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Abstract. This paper gives new confluence proofs for several lambda calculi with

permutation-like reduction, including lambda calculi corresponding to intuitionistic and

classical natural deduction with disjunction and permutative conversions, and a lambda

calculus with explicit substitutions. For lambda calculi with permutative conversion, näıve

parallel reduction technique does not work, and (if we consider untyped terms, and hence

we do not use strong normalization) traditional notion of residuals is required as Ando

pointed out. This paper shows that the difficulties can be avoided by extending the

technique proposed by Dehornoy and van Oostrom, called the Z theorem: existence of a

mapping on terms with the Z property concludes the confluence. Since it is still hard to

directly define a mapping with the Z property for the lambda calculi with permutative

conversions, this paper extends the Z theorem to compositional functions, called compo-

sitional Z, and shows that we can adopt it to the calculi.
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1. Introduction

The permutative conversion was introduced by Prawitz [12] as one of proof
normalization processes for the natural deduction with disjunctions and ex-
istential quantifiers. It permutes order of applications of elimination rules,
and then normal proofs have some nice properties such as the subformula
property.

The rules of the permutative conversion are quite simple, but the com-
bination of it with the β-reduction makes confluence proofs complicated if
we do not depend on strong normalization, as Ando discussed in [2]. He
pointed out that an extension of Parigot’s λµ-calculus [11] with permutative
conversion brings some big troubles with confluence proofs. Baba et al. [3]
also discussed similar problem. They proved confluence of some variants
of the λµ-calculus with the so-called renaming reductions. The structural
reduction (or the µ-reduction) of the λµ-calculus is a variant of the permuta-
tive conversion, and they pointed out that the combination of the structural
reduction and the renaming reduction makes a trouble in confluence proofs
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and it requires a modification of the parallel reduction.

From their observation, we can see that the difficulties are caused by the
following. First, we cannot näıvely adopt the parallel reduction technique
of Tait and Martin-Löf, since a parallel reduction defined in an ordinary
way does not have the diamond property. Therefore, Ando generalized the
parallel reduction with the notion of the segment trees. Secondly, it is also
difficult to adopt Takahashi’s technique with complete development [13],
and Ando used traditional notion of the residuals [4] to define the complete
development.

This paper shows that we can avoid these troubles by adapting another
proof technique for confluence proposed by Dehornoy and van Oostrom [5],
called the Z theorem: if there is a mapping which satisfies the Z property,
then the reduction system is confluent. A major candidate for the mapping
with the Z property is the complete development used in Takahashi’s proof,
and hence defining such a mapping is still hard. In this paper, we extend
the Z theorem to compositional functions, called the compositional Z, and
show that a mapping satisfying the Z property can be easily defined as
a composition of two complete developments for the β-reduction and the
permutative conversion, respectively. The compositional Z can be adopted to
several λ-calculi with permutative conversion such as the λ-calculus extended
with disjunctions, the λµ-calculus with disjunctions, and a λ-calculus with
explicit substitutions.

2. Compositional Z

First, we summarize Dehornoy and van Oostrom’s Z theorem, and then
extend it for compositional functions, called the compositional Z. It gives a
sufficient condition for that a compositional function satisfies the Z property,
and enables us to consider a reduction system by dividing into two parts to
prove confluence.

Definition 2.1 ((Weak) Z property). Let (A, → ) be an abstract rewriting
system, and ↠ be the reflexive transitive closure of → . Let →x be another
relation on A, and ↠x be its reflexive transitive closure.

1. A mapping f satisfies the weak Z property for → by →x if a→ b
implies b↠x f(a)↠x f(b) for any a, b ∈ A.

2. A mapping f satisfies the Z property for → if it satisfies the weak Z
property by → itself.

When f satisfies the (weak) Z property, we also say that f is (weakly) Z.
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Figure 1. Proof of Theorem 2.3

It becomes clear why we call it the Z property when we draw the condition
as the following diagram.

Theorem 2.2 (Z theorem [5]). If there exists a mapping satisfying the Z
property for an abstract rewriting system, then it is confluent.

This theorem has been applied to confluence proofs for some variants of
λ-calculus in [5, 9, 1, 10]. In fact, we can often prove that the usual complete
developments have the Z property.

