,k ∈ R
n×n

are the solutions of the difference equations (k = 0, 1, · · · , N − 1)

U2f,k+1 =A
T(I + U2f,kG)

−1
U2f,kA+Q (4.12)

V2f,k+1 =V2f,k(I + GU2f,k)
−1A (4.13)

W2f ,k+1 =W2f,k − V2f,k(I + GU2f,k)
−1GV T

2f,k (4.14)

with the boundary conditions U2f,0 = 0, V2f,0 = I , and W2f,0 = 0.

(ii) The generating function F3f(λk, x0, k) has the expression of

F3f(λk, x0, k) =
1

2
λT

kU3f,kλk + xT

0 V3f,kλk +
1

2
xT

0 W3f,kx0 (4.15)

where the coefficients U3f,k = U T

3f,k ∈ R
n×n, V3f,k ∈ R

n×n, and W3f,k = U T

3f,k ∈ R
n×n

are the solutions of the difference equations (k = 0, 1, · · · , N − 1)

U3f,k+1 =A(I + U3f,kQ)−1
U3f,kA

T +G (4.16)



4.2 Double generating functions method 51

V3f,k+1 =V3f,k(I +QU3f,k)
−1AT (4.17)

W3f ,k+1 =W3f,k − V3f,k(I +QU3f,k)
−1QV

T

3f,k (4.18)

with the boundary conditions U3f,0 = 0, V3f,0 = −I , and W3f ,0 = 0.

(iii) The generating function F2b(xk, λN , k) has the expression of

F2b(xk, λN , k) =
1

2
xT

kU2b,κxk + λT

NV2b,κxk +
1

2
λT

NW2b,κλN (4.19)

where κ=k−N †, and the coefficients U2b,κ=U T

2b,κ ∈ R
n×n, V2b,κ ∈ R

n×n, and W2b,κ=

U T

2b,κ ∈ R
n×n are the solutions of the difference equations (κ = 0,−1, · · · ,−N + 1)

U2b,κ−1 =AT(I + U2b,κG)−1
U2b,κA+Q (4.20)

V2b,κ−1 =V2b,κ(I +GU2b,κ)
−1A (4.21)

W2b,κ−1 =W2b,κ − V2b,κ(I +GU2b,κ)
−1GV

T

2b,κ (4.22)

with boundary conditions U2b,0 = 0, V2b,0 = I , and W2b,0 = 0.

(iv) The generating function F3b(λk, xN , k) has the expression of

F3b(λk, xN , k) =
1

2
λT

kU3b,κλk + xT

NV3b,κλk +
1

2
xT

NW3b,κxN (4.23)

where the coefficients U3b,κ = U T

3b,κ ∈ R
n×n, V3b,κ ∈ R

n×n, and W3b,κ = U T

3b,κ ∈ R
n×n

are the solutions of the difference equations (κ = 0,−1, · · · ,−N + 1)

U3b,κ−1 =A(I + U3b,κQ)
−1

U3b,κA
T + G (4.24)

V3b,κ−1 =V3b,κ(I +QU3b,κ)
−1AT (4.25)

W3b,κ−1 =W3b,κ − V3b,κ(I +QU3b,κ)
−1QV

T

3b,κ (4.26)

with boundary conditions U3b,0 = 0, V3b,0 = −I , and W3b,0 = 0.

Proof. (i) First, it is known that F2f is in quadratic form as (4.11) [35]. Then from Remark 2.7,

we have F2f(xk, λ0, k)|k=0 = λT

0 x0 that gives the boundary conditions U2f,0 = 0, V2f,0 = I , and

W2f,0 = 0. We solve the Hamilton–Jacobi equation (2.121) to obtain the explicit expression of

F2f(xk, λ0, k), i.e. difference equations for its coefficient matrices U2f,k, V2f,k, and W2f,k. We

first rewrite (2.121) to be an equation only in terms of xk+1 and λ0 by the help of (4.7) and

(2.99). Then, since this equation should be satisfied for any xk+1 and λ0, their coefficients can

only be zero which leads to the difference equations (4.12)–(4.14). Further, it is known that both

U2f,k and W2f,k are symmetric due to (4.12) and (4.14) with zero initial conditions U2f,0 = 0 and

W2f,0 = 0.

(ii)–(iv) The exact expressions of F3f and F3b can be obtained by the similar way as for F2f

above by solving the Hamilton–Jacobi equations (2.101) and (2.126), respectively. The exact

expression of F2b refers to [50].

†To make it convenient for the invertibility analysis in the next section, we here transform the time steps of

backward generating function coefficients from N,N − 1, · · · , 0 to 0,−1, · · · ,−N by defining κ = k −N .



52 Chapter 4

4.2.2 Optimal solutions via Double Generating Functions

The boundary conditions of the state, x0 and xN , are pre-given. Dually, the boundary condi-

tions of the costate λ0 and λN , which are required in the next theorem, can be derived by letting

k = 0 in (2.114) and k = N in (2.102), respectively as

λ0 =−U
−1
3b,−N(x0 + V

T

3b,−NxN ) (4.27)

λN =−U
−1
3f,N(xN + V

T

3f ,Nx0) (4.28)

or by letting k = N in (2.100) and k = 0 in (2.112), respectively as

λ0 =W
−1
2f,N(x0 − V2f,NxN ) (4.29)

λN =W
−1
2b,−N(xN − V2b,−Nx0). (4.30)

Six kinds of double generating functions can be constructed by selecting any two different

single generating functions among F2f , F3f , F2b, and F3b. Based on this, we give six generators

correspondingly for optimal solutions only in terms of pre-computed coefficients and boundary

conditions by the following theorem.

Theorem 4.1. The optimal state x∗
k and input u∗

k of Problem 4.1 are given as

[
x∗
k

u∗
k

]

=

[
U3b,κ(U3f,k −U3b,κ)

−1V T

3f,k −U3f,k(U3f,k −U3b,κ)
−1V T

3b,κ

M(U3f,k+1 −U3b,κ+1)
−1V T

3f,k+1 −M(U3f,k+1 −U3b,κ+1)
−1V T

3b,κ+1

] [
x0

xN

]

(4.31)

or

[
x∗
k

u∗
k

]

=

[
−(I + U3f,kU2b,κ)

−1V T

3f,k −(I + U3f,kU2b,κ)
−1U3f,kV

T

2b,κ

M(I + U2b,κ+1U3f,k+1)
−1U2b,κ+1V

T

3f,k+1 −M(I + U2b,κ+1U3f,k+1)
−1V T

2b,κ+1

] [
x0

λN

]

(4.32)

where λN by (4.28), or

[
x∗
k

u∗
k

]

=

[
−(I + U3b,κU2f,k)

−1U3b,κV T

2f,k −(I + U3b,κU2f,k)
−1V T

3b,κ

−M(I + U2f,k+1U3b,κ+1)
−1V T

2f,k+1 M(I + U2f,k+1U3b,κ+1)
−1U2f,k+1V

T

3b,κ+1

] [
λ0

xN

]

(4.33)

where λ0 by (4.27), or

[
x∗
k

u∗
k

]

=

[
(U2b,κ −U2f,k)

−1V T

2f,k −(U2b,κ −U2f,k)
−1V T

2b,κ

−MU2b,κ+1(U2b,κ+1 −U2f,k+1)
−1V T

2f,k+1 MU2f,k+1(U2b,κ+1 −U2f,k+1)
−1V T

2b,κ+1

] [
λ0

λN

]

(4.34)

where λ0 by (4.29) and λN by (4.30), or

[
x∗
k

u∗
k

]

=

[
−(I + U3f,kU2f,k)

−1V T

3f,k −(I + U3f,kU2f,k)
−1U3f,kV

T

2f,k

M(I + U2f,k+1U3f,k+1)
−1U2f,k+1V

T

3f,k+1 −M(I + U2f,k+1U3f,k+1)
−1V T

2f,k+1

] [
x0

λ0

]

(4.35)

where λ0 by (4.29), or

[
x∗
k

u∗
k

]

=

[
−(I + U3b,κU2b,κ)

−1V T

3b,κ −(I + U3b,κU2b,κ)
−1U3b,κV T

2b,κ

M(I + U2b,κ+1U3b,κ+1)
−1U2b,κ+1V

T

3b,κ+1 −M(I + U2b,κ+1U3b,κ+1)
−1V T

2b,κ+1

] [
xN

λN

]

(4.36)



4.2 Double generating functions method 53

where λN by (4.30).

Proof. The optimal solutions can be generated via the double generating functions constructed

by F3f(λk, x0, k) and F3b(λk, xN , k). We solve λ∗
k and x∗

k from (2.102) and (2.114), and substi-

tute the expression of λ∗
k (changing the indices from k to k + 1) into (4.6) to obtain u∗

k in (4.31)

for Problem 4.1. We can also derive the optimal solutions in (4.32)–(4.36) based on the other

five double generating functions by the similar way.

It is clear that each one of the generators (4.31)–(4.36) is constructed by using only two

different generating functions (double generating functions), in which the first four are based

on double generating functions with opposite time directions, i.e. forward and backward, while

the last two are based on the same time directions. Moreover, all of these six generators are

in terms of the generating function coefficients and boundary conditions of the state. Due to

such structures, we can divide the whole computation into two parts, off-line and on-line parts.

In the off-line part, we calculate the generating function coefficients in advance. Then in the

on-line part, we can efficiently generate optimal solutions when there comes the computational

demand for different boundary conditions. From this viewpoint, the developed double generating

functions method is useful for on-line repetitive computation for different boundary conditions.

Among six generators, (4.31) is the most convenient one since it does not need extra computation

for λ0 or λN . Hence based on (4.31), we give the following algorithm to clearly show how to

generate optimal solutions for different boundary conditions via double generating functions.

1 U3f,0 ← 0; V3f,0 ← −I; U3b,0 ← 0; V3b,0 ← −I; /* set boundary conditions */

2 for k = 0, 1, · · · , N − 1 do

3 U3f,k+1 ← A(I + U3f,kQ)−1U3f,kA
T +G; /* forward coefficients */

4 V3f,k+1 ← V3f,k(I + QU3f,k)
−1AT;

5 end

6 for κ = 0,−1, · · · ,−N + 1 do

7 U3b,κ−1 ← A(I + U3b,κQ)−1U3b,κAT + G; /* backward coefficients */

8 V3b,κ−1 ← V3b,κ(I +QU3b,κ)
−1AT;

9 end

Algorithm 4.1: Off-line part, calculate generating function coefficients.

1 if there is a computational demand for boundary conditions (xinit, xterm) then

2 x0 ← xinit; xf ← xterm; /* set boundary conditions */

3 for k = 0, 1, · · · , N − 1 do

4 x∗k ← U3b,κ(U3f,k −U3b,κ)
−1V T

3f,kx0 −U3f,k(U3f,k −U3b,κ)
−1V T

3b,κxN ;

5 u∗k ←M(U3f,k+1 −U3b,κ+1)
−1V T

3f,k+1x0 −M(U3f,k+1 −U3b,κ+1)
−1V T

3b,κ+1xN ;

6 end

7 else

8 goto 1; /* on-demand */

9 end

Algorithm 4.2: On-line part, generate optimal solutions.



54 Chapter 4

4.3 Invertibility Analysis

Notice the terms to be inverted (inverse terms) in generators (4.31)–(4.36), including (4.27)–

(4.30). After we develop these optimal generators, the invertibility analysis is another important

issue that we should pay attention to. In this section, we first show three kinds of properties of

the twelve generating function coefficients in Section 4.3.1. Then, based on this, we give the

conclusion of the invertibility in Section 4.3.2.

4.3.1 Properties of Generating Function Coefficients

We first show the general properties of the twelve generating function coefficients.

Lemma 4.1. For Problem 4.1, the twelve generating function coefficients of F2b, F3b, F2f , and

F3f satisfy the following relations.

(i) Coefficients of F2b: U2b,κ < 0; V2b,κ is invertible; W2b,κ 4 0.

(ii) Coefficients of F3b: U3b,κ 4 0; V3b,κ is invertible; W3b,κ < 0.

(iii) Coefficients of F2f : U2f,k 4 0; V2f,k is invertible; W2f ,k < 0.

(iv) Coefficients of F3f : U3f,k < 0; V3f,k is invertible; W3f ,k 4 0.

Proof. (i) First, we will use mathematical induction to prove U2b,κ < 0. Before the induction,

we rewrite (4.20) as

U2b,κ−1 =AT(I + U2b,κG)−1(U2b,κ + U2b,κGU2b,κ)(I +GU2b,κ)
−1A+Q. (4.37)

Since U2b,0 = 0 (hence I + GU2b,0 is invertible), we have U2b,−1 = Q < 0. Now, we

suppose the general case that U2b,κ < 0 (hence I + GU2b,κ is invertible). It is clear that

AT(I + U2b,κG)−1(U2b,κ + U2b,κGU2b,κ)(I + GU2b,κ)
−1A < 0 such that U2b,κ−1 < 0 (hence

I +GU2b,κ−1 is invertible) due to (4.37). Therefore, we have the conclusion U2b,κ < 0. Mean-

while, it is also guaranteed by the above induction that I+U2b,κG and I+GU2b,κ are invertible.

Second, since both I +U2b,κG and A are invertible, then V2b,κ is invertible according to the

recurrence relation (4.21).

Third, the general property of W2b,κ can be proven by the similar way to U2b,κ by rewriting

(4.22) as

(−W2b,κ−1) =(−W2b,κ) + V2b,κ(I +GU2b,κ)
−1(G+GU2b,κG)(I + U2b,κG)−1

V
T

2b,κ

(ii)–(iv) Proofs for (ii)–(iv) are similar to the proof for (i), so they are omitted here.

Next, we give the following lemma to show the rank properties of the generating function

coefficients. In this lemma, we will use Uf,k as the generalization of U2f,k and U3f,k, and Wf,k as

the generalization of W2f,k and W3f ,k. Dually, Ub,κ and Wb,κ will be used for backward generating

function coefficients.

Lemma 4.2. For Problem 4.1, the twelve generating function coefficients of F2b, F3b, F2f , and

F3f satisfy the following relations.



4.3 Invertibility Analysis 55

(i) rank(Ub,κ−1) > rank(Ub,κ) when Ub,κ has deficient rank, rank(Ub,κ−1) = rank(Ub,κ)
when Ub,κ has full rank.

(ii) rank(Wb,κ−1) > rank(Wb,κ) when Wb,κ has deficient rank, rank(Wb,κ−1) = rank(Wb,κ)
when Wb,κ has full rank.

(iii) rank(Uf,k+1) > rank(Uf,k) when Uf,k has deficient rank, rank(Uf,k+1) = rank(Uf,k)
when Uf,k has full rank.

(iv) rank(Wf,k+1) > rank(Wf,k) when Wf,k has deficient rank, rank(Wf,k+1) = rank(Wf,k)
when Wf,k has full rank.

Proof. (i) We take U2b,κ as example to prove this part. To well state the proof, we write (4.20)

here again

U2b,κ−1 = AT(I + U2b,κG)−1
U2b,κA+Q.

