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Abstract. A theory of relative species abundance on sparsely-connected networks is presented

by investigating the replicator dynamics with symmetric interactions. Sparseness of a network

involves difficulty in analyzing the fixed points of the equation, and we avoid this problem

by treating large self interaction u, which allows us to construct a perturbative expansion.

Based on this perturbation, we find that the nature of the interactions is directly connected

to the abundance distribution, and some characteristic behaviors, such as multiple peaks in

the abundance distribution and all species coexistence at moderate values of u, are discovered

in a wide class of the distribution of the interactions. The all species coexistence collapses at

a critical value of u, uc, and this collapsing is regarded as a phase transition. To get more

quantitative information, we also construct a non-perturbative theory on random graphs based

on techniques of statistical mechanics. The result shows those characteristic behaviors are

sustained well even for not large u. For even smaller values of u, extinct species start to

appear and the abundance distribution becomes rounded and closer to a standard functional

form. Another interesting finding is the non-monotonic behavior of diversity, which quantifies

the number of coexisting species, when changing the ratio of mutualistic relations ∆. These

results are examined by numerical simulations, which show that our theory is exact for the case

without extinct species, but becomes less and less precise as the proportion of extinct species

grows.
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1. Introduction

Many large-scale systems in nature, such as food webs in ecosystems and pricing systems in

markets, appear as a result of evolution involving complicated interactions between components

of the systems. While those complex systems are ubiquitous and thus are desired to be

understood, our theoretical and experimental schemes to treat such systems are still limited.

The complicacy and the overwhelming diversity in the interactions and components make it a

challenging problem to control those systems theoretically and experimentally.

A realistic approach to understand such complex systems is to capture some characteristic

macroscopic patterns of those systems. In particular, let us focus on ecology in the present

paper. In this discipline, one of the most accumulated areas of knowledge of such macroscopic

patterns is that of relative-species-abundance (RSA) ones. The abundance of a species, defined

as the number of individuals in the species relative to the total number of individuals among

all the species in a focused area, is a key quantity and all the species can be indexed by

it. Less-abundant species are thought to be extinction-prone, which implies it is important

for nature conservation to understand the underlying mechanism of emergence of such less-

abundant species. Comprehending dominating parameters of RSA patterns will enable us to

effectively prioritize actions to protect nature.

Nevertheless, knowledge concerning the mechanism of RSA patterns is still limited.

Statistical descriptions of RSA patterns have been proposed over many decades [1, 2, 3, 4,

5, 6, 7, 8, 9, 10, 11, 12]. Deeper theoretical analyses have been advanced rather recently by the

aid of recent technical developments in stochastic processes [13, 14, 15, 16, 17, 18, 19]. These

theoretical studies are mainly based on the neutral theory which is suitable for describing

systems on a given trophic level only with competition, such as coral reefs and tropical

rainforests. To describe more complicated ecosystems like food webs of animals, more

profound treatment is required, and one of the major theories is based on the replicator

dynamics (RD) [20]. The RD can describe a community of N species in various types of

interspecies interactions, and is used in various fields [20, 21, 22, 23, 24, 25, 26]. Statistical-

mechanical treatment has played an important role in analyzing the RD with a large number of

species [27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37]. The statistical-mechanical approach provides

a great help in treating large-N systems, which are difficult to treat even by experimental field

research or by numerical simulations. Moreover, it has a wide applicability which allows us to

employ several analytical ideas invented in different disciplines and to compare various results

derived in different contexts. In this paper, we also follow this line of reasoning and analyze

the RD by statistical-mechanical techniques to get new insights about RSA patterns, especially

focusing on the conditions when and how extinct species emerge.

Let us describe the RD here. Consider a community of N species, denote the ith species’

population as xi ≥ 0, and assume the total population is fixed at N =
∑N

i=1 xi. Each species i

is driven by the corresponding fitness function Fi (x)

Fi (x) = −1

2

∑
j

Kijxj, (1)
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through the following differential equation

dxi

dt
= xi

(
Fi (x)−

1

N
F (x)

)
, (2)

where F(x) is the averaged fitness

F =
N∑
i=1

xiFi (x) . (3)

This is the RD. The RD appears in various fields such as biology, sociology, and game theory.

The case of the symmetric interactionKij = Kji displays a simple nature such that the averaged

fitness becomes a Lyapunov function and thus the dynamics necessarily converge to a certain

fixed point. Even with such a simple behavior, the symmetric RD is still important since

it can describe several phenomena such as competitive communities for common resources in

classical game theory and a certain type of selection equations in population genetics. Also,

it includes a certain class of Lotka-Volterra (LV) equation with non-symmetric interactions

which is a basic model in ecology [20]. The symmetric Kij is a crucial property in conducting

statistical-mechanical analysis thus we keep this as earlier studies.

We treat the interactions Kij as random variables instead of giving deterministic values.

This randomization assumption was first introduced in the context of ecology by May [38], and

has been employed in many theoretical works [27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39].

Although this randomization of the interactions is not necessarily realistic, considering the

complicacy of the experimentally-estimated interactions among species [40], we expect that the

randomized interactions will be a good starting point to capture the macroscopic behavior of

such complicated ecosystems.

One unsatisfied assumption in the earlier statistical-mechanical studies of the RD is

that each species interacts with (almost) all other species, which is clearly unrealistic in

ecology. Instead of that, we here investigate the RD with sparse interactions between the

species. Thanks to this sparseness, all species coexistence naturally happens in a certain

region of the parameters in our model. This is really in contrast to the fully-interacting

cases [27, 28, 29, 30, 33, 34, 35, 36, 37]. By changing the parameters, we also observe that all

species coexistence collapses and extinct species start to emerge. This change can be regarded

as a phase transition. This transition is also observed in [31, 32] of a fully-connected model,

but our model is more natural in that the species does not constitute any modular structure a

priori, in contrast to the ones [31, 32] which are separated into a few groups, where the species

in a group take a common number of individuals.