The compositional Z is the following, which is easily proved from Theo-
rem 2.2 with the diagrams in Figure 1.

Theorem 2.3 (Compositional Z). Let (A, → ) be an abstract rewriting sys-
tem, and → be →1 ∪ →2 . If there exist mappings f1, f2 : A → A such
that

(a) f1 is Z for →1

(b) a→1 b implies f2(a)↠ f2(b)
(c) a↠ f2(a) holds for any a ∈ Im(f1)
(d) f2 ◦ f1 is weakly Z for →2 by → ,

then f2 ◦ f1 is Z for (A, → ), and hence (A, → ) is confluent.

One easy example of the compositional Z is a confluence proof for the
βη-reduction on the untyped λ-calculus (although it can be directly proved
by the Z theorem as in [9]). Let →1 = →η , →2 = →β , and f1 and f2 be
the usual complete developments of η and β, respectively. Then, it is easy
to see the conditions of the compositional Z hold. The point is that we can
forget the other reduction in the definition of each complete development.
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Furthermore, we have another sufficient condition for the Z property of
compositional functions as follows. It is a special case of the compositional
Z where f1(a) = f1(b) holds for any a→1 b. All of the examples (except for
βη above) of the application of compositional Z in the following sections are
in this case.

Corollary 2.4. Let (A, → ) be an abstract rewriting system, and → be
→1 ∪ →2 . Suppose that there exist mappings f1, f2 : A → A such that

(a) a→1 b implies f1(a) = f1(b)

(b) a↠1 f1(a) for any a

(c) a↠ f2(a) holds for any a ∈ Im(f1)

(d) f2 ◦ f1 is weakly Z for →2 by → .

Then, f2 ◦ f1 is Z for (A, → ), and hence (A, → ) is confluent.

Proof. It is easily proved from Theorem 2.3. The condition (a) in Theorem
2.3 comes from the new conditions (a) and (b), and (b) in Theorem 2.3 is
not necessary since we have f2(f1(a)) = f2(f1(b)) for any a→1 b.

Corollary 2.4 can be seen as generalization of the Z property modulo,
proposed by Accattoli and Kesner [1]. For an abstract rewriting system
(A, → ) and an equivalence relation ∼ on A, the reduction modulo ∼, de-
noted a→∼b, is defined as a ∼ c→ c′ ∼ b for some c and c′. The Z property
modulo says that it is a sufficient condition for the confluence of →∼ that
there exists a mapping which is well-defined on ∼ and weakly Z for → by
→∼. If we consider ∼ as the first reduction relation →1 , and define f1(a)
as a fixed representative of the equivalence class including a, then the condi-
tions of the Z property modulo implies the conditions of the compositional
Z, since the reflexive transitive closure of →∪ ∼ is ↠∼.

3. Intuitionistic natural deduction with disjunction

3.1. Calculus

The following is the definition of the (untyped) terms (denoted byM , N ,. . . ),
eliminators (denoted by e,. . . ), and the reduction rules for the first-order
natural deduction, where a ranges over the first-order variables, and t over
the first-order terms. We call the system λNJ.

M ::= x | λx.M | ⟨M,M⟩ | ι1M | ι2M | λa.M | ⟨M, t⟩ | Me

e ::= M | π1 | π2 | [x.M, x.M ] | t | [xa.M ]
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(λx.M)N →M [x := N ] (βI)

⟨M1,M2⟩πi→Mi (βC)

(ιiM)[x1.N1, x2.N2]→Ni[xi := M ] (βD)

(λa.M)t→M [a := t] (βA)

⟨M, t⟩[xa.N ]→N [x, a := M, t] (βE)

M [x1.N1, x2.N2]e→M [x1.N1e, x2.N2e] (πD)

M [xa.N ]e→M [xa.Ne] (πE)

The last two rules (πD) and (πE) are called permutative conversion, or just
permutation. We adopt the notion of the eliminators to write the permu-
tative conversion for several destructors in a uniform way. As usual, the
juxtaposition notation Me is supposed to be left associative, and hence
Me1e2 denotes (Me1)e2. Bound variables are defined as usual. In particu-
lar, variable occurrences of x1 (and x2) in N1 (and N2, resp.) are supposed
to be bound in the term M [x1.N1, x2.N2]. We can freely rename the bound
variables. In the π-rules, we assume capture-avoiding conditions, that is, e
must not contain either x1 or x2 freely in the rule (πD) and e must not con-
tain either x or a freely in the rule (πD). In this paper, we consider untyped
terms including ill-typed ones such as (ι1M)N and (λx.M)[x1.N1, x2.N2].
They do not affect anything since there is no applicable reduction rule.