The second result, rank(U2b,κ−1) = rank(U2b,κ) when U2b,κ has full rank, is obvious since then

rank(U2b,κ−1) = rank(U2b,κ) = n according to (4.37). Thus, we mainly investigate the first

result. Due to (4.37), it is clear that ker(U2b,κ−1) ⊆ ker(Q) since both the summands in the

right hand side of (4.37) are positive semi-definite for U2b,κ−1. Then to prove the first result,

we use contradiction, rank(U2b,κ−1) 6 rank(U2b,κ). Since U2b,κ−1 − U2b,κ < 0 [68, 69],

it can only be rank(U2b,κ−1) = rank(U2b,κ). Hence ker(U2b,κ−1) = ker(U2b,κ) such that

ker(U2b,κ) ⊆ ker(Q). Therefore, there exists nontrivial y ∈ R
n such that U2b,κy = 0 ⇒ Qy =

0⇒ AT(I + U2b,κG)−1U2b,κAy = 0⇒ U2b,κAy = 0 due to (4.20). Apply the same argument

on Ay instead of y, we have U2b,κAy = 0 ⇒ QAy = 0 ⇒ U2b,κA
2y = 0. Continue in this

manner, we get Qy = QAy = QA2y = · · · = QAn−1y = 0. Then, by taking transposes, we

have yT[Q ATQ (AT)2Q · · · (AT)n−1Q] = 0 for some nonzero y, contradicting that (Q,A) is

observable. Therefore, rank(U2b,κ−1) > rank(U2b,κ) when U2b,κ has deficient rank.

This part of result can also be proven if we take U3b,κ as example.

(ii) At the beginning, we also write (4.22) here

(−W2b,κ−1) = (−W2b,κ) + V2b,κ(I +GU2b,κ)
−1GV

T

2b,κ.

First, let us consider the case when κ = −1. We use contradiction, rank(−W2b,−2) 6

rank(−W2b,−1). It is clear that it can only be rank(−W2b,−2) = rank(−W2b,−1) which leads

to ker(−W2b,−2) = ker(−W2b,−1) = ker(G) due to the above expression. Thus, ∃y′ 6= 0 such

that (−W2b,−2)y
′ = 0 ⇒ Gy′ = 0 ⇒ A(I + GQ)−1GATy′ = 0 ⇒ GATy′ = 0 due to (4.22)

when κ = −1. Hence ker(G) is AT-invariant, i.e. G(AT)py′ = 0 (∀p > 0 and ∀y′ ∈ ker(G)),
such that y′T[G AG A2G · · · An−1G] = 0 for some nonzero y′, contradicting that (A,G) is

controllable. Therefore, rank(−W2b,−2) > rank(−W2b,−1).
Next, let us consider the general case, i.e. whether rank(−W2b,κ−1) > rank(−W2b,κ) if

rank(−W2b,κ) > rank(−W2b,κ+1). Similarly, we use contradiction and know that ∃y′′ 6= 0
such that (−W2b,κ−1)y

′′ = 0 ⇒ (−W2b,κ)y
′′ = 0 ⇒ GV T

2b,κy
′′ = 0 due to (4.22). Mean-

while, (−W2b,κ)y
′′ = 0 ⇒ (−W2b,κ+1)y

′′ = 0 ⇒ GV T

2b,κ+1y
′′ = 0 due to the condition

rank(−W2b,κ) > rank(−W2b,κ+1). Further by (4.21) and Matrix Inversion Lemma, we have

GV
T

2b,κy
′′ = 0⇒ GAT(I + U2b,κ+1G)−1

V
T

2b,κ+1y
′′ = 0



56 Chapter 4

⇒GAT
V

T

2b,κ+1y
′′ −GAT

U2b,κ+1(I +GU2b,κ+1)
−1GV

T

2b,κ+1y
′′ = 0

⇒GAT
V

T

2b,κ+1y
′′ = 0.

Similarly, continuing in this manner leads to the contradiction to the controllability of (A,G).
Thus, rank(−W2b,κ−1) > rank(−W2b,κ).

Note that the dimension of ker(−W2b,κ) decreases when κ decreases, e.g. the number of y′′

is less than y′ if κ < −1. According to the above, once y′′ can only be zero for the particular κ,

i.e. rank(−W2b,κ) = n, then rank(−W2b,κ−1) = n.

This part of result can also be proven if we take W3b,κ as example.

(iii)–(iv) Proofs for (iii)–(iv) are similar to the proofs for (i)–(ii), respectively, so they are

omitted here.

At last, we give the following lemma to show the convergence properties of the twelve gen-

erating function coefficients.

Lemma 4.3. For Problem 4.1, the twelve generating function coefficients of F2b, F3b, F2f , and

F3f satisfy the following relations.

(i) When κ → −∞, coefficients of F2b: U2b,κ → Û2b ≻ 0; V2b,κ asymptotically converges

to 0; W2b,κ → Ŵ2b ≺ 0.

(ii) When κ → −∞, coefficients of F3b: U3b,κ → Û3b ≺ 0; V3b,κ asymptotically converges

to 0; W3b,κ → Ŵ3b ≻ 0.

(iii) When k → ∞, coefficients of F2f : U2f,k → Û
+
2f ≺ 0; V2f,k asymptotically converges to

0; W2f ,k → Ŵ2f ≻ 0.

(iv) When k →∞, coefficients of F3f : U3f,k → Û3f ≻ 0; V3f,k asymptotically converges to 0;

W3f,k → Ŵ3f ≺ 0.

For the proof see Appendix of this chapter.

The three lemmas in this subsection show the comprehensive behaviour of the twelve gener-

ating function coefficients. They are the bases for the next invertibility analysis.

4.3.2 Invertibility Analysis

First, we present a remark.

Remark 4.2. Recall F2f and F2b in Proposition 4.1. We can also obtain the expressions of these

two kinds of generating functions by Legendre transformations [50]. For example, we can get

the expression of F2f by

F2f(xk, λ0, k) = F3f(λk, x0, k) + λT

0 x0 + λT

kxk

through which F2f and F3f are related. Based on this, coefficients of F2f can be expressed by

the coefficients of F3f , e.g. the first coefficient U2f,k = (V T

3f,kW
−1
3f,kV3f,k−U3f,k)

−1. By a similar

way, we can also have U2b,κ = (V T

3b,κW
−1
3b,κV3b,κ − U3b,κ)

−1. Note that the inverse terms here

are nonsingular when k is large enough and κ is small enough, respectively.



4.3 Invertibility Analysis 57

rank: n-1 1 0 1
...

nn

......
n 2 2

...
n n 0 n-2 n-1 n

U 3b,-2n+1U 3b,-2n+2U 3b,-2n+3 U 3b,-n-1 U 3b,-n U 3b,-n+1 U 3b,-2 U 3b,-1 U 3b,0 U 3f,0 U 3f,1 U 3f,2 U 3f,n-2 U 3f,n-1 U 3f,n

Figure 4.1: Interpretation of Theorem 4.2(v). When the increments of rank(U3f,k) and

rank(U3b,κ) are both one (extreme case), the difference of each linked U3f,k and U3b,k−N (i.e.

U3f,k −U3b,k−N , k = 0, 1, · · · , N) is invertible, under the critical condition N = 2n− 1.

Based on Lemmas 4.1–4.3, and Remark 4.2, we show the invertibility of inverse terms in

(4.27)–(4.36) by the following theorem.

Theorem 4.2. For Problem 4.1, the twelve generating function coefficients of F2b, F3b, F2f , and

F3f satisfy the following relations.

(i) If N > n, U3b,−N in (4.27) is invertible.

(ii) If N > n, U3f,N in (4.28) is invertible.

(iii) If N > n, W2f,N in (4.29) is invertible.

(iv) If N > n, W2b,−N in (4.30) is invertible.

(v) If N > 2n− 1, U3f,k −U3b,κ in (4.31) is invertible, ∀k = 0, 1, · · · , N .

(vi) I + U3f,kU2b,κ in (4.32) is invertible, ∀k = 0, 1, · · · , N .

(vii) I + U3b,κU2f,k in (4.33) is invertible, ∀k = 0, 1, · · · , N .

(viii) If N > 2n− 1, U2b,κ −U2f,k in (4.34) is invertible, ∀k = 0, 1, · · · , N .

(ix) When k →∞, I + U3f,kU2f,k → 0 in (4.35).

(x) When κ→ −∞, I + U3b,κU2b,κ → 0 in (4.36).

Proof. (i) Due to Lemma 4.2(i), we know that rank(U3b,κ) starts from zero and increases at each

step in the beginning. Let us consider the extreme case that the increment of the rank is only

one, then rank(U3b,κ) = n when κ 6 −n. Hence U3b,−N in (4.27) is invertible if −N 6 −n,

i.e. N > n.

(ii)–(iv) Proofs for (ii)–(iv) are similar to the proof for (i), so they are omitted here.

(v) Similarly, let us also consider the extreme case that the increments of rank(U3f,k) and

rank(U3b,κ) are both one at the first n-steps. Since U3f,k < 0 and U3b,κ 4 0 due to Lemma

4.1. The critical condition N = 2n − 1, as Figure 4.1 shows, guarantees that one variable,

either U3f,k or U3b,k−N in the difference U3f,k − U3b,k−N is (positive/negative) definite and

the other one (positive/negative) semi-definite such that U3f,k − U3b,k−N is always invertible,

∀k = 0, 1, · · · , N . Hence it is clear to conclude that if N > 2n − 1, U3f,k −U3b,κ in (4.31) is

invertible, ∀k = 0, 1, · · · , N .



58 Chapter 4

(vi) Since both U3f,k and U2b,κ are either positive definite or positive semi-definite, eigen-

values of I + U3f,kU2b,κ are always positive. Hence if N > 2n− 1, I + U3f,kU2b,κ in (4.32) is

invertible, ∀k = 0, 1, · · · , N .

(vii)–(viii) Proofs for (vii)–(viii) are similar to the proofs for (vi)–(v) respectively, so they

are omitted here.

(ix) According to Lemma 4.3(iv), when k →∞, U2f,k = −U
−1
3f,k, i.e. Û2f = −Û

−1
3f . Hence

in such a case, I + U3f,kU2f,k → 0 in (4.35).

(x) According to Lemma 4.3(ii), when κ → −∞, U2b,κ = −U
−1
3b,κ, i.e. Û2b = −Û

−1
3b .

Hence in such a case, I + U3b,κU2b,κ → 0 in (4.36).

Remark 4.3. Invertibility of the inverse terms in second rows of generators (4.31)–(4.36) for

optimal input are the same to the ones in first rows for optimal state as shown in Theorem 4.2(v)–

(x), respectively, so the proofs are omitted.

Remark 4.4. Recall the inverse terms I+U3f,kU2f,k in (4.35) and I+U3b,κU2b,κ in (4.36). Due

to Theorem 4.2(ix), it is sure that ||I + U3f,kU2f,k||max < ε when k > δ, where ε ∈ R is small

enough and δ is the step bound corresponding to ε. Numerical computations usually performed

on the digital computer that has smallest number threshold below which will be treated as zero.

From this viewpoint, treat ε as such a threshold, then it is clear that I + U3f,kU2f,k will be

singular when k > δ. This means such a term will be singular even within finite time steps in

real computations that causes instability. The term I + U3b,κU2b,κ in (4.36) also has the same

problem. Moreover, eigenvalues of the products U3f,kU2f,k and U3b,κU2b,κ are both less than or

equal to zero, or less than zero due to Lemma 4.1. Hence except the case in Theorem 4.2(ix)

and (x), the invertibility of I + U3f,kU2f,k and I + U3b,κU2b,κ are unclear.

Then based on the above theorem and remarks, it is straightforward to conclude the following

corollary about the generators (4.31)–(4.36).

Corollary 4.1. For Problem 4.1

(i) Generator (4.31) is well-defined if N > 2n− 1;

(ii) Generator (4.32) with λN by (4.28) is well-defined if N > n;

(iii) Generator (4.33) with λ0 by (4.27) is well-defined if N > n;

(iv) Generator (4.34) with λ0 by (4.29) and λN by (4.30) is well-defined if N > 2n− 1;

(v) Generator (4.35) with λ0 by (4.29) is not well-defined;

(vi) Generator (4.36) with λN by (4.30) is not well-defined.

As stated before Algorithms 4.1 and 4.2, the generator (4.31) is the most convenient for

Problem 4.1. However, from the viewpoint of the condition shown in Corollary 4.1, the genera-

tors (4.32) and (4.33) are the priority. Nevertheless, the generators (4.35) and (4.36) should be

avoided in practice.



4.4 Examples 59

4.4 Examples

In this section, we give two examples. The first one is to show the invertibility issue of the

developed six generators, and the second one is to demonstrate the effectiveness of the double

generating functions method for different boundary conditions by Algorithms 4.1 and 4.2.

Example 4.1. Consider Problem 4.1 with

A =

[
2 3
1 2

]

, B =

[
3 4
−1 2

]

, Q =

[
2 3
3 6

]

, R =

[
1 2
2 5

]

and boundary conditions xinit = [−3, 3]T, xterm = [5, 8]T, where time steps N = 12.

To present the invertibility issue, we employ the six generators (4.31)–(4.36) to generate

trajectory of the optimal state, respectively.

The results are presented in Figure 4.2. Figure 4.2(a)–(d) show that the generators (4.31)–

(4.34) work well and generate the same optimal state trajectories since the contained inverse

terms are invertible as claimed in Theorem 4.2(i)–(viii) such that these four generators are well-

defined. Though the total time steps is only 12, instabilities already occur in Figure 4.2(e) and (f).

The reason is that in numerical computations, the inverse terms in generators (4.35) and (4.36)

are singular when the time k approaches N and 0, respectively, as stated in Theorem 4.2(ix)–

(x) and Remark 4.4. By this example, it is clear that each one of (4.31)–(4.34) is available for

application, whereas generators (4.35) and (4.36) should be avoided.

Example 4.2. Consider Problem 4.1 with

A =





3 1 −1
1 2 1
1 1 1



 , B =





1 1
2 3
1 2



 , Q =





3 1 2
1 2 1
2 1 5



 , R =

[
3 1
1 2

]

and three different sets of boundary conditions as in Table 4.1.

We apply Algorithms 4.1 and 4.2 for this problem. First in the off-line part, we choose the

time interval as the maximum, from 0 to 20 (or larger), according to Table 4.1 to calculate the

generating function coefficients. Then, optimal solutions corresponding to each particular set

of boundary conditions can be efficiently generated in the on-line part. Results are presented

in Figure 4.3, in which Figure 4.3(a) and (b) are the first and second elements of optimal input,

and Figure 4.3(c)–(e) are the first, second, and third elements of optimal state, respectively. It

can be found that trajectories of the optimal state satisfy each set of boundary conditions in

Table 4.1. The off-line and on-line computational time is 0.0071 [s] and 0.0088 [s] according

to Algorithms 4.1 and 4.2, respectively. The developed double generating functions method

can solve such problems efficiently, especially when there is a large number of different sets of

boundary conditions.

Table 4.1: Three different sets of boundary conditions.

Initial time and boundary condition Terminal time and boundary condition

1st set 4, [−4, 8,−2.0]T 14, [7,−7,−1.2]T

2nd set 2, [−3, 7,−1.5]T 17, [6,−6,−1.0]T

3rd set 0, [−2, 6,−1.0]T 20, [5,−5,−0.8]T



60 Chapter 4

0 2 4 6 8 10 12

−4

−2

0

2

4

6

8

time k

st
at

e 
x k

 

 

1st element
2nd element

(a) Optimal state by (4.31)

0 2 4 6 8 10 12

−4

−2

0

2

4

6

8

time k

st
at

e 
x k

 

 

1st element
2nd element

(b) Optimal state by (4.32)

0 2 4 6 8 10 12

−4

−2

0

2

4

6

8

time k

st
at

e 
x k

 

 

1st element
2nd element

(c) Optimal state by (4.33)

0 2 4 6 8 10 12

−4

0

4

8

time k

st
at

e 
x k

 

 

1st element
2nd element

(d) Optimal state by (4.34)

0 2 4 6 8 10 12

−4

−2

0

2

4

6

8

time k

st
at

e 
x k

 

 

1st element
2nd element

0−1 causes instability

(e) Optimal state by (4.35)

0 2 4 6 8 10 12

−4

−2

0

2

4

6

8

time k

st
at

e 
x k

 

 

1st element
2nd element

0−1 causes instability

(f) Optimal state by (4.36)

Figure 4.2: Trajectories of optimal state generated by (4.31)–(4.36).