Another interesting property revealed by our analysis is that the abundance distribution

exhibits multiple peaks in a certain region of the parameters. Correspondingly, the diversity,

which quantifies the number of coexisting species, shows a non-monotonic behavior when the

parameter controlling the ratio of mutualistic relations, ∆, changes. These properties may be

compared with multiple peaks observed in several experimental data [41, 42, 43]. A theoretical

analysis of multiple peaks was provided in [44], but it explicitly assumes the presence of multiple

peaks in the abundance distribution. We again stress that our model does not assume any

multiple peaks of the abundance distribution or any modular structure in the species a priori.
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Our multiple peaks come from the sparseness of the interactions and the loose discreteness

of the distribution of the interactions. These assumptions can be reasonable in some realistic

situations, and thus our theory will provide a considerable clue to understand such multiple

peaks observed in several field dataset.

The remainder of the present paper is as follows. In the next section, we formulate the

problem as energy minimization in a physics context, and solve it by neglecting the constraint

xi ≥ 0, which is justified if the self interaction u is large enough. Further, some practical

information is extracted by an perturbative expansion with respect to u−1. In sec. 3, we

reformulate this by using the Boltzmann distribution. An approximation called Gaussian

approximation is introduced and shown to be equivalent to neglecting the constraint xi ≥ 0 in

the previous section. Benefits of this formulation are additional information on the variance

of each species, which can be connected to the stability of the species against fluctuations

in self interactions, and the availability of some systematic analytical techniques of statistical

mechanics. Employing those techniques, in sec. 4 we construct a non-perturbative theory on

random graphs. This enables us to obtain more detailed quantitative information of the energy,

order parameters, abundance distribution, and related quantities. Some numerical simulations

are also performed to compare with these theoretical results. The comparison shows our theory

is exact for large u ≥ uc, where uc is the critical value at which the all species coexistence starts

to collapse, but does not give a precise result for u < uc. The last section is devoted to the

conclusion.

2. Formulation as energy minimization

The symmetric RD converges to fixed points as stated above. We investigate the properties

of those fixed points, which can be formulated as the minimization problem of the following

energy function or the Hamiltonian:

H (x, r|J) = 1

2

∑
i,j

Kijxixj − r

(∑
i

xi −N

)

=
1

2
u
∑
i

x2
i −

∑
⟨i,j⟩

Jijxixj − r

(∑
i

xi −N

)
. (4)

We introduce a Lagrange multiplier r to hold
∑

i xi = N , and divide the interaction matrix

K into the self-interacting part Kii = u > 0 and pairwise interacting one Kij = −Jij (i ̸= j).

Positive and negative Jij represent mutualistic and competitive relations, respectively. The

symbol
∑

⟨i,j⟩ represents the summation over all the interacting pairs. Although there are some

local minima in general, which correspond to different fixed points and can be meaningful

depending on initial conditions of the RD, we only focus on the global minimum, or the ground

state. The minimizer of the Hamiltonian can be formally written as

x∗ = arg min
{xi≥0}Ni=1; Extrr

H (x, r|Jij) , (5)
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where the notation arg min
x; Extrr

(· · ·) means to minimize (· · ·) with respect to x under the

extremization condition ∂
∂r
(· · ·) = 0. In spite of the simple appearance of eq. (5), the evaluation

of x∗ is not easy in general situations. A mathematical origin of this difficulty is the non-

negativity constraint xi ≥ 0. Fortunately, in the fully-connected interaction case, this problem

is not so serious since the distribution of the effective field on a site is not strongly affected

by the non-negativity constraint thanks to the law of large numbers. In the present case with

sparse interactions, we cannot expect the effect of the law of large numbers since the number

of interactions connected to a site is not extensive, thus the distribution of the effective field

should be self-consistently determined by taking into account the non-negativity constraint.

Unfortunately, we could not fully resolve this problem. As seen below, we can construct a

legitimate solution of the problem if there is no extinct species xi > 0 (∀i), but this solution just

becomes a unjustified approximation after extinct species start to emerge. Our theory, however,

still provides nontrivial RSA patterns well controlled by a small number of parameters, and

it is enough to see the transition between the absence and presence of extinct species, which

enforces the significance of the present study.

2.1. Direct minimization in large u limit

In the limit u → ∞, the corresponding solution of eq. (5) becomes x∗
i = 1. This observation

justifies taking a direct variation of the Hamiltonian with respect to x by neglecting the non-

negativity constraint if u is large enough. The variational conditions with respect to x and r

give the compact analytic forms

r =
N∑

i,j K
−1
ij

. (6)

x∗
i = r

∑
j

K−1
ij = N

∑
j K

−1
ij∑

i,j K
−1
ij

. (7)

Note that K−1
ij is the (i, j) component of K−1. To obtain lucid information from eq. (7), we

investigate the perturbation with respect to u−1 below.

2.1.1. Perturbative expansion We can expand K−1 as follows:

K−1 = (uI − J)−1 =
1

u

∞∑
p=0

u−pJp. (8)

Insertion of this into eq. (7) reads

x∗
i =

1 + u−1
∑

j Jij + u−2
∑

j,k JijJjk + · · ·
1 + u−1 1

N

∑
i,j Jij + u−2 1

N

∑
i,j,k JijJjk + · · ·

. (9)

From this equation, we can find several interesting behaviors. For example, if the interaction

is generated from a distribution consisting of disconnected multiple supports, the support of

the distribution of xi also consists of disconnected regions, leading to a discrete shape of the
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abundance distribution. For the purpose of clear discussion, hereafter we assume that the

interaction is drawn from the following distribution

P (Jij) =
1 + ∆

2
δ(Jij − 1) +

1−∆

2
δ(Jij + 1), (10)

and that each site i is connected to c sites. Note that c is assumed to be not scaled with

N . Under these assumptions, we can derive the abundance distribution with a discrete

nature. The abundance distribution P (x) = (1/N)
∑N

i=1 δ(x − x∗
i ) is exactly the same as

the probability distribution of x. Thus up to the first order of u−1, eq. (9) gives xi ≈
1 + u−1