This is the whole calculus of λNJ, but we can discuss the essence of
our idea in the following simple subcalculus λ−

NJ, which has terms only for
implications and “unary” disjunctions. The discussion in this paper can be
extended to λNJ in a straightforward way.

Definition 3.1 (λ−
NJ). The terms of λ−

NJ are defined as follows.

(terms) M ::= x | λx.M | ιM | Me (eliminators) e ::= M | [x.M ]

The reduction rules for λ−
NJ are the following.

(λx.M)N →M [x := N ] (βI)

(ιM)[x.N ]→N [x := M ] (βD)

M [x.N ]e→M [x.Ne] (π)

The relation →β is the compatible closure of (βI) and (βD), and →π is
similarly defined from (π). The relation → is the union of →β and →π ,
and ↠ is its reflexive transitive closure.
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Figure 2. Critical pair induced by the π-reduction

3.2. Problems on confluence proof

In confluence proofs for λ−
NJ, no matter whether we adopt the traditional

parallel reduction or the original Z theorem (Theorem 2.2), the permutation
raises some difficulties. A common reason can be explained by the example
in Figure 2. The term M3 is the join point from M1 and M2. Hence, if we
define a parallel reduction satisfying the diamond property, it has to contain
M2↠π M3 as one-step, whereas in the reduction sequence

M2 = M [x.N [y.L]]e→π M [x.N [y.L]e]→π M [x.N [y.Le]] = M3

the π-redex N [y.L]e of the second step does not occur in M2, and it is not
a simple extension of the usual parallel reduction. This example also shows
that, if we want to find a mapping f satisfying the Z property, we have to de-
fine f(M0) as M1↠ f(M0) and M2↠ f(M0) hold, and then M3↠ f(M0). It
means that we have to do the permutation completely in f . This observation
leads the following definition.

Definition 3.2. The complete permutation M@e is defined as follows.

M [x.N ]@e = M [x.N@e]

M@e = Me (M ̸= M ′[x.N ′])

Then, we expect that a complete development with the complete permu-
tation can be defined as follows and it is Z:

x• = x M•
E = M•

(λx.M)• = λx.M• [x.N ]•E = [x.N•].

(ιM)• = ιM•

(λx.M)N• = M•[x := N•]

(ιM)[x.N ]• = N•[x := M•]

Me• = M•@e•E (o.w.)
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However, this näıve definition does not work. Let N1 = (ι(x[y.y]))[z.z]w,
and N2 = (ι(x[y.y]))[z.zw]. Then, we have N1→π N2 and

N1
• = (x[y.y])@w = x[y.yw] N2

• = (zw)•[z := x[y.y]] = x[y.y]w.

Hence this mapping is not Z since N•
1 ↠N2

• does not hold. The reason of
the failure is that the π-redex (x[y.y])w produced by the β-reduction is also
reduced in N1

•.

3.3. Confluence by compositional Z

The compositional Z can be used to solve the problem.

Definition 3.3. The mappingsMP and ePE are inductively defined as follows.

xP = x MP
E = MP

(λx.M)P = λx.MP [x.N ]PE = [x.NP]

(ιM)P = ιMP

(Me)P = MP@ePE

The mappings MB and eBE are defined as follows.

xB = x MB
E = MB

(λx.M)B = λx.MB [x.N ]BE = [x.NB]

(ιM)B = ιMB

((λx.M)N)B = MB[x := NB]

((ιM)[x.N ])B = NB[x := MB]

(Me)B = MBeBE (o.w.)

We define MPB = (MP)
B
.

Note that, in the definition of (·)P, we consider only π, and not β. Sim-
ilarly, We do not need to consider π in the definition of (·)B.

Then, we can use Corollary 2.4 to show the confluence of λ−
NJ with the

help of the following lemmas.