4.4 Examples 61

0 4 8 12 16 20

−4

−3

−2

−1

0

1

2

3

4

time k

in
pu

t u
k

 

 

1st set
2nd set
3rd set

(a) Optimal input (1st element)

0 4 8 12 16 20
−4

−3

−2

−1

0

1

2

time k

in
pu

t u
k

 

 

1st set
2nd set
3rd set

(b) Optimal input (2nd element)

0 4 8 12 16 20

−4

−2

0

2

4

6

8

time k

st
at

e 
x k

 

 

1st set
2nd set
3rd set

(c) Optimal state (1st element)

0 4 8 12 16 20

−8

−6

−4

−2

0

2

4

6

8

time k

st
at

e 
x k

 

 

1st set
2nd set
3rd set

(d) Optimal state (2nd element)

0 4 8 12 16 20

−2

−1.5

−1

−0.5

0

time k

st
at

e 
x k

 

 

1st set
2nd set
3rd set

(e) Optimal state (3rd element)

Figure 4.3: Optimal input and state for the three different sets of boundary conditions.



62 Chapter 4

4.5 Summary

This chapter presents a whole framework of double generating functions method to the

discrete-time LQ optimal control problem, including the development of generators for optimal

solutions and the numerical stability analysis. Specifically, we first derive the discrete forward

and backward single generating functions by solving appropriate right and left Hamilton–Jacobi

equations based on necessary conditions for optimality, and give six generators for optimal so-

lutions based on double generating functions constructed by selecting any two different single

generating functions among the candidates. Second, under the invertibility analysis of the in-

verse terms in these generators based on properties of the coefficients presented in this chapter,

we conclude that the generators constructed by double generating functions with opposite time

directions are available for applications under some mild conditions, while the generators with

the same time directions should be avoided for real practice. This numerical stability analysis

can also be generalized to the existing single generating function method.

Appendix

Before we prove Lemma 4.3, we first refer to the following lemma.

Lemma 4.4 ([68]). Consider the Riccati difference equation (4.20) with the initial condition

U2b,0 = 0. Suppose that (A,G) is controllable and (Q,A) is observable†, then

(i) |σi ((I +GU2b,κ)
−1A)| < 1, ∀κ 6 0 and ∀i = 1, 2, · · · , n, where σi(·) denotes the i-th

individual eigenvalue of the matrix in the bracket.

(ii) limκ→−∞ U2b,κ = Û2b, where Û2b is the unique stabilizing solution of the algebraic Ric-

cati equation

AT(I + Û2bG)−1
Û2bA− Û2b +Q = 0.

Then, we give the proof for Lemma 4.3.

Proof. (i) Proof for the convergence property of U2b,κ can be accomplished by combining Lem-

ma 4.4(ii) with Û2b ≻ 0 [13].

All the eigenvalues of (I +GU2b,κ)
−1A have a modulus smaller than one by Lemma 4.4(i),

so we know that when κ→ −∞, V2b,κ asymptotically converges to 0 according to (4.21).

Based on these properties, when κ → −∞, (4.22) becomes W2b,κ−1 = W2b,κ which means

W2b,κ will converge to a matrix Ŵ2b. According to Lemmas 4.1(i) and 4.2(ii), we know Ŵ2b ≺ 0.

(ii) There has the corresponding lemma [68, 69] like Lemma 4.4 for the discrete Riccati

equation (4.16) such that we can prove the convergence properties of the coefficients of F3f by

the same way as the above proof for (i).

(iii) For the coefficients of F2f , we can rewrite their expressions (4.12)–(4.14) as follows

(−U2f,k+1) =A
T (I + (−U2f,k)(−G))

−1 (−U2f ,k)A+ (−Q)

†This condition is stricter than the ones in [68] and [13], but more applicable in this chapter.



4.5 Summary 63

V2f,k+1 =V2f,k (I + (−G)(−U2f ,k))
−1A

(−W2f,k+1) =(−W2f ,k)− V2f,k(I + (−G(−U2f ,k))
−1 (−G)V T

2f ,k.

It is clear that −Q < 0 and −G < 0 by Remark 4.1. In addition, since (A,G) is controllable

and (Q,A) is observable, by Kalman rank condition we know that (A,−G) is controllable and

(−Q,A) is observable. Due to these techniques, by comparing the above three equations with

(4.20)–(4.22), we can easily get the convergence results for −U2f,k, V2f,k, and −W2f,k: when

k → ∞, −U2f,k → Ũ
+
2f ≻ 0, V2f,k asymptotically converges to 0, and −W2f ,k → W̃2f ≺ 0.

Therefore, we have: when k → ∞, U2f,k → Û
+
2f ≺ 0, V2f,k asymptotically converges to 0, and

W2f,k → Ŵ2f ≻ 0.

(iv) We can prove the convergence properties of the coefficients of F3b by the same idea of

the above proof for (iii) by rewriting their expressions (4.24)–(4.26) as follows

(−U3b,κ−1) =A (I + (−U3b,κ)(−Q))
−1 (−U3b,κ)A

T + (−G)

V3b,κ−1 =V3b,κ (I + (−Q)(−U3b,κ))
−1AT

(−W3b,κ−1) =(−W3b,κ)− V3b,κ (I + (−Q)(−U3b,κ))
−1 (−Q)V T

3b,κ

and comparing with (4.16)–(4.18).



64 Chapter 4



Chapter 5

Discrete-time nonlinear

optimal control problem

For the case of continuous-time problems, the references [36, 37] give analytically opti-

mal solutions by the generating function. If we can solve the Hamilton–Jacobi equation for

the generating function, it is easy for us to generate the analytically optimal input. Since the

Hamilton–Jacobi equation is a nonlinear partial differential equation, it is difficult to find its an-

alytic solution so that we need the numerical implementations to find its approximate solution.

So far, there have had two numerical implementations utilized for such a purpose. One is the

Galerkin spectral technique with Chebyshev polynomials [41], and the other the Taylor series

expansion technique [35, 51, 43]. The first technique has the advantage of big region of conver-

gence, but it also has the disadvantage that it requires the Hamiltonian for the optimal control

problem has a special form and can not achieve the recursiveness of the ordinary differential

equations for generating function coefficients. The second technique has the advantage of the

recursive properties, but it also has the disadvantage that it is only applicable to systems that are

small perturbations of a linear system, and it is inherently tied to the convergence of a power

series for which it is difficult to estimate the region of convergence. There is trade off between

these two techniques, so it is necessary for us to select the appropriate numerical implementation

based on the comprehensive and deep evaluation of the problems.

For the research on discrete-time nonlinear optimal control via generating functions, it is still

blank.

This chapter develops the generating function method for the general discrete-time nonlinear

optimal control problems. First, we give the analytically optimal solutions, which is expressed

as the state feedforward control in terms of the generating functions in Section 5.1. Then for

the numerical implementations in Section 5.2, we systematically perform three steps to solve

the Hamilton–Jacobi equation for the generating functions. In detail, we expand all the nonlin-

ear functions in the Hamilton–Jacobi equation as Taylor series about zeros in tensor notations

such that they can clearly present the detailed structure of the Hamilton–Jacobi equation later

during the reduction. Based on this, we again employ the Taylor series technique to success-

fully replace one variable by the other two in the Hamilton–Jacobi equation to rewrite it by the

addressed theorem in the chapter. Due to this step, we achieve our objective that the Hamilton–

Jacobi equation is reduced to the difference equations for the generating function coefficients,



66 Chapter 5

and they can be solved recursively with respect to the order of the Taylor series. The developed

numerical framework can give the optimal solutions in terms of the pre-computed generating

function coefficients and boundary conditions, such that we can divide the whole computation

into two parts, the off-line part calculates the coefficients in advance, and the on-line part ef-

ficiently generates optimal solutions for different boundary conditions. From this viewpoint, it

is useful for on-demand optimal solutions generation for different boundary conditions. This is

summarized as an algorithm. Examples in Section 5.3 illustrate the effectiveness of the devel-

oped method. Section 5.4 summarizes this chapter.

5.1 Problem setting and analytical solutions

In this section, we formulate the discrete-time nonlinear optimal control problem in Section

5.1.1, and then give the analytically optimal solutions via generating functions in Section 5.1.2.

5.1.1 Problem setting

In this chapter, we study the discrete-time nonlinear optimal control problem, i.e. Problem

2.3 formulated in Section 2.2. We here present it again in the following to make this chapter

self-contained and convenient for the reading.

Problem 5.1.

min
u

N−1∑

k=0

(

Q(xk) +
1

2
uT

kR(xk)uk

)

(5.1)

s.t. xk+1 = A(xk) +B(xk)uk, k = 0, 1, · · · , N − 1 (5.2)

x0 = xinit, xN = xterm (5.3)

where the function Q < 0, and the matrix R(xk) ≻ 0, ∀xk ∈ R
n. We assume that this problem

is a convex problem.

For Problem 5.1, we give the following standard assumption.

Assumption 5.1. Assume that the state xk = 0 is an equilibrium state of the system (5.2) under

the input uk = 0, i.e. A(0) = 0.

Based on Assumption 5.1, we have the following lemma.

Lemma 5.1. Under Assumption 5.1, if x0 = xN = 0, the optimal state and input of the problem

(5.1)–(5.3) are {x∗
k}

N−1
k=1 = 0 and {u∗

k}
N−1
k=0 = 0, respectively.

Proof. Since the function Q ≻ 0 and the matrix R(xk) ≻ 0 (∀xk ∈ R
n), it is obvious that only

when {x∗
k}

N−1
k=1 = 0 and {u∗

k}
N−1
k=0 = 0, the minimum value of the cost function (5.1) achieves

the minimum zero. This holds under the conditions A(0) = 0 and x0 = xN = 0.

Lemma 5.1 shows that zero sequences of state and input can be attained to Problem 5.1 under

Assumption 5.1 and zero boundary conditions. This lemma will be used to prove Lemma 5.4

later in the chapter.



5.2 Numerical implementations 67

5.1.2 Analytical solutions via generating functions

In this chapter, we use the generating function F2b to give analytically optimal solutions of

Problem 5.1. This is presented in the following theorem.

Theorem 5.1. The optimal input of Problem 5.1 is given as the state feedforward control

u∗
k = −R(xk)

−1B(xk)
T
∂F2b(xk+1, λN , k + 1)

∂xk+1

, k = 0, 1, · · · , N − 1 (5.4)

where λN is determined by solving the following equation

xN =
∂F2b(xk, λN , k)

∂λN

∣
∣
∣
∣
k=0

. (5.5)

Proof. The expression of the optimal input (5.4) is obtained by the substitutionof (2.111) (chang-

ing the indices from k to k + 1) into the stationary condition (2.79). Furthermore, the terminal

costate λN in (5.4) can be determined by solving the equation (2.112) under the condition k = 0.

This gives (5.5).

Remark 5.1. Since u∗
k is given as the state feedforward control according to (5.4), then the sub-

stitution of this expression into the dynamics (5.2) gives the difference equation for the optimal

state x∗
k. By the forward calculation from the given x0, or backward calculation from xN , we

can get the optimal sequence {x∗
k}

N
k=0, and also the sequence {u∗

k}
N−1
k=0 by (5.4).

It is clear that (5.4) is expressed in terms of the generating function of the state boundary

conditions x0 and xN . Since x0 and xN are pre-given, if we can find the explicit expression of

the generating function, we easily determine the optimal input and state.

5.2 Numerical implementations

Since the exact expression of generating function in Theorem 5.1 can hardly be found, this

section employs the Taylor series based numerical implementation to get the approximate gener-

ating function and optimal solutions. In detail, we first give the Taylor series generating function

(solution to the Hamilton–Jacobi equation) and prove its recursive properties in Section 5.2.1.

Then in Section 5.2.2, we present the numerically optimal solutions and summarize an algorithm

to generate optimal solutions for different boundary conditions.

5.2.1 Taylor series solutions to Hamilton–Jacobi equation

Notice the analytical solutions derived in Theorem 5.1, the key point is to find the generating

function which satisfies the Hamilton–Jacobi equation. Since the Hamilton–Jacobi equation

(2.110) is a nonlinear partial differential equation, it is almost impossible to find its analytical

solution so that we need the numerical implementations to find its approximate solution. Taylor

series expansion is the most popular method utilized for such a purpose, so we here will also use

this technique.



68 Chapter 5

A systematic procedure of solving the Hamilton–Jacobi equation (2.110) for the generating

function by the Taylor series expansion is exhibited below, including three steps. In step one,

we expand all the nonlinear functions in the Hamilton–Jacobi equation as Taylor series in tensor

notations. Further in step two, we represent the expanded Hamilton–Jacobi equation only in

two variables by replacing the third one by an expression. Finally in step three, we reduce such

Hamilton–Jacobi equation as a series of difference equations that can be solved recursively for

the generating function coefficients.

• Step one:

We expand all the nonlinear functions in Hamilton–Jacobi equation (2.110), i.e. the gener-

ating function F and functions A, Q, and G, as Taylor series in their arguments about the origin.

To do so, the following assumption is needed.

Assumption 5.2. Assume that

(i) F2b(xk, λN , k) is an analytic function of xk and λN in their neighborhood of the origin in

R
2n;

(ii) A(xk), Q(xk), and G(xk) are all analytic functions of xk in its neighborhood of the origin

in R
n.

Under Assumption 5.2, we expand the functions, F2b ∈ R, A ∈ R
n, Q ∈ R, and G ∈ R

n×n,

as Taylor series about zeros in tensor notations†

F2b(xk, λN , k) = F2b(xk, λN ;F(·,·),k)

= F(0,0),k

+
(

F
ℓ1
(1,0),kx

ℓ1
k + F

ℓ1
(1,1),kλ

ℓ1
N

)

+
(

F
ℓ1ℓ2
(2,0),kx

ℓ1
k x

ℓ2
k + F

ℓ1ℓ2
(2,1),kx

ℓ1
k λ

ℓ2
N + F

ℓ1ℓ2
(2,2),kλ

ℓ1
Nλ

ℓ2
N

)

+
(

F
ℓ1ℓ2ℓ3
(3,0),kx

ℓ1
k x

ℓ2
k x

ℓ3
k + F

ℓ1ℓ2ℓ3
(3,1),kx

ℓ1
k x

ℓ2
k λ

ℓ3
N + · · ·

)

+ · · ·+ F
ℓ1ℓ2···ℓi
(i,j),k xℓ1

k · · ·x
ℓi−j

k
︸ ︷︷ ︸

i−j

λ
ℓi−j+1

N · · ·λℓi
N

︸ ︷︷ ︸

j

+ · · · (5.6)

(

A(xk)
)ℓ1

= A
ℓ1
(0) + A

ℓ1ℓ2
(1) xℓ2

k + A
ℓ1ℓ2ℓ3
(2) xℓ2

k x
ℓ3
k + A

ℓ1ℓ2ℓ3ℓ4
(3) xℓ2

k x
ℓ3
k x

ℓ4
k

+ · · ·+ A
ℓ1ℓ2···ℓi+1

(i) xℓ2
k · · ·x

ℓi+1

k
︸ ︷︷ ︸

i

+ · · · , ℓ1 = 1, 2, · · · , n (5.7)

Q(xk) = Q(0) + Q
ℓ1
(1)x

ℓ1
k + Q

ℓ1ℓ2
(2) xℓ1

k x
ℓ2
k + Q

ℓ1ℓ2ℓ3
(3) xℓ1

k x
ℓ2
k x

ℓ3
k + · · ·+ Q

ℓ1ℓ2···ℓi
(i) xℓ1

k · · ·x
ℓi
k

︸ ︷︷ ︸

i

+ · · ·

(5.8)
(

G(xk)
)ℓ1ℓ2

= G
ℓ1ℓ2
(0) + G

ℓ1ℓ2ℓ3
(1) xℓ3

k + G
ℓ1ℓ2ℓ3ℓ4
(2) xℓ3

k x
ℓ4
k + G

ℓ1ℓ2ℓ3ℓ4ℓ5
(3) xℓ3

k x
ℓ4
k x

ℓ5
k

†In this chapter, only the generating function F2b is used, so we do not add the subscript 2b in its Taylor series

coefficients for convenience.