(∑
j Jij − (1/N)

∑
i,j Jij

)
, which directly yields

P (x) =
c∑

k1=0

(
c

k1

)(
1 + ∆

2

)c−k1 (1−∆

2

)k1

δ

(
x−

(
1 +

c− 2k1 − c∆

u

))
.(11)

We put (1/N)
∑

i,j Jij = c∆ justified by the law of large numbers. Although our model is

based on the RD which has a gap from the realistic ecosystems, eq. (11) may give a simple

explanation about abundance distributions with multiple peaks which are actually observed in

some experiments [41, 42, 43]. The only assumptions here are the discreteness of interactions

and the largeness of the self interaction or productivity u in the communities. This discreteness

is relatively robust even if the higher order terms of u−1 are taken into account, which supports

the plausibility of this mechanism in real biological situations. Another interesting, and a

little counter-intuitive, property of eq. (11) is the dependence on ∆. Larger ∆ provides more

mutualistic relations as seen in eq. (10), but the resultant abundance distribution (11) is more

biased to smaller values of x, which is clear in the lowest value of x, xmin = 1 − c(1 + ∆)/u,

of eq. (11). This implies mutualistic communities tend to produce extinct species more easily

than competitive communities, in the sense that extinct species start to appear even at larger

productivity u. An approximation of transition point uc, at which extinct species start to

emerge, can be obtained by equating xmin = 0, leading to uc = c(1 + ∆) in the first order

approximation. Higher order approximations are also obtained in a similar way. Up to the

second order approximation, the topology of the network does not affect the result, and a

clear discussion is possible. The approximation of uc in that order is shown in Fig. 1. From

the right panel of Fig. 1, we can see the transition point diverges as c increases, thus in the

fully-connected limit extinct species always exist, which accords with the earlier analyses.

The upper bound, or the worst-case value, of the transition point uc can be evaluated

without truncation. The upper bound of each term in the expansion is evaluated as∣∣∣∣∣∣
∑

j1,j2,···,jp

Jij1Jj1j2 · · · Jjp−1jp

∣∣∣∣∣∣ ≤ cp. (12)

Then, the numerator of eq. (9) is bounded from below as

1 + u−1
∑
j

Jij + u−2
∑
j,k

JijJjk + · · · ≥ 1−
∞∑
p=1

( c
u

)p
=

u− 2c

u− c
. (13)

Hence, at least u is larger than 2c, and there is no extinct species irrespective of the topology

of the network. This gives a firm basis of the large u expansion we have investigated so far, and
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Figure 1. The values of transition point uc approximated by the second order expansion with

respect to u−1. The left panel is against ∆ for c = 3 and the right one is against c for ∆ = 0.

may provide a guiding value of self interaction in designing stable chemical reaction networks

or social games.

To obtain further information other than the above bound of the transition point, we need

to control the higher order terms of u−1 in a different way. For this purpose, we construct

the Boltzmann distribution of the Hamiltonian (4) and use a systematic approximation which

becomes exact on networks without loops and when the self interaction is large enough, in the

following sections.

3. Boltzmann distribution and Gaussian approximation

Let us introduce the partition function Z based on the standard prescription of statistical

mechanics:

Z(β, J) =

∫ i∞

−i∞
dr

∫ ∞

0

∏
i

dxie
−βH(x,r|J) (14)

The integration with respect to r corresponds to the extremization condition with respect to

r in eq. (5). The Boltzmann distribution is defined by P (x|β, J) =
∫ i∞
−i∞ dre−βH/Z. In the

β → ∞ limit, the minimum-energy configuration of x, the ground state, is emphasized and

dominates the integrations, to reproduce the result based on eq. (5). If the self interaction u is

large enough, the ground state will be xi ≈ 1. Actually, if we neglect the pairwise interactions,

the partition function can be transformed as

Z =

∫ i∞

−i∞
dr e

Nβ
(

1
2

r2

u
−r

)(∫ ∞

0

dxi e
− 1

2
βu(xi− r

u)
2
)N

. (15)

In the limit β → ∞, the saddle-point method gives the exact result and r∗ = u and

x∗
i = r/u = 1. The integration with respect to xi is completely dominated by around x∗

i = 1,

which tells that we may extend the integration region from [0;∞] to [−∞;∞] in the limit

β → ∞. This will be the case even if the interactions exist but are small enough compared to

the self interaction u. This corresponds to the approximation used in deriving eq. (5). Let us

call this approximation Gaussian approximation.
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To directly see the accordance between the Gaussian approximation and eq. (5), it

is appropriate to calculate the Gibbs free energy G instead of the Helmholtz free energy

F = −(1/β) lnZ. This is defined as

−βG (r,µ,v|β, J) = βr

(∑
i

µi −N

)
− βGG (µ,v|β, J) , (16)

where GG (µ,v|β, J) is the purely Gaussian part of the free energy

− βGG (µ,v|β, J)

≡ Extr
u,t

{
ln

∫ ∞

−∞

∏
i

dxi e
−βH(x,0|J)− 1

2

∑N
i=1 ti((xi−µi)

2−vi)+
∑N

i=1 ui(xi−µi)

}
. (17)

The parameters µ and v represent the first and the second moments

⟨xi⟩ = µi,
⟨
(xi − µi)

2
⟩
= vi, (18)

where ⟨· · ·⟩ denotes the average over the Boltzmann distribution. The parameters u and t

are Lagrange multipliers to hold eq. (18). The condition
∑

i xi = N is imposed on the first

moments µ for simplicity. Now, thanks to the Gaussian approximation, the integration with

respect to x is easy, even though the interactions exist. The result is

− βGG (µ,v) =
N

2
ln 2π

+ Extr
u,t

{
−1

2
Tr ln K̂ +

1

2

∑
i,j

(ui + tiµi)K̂
−1
ij (uj + tjµj)−

∑
i

uiµi −
1

2

∑
i

ti(µ
2
i − vi)

}
, (19)

where

K̂ = βK + tiδij. (20)

The extremization condition with respect to u yields

ui + tiµi =
N∑
j=1

K̂ijµj ⇒ ui = β
N∑
j=1

Kijµj. (21)

Inserting this into eq. (19) and taking the extremization of t, we get

K̂−1
ii (t) = vi. (22)

Putting the solution of this equation as t∗ = t∗(v) and summarizing the above manipulations,

we get

− βG (r,µ,v|β, J) = βr

(∑
i

µi −N

)
+

N

2
ln 2π − 1

2
Tr ln K̂(t∗)− 1

2
β
∑
i

Kijµiµj −
1

2

∑
i

t∗i vi. (23)

The first and second moments are decoupled and thus are determined independently.