Lemma 3.4. 1. Me↠π M@e.
2. M@[x.N ]@e = M@[x.N@e].
3. (M@e)[x := N ]↠π M [x := N ]@e[x := N ].
4. M →M ′ implies M@e↠M ′@e.
5. e→ e′ implies M@e↠M@e′.
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Proof. 1. By induction on M . The only nontrivial case is the following,
where M = P [x.Q].

P [x.Q]e→π P [x.Qe]

↠π P [x.Q@e] (I.H.).

2. By induction on M . The only nontrivial case is the following, where
M = P [y.Q].

(P [y.Q])@[x.N ]@e = P [y.Q@[x.N ]@e]

= P [y.Q@[x.N@e]] (I.H.)

= (P [y.Q])@[x.N@e].

3. By induction on M . We use θ to denote the substitution [x := N ].
Interesting cases are the following.

(Case M = P [y.Q]) We have the following.

(M@e)θ = (Pθ)[y.(Q@e)θ]

↠π (Pθ)[y.Qθ@eθ] (I.H.)

= (Pθ[y.Qθ])@eθ

= Mθ@eθ.

(Case M = x and N = P [y.Q]) We have the following.

(M@e)θ = (xe)θ

= P [y.Q]eθ

→π P [y.Q(eθ)]

↠π P [y.Q@eθ] (1)

= xθ@eθ.

4. By induction on M →M ′. The only nontrivial cases are the following.
(Case (ιP )[x.Q]→β Q[x := P ]) We suppose that x does not occur in e.

(ιP )[x.Q]@e = (ιP )[x.Q@e]

→ (Q@e)[x := P ]

↠π Q[x := P ]@e (3).

(Case P [x.Q][y.R]→π P [x.Q[y.R]])

P [x.Q][y.R]@e = P [x.Q][y.R@e]

→π P [x.Q[y.R@e]]

= P [x.Q[y.R]]@e.

5. By induction on e→ e′.
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Lemma 3.5. M →π N implies MP = NP.

Proof. By induction on →π . In the case of π-redex, we have the following.

(P [x.Q]e)P = PP@[x.QP]@ePE

= PP@[x.QP@ePE] (3.4.2)

= (P [x.Qe])P.

In the case of M = Pe and N = P ′e′, we have the following.

(Pe)P = PP@ePE

= P ′P@e′
P
E (I.H.)

= P ′@e′
P
.

Lemma 3.6. The following hold for ⟨X, ξ⟩ ∈ {⟨P, π⟩, ⟨B, β⟩}.
1. MX[x := NX]↠ξ (M [x := N ])X.

2. MXeXE ↠ξ (Me)X.

Proof. 1. By induction and case analysis on M . The only nontrivial cases
are those where some redexes are created by substitutions.

(X = P) The case where M = xe and N = P [y.Q] is proved as follows.

MP[x := NP] = (PP@[y.QP])ePE[x := NP]

↠π (P
P@[y.QP])(e[x := N ])PE (I.H.)

↠π P
P@[y.QP]@(e[x := N ])PE (3.4.1)

= (P [y.Q]e[x := N ])P.

(X = B) The case where M = xP and N = λy.Q is proved as follows.

MB[x := NB] = (λy.QB)PB[x := NB]

↠β (λy.Q
B)(P [x := N ])B (I.H.)

→β Q
B[y := (P [x := N ])B]

= (λy.Q)P [x := N ]B.

The case where M = x[y.P ] and N = ιQ is similar.
2. We have MXeXE = (xeXE)[x := MX] = (xe)X[x := MX]↠ξ (Me)X by

1.
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Lemma 3.7. For any X ∈ {P,B}, if M →N holds, then we have MX↠NX.

Proof. (X = P) The case where M →π N immediately follows from Lemma
3.5. The case where M is a β-redex is proved as follows.

((λx.P )Q)P = (λx.PP)QP

= PP[x := QP]

↠π (P [x := Q])P (3.6.1).

The case of Me→M ′e′ is proved by 4 and 5 of Lemma 3.4.

(X = B) The only nontrivial case is the following: M = (ιP )[x.Q][y.R],
N = (ιP )[x.Q[y.R]], and M →π N . In this case, we have the following.