5.2 Numerical implementations 69

+ · · ·+ G
ℓ1ℓ2···ℓi+2

(i) xℓ3
k · · ·x

ℓi+2

k
︸ ︷︷ ︸

i

+ · · · , ℓ1, ℓ2 = 1, 2, · · · , n (5.9)

respectively, where the notations are explained as follows:

• In (5.6)–(5.9), ℓ1, ℓ2, · · · , and ℓi are indices running from 1 to n, and they obey the Ein-

stein summation convention, i.e. when an index appears twice in a single term, it implies

summation of that term over all the values of the index.

• In (5.6)–(5.9), xℓi
k and λℓi

N denote the ℓi-th elements of xk and λN , respectively. Since

xk and λN are canonical, and their elements are perpendicular to each other, hence the

corresponding covariant and contravariant vectors coincide with each other. For example,

(xk)
ℓi coincides with (xk)ℓi . Hence for the sake of simplicity, we treat all the vectors as

contravariant vectors such that the indices ℓ1, ℓ2, · · · , and ℓi are all put in the superscript.

• In (5.6), F
ℓ1ℓ2···ℓi
(i,j),k denotes the general Taylor series coefficient of the generating func-

tion, where ℓ1ℓ2 · · · ℓi in the superscript implies it is an (ℓ1, ℓ2, · · · , ℓi)-th element of the

n× n× · · · × n
︸ ︷︷ ︸

i

tensor F(i,j),k, moreover (i, j) in the subscript indicates that the product

of this coefficient and the variables

F
ℓ1ℓ2···ℓi
(i,j),k xℓ1

k · · ·x
ℓi−j

k
︸ ︷︷ ︸

i−j

λ
ℓi−j+1

N · · ·λℓi
N

︸ ︷︷ ︸

j

composes the (i, j)-th order Taylor series term, and k in the subscript implies this co-

efficient is time-varying. Similarly in (5.7)–(5.9), A
ℓ1ℓ2···ℓi+1

(i) , Q
ℓ1ℓ2···ℓi
(i) , and G

ℓ1ℓ2···ℓi+2

(i)

denote the general Taylor series coefficients of the functions A, Q, and G, respectively.

They are the elements of the tensors A(i), Q(i), and G(i), respectively, and the meanings

of the subscript and superscript are similar to F
ℓ1ℓ2···ℓi
(i,j),k .

• In order to reduce the number of summation terms, it is natural to require the tensor (coef-

ficient) symmetries. Particularly, F(i,j),k is required to be symmetric with respect to each

pair of indices among ℓ1, · · · , ℓi−j , and also among ℓi−j+1, · · · , ℓi, the A(i) is symmetric

with respect to each pair of indices among ℓ2, · · · , ℓi+1, the Q(i) is symmetric with respect

to each pair of indices among ℓ1, · · · , ℓi, and the G(i) is symmetric with respect to each

pair of indices among ℓ3, · · · , ℓi+2.

• It should be noted that F ℓ1ℓ2···ℓi
(i,j),k is undetermined, while the other three A

ℓ1ℓ2···ℓi+1

(i) , Qℓ1ℓ2···ℓi
(i) ,

and G
ℓ1ℓ2···ℓi+2

(i) are determined since the functions A, Q, and G are known functions. The

objective of this subsection is to determine the unknown F
ℓ1ℓ2···ℓi
(i,j),k ’s.

Based on the above Taylor series expansions, the following lemma presents the coefficient

properties of the functions A and Q, which will be used in the next two steps.

Lemma 5.2. Under Assumptions 5.1 and 5.2(ii), the values of the zero and first order Taylor

series coefficients of the functions A and Q are as follows

(i) A
ℓ1
(0) = 0, ∀ℓ1 = 1, 2, · · · , n;



70 Chapter 5

(ii) Q
ℓ1
(1) = 0, ∀ℓ1 = 1, 2, · · · , n.

Proof. (i) Since A(0) = 0 by Assumption 5.1, it is obvious that A
ℓ1
(0) = 0, ∀ℓ1 = 1, 2, · · · , n,

according to Taylor series expression (5.7).

(ii) Since the function Q is positive definite, we have Q(0) 6 Q(xk) for all xk in the neigh-

borhood of the origin in R
n. Moreover, Q is differentiable at 0 according to Assumption 5.2(ii).

Therefore, we have Q
ℓ1
(1) =

∂Q
∂xk

∣
∣
∣
xk=0

= 0 by Fermat’s theorem.

• Step two:

We substitute (5.6)–(5.9) into (2.110) to get the expanded Hamilton–Jacobi equation, which

is an equation in terms of three variables, xk−1, xk, and λN . In order to solve it, it is necessary

for us to rewrite it only in terms of two variables. This can be achieved by replacing xk with

an expression in terms of xk−1 and λN . In detail, we substitute (2.111) into (2.81) (changing

indices from k to k − 1) to have

(

Φ(xk, xk−1, λN , k) : = xk −
∂H+(xk−1, λk)

∂λk

∣
∣
∣
∣
λk=

∂F2b(xk,λN ,k)

∂xk

)

= 0. (5.10)

By solving (5.10) for xk, we can get our desired expression

xk = X
(
xk−1, λN ;F(·,·),k

)
. (5.11)

This is the objective of step two.

Since the equation (5.10) is nonlinear in xk, we can not solve it analytically for xk. For this

reason, we again try to find the Taylor series solutions to xk. According to (5.10), it is clear that

xk is an analytic function of xk−1 and λN in their neighborhood of the origin in R
2n because the

functions F2b and H+ are both analytic functions. Based on this, we can expand xk as Taylor

series in xk−1 and λN about zeros in tensor notations

xℓ1
k =X

ℓ1
(0,0),k

+
(

X
ℓ1ℓ2
(1,0),kx

ℓ2
k−1 + X

ℓ1ℓ2
(1,1),kλ

ℓ2
N

)

+
(

X
ℓ1ℓ2ℓ3
(2,0),k x

ℓ2
k−1x

ℓ3
k−1 + X

ℓ1ℓ2ℓ3
(2,1),k x

ℓ2
k−1λ

ℓ3
N + X

ℓ1ℓ2ℓ3
(2,2),k λ

ℓ2
Nλ

ℓ3
N

)

+
(

X
ℓ1ℓ2ℓ3ℓ4
(3,0),k xℓ2

k−1x
ℓ3
k−1x

ℓ4
k−1 + X

ℓ1ℓ2ℓ3ℓ4
(3,1),k xℓ2

k−1x
ℓ3
k−1λ

ℓ4
N + · · ·

)

+ · · ·+ X
ℓ1ℓ2···ℓi+1

(i,j),k xℓ2
k−1 · · ·x

ℓi−j+1

k−1
︸ ︷︷ ︸

i−j

λ
ℓi−j+2

N · · ·λℓi+1

N
︸ ︷︷ ︸

j

+ · · · , ℓ1 = 1, 2, · · · , n (5.12)

where X
ℓ1ℓ2···ℓi+1

(i,j),k denotes the general Taylor series coefficient of the function X .

Now by substituting Taylor series (5.12) and (5.6)–(5.9) into (5.10), we get a power series of

the variables (xk−1, λN ) as

(
Φ
(
xk−1, λN ;X(·,·),k,F(·,·),k

))ℓ1



5.2 Numerical implementations 71

=

∞∑

i=0

i∑

j=0

(

Φ
(
X(·,·),k,F(·,·),k

) )ℓ1ℓ2···ℓi+1

(i,j)
xℓ2
k−1 · · ·x

ℓi−j+1

k−1
︸ ︷︷ ︸

i−j

λ
ℓi−j+2

N · · ·λ
ℓi+1

N
︸ ︷︷ ︸

j

= 0, ∀ℓ1 = 1, 2, · · · , n (5.13)

where (Φ(·, ·))
ℓ1ℓ2···ℓi+1

(i,j) is the corresponding coefficient. Since xk−1 and λN are independent and

can be chosen freely, then the only way to satisfy (5.13) is vanishing each coefficient, i.e.

(

Φ
(
X(·,·),k,F(·,·),k

) )ℓ1ℓ2···ℓi+1

(i,j)
= 0, ∀ℓ1, ℓ2, · · · , ℓi+1 = 1, 2, · · · , n, ∀(i, j) = (0, 0), (1, 0), · · · .

(5.14)

Once we solve the above (5.14) for the coefficient X(·,·),k in terms of F(·,·),k, we obtain the

objective expression (5.11) according to (5.12). The following theorem gives the solutions of

(5.14).

Theorem 5.2. Under Assumptions 5.1 and 5.2, (5.14) uniquely determineX
ℓ1ℓ2···ℓi+1

(i,j),k , ℓ1, ℓ2, · · · ,

ℓi+1 = 1, 2, · · · , n and (i, j) = (0, 0), (1, 0), · · · , which can be expressed in terms of the gener-

ating function coefficients analytically as

(i) when (i, j) = (0, 0)

X
ℓ1
(i,j),k = 0, ∀ℓ1 = 1, 2, · · · , n, ∀k = 0, 1, · · · , N

(ii) when (i, j) = (i, 0), · · · , (i, i− 1) where i 6= 0

X
ℓ1ℓ2···ℓi+1

(i,j),k =
(

Ω1

(
F(1,0),k,F(2,0),k, · · · ,F(i+1,j),k

))ℓ1ℓ2···ℓi+1

,

∀ℓ1, ℓ2, · · · , ℓi+1 = 1, 2, · · · , n (5.15)

(iii) when (i, j) = (i, i) where i 6= 0

X
ℓ1ℓ2···ℓi+1

(i,j),k =
(

Ω2

(
F(2,0),k,F(2,1),k, · · · ,F(i+1,j),k

))ℓ1ℓ2···ℓi+1

,

∀ℓ1, ℓ2, · · · , ℓi+1 = 1, 2, · · · , n (5.16)

where Ω1 and Ω2 denote analytic expressions.

For the proof see Appendix of this chapter.

Note that the only difference between the last two cases in above Theorem 5.2 is the coeffi-

cient F(1,0),k in the expressions right hand side. This is the reason why we do not combine these

two cases.

In light of Theorem 5.2, we can successfully get the objective expression (5.11) by substi-

tuting (5.15) and (5.16) into (5.12). Further, by substituting (5.11) and (5.6)–(5.9) into (2.110),

we get the expanded Hamilton–Jacobi equation in terms of two variables xk−1 and λN and the

generating function coefficients as

Γ
(
xk−1, λN ;F(·,·),k−1,F(·,·),k

)
= 0 (5.17)



72 Chapter 5

where Γ takes the form of

Γ
(
xk−1, λN ;F(·,·),k−1,F(·,·),k

)

=
(

F(0,0),k−1 + F
ℓ1
(1,0),k−1x

ℓ1
k−1 + F

ℓ1
(1,1),k−1λ

ℓ1
N + F

ℓ1ℓ2
(2,0),k−1x

ℓ1
k−1x

ℓ2
k−1 + · · ·

)

−
(

Q(0) + Q
ℓ1
(1)x

ℓ1
k−1 + Q

ℓ1ℓ2
(2) xℓ1

k−1x
ℓ2
k−1 + Q

ℓ1ℓ2ℓ3
(3) xℓ1

k−1x
ℓ2
k−1x

ℓ3
k−1 + · · ·

)

−
(

F
ℓ1
(1,0),k + 2F ℓ1ℓ2

(2,0),kx
ℓ2
k + F

ℓ1ℓ2
(2,1),kλ

ℓ2
N + 3F ℓ1ℓ2ℓ3

(3,0),kx
ℓ2
k x

ℓ3
k + · · ·

)

·
(

A
ℓ1
(0) + A

ℓ1ℓ′2
(1) x

ℓ′2
k−1 + A

ℓ1ℓ′2ℓ
′
3

(2) x
ℓ′2
k−1x

ℓ′3
k−1 + A

ℓ1ℓ′2ℓ
′
3ℓ

′
4

(3) x
ℓ′2
k−1x

ℓ′3
k−1x

ℓ′4
k−1 + · · ·

)

+
1

2

(

G
ℓ1ℓ2
(0) + G

ℓ1ℓ2ℓ3
(1) xℓ3

k−1 + G
ℓ1ℓ2ℓ3ℓ4
(2) xℓ3

k−1x
ℓ4
k−1 + · · ·

)

·
(

F
ℓ1
(1,0),k + 2F

ℓ1ℓ′2
(2,0),kx

ℓ′2
k + F

ℓ1ℓ′2
(2,1),kλ

ℓ′2
N ++3F

ℓ1ℓ′2ℓ
′
3

(3,0),kx
ℓ′2
k x

ℓ′3
k + · · ·

)

·
(

F
ℓ2
(1,0),k + 2F

ℓ2ℓ′′3
(2,0),kx

ℓ′′3
k + F

ℓ2ℓ′′3
(2,1),kλ

ℓ′′3
N + 3F

ℓ2ℓ′′3 ℓ
′′
4

(3,0),k x
ℓ′′3
k x

ℓ′′4
k + · · ·

)

−
(

F(0,0),k + F
ℓ1
(1,0),kx

ℓ1
k + F

ℓ1
(1,1),kλ

ℓ1
N + F

ℓ1ℓ2
(2,0),kx

ℓ1
k x

ℓ2
k + · · ·

)

+
(

F
ℓ1
(1,0),k + 2F ℓ1ℓ2

(2,0),kx
ℓ2
k + F

ℓ1ℓ2
(2,1),kλ

ℓ2
N + 3F ℓ1ℓ2ℓ3

(3,0),kx
ℓ2
k x

ℓ3
k + · · ·

)

· xℓ1
k .

• Step three:

Similar to the procedure from (5.13) to (5.14) of solving the equation (5.10), here we again

write the expanded Hamilton–Jacobi equation (5.17) in power series

Γ
(
xk−1, λN ;F(·,·),k−1,F(·,·),k

)

=

∞∑

i=0

i∑

j=0

(

F
ℓ1ℓ2···ℓi
(i,j),k−1 −

(

Γ
(
F(·,·),k

) )ℓ1ℓ2···ℓi

(i,j)

)

xℓ1
k−1 · · ·x

ℓi−j

k−1
︸ ︷︷ ︸

i−j

λ
ℓi−j+1

N · · ·λℓi
N

︸ ︷︷ ︸

j

= 0 (5.18)

where (Γ (·))ℓ1ℓ2···ℓi(i,j) is the corresponding coefficient. Again, since xk−1 and λN are independent

and can be chosen freely, then the only way to satisfy (5.18) is vanishing each coefficient, i.e.