Extremizing the Gibbs free energy with respect to µ and r, we get µi = N
∑

j K
−1
ij /

∑
i,j K

−1
ij ,

which is exactly the same as eq. (7). The Gaussian approximation is thus confirmed to
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be equivalent to the direct minimization of the Hamiltonian, neglecting the non-negativity

constraint xi ≥ 0.

One benefit of this formulation is that additional information about the variance v is

naturally introduced. The extremization equation with respect to v yields ti = 0. Combining

this with eq. (22), we obtain

vi =
1

β
K−1

ii =
1

βu

{
1 + u−2

∑
j

J2
ij + u−3

∑
j,k

JijJjkJki + · · ·

}
. (24)

Thus the variance vanishes in the limit β → ∞ as expected, and the rate of decay is determined

by K−1
ii . We can interpret the variance vi as the susceptibility of the ith species’ abundance to

deviation in self interactions or in the productivity. The choice of the topology of the interacting

network again does not affect the result up to the second order, and a clear tendency can

be extracted. The resultant variance is vi ≈ (1 + u−2c)/(βu) and thus is increased through

interactions with other species, which implies the stability against productivity fluctuation

becomes weakened by the interactions. This might be a little counter-intuitive again, since

common conservationists’ arguments advocate the stability of the community results from

complex interactions among species.

We are now ready to construct a non-perturbative theory based on the Boltzmann

distribution and the Gaussian approximation. In the next section, we formulate the problem

on a regular random graph (RRG) with a fixed connectivity c, for which exact treatment is

possible thanks to the absence of loops in the network in the large-system limit.

4. Non-perturbative solution on random graph

So far we have treated a fixed realization of the interaction network and constructed the

perturbation theory for the realization. Hereafter we treat an ensemble of different realizations

and study the average behavior over the ensemble. This looks seemingly different from the

previous sections but they are essentially the same since a typical realization behavior accords

with the averaged behavior in the thermodynamic limit thanks to the self-averaging property.

A RRG is constructed as follows. Consider a sparse network of N sites where each site has

c connectivity to other sites which are chosen in a completely random manner. The resultant

graph has loops in general, but the typical length of the loop is known to be scaled as O(logN),

and thus the loops are ignorable in the thermodynamic limit. The values of interactions are

assigned randomly by the distribution (10) after fixing the network structure. We give a

schematic picture of an RRG with c = 3 in Fig. 2. Under this setting, we calculate the

averaged Helmholtz free energy as

−β [F (β, J)] = [logZ (β, J)] , (25)

where the square brackets [· · ·] denote the average over the quenched randomness, i.e. both the

network structure and the interaction values. In the zero temperature limit β → ∞, the free

energy converges to the ground state energy, and the ground state exactly corresponds to (7).

In terms of the perturbative expansion (9), the analysis in this section corresponds to

summing up all the terms without loops. Thus, the theory on RRGs can be regarded as
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Figure 2. Schematic picture of the RRG with c = 3 of finite size.

a non-perturbative treatment of the expansion and is known to be equivalent to the Bethe

approximation.

4.1. Analysis based on the replica and cavity methods

Unfortunately, it is hard to take an average over the quenched randomness. This problem is

circumvented by using the so-called replica method, symbolized by the following identity

−β [F (β, J)] = lim
n→0

1

n
log [Zn] . (26)

The average of the power of the partition function, [Zn], is tractable if n ∈ N. Hence, we

evaluate [Zn] for n ∈ N and construct its analytic continuation from n ∈ N to n ∈ R, then take

the n → 0 limit to finally obtain the free energy.

We work on the Gaussian approximation. The Gaussian model on RRGs has been

investigated by the replica method in some previous studies [45, 46]. Therefore we do not show

the detailed calculations, but just start from the explicit formula of the free energy. Readers

interested in the details can see the derivation of the free energy in Appendix A, and refer

to [46]. With the replica symmetry (RS), the free energy density f = F/N can be expressed as

− βf =
c

2

∫
dξ1dξ2q(ξ1)q(ξ2) [logK1]J − c

∫
dξdξ̂q(ξ)q̂(ξ̂) logK2

+

∫ c∏
l=1

dξ̂lq(ξ̂l) logK3, (27)

where the brackets [· · ·]J denote the average over the interaction J by the distribution (10)

appearing in K1 and

K1 =

∫ ∞

−∞
dx1dx2 p(x1|ξ1)p(x2|ξ2)eβJx1x2 , (28)

K2 =

∫ ∞

−∞
dx p(x|ξ)p̂(x|ξ̂), (29)

K3 =

∫ ∞

−∞
dx eβr(x−1)−β

2
ux2

p(x|ξ̂1) · · · p(x|ξ̂c). (30)
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The meaning of each of these formulas is as follows. The function p(x|ξ) is an effective marginal

distribution of a site when one neighboring site is absent, which we call cavity marginal

distribution hereafter, and ξ denotes the parameters characterizing the distribution. The

Gaussian approximation we are employing means two parameters are enough to characterize

the marginal distribution and the functional form becomes Gaussian. Referring to a previous

paper [46], we put ξ = {A,H} and

p(x|ξ) = p(x|A,H) =

√
βA

2π
e−

β
2
A(x−H

A
)2 , (31)

and similarly

p̂(x|ξ̂) = p̂(x|Â, Ĥ) = e
β
2
Â
(
x2+ 2Ĥ

Â
x
)
. (32)

This p̂(x|ξ̂) is not normalized as a probability distribution, just for convenience in calculations.