MB = QB[x := PB][y.RB]

= (QB[y.RB])[x := PB] x ̸∈ FV ([y.RB])

↠β (Q[y.R])B[x := PB] (3.6.2)

= NB.

Theorem 3.8 (Confluence of λ−
NJ). λ−

NJ is confluent.

Proof. By Corollary 2.4, it is sufficient to prove the following.

(a) M →π N implies MP = NP.

(b) M ↠π M
P holds for any M .

(c) M ↠MB holds for any M .

(d) M →β N implies N ↠MPB↠NPB.

(a) is Lemma 3.5. (b) and (c) are straightforward by induction on M .
(d) MPB↠NPB follows from Lemma 3.7. For N ↠MPB, it is proved by
induction onM →β N . The cases of β-redexes are easy by the factM ↠MPB

for any M , which follows from (b) and (c). The case where M = Pe and
N = P ′e′ is proved as follows.

P ′e′↠P ′PBe′
PB
E (I.H.)

↠ (P ′Pe′
P
E)

B
(3.6.2)

↠ (P ′P@e′
P
E)

B
(3.4.1, 3.7).
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Figure 3. Critical pair induced by the πµ-reduction

4. Classical natural deduction with disjunction

The idea in the previous section can be extended to the Parigot’s λµ-calculus
[11]. As Ando’s proof in [2], the proof of its confluence requires some com-
plicated notions such as generalized parallel reduction, which is realized by
means of the notion of segment trees, and residuals of redexes to define the
complete development. The compositional Z makes the proof much simpler.

Definition 4.1 (λµ−
NK). The terms of λµ−

NK are the extension of those of
λ−
NJ as follows.

(terms) M ::= · · · | µα.M | [α]M

The following is the additional reduction rule.

(µα.M)e→µα.M [α ⇐ e] (µ),

where the structural substitution M [α ⇐ e] is obtained by recursively re-
placing subterms of the form [α]N by [α]N [α ⇐ e]e. The relation →πµ is
defined in a similar way to →β from (π) and (µ).

In the following, we use the notation M [α ⇐ e1, e2, · · · , en] to denote
M [α ⇐ e1][α ⇐ e2] · · · [α ⇐ en]. This term is obtained by replacing [α]N
by [α]N [α ⇐ e1, e2, · · · , en]e1e2 · · · en recursively.

Extending the complete permutation to λµ−
NK is not straightforward.

First, we have to do µ-reduction simultaneously in the complete permutation
because of the example in Figure 3. Here, the right bottom arrow needs one
µ-step followed by some π-steps as

(µα.M [α ⇐ [x.N ]])e→µ µα.M [α ⇐ [x.N ], e]↠π µα.M [α ⇐ [x.Ne]].
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x[α ⇐ @ε]@ε = xε

(λx.M)[α ⇐ @ε]@ε = (λx.M [α ⇐ @ε]@◦)ε
(ιM)[α ⇐ @ε]@ε = (ιM [α ⇐ @ε]@◦)ε

(MN)[α ⇐ @ε]@ε = (M [α ⇐ @ε]@◦)(N [α ⇐ @ε]@◦)ε
(M [x.N ])[α ⇐ @ε]@ε = (M [α ⇐ @ε]@◦)[x.N [α ⇐ @ε]@ε]

(µβ.M)[α ⇐ @ε]@ε = µβ.M [α, β ⇐ @ε, ε]@◦
([αi]M)[α ⇐ @ε]@ε = ([αi]M [α ⇐ @ε]@εi)ε (αi ∈ α)

([β]M)[α ⇐ @ε]@ε = ([β]M [α ⇐ @ε]@◦)ε (β ̸∈ α)

Figure 4. Definition of M [α ⇐ @ε]@ε

Note that the latter π-reduction holds by π-reducing subterms of the form
[α]P [x.N ]e in M [α ⇐ [x.N ], e] to [α]P [x.Ne]. Secondly, the following näıve
definition is not inductive on (the size of) terms:

(µα.M)@e = µα.M [α ⇐ @e]

([α]M)[α ⇐ @e] = [α](M [α ⇐ @e]@e).

Hence, we need some generalization for the definition of the complete per-
mutation with respect to both π- and µ-reduction.