F
ℓ1ℓ2···ℓi
(i,j),k−1 =

(

Γ
(
F(·,·),k

) )ℓ1ℓ2···ℓi

(i,j)
, ∀ℓ1, ℓ2, · · · , ℓi = 1, 2, · · · , n, ∀(i, j) = (0, 0), (1, 0), · · · .

(5.19)

For these backward difference equations, the following lemma gives their terminal values.

Lemma 5.3. Under Assumption 5.2(i), the terminal time values of the generating function coef-

ficients, i.e. F
ℓ1ℓ2···ℓi
(i,j),k=N , are as follows

(i) when (i, j) = (2, 1)

F
ℓ1ℓ2
(i,j),N =

{

1, ℓ1 = ℓ2

0, ℓ1 6= ℓ2
(5.20)



5.2 Numerical implementations 73

(ii) when (i, j) 6= (2, 1)

F
ℓ1ℓ2···ℓi
(i,j),N = 0, ∀ℓ1, ℓ2, · · · , ℓi = 1, 2, · · · , n. (5.21)

Proof. By the relations (2.111) and (2.112), we have

F2b(xk, λN , k)|k=N = xT

NλN . (5.22)

Then according to Taylor series expression (5.6), the above (5.22) leads to

F
ℓ1ℓ2
(2,1),N =

{

1, ℓ1 = ℓ2

0, ℓ1 6= ℓ2

which is (5.20) for Lemma 5.3(i), and

F
ℓ1ℓ2···ℓi
(i,j),N = 0, ∀ℓ1, ℓ2, · · · , ℓi = 1, 2, · · · , n

for (i, j) 6= (2, 1), which is (5.21) for Lemma 5.3(ii).

Now with the terminal values presented in Lemma 5.3, we can solve each difference equation

in (5.19) step by step backward from k = N to k = 1 to get the coefficient values the whole

time steps.

For the difference equations, the recursiveness is firm important. It will be verified below

that equations in (5.19) also maintain such properties, before which we first present a lemma

about the coefficient F(1,0),k.

Lemma 5.4. Under Assumptions 5.1 and 5.2, for the Taylor series in (5.6), we have

F
ℓ1
(1,0),k = 0, ∀ℓ1 = 1, 2, · · · , n, ∀k = 0, 1, · · · , N. (5.23)

Proof. To prove this lemma, we first prove the sequence {λ∗
k}

N
k=0 = 0. According to the dynamic

programming [48], we have

λ∗
k =

∂V (xk)

∂xk

∣
∣
∣
∣
xk=x∗

k

(5.24)

where the value function

V (xk) : =min
ui

N−1∑

i=k

(

Q(xi) +
1

2
uT

i R(xi)ui

)

.

It is obvious that 0 = V (0) 6 V (xk) for all xk in the neighborhood of the origin in R
n. Then un-

der the condition of x0 = xN = 0 ({xk}Nk=0 = 0 by Lemma 5.1), we haveλ∗
k = ∂V (xk)

∂xk

∣
∣
∣
xk=x∗

k
=0

=

0 by Fermat’s theorem.

Second, according to (2.111) and (5.6), we have

(λk)
ℓ1 =

(
∂F2b(xk, λN , k)

∂xk

)ℓ1

= F
ℓ1
(1,0),k + 2F ℓ1ℓ2

(2,0),kx
ℓ2
k + F

ℓ1ℓ2
(2,1),kλ

ℓ2
N + · · · ,



74 Chapter 5

ℓ1 = 1, 2, · · · , n.

Then under the condition of x0 = xN = 0, substitution of {x∗
k}

N
k=0 = 0 and {λ∗

k}
N
k=0 = 0 into

the above equation leads to

F
ℓ1
(1,0),k = 0, ∀ℓ1 = 1, 2, · · · , n, ∀k = 0, 1, · · · , N.

Further, since the generating function coefficients are independent of the state boundary con-

ditions according to the difference equations in (5.19), the above result holds not only for the

boundary condition x0 = xN = 0, but also for all other boundary conditions.

Based on Lemma 5.4, now we show the recursiveness of the difference equations in (5.19)

by the following theorem.

Theorem 5.3. Under Assumptions 5.1 and 5.2, the difference equations in (5.19) can be solved

recursively for the generating function coefficients F(i,j),k with respect to the Taylor series order

index (i, j).

For the proof see Appendix of this chapter.

As is known, the recursiveness has many advantages. One of its most important benefits is

that for the computation, we do not need iterations. Once we calculate the greater order coeffi-

cients based on the obtained F(·,·),k (suppose from (0, 0) to (i, j)), we do not require to iterate

all the difference equations again. We only need to recall the obtained ones, and calculate the

difference equations from the order (i, j+1). This will be clearly shown in the next subsection.

This subsection exhibits a systematic procedure of solving the Hamilton–Jacobi equation

(2.110) for the generating function by Taylor series techniques in three steps. It is guaranteed by

Theorem 5.2 and 5.3 that we can successfully solve the generating function coefficients.

5.2.2 Algorithm for numerically optimal solutions

Once we obtain the generating function coefficients, we obtain the generating function ac-

cording to (5.6), which is the Taylor series solutions to Hamilton–Jacobi equation. By substitut-

ing it into (5.4), we can get the numerically optimal solutions. Notice the difference equations

(5.19) presented in the above subsection, the generating function coefficients are independent on

the state boundary conditions (5.3). In light of this, the developed generating function method is

useful in on-demand optimal solutions generation for the same problem with different boundary

conditions. This is the advantage of this developed method. In detail, we can divide the whole

computation into two parts, in which the off-line part calculates the generating function coeffi-

cients in advance, while the on-line part can efficiently generate optimal solutions for different

boundary conditions. This is summarized in the following algorithms.



5.2 Numerical implementations 75

1 N ← N0; /* set truncated Taylor series order */

2 for i = 0, 1, · · · ,N0 do

3 for j = 0, 1, · · · , i do

4 if (i, j) = (2, 1) then

5 for ℓ1 = 1, 2, · · · , n do

6 for ℓi = 1, 2, · · · , n do

7 if ℓ1 = ℓi then

8 F
ℓ1ℓ2
(i,j),N ← 1; /* set terminal conditions */

9 else

10 F
ℓ1ℓ2
(i,j),N ← 0;

11 end

12 end

13 end

14 else

15 for ℓ1 = 1, 2, · · · , n do

16 for ℓ2 = 1, 2, · · · , n do

17
. . .

18 for ℓi = 1, 2, · · · , n do

19 F
ℓ1ℓ2···ℓi
(i,j),N ← 0;

20 end

21 . .
.

22 end

23 end

24 end

25 end

26 end

27 for i = 0, 1, · · · ,N0 do

28 for j = 0, 1, · · · , i do

29 for k = N,N − 1, · · · , 1 do

30 for ℓ1 = 1, 2, · · · , n do

31 for ℓ2 = 1, 2, · · · , n do

32
. . .

33 for ℓi = 1, 2, · · · , n do

34 F
ℓ1ℓ2···ℓi
(i,j),k−1 ←

(
Γ
(
F(·,·),k

))ℓ1ℓ2···ℓi

(i,j)
; /* coefficients */

35 end

36 . .
.

37 end

38 end

39 end

40 end

41 end

Algorithm 5.1: Off-line part, calculate generating function coefficients.



76 Chapter 5

1 if there is a computational demand for boundary conditions (xinit, xterm) then

2 x(t0)← xinit, x(tf)← xterm; /* set boundary conditions */

3 solve λN from xN = ∂F2b(xk,λN ,k)
∂λN

∣
∣
∣
k=0

; /* calculate terminal costate */

4 for k = 0, 1, · · · , N − 1 do

5 u∗
k ← −R(xk)

−1B(xk)
T ∂F2b(xk+1,λN ,k+1)

∂xk+1
; /* generate optimal input */

6 end

7 else

8 goto 1; /* on-demand */

9 end

Algorithm 5.2: On-line part, generate optimal solutions.

Notice the step 4 in Algorithm 5.2, according to Remark 5.1, it is free of us to perform

either the forward calculation (i.e. k = 0, 1, · · · , N − 1) or the backward calculation (i.e. k =
N,N − 1, · · · , 1) to solve the optimal solutions.

In Algorithm 5.1, optimal solutions will be more accurate if we select greater N , i.e. ex-

pand functions as Taylor series up to higher orders. Since the computation of the coefficients

is implemented off-line, it is free of us to choose any particular orders. From this viewpoint,

though the original problem is nonlinear, we can still obtain its optimal solutions accurately by

the developed method. However, when we increase the order N , the total number of difference

equations in the off-line part for the coefficients also increases. For this reason, when we select

the orderN , both the demand of the accuracy and the computational ability of the off-line com-

puter should be taken into account. On the other hand, it is also convenient for us to increase the

order N due to the recursiveness of the off-line difference equations. For example to increase

the order N0 to N1, there is no need to calculate coefficients from i = 0 to N0 again. We only

need to read the obtained ones (i = 0 to N0), and calculate the difference equations from the

order (N0 + 1, 0) to (N1,N1). This reduces the computational burden.

Besides the above issues, we also need to remark on whether it is necessary to adjust the

truncated Taylor series orders according to the boundary conditions. This issue is related to

the convergence of the Taylor series that as its order increases, the region of convergence al-

so increases. Problem with different boundary conditions needs different convergence regions,

i.e. different truncated Taylor series orders, so that in principle, it is necessary to adjust its or-

ders according to the boundary conditions. However, in practice, if the distances from different

boundary conditions to the origin are quite different, it is easy for us to make the adjustments on-

line because we usually well prepare in the off-line part that the generating function coefficient

orders are expanded as high as possible. If the distances from different boundary conditions

to the origin are similar, it is obvious to use the same truncated Taylor series orders for all the

boundary conditions. From this viewpoint, the generating function method is still useful and

efficient in on-line repetitive solutions generation for different boundary conditions.

5.3 Examples

In this section, we give two examples. The first one is to show the procedure of generating

optimal solutions and the accuracy of the numerical technique, and the second one is to demon-



5.3 Examples 77

strate the effectiveness of the generating function method for different boundary conditions by

Algorithms 5.1 and 5.2.

Example 5.1. Consider the problem

min
u

N−1∑

k=0

1

2

(
x2
k + u2

k

)

s.t. xk+1 = sin(xk) + xk + uk, k = 0, 1, · · · , N − 1

x0 = −0.1, xN = −0.1

where the time steps N = 10.

To clearly show the procedure of generating optimal solutions by the developed generating

function method, we set the above scalar problem. For this problem, we will generate the optimal

solutions corresponding to different truncated Taylor series orders N = 2, 3, and 4 (i.e. Taylor

series truncated up to the 2nd, 3rd, and 4th orders).

In step one, we expand the nonlinear functions A, Q, and G as Taylor series up to the highest

4th order (N = 4)

A(xk) = 0 + 2 · xk + 0 · x2
k − 1/6 · x3

k + 0 · x4
k + · · ·

Q(xk) = 0 + 0 · xk + 1/2 · x2
k + 0 · x3

k + 0 · x4
k + · · ·

G(xk) = 1 + 0 · xk + 0 · x2
k + 0 · x3

k + 0 · x4
k + · · ·

which verify Lemma 5.2. Note that though the above approximated functions truncated up to

the 3rd order and the 4th order are the same, but the generated optimal solutions later will still

be different because they depend on the generating function coefficients which are different. In

step two, by solving (5.10) and performing the procedure from (5.13) to (5.14), we obtain the

objective expression

xk =X(0,0),k + X(1,0),kxk−1 + X(1,1),kλN + · · ·+ X(4,4),kλ
4
N + · · ·

where the coefficients X(·,·),k are expressed as

X(0,0),k = 0

X(1,0),k = 2
/
(2F(2,0),k + 1)

X(1,1),k = −F(2,1),k

/
(2F(2,0),k + 1)

X(2,0),k = −12F(3,0),k

/
(2F(2,0),k + 1)3

X(2,1),k = −4 · (F(3,1),k + 2F(2,0),kF(3,1),k − 3F(2,1),kF(3,0),k)
/
(2F(2,0),k + 1)3

...

which are all in terms of the generating function coefficients that verify Theorem 5.2. Based on

this, in step three, we are able to solve the expanded Hamilton–Jacobi equation (5.18) to get the

difference equations (5.19) for the generating function coefficients



78 Chapter 5

Table 5.1: The computed sequences of optimal state xk, k = 0, 1, · · · , 10, corresponding to

different truncated Taylor series orders N = 2, 3, and 4.

N = 2 N = 3 N = 4
x0 −657975.1651 −0.1080 −0.0999
x1 −125663.7044 −0.0412 −0.0382
x2 −24001.7557 −0.0158 −0.0146
x3 −4586.8157 −0.0061 −0.0057
x4 −880.0941 −0.0026 −0.0024
x5 −164.4839 −0.0017 −0.0016
x6 −2.1448 −0.0025 −0.0024
x7 −0.3878 −0.0057 −0.0057
x8 −0.1069 −0.0146 −0.0146
x9 −0.0767 −0.0382 −0.0382
x10 −0.1 −0.1 −0.1

Table 5.2: The computed sequences of optimal input uk, k = 0, 1, · · · , 9, corresponding to

different truncated Taylor series orders N = 2, 3, and 4.

N = 2 N = 3 N = 4
u0 532319.6922 0.1745 0.1616
u1 101672.6731 0.0666 0.0617
u2 19429.5446 0.0254 0.0236
u3 3727.4561 0.0097 0.0089
u4 695.8896 0.0035 0.0032
u5 8.9988 0.0009 0.0008
u6 1.5275 −0.0008 −0.0008
u7 0.2734 −0.0032 −0.0033
u8 0.0296 −0.0089 −0.0089
u9 −0.0236 −0.0236 −0.0236

Table 5.3: The three minimum cost function values corresponding to different truncated Taylor

series orders N = 2, 3, and 4.

N = 2 N = 3 N = 4
Cost function value 371707040948.8657 0.0258 0.0223

F(0,0),k−1 = F(0,0),k

F(1,0),k−1 = 0



5.3 Examples 79

F(1,1),k−1 = F(1,1),k

F(2,0),k−1 = 5/2 − 2
/
(2F(2,0),k + 1)

F(2,1),k−1 = 2F(2,1),k

/
(2F(2,0),k + 1)

...

which are recursive with respect to the Taylor series order index (i, j) that verify Theorem 5.3.

Notice the second difference equation above, it verifies Lemma 5.4. Now with the terminal

values in Lemma 5.3, by the backward time calculation from k = N to 1 for each difference

equation above sequentially, we obtain the values of the coefficients from F(0,0),k to F(4,4),k,

k = 0, 1, · · · , 10. Because of the recursiveness, the obtained coefficients from F(0,0),k to F(2,2),k

and to F(3,3),k are available for the casesN = 2 and 3, respectively. This is the advantage of the

recursiveness. Now by substituting the generating function with these coefficients into Theorem

5.1, we obtain the optimal solutions.

The sequences of optimal state and input corresponding to different truncated Taylor series

ordersN = 2, 3, and 4 are presented in Tables 5.1 and 5.2, respectively. In these two tables, the

state and the associated input satisfy the dynamics xk+1 = sin(xk) + xk + uk. Moreover, from

Table 5.1, we can find that the three state sequences are strictly fixed as the given value (−0.1)

in the terminal, while along the backward time steps, they gradually separate, especially the

sequence corresponding toN = 2 diverges. The reason is because the truncated orderN = 2 is

not high enough. Further, since we solve the equation (5.4) for the optimal solutions, we choose

the backward time calculation†. Therefore, errors accumulate along the backward time due to

the numerical computation, such that it is reasonable that the greatest error exists at the initial

time in Table 5.1. It can also be found from Table 5.1 that among the three initial values, the

one (−0.0999) corresponding to the truncated order 4, has the least error compared with the

given initial value (−0.1). Hence, as the truncated order increases, the computed initial error

decreases, which implies greater order N gives the higher accuracy. Moreover, we also give

the minimum cost function value corresponding to these three orders in Table 5.3. It is clear

that greater order N provides the less cost function value. Based on these results, this example

demonstrates that we can get more accurate solutions by expanding Taylor series up to higher

orders during the numerical computation.