The functions q(ξ) and q̂(ξ̂) are probability distributions of the corresponding parameters. It

is not possible to clarify the functional forms, but we can derive the self-consistent equations

to be satisfied by q(ξ) and q̂(ξ̂), by extremizing the free energy. This will be done after further

simplifying the free energy. Specifying the functional forms of p and p̂ enables the derivation

of a more particular form of f . In that form, it is easy to take the β → ∞ limit. Putting the

corresponding ground state energy as f(β → ∞) = ϵ, we get

ϵ = r − c

2

∫
dA1dA2dH1dH2 q(A1, H1)q(A2, H2)

[
A2H

2
1J

2 + 2A1A2H1H2J + A1H
2
2J

2

2A1A2(A1A2 − J2)

]
J

+ c

∫
dAdHdÂdĤ q(A,H)q̂(Â, Ĥ)

(
AĤ2 + ÂH2 + 2AHĤ

2A(A− Â)

)

−
∫ ( c∏

l=1

dÂldĤl q(Âl, Ĥl)

)
(r +

∑c
l=1 Ĥl)

2

2(u−
∑c

l=1 Âl)
. (33)

Taking the variation with respect to q and q̂, we get the following self-consistent equations

q̂(Â, Ĥ) =

∫
dAdHq(A,H)δ(Â− 1/A)

[
δ(Ĥ − JH/A)

]
J
, (34)

q(A,H) =

∫ c−1∏
l=1

dÂldĤlq̂(Âl, Ĥl)δ

(
A−

(
u−

c−1∑
l=1

Âl

))
δ

(
H −

(
r +

c−1∑
l=1

Ĥl

))
.(35)

Finally, taking a variation with respect to r, we get

1 =

∫
dAdH

H

A
Q(A,H), (36)

where we define

Q(A,H) =

∫ c∏
l=1

dÂldĤlq̂(Âl, Ĥl)δ

(
A−

(
u−

c∑
l=1

Âl

))
δ

(
H −

(
r +

c∑
l=1

Ĥl

))
.(37)

Solving eqs. (34-36) and inserting the result, we can obtain the ground-state energy.

The meaning of the parameters and functions are well interpreted by the cavity method.

The cavity method, based on the spirit of the mean-field theory, approximates the problem
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by a batch of single-body problems. The effective marginal distribution of a site i can be

parameterized as

P (xi|Ai, Hi) ∝ e
− 1

2
βAi

(
xi−

Hi
Ai

)2

, (38)

since the model we are treating is Gaussian. The cavity method calculates the parameters Ai

and Hi in a self-consistent manner. For this, we introduce the cavity marginal distribution

of i when one neighboring site j is absent, which corresponds to eq. (31). Denoting the

parameters of the cavity marginal distribution as p(xi|Ai→j, Hi→j) ∝ e
− 1

2
βAi→j

(
xi−

Hi→j
Ai→j

)2

, where

the parameters Ai→j andHi→j are called cavity fields, we can calculate the marginal distribution

of j from the cavity marginal ones of the neighboring sites through

P (xj|Aj, Hj) ∝
∫ (∏

i∈∂j

dxi p(xi|Ai→j, Hi→j)

)
eβr(xj−1)− 1

2
βux2

j−β
∑

i∈∂j Jijxixj . (39)

where ∂j denotes the set of neighboring sites of j. This relation directly leads to

Aj = u−
∑
i∈∂j

1

Ai→j

≡ u−
∑
i∈∂j

Âi→j, (40)

Hj = r +
∑
i∈∂j

JijHi→j

Ai→j

≡ r +
∑
i∈∂j

Ĥi→j, (41)

where we introduce the auxiliary variables Âi→j and Ĥi→j which can be interpreted as effective

fields on the site j from a neighboring site i through the interaction Jij and are called cavity

biases. Eqs. (40,41) are simply the arguments of the delta functions in eq. (37), thus the

function Q(A,H) is understood as the distribution of the parameters of the genuine marginal

distribution. To obtain the actual values of the cavity fields or cavity biases, we need to clarify

the relation between them. This is also straightforward because the cavity fields Ai→j and Hi→j

are determined by the cavity biases from the neighboring sites except for j, which are denoted

by the symbol ∂i\j,

Ai→j = u−
∑

k∈∂i\j

Âk→i, (42)

Hi→j = r +
∑

k∈∂i\j

Ĥk→i. (43)

and the transformations from the cavity fields to biases are already given in eqs. (40,41). These

are simply the relations of the arguments of the delta functions in eqs. (34,35). In this way, the

cavity fields and biases are calculated self-consistently and the replica result is interpreted.

In the present case where J2 = 1 and all sites are equivalent in the sense that they have a

fixed equal connectivity, the value of A is unique among sites and does not fluctuate, thus we

can state

q(A,H) = δ(A− a)q(H), q̂(Â, Ĥ) = δ(Â− â)q̂(Ĥ). (44)

Thanks to this simplicity, the ground-state energy becomes

ϵ = r − c

2

m2 + am2
1∆

a(a2 − 1)
+ c

am̂2 + âm2 + 2am1m̂1

2a(a− â)
− r2 + 2crm̂1 + cm̂2 + c(c− 1)m̂2

1

2(u− câ)
, (45)
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where we state

mk =

∫
dHq(H)Hk, m̂k =

∫
dĤq(Ĥ)Ĥk. (46)

Thus, the full information of q(H) is not needed to calculate the ground-state energy. The

extremization conditions of all the variational parameters yield simple algebraic equations.