Definition 4.2. We use the following notation. The metavariable ε ranges
over eliminators or ◦ denoting “nothing”, and we define

Mε =

{
Me (ε = e)

M (ε = ◦).

α and ε denote finite sequences such as α1, α2, · · · , αn and ε1, ε2, · · · , εn,
respectively, and • denotes the empty sequence.

We define M [α ⇐ @ε]@ε as Figure 4, where we suppose that α and ε
have the same length. Then, we define M@e = M [• ⇐ @•]@e and M [α ⇐
@ε] = M [α ⇐ @ε]@◦.

Note that, the following equations hold as we expect.

(M [x.N ])@e = M [x.N@e]

(µα.M)@e = µα.M [α ⇐ @e]

M@e = Me (o.w.)
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Furthermore, we also have

M [α ⇐ @ε]@ε = (M [α ⇐ @ε])@ε.

Now, we can define a function with the Z property by composing two
functions in a similar way to the case of λ−

NJ.

Definition 4.3. The mappingsMP and ePE are inductively defined as follows.

xP = x MP
E = MP

(λx.M)P = λx.MP [x.N ]PE = [x.NP]

(ιM)P = ιMP

([α]M)P = [α]MP

(µα.M)P = µα.MP

(Me)P = MP@ePE

The mappings MB and eBE are defined as follows.

xB = x MB
E = MB

(λx.M)B = λx.MB [x.N ]BE = [x.NB]

(ιM)B = ιMB

([α]M)B = [α]MB

(µα.M)B = µα.MB

((λx.M)N)B = MB[x := NB]

((ιM)[x.N ])B = NB[x := MB]

(Me)B = MBeBE (o.w.)

We define MPB = (MP)
B
.

We can use Theorem 2.3 to show the confluence of λµ−
NK with the help

of several lemmas. The following is the extension of Lemma 3.4.

Lemma 4.4. 1. If α ∩ FV (ε, ε) = ∅, then M [α ⇐ ε]ε↠πµM [α ⇐ @ε]@ε.

2. (a) (M [α ⇐ @ε]@[x.N ])@ε = M [α ⇐ @ε]@[x.N@ε].

(b) M [α, γ ⇐ @ε, [x.N ]][γ ⇐ @ε] = M [α, γ ⇐ @ε, [x.N@ε]].

3. If α ∩ FV (N) = ∅, then (M [α ⇐ @ε]@ε)[x := N ]↠πµM [α ⇐
@ε[x := N ]]@ε[x := N ].
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4. If x ̸∈ FV (ε, ε), then (M [α ⇐ @ε]@ε)[x := N [α ⇐ @ε]]↠πµM [x :=
N ][α ⇐ @ε]@ε.

5. If γ ̸∈ α ∪ FV (ε, ε), then M [γ ⇐ ε′][α ⇐ @ε]@ε = (M [α ⇐
@ε]@ε)[γ ⇐ ε′[α ⇐ @ε]].

6. M [α ⇐ [x.N ]][α ⇐ @ε] = M [α ⇐ [x.N@ε]].
7. If α ∩ FV (ε) = ∅ and M →N , then M [α ⇐ @ε]@ε↠N [α ⇐ @ε]@ε.

Proof. 1 is proved by induction on M . We will see the only interesting cases.
(Case M = P [x.Q]) We have the following.

M [α ⇐ ε]ε→π P [α ⇐ ε][x.Q[α ⇐ ε]ε]

↠πµ P [α ⇐ @ε][x.Q[α ⇐ @ε]@ε] (I.H.)

= M [α ⇐ @ε]@ε.

(Case M = µβ.P ) We can suppose β ̸∈ FV (ε, ε). We have the following.

M [α ⇐ ε]ε→µ µβ.P [α, β ⇐ ε, ε]

↠πµ µβ.P [α, β ⇐ @ε, ε] (I.H.)

= M [α ⇐ @ε]@ε.

For 2, (a) and (b) are simultaneously proved by induction on M .
3 to 6 are respectively proved by induction on M .
7 is proved by induction on M →N . We will see some interesting cases.

Let θ be [α ⇐ @ε]@ε.
Consider the case of M = (µβ.M ′)e, N = µβ.M ′[β ⇐ e], and M → µN .