Example 5.2. Consider Problem 5.1 with

A(xk) =

[
x1
k − x2

k + (x1
k − x2

k)
2/20 + x2

kexp(x
2
k/25)

x2
kexp(x

2
k/25)

]

, B(xk) =

[
1 1
0 1

]

Q(xk) = (x1
k)

2
/
2 − x1

kx
2
k + (x2

k)
2, R(xk) =

[
1 0
0 1

]

and three different sets of boundary conditions as in Table 5.4.

†If we choose the forward time calculation, it is opposite that the initial points will coincide with the given

value, while state sequences separate along the forward time steps.



80 Chapter 5

Table 5.4: Three different sets of initial-terminal jointed boundary conditions, where the first

number separated by the comma in each cell is the initial/terminal time value, while the vector

later is the initial/terminal boundary condition.

Initial time and boundary condition Terminal time and boundary condition

1st set 0, [0.08,−0.12]T 12, [−0.08, 0.12]T

2nd set 1, [0.10,−0.10]T 11, [−0.09, 0.10]T

3rd set 2, [0.12,−0.08]T 10, [−0.10, 0.08]T

0 2 4 6 8 10 12
−0.12

−0.08

−0.04

0

0.04

0.08

0.12

time k

st
at

e 
x k1

 

 

1st set
2nd set
3rd set

(a) Optimal state x1
k

0 2 4 6 8 10 12

−0.12

−0.08

−0.04

0

0.04

0.08

0.12

time k

st
at

e 
x k2

 

 

1st set
2nd set
3rd set

(b) Optimal state x2
k

0 2 4 6 8 10 12

−0.12

−0.09

−0.06

−0.03

0

time k

 

 

st
at

e 
u k1

1st set

2nd set

3rd set

(c) Optimal input u1
k

0 2 4 6 8 10 12
0

0.02

0.04

0.06

0.08

time k

in
pu

t u
k2

 

 

1st set

2nd set

3rd set

(d) Optimal input u2
k

Figure 5.1: Optimal state and input for three different sets of boundary conditions.

We apply Algorithms 5.1 and 5.2 to this problem. First in the off-line part, we expand Taylor

series up to the 4th order. Based on this, we choose the time interval as the maximum, from

0 to 12, according to Table 5.4 to calculate the generating function coefficients. Then, optimal

solutions corresponding to each particular set of boundary conditions can be efficiently generated



5.4 Summary 81

in the on-line part.

Results are presented in Figure 5.1, where Figure 5.1(a) and (b) are the first and second el-

ements of the optimal state, and Figure 5.1(c) and (d) are the first and second elements of the

optimal input, respectively. It can be found from Figure 5.1 that trajectories of the optimal state

satisfy each set of boundary conditions in Table 5.4. The off-line and on-line computational

time is 0.0068 [s] and 0.0024 [s] according to Algorithms 5.1 and 5.2, respectively. This exam-

ple illustrates the effectiveness of the developed generating function method that it can solve

such problems efficiently, especially when there is a large number of different sets of boundary

conditions.

5.4 Summary

We develop the generating function method for the discrete-time nonlinear optimal control

problems, including the presentation of the analytically optimal solutions and the exhibition of

the Taylor series based numerical implementations. In the analytical part, we give the optimal

input as the state feedforward control in terms of the generating functions. In the numerical part,

due to the employed tensor notations, it is best for us to deeply investigate the Hamilton–Jacobi

equation and prove some important properties, including the linearity and the recursiveness.

This finally gives optimal solutions expressed only in terms of the pre-computed generating

function coefficients and state boundary conditions by the Taylor series techniques. From this

viewpoint, the developed generating function method is useful for on-demand optimal solutions

generation for different boundary conditions.

Appendix

Proof of Theorem 5.2

Proof. (i) To prove this part, we first exhibit the explicit expression of the power series (5.13)

(
Φ
(
xk−1, λN ;X(·,·),k,F(·,·),k

))ℓ1

=xℓ1
k −

(

A
ℓ1
(0) + A

ℓ1ℓ2
(1) xℓ2

k−1 + A
ℓ1ℓ2ℓ3
(2) xℓ2

k−1x
ℓ3
k−1 + · · ·

)

+
(

G
ℓ1ℓ2
(0) + G

ℓ1ℓ2ℓ3
(1) xℓ3

k−1 + G
ℓ1ℓ2ℓ3ℓ4
(2) xℓ3

k−1x
ℓ4
k−1 + · · ·

)

·
(

F
ℓ2
(1,0),k + 2F

ℓ2ℓ′3
(2,0),kx

ℓ′3
k + F

ℓ2ℓ′3
(2,1),kλ

ℓ′3
N + 3F

ℓ2ℓ′3ℓ
′
4

(3,0),kx
ℓ′3
k x

ℓ′4
k + · · ·

)

=0, ∀ℓ1 = 1, 2, · · · , n (5.25)

where x ·
k takes the form of (5.12). Then by collecting the constant terms from (5.25), we obtain

the equation for X ·
(0,0),k

(

Φ
(
X(·,·),k,F(·,·),k

) )ℓ1

(0,0)

=X
ℓ1
(0,0),k +

(

G
ℓ1ℓ2
(0) F

ℓ2
(1,0),k −A

ℓ1
(0)

)

︸ ︷︷ ︸

=0 by Lemmas 5.2(i) and 5.4

+G
ℓ1ℓ2
(0) ·

(

2F ℓ2ℓ3
(2,0),k + 3F ℓ2ℓ3ℓ4

(3,0),kX
ℓ4
(0,0),k + · · ·

)

·X ℓ3
(0,0),k



82 Chapter 5

=0, ℓ1 = 1, 2, · · · , n

which is (5.14) for the case (i, j) = (0, 0). By solving the above n equations for the n variables

X
ℓ1
(0,0),k, ∀ℓ1 = 1, 2, · · · , n, we obtain X

ℓ1
(i,j),k = 0, ∀ℓ1 = 1, 2, · · · , n and ∀k = 0, 1, · · · , N .

Note that this proof is based on Lemma 5.4 which is addressed later than this Theorem 5.2.

But it can be found that Lemma 5.4 is independent on Theorem 5.2 from its proof. In other

words, without Theorem 5.2, we can still prove Lemma 5.4. Hence we employ Lemma 5.4 here.

(ii)–(iii) To prove these two parts, we first show the linearity of the (i, j)-th equation in (5.14)

with respect to the coefficient variable X ···
(i,j),k, ∀(i, j) = (1, 0), (1, 1), · · · . For the sake of clarity,

we here consider four cases with respect to the order (i, j), i.e. the cases (i, j) = (1, 0), (1, 1),
(i, i), and the other orders. We first investigate the fourth case. By collecting terms with the

same variable x ·
k−1 · · ·x

·
k−1

︸ ︷︷ ︸

i−j

λ ·
N · · ·λ

·
N

︸ ︷︷ ︸

j

from (5.25) (where X ·
(0,0),k = 0 based on (i)), we have

(

Φ
(
X(·,·),k,F(·,·),k

) )ℓ1ℓ2···ℓi+1

(i,j)
xℓ2
k−1 · · ·x

ℓi−j+1

k−1
︸ ︷︷ ︸

i−j

λ
ℓi−j+2

N · · ·λℓi+1

N
︸ ︷︷ ︸

j

=X
ℓ1ℓ2···ℓi+1

(i,j),k xℓ2
k−1 · · ·x

ℓi−j+1

k−1
︸ ︷︷ ︸

i−j

λ
ℓi−j+2

N · · ·λ
ℓi+1

N
︸ ︷︷ ︸

j

+ 2G
ℓ1ℓ′2
(0) F

ℓ′2ℓ
′
3

(2,0),kX
ℓ′3ℓ2···ℓi+1

(i,j),k xℓ2
k−1 · · ·x

ℓi−j+1

k−1
︸ ︷︷ ︸

i−j

λ
ℓi−j+2

N · · ·λ
ℓi+1

N
︸ ︷︷ ︸

j

+Ψ2

(
xk−1, λN ;X(1,0),k, · · · ,X(i−1,j),k,F(2,0),k, · · · ,F(i+1,j),k

)
,

ℓ1 = 1, 2, · · · , n (5.26)

where Ψ2 denotes the analytic expression. Note that the corresponding coefficients X ···
(i,j),k only

exist in the first two terms on the right hand side of (5.26), while the third term Ψ2 only contains

coefficients with orders less than (i, j). Now, it is easy to know that the coefficient in (5.26)

vanishes

(

Φ
(
X(·,·),k,F(·,·),k

) )ℓ1ℓ2···ℓi+1

(i,j)

=X
ℓ1ℓ2···ℓi+1

(i,j),k + 2G
ℓ1ℓ′2
(0) F

ℓ′2ℓ
′
3

(2,0),kX
ℓ′3ℓ2···ℓi+1

(i,j),k

+
(

Ψ2

(
X(1,0),k, · · · ,X(i−1,j),k;F(2,0),k, · · · ,F(i+1,j),k

))ℓ1ℓ2···ℓi+1

=0

where Ψ2 denotes the analytic expression. The above equation is (5.14) for the fourth case. The

equation (5.14) for the first three cases (i, j) = (1, 0), (1, 1), and (i, i) can also be obtained in

similar ways. Now we exhibit the explicit expression of (5.14) for all these four cases together

in the following (the corresponding coefficient variables are underlined for clarity)



5.4 Summary 83







X
ℓ1ℓ2
(1,0),k+2G

ℓ1ℓ
′

2

(0) F
ℓ′2ℓ

′

3

(2,0),kX
ℓ′3ℓ2

(1,0),k+
(

G
ℓ1ℓ

′

2ℓ2

(1) F
ℓ′2
(1,0),k −A

ℓ1ℓ2
(1)

)

=0, (i, j)=(1, 0) (5.27)

X
ℓ1ℓ2
(1,1),k+2G

ℓ1ℓ
′

2

(0) F
ℓ′2ℓ

′

3

(2,0),kX
ℓ′3ℓ2

(1,1),k+G
ℓ1ℓ

′

2

(0) F
ℓ′2ℓ2

(2,1),k=0, (i, j)=(1, 1) (5.28)

X
ℓ1ℓ2···ℓi+1

(i,i),k +2G
ℓ1ℓ

′

2

(0) F
ℓ′2ℓ

′

3

(2,0),kX
ℓ′3ℓ2···ℓi+1

(i,i),k

+
(
Ψ1

(
X(1,1),k, · · · ,X(i−1,i−1),k;F(2,0),k, · · · ,F(i+1,i),k

))ℓ1ℓ2···ℓi+1
=0, (i, j)=(i, i) (5.29)

X
ℓ1ℓ2···ℓi+1

(i,j),k +2G
ℓ1ℓ

′

2

(0) F
ℓ′2ℓ

′

3

(2,0),kX
ℓ′3ℓ2···ℓi+1

(i,j),k

+
(
Ψ2

(
X(1,0),k, · · · ,X(i−1,j),k;F(2,0),k, · · · ,F(i+1,j),k

))ℓ1ℓ2···ℓi+1
=0, other orders (5.30)

∀ℓ1, ℓ2, · · · , ℓi+1 = 1, 2, · · · , n, where Ψ1 denotes the analytic expression. According to the

structure presented in the above, it is clear that each (i, j)-th equation is linear in the corre-

sponding coefficient variable X ···
(i,j),k, ∀(i, j) = (0, 0), (1, 0), · · · .

Second, notice (5.30), which has ni+1 equations for ni+1 coefficient variables X
ℓ1ℓ2···ℓi+1

(i,j),k ,

∀ℓ1, ℓ2, · · · , ℓi+1=1, 2, · · · , n. In addition, except the corresponding coefficient variable X(i,j),k,

equations in (5.30) also contain the coefficient variables X(·,·),k with orders less than (i, j). Due

to this, we can determine all the variables X(·,·),k recursively from the least order coefficient

X(1,0),k, which can be expressed in terms of F(1,0),k and F(2,0),k according to (5.27). Based on

these two points, we can uniquely determine these coefficient variables as analytic expressions

in terms of F(·,·),k

X
ℓ1ℓ2···ℓi+1

(i,j),k =
(

Ω1

(
F(1,0),k,F(2,0),k, · · · ,F(i+1,j),k

))ℓ1ℓ2···ℓi+1

,

∀ℓ1, ℓ2, · · · , ℓi+1 = 1, 2, · · · , n

for the case (i, j) = other orders, i.e. (i, j) = (i, 0), · · · , (i, i− 1) where i 6= 0, which is (5.15)

for Theorem 5.2(ii). Here, Ω1 denotes the analytic expression. The case (i, j) = (i, i), i 6= 0,

is also the same. According to (5.28) and (5.29), we conclude that the coefficient variables can

also be uniquely determined as analytic expressions in terms of F(·,·),k

X
ℓ1ℓ2···ℓi+1

(i,j),k =
(

Ω2

(
F(2,0),k,F(2,1),k, · · · ,F(i+1,j),k

))ℓ1ℓ2···ℓi+1

,

∀ℓ1, ℓ2, · · · , ℓi+1 = 1, 2, · · · , n

which is (5.16) for Theorem 5.2(iii). Here, Ω2 denotes the analytic expression.