The solution gives

â =
u−

√
u2 − 4(c− 1)

2(c− 1)
, (47)

a = â−1, (48)

m̂1 =
u− câ

1 + â∆
â∆, (49)

m1 =
u− câ

1 + â∆
, (50)

r = (u− câ)

(
1− câ∆

1 + â∆

)
, (51)

m̂2 = â2
(1− â2(c− 1)∆2)(u− câ)2

(1− (c− 1)â2)(1 + â∆)2
, (52)

m2 =
(1− â2(c− 1)∆2)(u− câ)2

(1− (c− 1)â2)(1 + â∆)2
. (53)

Using these relations, the ground-state energy is much simplified as

ϵ =
1

2
r. (54)

4.1.1. Behavior of order parameters We here summarize the behavior of order parameters

and some related quantities.

The marginal distribution is Gaussian, as shown in eq. (38). We are interested in the

coefficient of the quadratic term, Ai = A in eq. (38), since it is connected to the variance

v = 1/(βA) in eq. (24) and is related to a susceptibility of abundance against deviation in the

self interaction, as explained in sec. 3. According to eq. (40), this is simply A = u− câ, and we

plot it against u in the left panel of Fig. 3 for c = 3. As seen from this panel, the positivity of

the quadratic coefficient is well maintained, which is in contrast to the similar problem in the

context of the first eigenvalue problem [46]. To quantify the effect on the quadratic coefficient

by the interaction, we plot the ratio βuv = u/A = u/(u − câ), which is unity if there is no

interaction, in the right panel of the same figure. As we can see, the ratio βuv is always

larger than unity, meaning that the interactions increases the variance v and thus the stability

becomes weakened, which accords with the perturbation result in sec. 2.1.1.

The first moment m1 is an increasing function of u but a decreasing function of ∆, and

the ground-state energy ϵ = r/2 as well. As examples, we plot them for c = 3 in Figs. 4 and 5

The second moment m2 shows more complicated behaviors. It diverges at u = 2
√
c− 1

and starts to decrease as u grows from 2
√
c− 1, but for large u it is a increasing function of

u. Thus, there is an extremum for the region u > 2
√
c− 1. Similarly, for u enough small but

still larger than 2
√
c− 1, a non-monotonic behavior of m2 with respect to ∆ is observed. We
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Figure 3. The quadratic coefficient A = u− câ of the marginal distribution (38) (left) and its

ratio to the one in the no-interaction case, u/(u − câ) = βuv (right) where v is the variance

corresponding to eq. (24), are plotted against the self interaction u for c = 3.
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Figure 4. The first moment m1 for c = 3 is plotted against ∆ for u = 5 (left) and against u

for ∆ = 0 (right).
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Figure 5. The ground-state energy ϵ for c = 3 is plotted against ∆ for u = 5 (left) and against

u for ∆ = 0 (right).
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plot those behaviors in Fig. 6. On the other hand, these non-monotonic behaviors may not be
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Figure 6. The second moment m2 for c = 3 is plotted against ∆ for u = 2.9 (left) and against

u for ∆ = 0 (right).

meaningful for the ecological context, since there emerge extinct species for a certain value of u

sufficiently larger than 2
√
c− 1, and the present solution based on the Gaussian approximation

does not give a precise result for such a small u. Hence, m2 is basically considered to be a

decreasing and increasing function with respect to ∆ and u, respectively, in the meaningful

region of u.

There is another aspect worth noting. The above computations parallel that shown in the

reference [46], but there are two major differences: the self interaction is purely an external

parameter (not the Lagrange multiplier to fix the vector norm) and there exists the Lagrange

multiplier r to hold
∑

i xi = N which breaks the rotational symmetry of x. Due to these

differences, there does not occur a phase transition concerning the localization of x occurring in

the first eigenvalue problem [46]. An important consequence of this fact is the robustness of our

result. Therefore, even if the degree of the network fluctuates, the result will be qualitatively

the same as in the present case of the single degree of network c, in contrast to [46]. This

robustness is numerically observed and reported in [47].

4.2. The abundance distribution and related quantities

In contrast to the order parameters calculated above, the abundance distribution requires the

full functional forms of q(H) and q̂(Ĥ). Based on the cavity interpretation stated above, the

abundance distribution P (x) is given by

P (x) =

∫
dAdH δ

(
x− H

A

)
Q(A,H) =

∫ c∏
l=1

dĤlq̂(Ĥl) δ

(
x− r +

∑c
l=1 Ĥl

u− câ

)
. (55)

The functional form of q̂(Ĥ) is nontrivial. A standard way to obtain this is through a numerical

technique called the population method. For simplicity of explanation, we here write down the



Relative species abundance of replicator dynamics with sparse interactions 16

self-consistent equation only of q̂(Ĥ) by using eqs. (34,35):

q̂(Ĥ) =

∫ c−1∏
l=1

dĤlq̂(Ĥl)

[
δ

(
Ĥ − J

a

(
r +

c−1∑
l=1

Ĥl

))]
J

. (56)

In the population method, we parameterize the distribution q̂(Ĥ) by a large number of variables

{Ĥi}, namely these variables should be distributed according to q̂(Ĥ). To achieve this,

we recursively update the set of variables by the self-consistent equation (56). The actual

procedures are summarized as follows:

(i) Set an appropriate initial population of {Ĥi} of size Npop. We typically set Npop = 40000

and generate the population from the uniform distribution on [0, 1].

(ii) Generate a new set of cavity biases each component of which is calculated from c − 1

variables randomly chosen from the previous set of cavity biases with an interaction J

generated from eq. (10), according to the delta function in eq. (56). The size of the new

set is again Npop.

(iii) Repeat (ii) until the distribution of the variables converges. The typical number of

recursions we choose is Nrec = 40.

This procedure constitutes a Markov chain of dynamics of the set of variables which is known

to converge to the solution of the self-consistent equation. Using this convergent solution of

q̂(Ĥ), we can evaluate the abundance distribution P (x) and other related quantities.

For sufficiently large u, the support of P (x) is at x > 0 and there are no extinct species.