We have two subcases. When e = [x.P ], we have the following.

Mθ = (µβ.M ′[α ⇐ @ε])[x.Pθ]

→ µ µβ.M ′[α ⇐ @ε][β ⇐ [x.Pθ]]

= µβ.M ′[α ⇐ @ε][β ⇐ [x.P ][α ⇐ @ε]][β ⇐ @ε] (by 6)

= µβ.M ′[β ⇐ [x.P ]][α ⇐ @ε][β ⇐ @ε] (by 5)

= µβ.M ′[β ⇐ [x.P ]][α, β ⇐ @ε, ε]

= Nθ.

Otherwise, when e = M ′′, we have the following.

Mθ = (µβ.M ′[α ⇐ @ε])M ′′[α ⇐ @ε]ε

↠µ µβ.M ′[α ⇐ @ε][β ⇐ M ′′[α ⇐ @ε]][β ⇐ ε]

= µβ.M ′[β ⇐ M ′′][α ⇐ @ε][β ⇐ ε] (by 5)

↠πµ µβ.M ′[β ⇐ M ′′][α, β ⇐ @ε, ε] (by 1)

= Nθ.
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The other base cases are similarly proved by the previous lemmas, and
the induction steps are proved by the induction hypotheses.

The lemmas corresponding to Lemma 3.5, 3.6, and 3.7 are similarly
proved by Lemma 4.4.

Theorem 4.5 (Confluence of λµ−
NK). λµ−

NK is confluent.

Proof. By Corollary 2.4, it is sufficient to prove the following.

(a) M →πµN implies MP = NP

(b) M ↠πµM
P holds for any M .

(c) M ↠MB holds for any M .

(d) M →β N implies N ↠MPB↠NPB.

Proofs are similar to those for Theorem 3.8 by the previous lemmas.

5. Explicit substitutions

As another example of an application of the compositional Z, we show con-
fluence of a calculus with explicit substitutions, in which the propagation
rules look like the permutation rules.

Definition 5.1 (λx). Terms of λx are defined as follows.

M ::= x | λx.M | MM | M⟨x := M⟩

The expression ⟨x := M⟩ is called an explicit substitution. In the term
M⟨x := N⟩, the variable occurrences of x in M are bound, and it is supposed
that we can freely rename bound variables as usual. We call a term pure if
it contains no explicit substitution.

Reduction rules of λx are the following, where x and y are distinct, and,
in the rule (πabs), x does not occur freely in N .

(λx.M)N →M⟨x := N⟩ (βx)

y⟨y := N⟩→N (πhit)

x⟨y := N⟩→N (πgc)

(λx.P )⟨y := N⟩→λx.P ⟨y := N⟩ (πabs)

(PQ)⟨y := N⟩→P ⟨y := N⟩Q⟨y := N⟩ (πapp)
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5.1. Confluence of λx by Compositional Z

The outline of the following proof with the compositional Z is almost the
same as the case of λ−

NJ and λµ−
NK. In this case, what corresponds to com-

plete permutation (·)P is replacing explicit substitutions ⟨x := M⟩ to meta
substitutions [x := M ].

Definition 5.2. The mappings MP and MB are defined as follows.

xP = x xB = x

(λx.M)P = λx.MP (λx.M)B = λx.MB

(MN)P = MPNP ((λx.M)N)B = MB[x := NB]

(M⟨x := N⟩)P = MP[x := NP] (MN)B = MBNB (o.w.)

(M⟨x := N⟩)B = MB⟨x := NB⟩

Then, we define MPB = (MP)
B
.

In fact, the last equation of the definition of (·)B is not used, because it
is applied only to pure terms in the following.

It is easy to see the following auxiliary lemmas.

Lemma 5.3. 1. M →π N implies MP = NP.
2. MP is pure.
3. If M is pure, then we have MP = M .
4. If M is pure, then we have M⟨x := N⟩↠π M [x := N ].

Proof. 1 is proved by induction on M →π N , and 2, 3, and 4 are by induction
on M .

Lemma 5.4. 1. If M →N holds in λx, then we have MP↠β N
P in the

ordinary λ-calculus without explicit substitutions.
2. For M and N are pure, if M →β N holds in the ordinary λ-calculus,

then we have M ↠N in λx.