Proof of Theorem 5.3

Proof. To prove this theorem, we will show the procedure from (5.18) to (5.19) in detail. First,

recall the expanded Hamilton–Jacobi equation (5.17), we re-exhibit it here and its six terms are

marked with Terms I, II, · · · , VI, respectively

Γ
(
xk−1, λN ;F(·,·),k−1,F(·,·),k

)



84 Chapter 5

=
(

F(0,0),k−1 + F
ℓ1
(1,0),k−1x

ℓ1
k−1 + F

ℓ1
(1,1),k−1λ

ℓ1
N + F

ℓ1ℓ2
(2,0),k−1x

ℓ1
k−1x

ℓ2
k−1 + · · ·

)

−
(

Q(0) + Q
ℓ1
(1)x

ℓ1
k−1 + Q

ℓ1ℓ2
(2) xℓ1

k−1x
ℓ2
k−1 + Q

ℓ1ℓ2ℓ3
(3) xℓ1

k−1x
ℓ2
k−1x

ℓ3
k−1 + · · ·

)

−
(

F
ℓ1
(1,0),k + 2F ℓ1ℓ2

(2,0),kx
ℓ2
k + F

ℓ1ℓ2
(2,1),kλ

ℓ2
N + 3F ℓ1ℓ2ℓ3

(3,0),kx
ℓ2
k x

ℓ3
k + · · ·

)

·
(

A
ℓ1
(0) + A

ℓ1ℓ′2
(1) x

ℓ′2
k−1 + A

ℓ1ℓ′2ℓ
′
3

(2) x
ℓ′2
k−1x

ℓ′3
k−1 + A

ℓ1ℓ′2ℓ
′
3ℓ

′
4

(3) x
ℓ′2
k−1x

ℓ′3
k−1x

ℓ′4
k−1 + · · ·

)

+
1

2

(

G
ℓ1ℓ2
(0) + G

ℓ1ℓ2ℓ3
(1) xℓ3

k−1 + G
ℓ1ℓ2ℓ3ℓ4
(2) xℓ3

k−1x
ℓ4
k−1 + · · ·

)

·
(

F
ℓ1
(1,0),k + 2F

ℓ1ℓ′2
(2,0),kx

ℓ′2
k + F

ℓ1ℓ′2
(2,1),kλ

ℓ′2
N ++3F

ℓ1ℓ′2ℓ
′
3

(3,0),kx
ℓ′2
k x

ℓ′3
k + · · ·

)

·
(

F
ℓ2
(1,0),k + 2F

ℓ2ℓ′′3
(2,0),kx

ℓ′′3
k + F

ℓ2ℓ′′3
(2,1),kλ

ℓ′′3
N + 3F

ℓ2ℓ′′3 ℓ
′′
4

(3,0),k x
ℓ′′3
k x

ℓ′′4
k + · · ·

)

−
(

F(0,0),k + F
ℓ1
(1,0),kx

ℓ1
k + F

ℓ1
(1,1),kλ

ℓ1
N + F

ℓ1ℓ2
(2,0),kx

ℓ1
k x

ℓ2
k + · · ·

)

+
(

F
ℓ1
(1,0),k + 2F ℓ1ℓ2

(2,0),kx
ℓ2
k + F

ℓ1ℓ2
(2,1),kλ

ℓ2
N + 3F ℓ1ℓ2ℓ3

(3,0),kx
ℓ2
k x

ℓ3
k + · · ·

)

· xℓ1
k

=0 (5.31)

where x ·
k takes the form of (5.12) with coefficients X(·,·),k expressed in terms of F(·,·),k according

to Theorem 5.2 (where X ·
(0,0),k = 0). We collect terms with the same variable from (5.31), and

list them term by term sequentially from I to VI in the following, where zero coefficients are

marked with underline, and F(·,·),k with orders greater than (i, j) with double underlines (note

that some X(·,·),k also contain great order F(·,·),k according to Theorem 5.2, hence they are also

double underlined)

• From Term I: F
ℓ1ℓ2···ℓi
(i,j),k−1

xℓ1k−1 · · · x
ℓi−j

k−1
︸ ︷︷ ︸

i−j

λ
ℓi−j+1

N · · ·λℓi
N

︸ ︷︷ ︸
j

• From Term II: 0

• From Term III:

A
ℓ1
(0)

·

(

2F ℓ1ℓ2
(2,0),k

X
ℓ2ℓ3···ℓi+2

(i,j),k
xℓ3
k−1 · · · x

ℓi−j+2

k−1
︸ ︷︷ ︸

i−j

λ
ℓi−j+3

N
· · ·λ

ℓi+2

N
︸ ︷︷ ︸

j

+ · · ·

+ (i+ 1− j) · F
ℓ1ℓ2···ℓi+1

(i+1,j),k
X

ℓ2ℓ
′

3

(1,0),k
x
ℓ′3
k−1 · · ·X

ℓi−j+1ℓ
′

i−j+2

(1,0),k
x
ℓ′i−j+2

k−1
︸ ︷︷ ︸

i−j

λ
ℓi−j+2

N
· · ·λ

ℓi+1

N
︸ ︷︷ ︸

j

)

+ A
ℓ1ℓ2
(1)

xℓ2
k−1 ·

(

2F
ℓ1ℓ

′

2

(2,0),k
X

ℓ′2ℓ
′

3···ℓ
′

i+1

(i−1,j),k
x
ℓ′3
k−1 · · ·x

ℓ′i−j+1

k−1
︸ ︷︷ ︸

i−j−1

λ
ℓ′i−j+2

N
· · ·λ

ℓ′i+1

N
︸ ︷︷ ︸

j

+ · · ·

+ (i − j) · F
ℓ1ℓ

′

2···ℓ
′

i

(i,j),k
X

ℓ′2ℓ
′′

3

(1,0),k
x
ℓ′′3
k−1 · · ·X

ℓ′i−jℓ
′′

i−j+1

(1,0),k
x
ℓ′′i−j+1

k−1
︸ ︷︷ ︸

i−j−1

λ
ℓ′i−j+1

N
· · ·λ

ℓ′i
N

︸ ︷︷ ︸

j

)

+ · · ·

• From Term IV:

1

2
G

ℓ1ℓ2
(0)

·



 F
ℓ1
(1,0),k

·

(

2F
ℓ2ℓ

′

3

(2,0),k
X

ℓ′3ℓ
′

4···ℓ
′

i+3

(i,j),k
x
ℓ′4
k−1 · · ·x

ℓ′i−j+3

k−1
︸ ︷︷ ︸

i−j

λ
ℓ′i−j+4

N
· · · λ

ℓ′i+3

N
︸ ︷︷ ︸

j

+ · · ·



5.4 Summary 85

+ (i+ 1− j) · F
ℓ2ℓ

′

3···ℓ
′

i+2

(i+1,j),k
X

ℓ′3ℓ
′′

4

(1,0),k
x
ℓ′′4
k−1 · · ·X

ℓ′i−j+2ℓ
′′

i−j+3

(1,0),k
x
ℓ′′i−j+3

k−1
︸ ︷︷ ︸

i−j

λ
ℓ′i−j+3

N
· · · λ

ℓ′i+2

N
︸ ︷︷ ︸

j

)

+ 2F
ℓ1ℓ

′

2

(2,0),k
·

(

X
ℓ′2ℓ

′′

3 ···ℓ′′i+2

(i,j),k
x
ℓ′′3
k−1 · · · x

ℓ′′i−j+2

k−1
︸ ︷︷ ︸

i−j

λ
ℓ′′i−j+3

N
· · ·λ

ℓ′′i+2

N
︸ ︷︷ ︸

j

F
ℓ2
(1,0),k

+ · · ·

+ (i − j) · X
ℓ′2ℓ

′′

3

(1,0),k
x
ℓ′′3
k−1F

ℓ2ℓ
′

3···ℓ
′

i+1

(i,j),k
X

ℓ′3ℓ
′′

4

(1,0),k
x
ℓ′′4
k−1 · · ·X

ℓ′i−j+1ℓ
′′

i−j+2

(1,0),k
x
ℓ′′i−j+2

k−1
︸ ︷︷ ︸

i−j

λ
ℓ′i−j+2

N
· · · λ

ℓ′i+1

N
︸ ︷︷ ︸

j

)

+ · · ·





+
1

2
G

ℓ1ℓ2ℓ3
(1)

xℓ3
k−1 ·



 F
ℓ1
(1,0),k

·

(

2F
ℓ2ℓ

′

3

(2,0),k
X

ℓ′3ℓ
′

4···ℓ
′

i+2

(i−1,j),k
x
ℓ′4
k−1 · · ·x

ℓ′i−j+2

k−1
︸ ︷︷ ︸

i−j−1

λ
ℓ′i−j+3

N
· · · λ

ℓ′i+2

N
︸ ︷︷ ︸

j

+ · · ·

+ (i− j) · F
ℓ2ℓ

′

3···ℓ
′

i+1

(i,j),k
X

ℓ′3ℓ
′′

4

(1,0),k
x
ℓ′′4
k−1 · · ·X

ℓ′i−j+1ℓ
′′

i−j+2

(1,0),k
x
ℓ′′i−j+2

k−1
︸ ︷︷ ︸

i−j

λ
ℓ′i−j+2

N
· · · λ

ℓ′i+1

N
︸ ︷︷ ︸

j

)

+ · · ·





+ · · ·

• From Term V: F
ℓ1
(1,0),k

X
ℓ1ℓ

′

2···ℓ
′

i+1

(i,j),k
x
ℓ′2
k−1 · · · x

ℓ′i−j+1

k−1
︸ ︷︷ ︸

i−j

λ
ℓ′i−j+2

N · · ·λ
ℓ′i+1

N
︸ ︷︷ ︸

j

+ · · ·

+ F
ℓ1ℓ2···ℓi
(i,j),k

X
ℓ1ℓ

′

2

(1,0),k
x
ℓ′2
k−1 · · ·X

ℓi−jℓ
′

i−j+1

(1,0),k
x
ℓ′i−j+1

k−1
︸ ︷︷ ︸

i−j

λ
ℓi−j+1

N
· · · λℓi

N
︸ ︷︷ ︸

j

• From Term VI: F
ℓ1
(1,0),k

X
ℓ1ℓ

′

2···ℓ
′

i+1

(i,j),k
x
ℓ′2
k−1 · · · x

ℓ′i−j+1

k−1
︸ ︷︷ ︸

i−j

λ
ℓ′i−j+2

N · · · λ
ℓ′i+1

N
︸ ︷︷ ︸

j

+ · · ·

+ (i− j) · F
ℓ1ℓ

′

2···ℓ
′

i

(i,j),k
X

ℓ′2ℓ
′′

3

(1,0),k
x
ℓ′′3
k−1 · · ·X

ℓ′i−jℓ
′′

i−j+1

(1,0),k
x
ℓ′′i−j+1

k−1
︸ ︷︷ ︸

i−j−1

λ
ℓ′i−j+1

N
· · · λ

ℓi
′

N
︸ ︷︷ ︸

j

X
ℓ1ℓ

′′′

2

(1,0),k
x
ℓ′′′2

k−1.

By eliminating the variable x ·
k−1 · · ·x

·
k−1

︸ ︷︷ ︸

i−j

λ ·
N · · ·λ

·
N

︸ ︷︷ ︸

j

from the above six expressions, and letting

their summation equal to zero, we obtain the difference equations (5.19). This is the whole

procedure we derive difference equations for generating function coefficients.

Second, notice the coefficients F(i+1,0),k, · · · ,F(i+1,j),k in the above six expressions. Since

their orders are greater than (i, j), hence they are double underlined. As mentioned before, note

that X(i,j),k in the above expressions also contains F(i+1,j),k according to Theorem 5.2, hence

X(i,j),k is also double underlined. Importantly, it should be noted that these double underlined

coefficients only exist in the presented rows above. In other words, there is no such coefficient

existing in the unpresented rows. Further, it can be found from the above expressions that each

great order coefficient (F(i+1,·),k or X(i,j),k) is multiplied by the underlined F(1,0),k = 0 (Lemma

5.4) or A(0) = 0 (5.2(i)). They are the two unique ways that these great order coefficients exist in

the above expressions. This implies the difference equations in (5.19) can be solved recursively

for the generating function coefficients F(i,j),k with respect to the Taylor series order index (i, j).
The above is for the case (i, j) = (i, 1), (i, 2), · · · , (i, i − 1). We can also prove the recur-



86 Chapter 5

siveness for the case (i, j) = (i, 0) and (i, i). Since the proofs can be stated in a similar way to

the first case, hence we omit them here.



Chapter 6

Conclusion

This thesis has three main contributions in extending the generating function method to solve

continuous-time state constrained problems, developing the double generating functions method

for discrete-time LQ optimal control with numerical stability analysis of the optimal generators,

and solving the discrete-time nonlinear optimal control problem via generating functions.

Chapter 2 introduces preliminaries of the Hamiltonian system and the generating function-

s. For both the continuous and discrete time optimal control problems, we give necessary and

sufficient (only for continuous-time case) conditions for optimality, derive Hamilton–Jacobi e-

quations and generating functions, provide optimal solutions (only for continuous-time case),

present relations between the generating function and the value function, and exhibit the LQ

cases.

Chapter 3 extends the generating function method to the LQ optimal control problems with

path and terminal state constraints by employing penalties. The penalized problem with a gen-

eral penalty is introduced to approximate the original constrained problem. We show that both

of them are convex problems and optimal solutions of the penalized problem will converge to

the ones of the original constrained problem when the penalty factor approaches zero. More-

over, a recursive condition is presented to eliminate the coupling relation between the generating

function coefficients with lower and higher indices in the ordinary differential equations so that

they can be solved recursively. Based on this, we also summarize how to design penalties that

is suitable for the generating function method, and give an algorithm presents how to gener-

ate optimal solutions repetitively for different boundary conditions. This framework is able to

give accurate solutions, and also possesses the significance in online repetitive computation for

different boundary conditions.

Chapter 4 presents a whole framework of double generating functions method to the discrete-

time LQ optimal control problem, including the development of generators for optimal solutions

and the numerical stability analysis. We first derive the discrete forward and backward single

generating functions by solving appropriate right and left Hamilton–Jacobi equations based on

necessary conditions for optimality, and give six generators for optimal solutions based on dou-

ble generating functions constructed by selecting any two different single generating functions

among the candidates. Then, under the invertibility analysis of the inverse terms in these gener-

ators based on properties of the coefficients presented in this chapter, we conclude that the gen-

erators constructed by double generating functions with opposite time directions are available



88 Chapter 6

for applications under some mild conditions, while the generators with the same time directions

should be avoided for real practice. This numerical stability analysis can also be generalized to

the existing single generating function method.

Chapter 5 develops the generating function method for the discrete-time nonlinear optimal

control problems, including the presentation of the analytical solutions and the exhibition of the

Taylor series based numerical implementations. In the analytical part, we give the optimal input

as the state feedforward control in terms of the generating functions. In the numerical part, due

to the employed tensor notations, it is best for us to deeply investigate the Hamilton–Jacobi e-

quation and prove some important properties, including the linearity and the recursiveness. This

finally gives optimal solutions expressed only in terms of the pre-computed generating function

coefficients and state boundary conditions by the Taylor series techniques. From this viewpoint,

the developed generating function method is useful for the on-demand optimal solutions gener-

ation for different boundary conditions.

The generating function method exhibits theoretical insights in solving optimal control prob-

lems and practical implication for real world applications. After one decade of the development,

there still has significant potentiality in its further research. Future work includes the study of

convergence region of the Taylor series to Hamilton–Jacobi equation and the extension of the

generating function method to solve stochastic optimal control problems.



Bibliography

[1] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, Cam-

bridge, 2004.

[2] A.C. Chiang, Elements of Dynamic Optimization, Waveland Press, Illinois, 1992.

[3] A.E. Bryson, Dynamic Optimization, Pearson Education, New Jersey, 1998.

[4] J. Engwerda, LQ Dynamic Optimization and Differential Games, John Wiley & Sons, New

Jersey, 2005.

[5] M.I. Kamien and N.L. Schwartz, Dynamic Optimization, Second Edition: The Calculus of

Variations and Optimal Control in Economics and Management, Dover Publications, New

York, 2012.

[6] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mishchenko, The Mathe-

matical Theory of Optimal Processes, Interscience Publishers, New York, 1962.

[7] R.E. Bellman, Dynamic Programming, Princeton University Press, New Jersey, 1957.

[8] H. Kwakernaak and R. Sivan, Linear Optimal Control Systems, Wiley Interscience, New

Jersey, 1972.

[9] L.D. Berkovitz, Optimal Control Theory, Springer-Verlag, New York, 1974.

[10] A.E. Bryson and Y.C. Ho, Applied Optimal Control: Optimization, Estimation and Con-

trol, Taylor & Francis Group, London, 1975.

[11] W.H. Fleming and R.W. Rishel, Deterministic and Stochastic Optimal Control, Springer-

Verlag, Berlin, 1982.

[12] R.F. Stengel, Optimal Control and Estimation, Dover Publications, New York, 1994.

[13] K. Zhou, J.C. Doyle and K. Glover, Robust and Optimal Control, Pearson Education, New

Jersey, 1995.

[14] F.L. Lewis and V.L. Syrmos, Optimal Control, Second Edition, John Wiley & Sons, New

Jersey, 1995.