As u decreases, the lower limit of the support becomes lower and lower, and at a certain

value of u the support touches the point x = 0. This defines the transition point uc. Below

this critical value u ≤ uc, there exist extinct species which are reflected in finite P (x) in the

negative x region in the Gaussian approximation. Here we interpret C(0), where we define the

cumulative distribution as C(y) =
∫ y

−∞ dxP (x), as the proportion of the extinct species to the

total population. According to this interpretation, we define the following modified distribution

P̃ (x) = θ(x)P (x) + C(0)δ(x), (57)

where θ(x) is the Heaviside step function. Unfortunately, the above interpretation is just an

approximation for u < uc, and the resultant abundance distribution P̃ (x) shows a deviation

from the genuine distribution of the corresponding RD. Quantitative information on the

deviation will be displayed later.

We here enumerate other interesting quantities studied in this paper. The survival function

is given by α(x) = 1 − C(x), which quantifies the proportion of species whose abundance is

larger than x. Two special values of the survival function, α(0) and α(1), each of which

corresponds to the proportions of surviving species and of species more abundant than the

average, respectively, are used to measure the diversity of the community. The rank-abundance

relation x(r) is defined by the inverse function of the survival function as x (r) = α−1(r). We

display the actual behaviors of these quantities for several different u and ∆ below.
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4.2.1. Behaviors of the abundance-relating quantities In this section, we see the behaviors

of the quantities explained above. The connectivity c is fixed as c = 3 since the qualitative

behavior does not change by changing c.

We start from the diversity α(0) and α(1), which are plotted against ∆ and u in Figs. 7

and 8, respectively. As seen in Fig. 7, the dependence of diversity on ∆ is far from trivial.

Figure 7. The diversity α(0) (upper, blue) and α(1) (lower, purple) are plotted against the ∆

for different u. The dependence on ∆ is not monotonic.

Figure 8. The diversity α(0) (upper, blue) and α(1) (lower, purple) are plotted against the

self interaction u for different ∆.

The oscillating behavior of α(1) is related to the multiple peaks of the abundance distribution

appearing for large u. The height of each peak sensitively depends on ∆; the location of

the highest peak and the tail of the distribution changes as ∆ deviates, which causes the

oscillating behavior of α(1). Non-monotonicity of α(0) is interpreted as well. Meanwhile, an

interesting observation from Fig. 8 is that the rich’s diversity α(1) is a decreasing function

of u for the competitive case ∆ = −0.8 but is an increasing one for the mutualistic case

∆ = 0.8, and is almost constant for the balanced case ∆ = 0. In the context of evolution,

this phenomenon implies that the mutualistic relation can motivate a boost in productivity u

in the community since many individuals can benefit from greater cooperation, though in a

competitive community the opposite is the case. On the other hand, the survivor’s diversity

α(0) monotonically increases as u grows and saturates to unity at the transition point u = uc.

The transition point uc is plotted in the left panel of Fig. 9 against ∆. To see the

quantitative dependence of uc on the connectivity, we also plot uc against the connectivity
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c for ∆ = 0 in the right panel of the same figure. The approximation of uc by the expansion

Figure 9. Transition points uc against ∆ for c = 3 (left) and against c for ∆ = 0 (right). The

dots are the replica results, and the dashed lines correspond to the second-order perturbation

approximation. Qualitative shapes of the uc curves are captured already by the second-order

approximation. The dot-dashed lines represent the general upper bound 2c of uc derived in

eq. (13), and both the perturbation and the replica results are certainly located below it. The

critical value uc drastically drops off around ∆ = ±1, which exhibits the singularity at those

points.

of u−1 up to the second order is also plotted by the dashed lines in the figures. We can

see the qualitative behavior is already captured by the second-order approximation, though

the quantitative deviation is not small. The limits ∆ → ±1 are singular: the value of uc

drastically drops off around those limits as seen from the left panel. This behavior is expected:

at ∆ = ±1 all the species become equivalent since all the interactions take the same value, thus

the abundance distribution should become P (x) = δ(x−1) from the symmetry, implying that uc

has no meaning. Clear observation of this singularity is an advantage of the non-perturbative

treatment since such a singularity is difficult to see with the perturbative expansion. From

the right panel of Fig. 9, we see the curve of uc is slightly jagged, which is seemingly due to

numerical errors when solving eq. (56). We have carefully examined the numerical accuracy

with changing the parameters, and observed that this jagged behavior remains. Hence, we

believe this jagged behavior actually occurs in the present model, which is presumably because

of the non-monotonic dependence on ∆ of the SAD.

Next, we examine the rank-abundance relations for several values of u and ∆. Here we

choose u = 6, 4.5 and 3 since these three values locate above, close to, and below the transition

point uc(∆), as seen from Fig. 9. In the normal scale, the rank-abundance relations are given

in Fig. 10 for ∆ = 0.8, 0 and 0.8. By the discreteness of the abundance distribution stated in

sec. 2.1.1, the rank-abundance relations show step-function-like behaviors for large u, but they

are gradually rounded as u decreases and the functional forms become like sigmoid functions

(see u = 3). This becomes clearer on a semi-logarithmic scale, which is given in Fig. 11.

The abundance distributions are summarized in Fig. 12. We see clear discreteness in the

abundance distributions for large u. Though this is suggested already by the perturbative

analysis, the quantitative information free from the perturbative approximation is useful. We
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Figure 10. The rank-abundance relations in the normal scale for ∆ = −0.8, 0 and 0.8

corresponding from left to right, for u = 3.0, 4.5 and 6.

æ u=6

æ u=4.5

æ u=3

0.2 0.4 0.6 0.8 1.0
r

0.1

0.2

0.5

1.0

2.0

5.0

xHrL
D=-0.8

æ u=6

æ u=4.5

æ u=3

0.2 0.4 0.6 0.8 1.0
r

0.01

0.05
0.10

0.50
1.00

5.00
xHrL

D=0.