Proof. 1 is proved by induction on → , and 2 is by induction on →β .

Note that, on pure terms, the mapping (·)B is the ordinary complete
development, and it has the Z property for the β-reduction in the λ-calculus
[9].

Now we can prove confluence of λx by the compositional Z.

Theorem 5.5 (Confluence of λx). λx is confluent.
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Proof. By Corollary 2.4, it is sufficient to prove the following.
(a) M →π N implies MP = NP

(b) M ↠π M
P holds for any M .

(c) M ↠MB holds for any pure M .
(d) M →βx N implies N ↠MPB↠NPB.

(a) is Lemma 5.3.1. (b) is easy by Lemma 5.3.4. (c) is also easy since we
have

(λx.P )Q↠βx P ⟨x := Q⟩↠π P [x := Q]

by Lemma 5.3.4.
(d) is proved by induction on M →βx N . For N ↠MPB, the only non-

trivial case where P ⟨x := Q⟩→βx P
′⟨x := Q′⟩ is proved as follows.

P ′⟨x := Q′⟩↠PPB⟨x := QPB⟩ (I.H., (b), (c))

↠PPB[x := QPB] (5.3.4)

↠ (PP[x := QP])
B
,

where, for the last line, we can prove MB[x := NB]↠β (M [x := N ])B in the
λ-calculus in a similar way to Lemma 3.6.1, and hence we have MB[x :=
NB]↠ (M [x := N ])B in λx by Lemma 5.4.2.

The rest part of (d), MPB↠NPB, is proved as follows. Suppose that
M →βx N holds, and we have MP↠β N

P in the λ-calculus by Lemma 5.4.1.

Then, MPB↠β N
PB since (·)B is Z for β, and hence MPB↠NPB in λx by

Lemma 5.4.2.

5.2. Confluence of Refined Rewriting Systems

Confluence of calculi with explicit substitutions is often proved by the inter-
pretation method [6, 7, 8]. This idea can be explained as follows: For A ⊂ B,
a rewriting system (B, →B) is a refinement of (A, →A) if a→Aa

′ implies
a↠Bb

′. Then, the confluence of a refinement →B of →A can be reduced to
the confluence of →A if there exists an interpretation mapping f : B → A
such that b↠Bf(b) and b→Bb

′ ⇒ f(b)↠Af(b
′) holds. The confluence of

λx can be proved by this idea with A = λβ, B = λx, and f = (·)P.
The confluence proof for λx in this section is not a simple application of

this interpretation method to the Z property, because it cannot be directly
used to obtain the Z property for refinements. In Figure 5, f is an interpreta-
tion mapping of B in A. In general, we do not have f(b2)↠Af

′(f(b1)) under
the assumption that f ′ is Z for →A, since f(b1)↠Af(b2) is not necessarily
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Figure 5. Z and interpretation method

one step. In the proof of Theorem 5.5, we directly prove b2↠ f ′(f(b1)) as
(d).

6. Concluding remark

We have proposed an extension of Dehornoy and van Oostrom’s Z theorem,
called the compositional Z. This idea can be widely applied to lambda cal-
culi with permutative conversions, including the λ- and the λµ-calculi with
disjunction and permutative conversion, and a lambda calculus with explicit
substitutions, where the propagation of the explicit substitutions is similar
to the permutation rules. In particular, the combination of the β-reduction
and the permutative conversions makes the confluence proofs much difficult
to define the parallel reduction or a mapping with the Z property. We have
seen that the latter is easily defined as a compositional function, and hence
the compositional Z gives simple confluence proofs for these calculi.

The compositional Z also gives a new possibility toward modular (or
gradual) proofs of confluence. In general, it is hard to prove confluence by
dividing a reduction system into some parts because of the non-modular
character of confluence. The compositional Z enables us to reuse the Z
property for a subsystem, that is, for →1 , a subrelation of → , the Z property
for →1 can be used to prove the Z property for → by the compositional Z.

As we stated in the introduction, the renaming reduction of the λµ-
calculus also poses a problem. Baba’s solution in [3] suggests that we can
apply the compositional Z to those variants of λµ-calculus, but it does not
work well for näıve definition of the complete developments. We would like
to solve this in our framework of the compositional Z.
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