[15] D.E. Kirk, Optimal Control Theory: An Introduction, Dover Publications, New York, 2004.



90 Bibliography

[16] M. Athans and P.L. Falb, Optimal Control: An Introduction to the Theory and Its Applica-

tions, Dover Publications, New York, 2006.

[17] T.L. Friesz, Dynamic Optimization and Differential Games, Springer, New York, 2010.

[18] D. Liberzon, Calculus of Variations and Optimal Control Theory: A Concise Introduction,

Princeton University Press, New Jersey, 2012.

[19] D.P. Bertsekas, Dynamic Programming and Optimal Control, Athena Scientific, New

Hampshire, 2012.

[20] B.D.O. Anderson and J.B. Moore, Optimal Control: Linear Quadratic Methods, Dover

Publications, New York, 2014.

[21] L.S. Lasdon, A.D. Waren and R.K. Rice, An interior penalty method for inequality con-

strained optimal control problems, IEEE Transactions on Automatic Control, vol. 12, no.

4, pp. 388–395, 1967.

[22] L. Lasdon, S. Mitter and A. Waren, The conjugate gradient method for optimal control

problems, IEEE Transactions on Automatic Control, vol. 12, no. 2, pp. 132–138, 1967.

[23] J. Willems, Least squares stationary optimal control and the algebraic Riccati equation,

IEEE Transactions on Automatic Control, vol. 16, no. 6, pp. 621–634, 1971.

[24] C.J. Goh and K.L. Teo, Control parametrization: A unified approach to optimal control

problems with general constraints, Automatica, vol. 24, no. 1, pp. 3–18, 1988.

[25] O. von Stryk, Numerical solution of optimal control problems by direct collocation, Inter-

national Series of Numerical Mathematics, vol. 111, pp. 129–143, 1993.

[26] G. Elnagar, M.A. Kazemi and M. Razzaghi, The pseudospectral Legendre method for dis-

cretizing optimal control problems, IEEE Transactions on Automatic Control, vol. 40, no.

10, pp. 1793–1796, 1995.

[27] A. Bemporad and M. Morari, Control of systems integrating logic, dynamics, and con-

straints, Automatica, vol. 35, no. 3, pp. 407–427, 1999.

[28] A. Rantzer and M. Johansson, Piecewise linear quadratic optimal control, IEEE Transac-

tions on Automatic Control, vol. 45, no. 4, pp. 629–637, 2000.

[29] J.A.K. Suykens, J. Vandewalle and B. De Moor, Optimal control by least squares support

vector machines, Neural Networks, vol. 14, no. 1, pp. 23–35, 2001.

[30] F. Fahroo and I.M. Ross, Costate Estimation by a Legendre Pseudospectral Method, Jour-

nal of Guidance, Control, and Dynamics, vol. 24, no. 2, pp. 270–277, 2001.

[31] A. Bemporad, M. Morari, V. Dua and E.N. Pistikopoulos, The explicit linear quadratic

regulator for constrained systems, Automatica, vol. 38, no. 1, pp. 3–20, 2002.



91

[32] F. Fahroo and I.M. Ross, Direct Trajectory Optimization by a Chebyshev Pseudospectral

Method, Journal of Guidance, Control, and Dynamics, vol. 25, no. 1, pp. 160–166, 2002.

[33] D. Carlson, A. Haurie and A. Leizarowitz, Infinite Horizon Optimal Control, Springer-

Verlag, Berlin, 1991.

[34] E.F. Camacho and C. Bordons, Model Predictive Control, Springer-Verlag, New York,

1999.

[35] V.M. Guibout and D.J. Scheeres, Solving relative two-point boundary value problems: S-

pacecraft formulation flight transfers application, Journal of Guidance, Control, and Dy-

namics, vol. 27, no. 4, pp. 693–704, 2004.

[36] C. Park and D. J. Scheeres, Determination of optimal feedback terminal controllers for

general boundary conditions using generating functions, Automatica, vol. 42, no. 5, pp.

869–875, 2006.

[37] C. Park, D.J. Scheeres, V.M. Guibout and A. Bloch, Global solution for the optimal feed-

back control of the underactuated Heisenberg system, IEEE Transactions on Automatic

Control, vol. 53, no. 11, pp. 2638–2642, 2008.

[38] Z. Hao, K. Fujimoto and Y. Hayakawa, Optimal trajectory generation for linear systems

based on double generating functions, in Proceedings of the 51st IEEE Conference on

Decision and Control, pp. 3827–3832, 2012.

[39] Z. Hao, K. Fujimoto and Y. Hayakawa, Optimal Trajectory Generation for Linear System-

s Based on Double Generating Functions, SICE Journal of Control, Measurement, and

System Integration, vol. 6, no. 3, pp. 194–201, 2013.

[40] Z. Hao, K. Fujimoto, and Y. Hayakawa, Optimal trajectory generation for nonlinear systems

based on double generating functions, in Proceedings of 2013 American Control Confer-

ence, pp. 6382–6387, 2013.

[41] M. Bando and H. Yamakawa, A new optimal orbit control for two-point boundary-value

problem using generating functions, Advances in the Astronautical Sciences, vol. 134, pp.

245–260, 2009.

[42] Z. Hao and K. Fujimoto, Approximate solutions to the Hamilton–Jacobi equations for gen-

erating functions with a quadratic cost function with respect to the input, in Proceedings of

the 4th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control,

pp. 194–199, 2012.

[43] Z. Hao, K. Fujimoto, and Y. Hayakawa, Approximate solutions to the Hamilton–Jacobi

equations for generating functions: The general cost function case, in Proceedings of the

9th Asian Control Conference, pp. 1–6, 2013.

[44] Z. Wu and W. Zhong, A structure-preserving algorithm for the minimum H∞ norm com-

putation of finite-time state feedback control problem, International Journal of Control,

vol. 82, no. 4, pp. 773–781, 2009.



92 Bibliography

[45] H. Peng, Q. Gao, Z. Wu and W. Zhong, Efficient sparse approach for solving receding-

horizon control problems, Journal of Guidance, Control, and Dynamics, vol. 36, no. 6, pp.

1864–1872, 2013.

[46] Y. Okura and K. Fujimoto, A new framework of robust LQ optimal control for parameter

variation and its application to the double generating functions method, in Proceedings of

the 54th IEEE Conference on Decision and Control, pp. 3236–3241, 2015.

[47] Z. Wu and M. Mesbahi, Symplectic transformation based analytical and numerical methods

for linear quadratic control with hard terminal constraints, SIAM Journal on Control and

Optimization, vol. 50, no. 2, pp. 652–671, 2012.

[48] T. Ohsawa, A. M. Bloch and M. Leok, Discrete Hamilton–Jacobi theory, SIAM Journal on

Control and Optimization, vol. 49, no. 4, pp. 1829–1856, 2011.

[49] T. Lee, Discrete-time optimal feedback control via Hamilton-Jacobi theory with an appli-

cation to hybrid systems, in Proceedings of the 51st IEEE Conference on Decision and

Control, pp. 7055–7062, 2012.

[50] T. Lee, Optimal control of partitioned hybrid systems via discrete-time Hamilton–Jacobi

theory, Automatica, vol. 50, no. 8, pp. 2062–2069, 2014.

[51] V.M. Guibout and D.J. Scheeres, Spacecraft formation dynamics and design, Journal of

Guidance, Control, and Dynamics, vol. 29, no. 1, pp. 121–133, 2006.

[52] C. Park, V.M Guibout, and D.J. Scheeres, “Solving optimal continuous thrust rendezvous

problems with generating functions,” Journal of Guidance, Control, and Dynamics, vol.

29, no. 2, pp. 321–331, 2006.

[53] M. Bando and H. Yamakawa, Low-thrust trajectory optimization using second-order gener-

ating functions, in Proceedings of the SICE Annual Conference 2010, pp. 804–810, 2010.

[54] Z. Hao, K. Fujimoto and Y. Hayakawa, Application of the double generating function

method to optimal gait generation for a biped robot, in Proceedings of the 32nd Chinese

Control Conference, pp. 2338–2343, 2013.

[55] Z. Hao, K. Fujimoto and Y. Hayakawa, On-demand optimal gait generation for a compass

biped robot based on the double generating function method, in Proceedings of the 2013

IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3108–3113,

2013.

[56] Z. Hao, K. Fujimoto and Y. Hayakawa, Optimal gait generation for a compass biped robot

via the double generating functions method, SICE Journal of Control, Measurement, and

System Integration, vol. 7, no. 2, pp. 96–103, 2014.

[57] L.S. Lasdon, A.D. Waren and R.K. Rice, An interior penalty method for inequality con-

strained optimal control problems, IEEE Transactions on Automatic Control, vol. 12, no.

4, pp. 388–395, 1967.



93

[58] P. Malisani, F. Chaplais and N. Petit, An interior penalty method for optimal control prob-

lems with state and input constraints of nonlinear systems, Optimal Control Applications

and Methods, vol. 37, no. 1, pp. 3–33, 2016.

[59] J.F. Bonnans and T. Guilbaud, Using Logarithmic penalties in the shooting algorithm for

optimal control problems, Optimal Control Applications and Methods, vol. 24, no. 5, pp.

257–278, 2003.

[60] V. Kucera, The discrete Riccati equation of optimal control, Kybernetika, vol. 8, no. 5, pp.

430–447, 1972.

[61] H.B. Keller, Numerical Methods for Two-Point Boundary-Value Problems, Dover Publica-

tions, New Jersey, 1968.

[62] B. Chachuat, Nonlinear and Dynamic Optimization: From Theory to Practice, Automatic

Control Laboratory, EPFL, Switzerland, 2007.

[63] H. Goldstein, C.P. Poole Jr. and J.L. Safko, Classical Mechanics, Addison-Wesley, Boston,

2001.

[64] A.V. Fiacco and G.P. McCormick, Nonlinear Programming: Sequential Unconstrained

Minimization , John Wiley & Sons, New Jersey, 1968.

[65] J. Huang and W.J. Rugh, Stabilization on zero-error manifolds and the nonlinear ser-

vomechanism problem, IEEE Transactions on Automatic Control, vol. 37, no. 7, pp. 1009–

1013, 1992.

[66] Z. Hao, Optimal Trajectory Generation via Double Generating Functions and Application

to Biped Robots, Ph.D. Thesis, Nagoya University, Nagoya, Japan, 2014.

[67] W.H. Clohessy, Terminal guidance system for satellite rendezvous, Journal of the

Aerospace Sciences, vol. 27, no. 9, pp. 653–658, 1960.

[68] R.R. Bitmead, M.R. Gevers, I.R. Petersen and R.J. Kaye, Monotonicity and stabilizability

properties of solutions of the Riccati difference equation: Propositions, lemmas, theorems,

fallacious conjectures and counterexamples, Systems & Control Letters, vol. 5, no. 5, pp.

309–315, 1985.

[69] P.E. Caines and D.Q. Mayne, On the discrete time matrix Riccati equation of optimal con-

trol, International Journal of Control, vol. 12, no. 5, pp. 785–794, 1970.

[70] J.E. Marsden and T.S. Ratiu, Introduction to Mechanics and Symmetry, Springer-Verlag,

New York, 1999.



94 Bibliography



Published papers

Chapter 3

• D. Chen, K. Fujimoto and T. Suzuki, Generating function approach to linear quadratic

optimal control problem with constraints on the state, in Proceedings of the 53rd IEEE

Conference on Decision and Control, pp. 6659–6664, 2014.

• D. Chen, K. Fujimoto and T. Suzuki, Optimal gait generation of constrained compass biped

robot via generating function approach, in Proceedings of the SICE Annual Conference

2015, pp. 626–631, 2015.

Chapter 4

• D. Chen, Z. Hao, K. Fujimoto and T. Suzuki, Discrete-time linear quadratic optimal con-

trol via double generating functions, IEICE Transactions on Fundamentals of Electronics,

Communications and Computer Sciences, vol. E98-A, no. 3, pp. 833–842, 2015.

• D. Chen, Z. Hao, K. Fujimoto and T. Suzuki, Discrete-time linear quadratic optimal con-

trol via forward generating functions, in Proceedings of the SICE Annual Conference 2013,

pp. 1475–1478, 2013.

• D. Chen, Z. Hao, K. Fujimoto and T. Suzuki, Discrete-time linear quadratic optimal con-

trol with fixed and free terminal state via double generating functions, in Proceedings of

the 19th IFAC World Congress, pp. 6044–6049, 2014.

Chapter 5

• D. Chen, K. Fujimoto and T. Suzuki, Discrete-time nonlinear optimal control via generat-

ing functions, to appear in IEICE Transactions on Fundamentals of Electronics, Commu-

nications and Computer Sciences, 2016.

• D. Chen, K. Fujimoto and T. Suzuki, Solving discrete-time nonlinear optimal control prob-

lem by generating function approach, in Proceedings of the SICE Annual Conference 2014,

pp. 1055–1058, 2014.

• D. Chen, K. Fujimoto and T. Suzuki, Double generating function approach to discrete-

time nonlinear optimal control problems, in Proceedings of the 54th IEEE Conference on

Decision and Control, pp. 3894–3899, 2015.


	Abstract
	Acknowledgement
	1 Introduction
	1.1 Continuous-time state constrained LQ optimal control
	1.2 Discrete-time LQ optimal control
	1.3 Discrete-time nonlinear optimal control
	1.4 Goals and contributions of the thesis
	1.5 Organization of the thesis

	2 Hamiltonian system and generating functions
	2.1 Continuous-time case
	2.1.1 Necessary and sufficient conditions for optimality
	2.1.2 Hamilton–Jacobi equation and generating function
	2.1.3 Optimal solutions via generating functions
	2.1.4 Relation between generating function and value function
	2.1.5 LQ optimal control problem

	2.2 Discrete-time case
	2.2.1 Necessary conditions for optimality
	2.2.2 Hamilton–Jacobi equation and generating function
	2.2.3 Relation between generating function and value function
	2.2.4 LQ optimal control problem

	2.3 Summary

	3 Continuous-time state constrained LQ optimal control problem
	3.1 Problem conversion
	3.1.1 Constrained problem and its convexity
	3.1.2 Penalized problem and its convexity
	3.1.3 Convergence

	3.2 Generating function method
	3.2.1 Taylor series solution to Hamilton–Jacobi equation
	3.2.2 Recursive condition

	3.3 Penalty design and generating function based algorithm
	3.3.1 Penalty design
	3.3.2 Algorithm for different boundary conditions

	3.4 Examples
	3.4.1 Analytic scalar example
	3.4.2 Constrained spacecraft rendezvous

	3.5 Summary

	4 Discrete-time LQ optimal control problem
	4.1 Problem setting and necessary conditions for optimality
	4.1.1 Problem setting
	4.1.2 Necessary conditions for optimality

	4.2 Double generating functions method
	4.2.1 Generating functions
	4.2.2 Optimal solutions via Double Generating Functions

	4.3 Invertibility Analysis
	4.3.1 Properties of Generating Function Coefficients
	4.3.2 Invertibility Analysis

	4.4 Examples
	4.5 Summary
	Appendix

	5 Discrete-time nonlinear optimal control problem
	5.1 Problem setting and analytical solutions
	5.1.1 Problem setting
	5.1.2 Analytical solutions via generating functions

	5.2 Numerical implementations
	5.2.1 Taylor series solutions to Hamilton–Jacobi equation
	5.2.2 Algorithm for numerically optimal solutions

	5.3 Examples
	5.4 Summary
	Appendix
	Proof of Theorem 5.2
	Proof of Theorem 5.3


	6 Conclusion
	Bibliography
	Published papers