æ u=6

æ u=4.5

æ u=3

0.2 0.4 0.6 0.8 1.0
r

0.01

0.02

0.05

0.10

0.20

0.50

1.00

2.00
xHrL

D=0.8

Figure 11. The rank-abundance relations in the semi-logarithmic scale for ∆ = −0.8, 0 and

0.8 corresponding from left to right, for u = 3.0, 4.5 and 6.

point out that the value of u = 6 is equal to the general upper bound of 2c derived from eq.

(13), and thus not so large. Hence, we can conclude that the discreteness of the abundance

distribution survives well even for reasonable values of the productivity u. For u = 6, the
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Figure 12. The abundance distributions for ∆ = −0.8, 0 and 0.8 corresponding from left to

right.

distribution is symmetric about x = 1 for ∆ = 0, though the distribution is biased to x > 1 or

to x < 1 for ∆ ̸= 0. For the competitive case ∆ = −0.8, the largest peak appears in x < 1, and

the long tail persists in the x > 1 region, while for the mutualistic case ∆ = 0.8 the opposite is

true. These results accord with the perturbation predictions. As u decreases, the discreteness

becomes weaker and the extinct species starts to emerge, and the functional forms gradually

tend to become similar among different ∆.
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4.2.2. Comparison with direct simulations of the RD We work on the Gaussian approximation

which will give incorrect results in u < uc. To observe this deviation from the correct result, we

also perform the direct simulation of the RD on RRG of c = 4 for large and small u. The results

are given in Figs. 13 and 14. For the simulation, we numerically solve the RD on the RRG by

the Runge-Kutta method of the fourth order. The initial condition is chosen as the uniform

one xi = 1, (∀i), and the system size is N = 16, 000; the finite-size effect on the abundance

distribution is confirmed to be absent for N ≥ 8000. The sample average is not taken since

the fluctuation of the abundance distribution is small enough for this system size. We see the
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Figure 13. The abundance distributions for u = 2.93 (left) and 6.03 (right) for ∆ = 0. Red

bars correspond to the replica result and the blue ones to that of the simulation. They accord

for large u, but show some deviation for small u where extinct species exist.
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Figure 14. Rank-abundance relations for different u = 2.93 (left) and 6.03 (right) for ∆ = 0.

Red plots correspond to the replica result and the blue ones to that of the simulation.

complete accordance for large u = 6.03 in the right panels of Figs. 13 and 14, though there is

a deviation in the left panels of those figures of small u = 2.93.
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5. Conclusion

In this paper, we investigated the RD on sparsely connected networks with symmetric

interactions by studying the global minimum of the Hamiltonian corresponding to the Lyapunov

function, the existence of which guarantees the convergence of the RD dynamics to fixed points.

The sparseness of the interaction network produces a wide variety of RSA patterns, though

the analytical treatment becomes more difficult since the self-consistent relation to derive the

single-site marginal distribution becomes complicated. We did not tackle this problem directly

and instead treated the model with large self interactions, which enabled us to treat it in

a very systematic manner. Thanks to the large self interactions, we could neglect the non-

negativity constraint of the population xi ≥ 0, and the direct minimization of the Hamiltonian

was possible. The resultant formula is appealingly simple and we constructed a perturbative

expansion with respect to the inverse of the self interaction. This was reformulated in terms

of the Boltzmann distribution with the aid of the Gaussian approximation. Working on this

approximation, we invented a non-perturbative theory on the regular random graph and derived

some characteristic RSA patterns. This non-perturbative treatment formally also works in the

region of small u region, though our result becomes not precise due to the failure of the Gaussian

approximation by the presence of extinct species, as clarified by the comparison with the direct

simulations of the RD.

The derived RSA patterns directly reflect the nature of the interactions, in contrast to the

fully-connected case. As an example, we treated binary interactions Jij = ±1, which leads to

multiple peaks in the abundance distribution for large u. Such multiple peaks were actually

observed in some earlier experimental works, and it will be a promising future investigation to

clarify the relation between the presented theory and those experimental data. For comparing

with experimental works, the robustness of the multiple peaks by the present mechanism, the

discreteness of the interactions on sparsely connected networks, is an crucial issue. We have

conducted some additional numerical simulations and confirmed that they are fairly robust

against a certain level of modification of the model parameters and the network structure,

the result of which has been reported in [47]. This reinforces the plausibility of the presented

mechanism of multiple peaks in the abundance distribution.

Another interesting issue is the origin of the discreteness of the interactions. Although we

do not have reasonable biological explanations or observations supporting the discreteness of

the interactions, we can imagine that this possibly occurs if some species compete for a common

resource, since the interactions among those competing species will be determined only by the

resource. In any case, further investigation is desired on this issue.

The multiple-peak distribution tends to become rounded as the self interaction decreases,

and the resultant distribution’s shape becomes close to that observed in the fully-connected case,

which is clear in the sigmoid-type shape in the rank-abundance relation. We stress that this

drastic change of the distribution’s shape is controlled by a few parameters, the self interaction

u and the ratio of mutualistic relations ∆. Thus our theory provides a possibility of unifying

different shapes of the abundance distributions. This flexibility will help us to understand a

wide variety of RSA patterns actually observed in many field research.
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Appendix A. Replica calculations on random graphs

Appendix A.1. The number of realizations of RRG with fixed connectivity c

It is a good exercise to calculate the number of RRGs with fixed connectivity G:

G =
∑

{L⟨ij⟩=0,1}

N∏
k=1

δ

(∑
j ̸=k

L⟨kj⟩ − c

)
=

∑
{L⟨ij⟩=0,1}

N∏
k=1

∮
dzkz

−(c+1)
k

2πi

N∏
i=1

z
∑

j ̸=i L⟨ij⟩
i , (A.1)

where we used the identity

δ(x) =

∮
dz

2πi
z−(x+1). (A.2)

The integration path is a closed one, enclosing the origin of the complex plane of z. The variable

L⟨ij⟩ denotes the presence (L⟨ij⟩ = 1) and absence (L⟨ij⟩ = 0) of the link ⟨ij⟩ on the graph. Here

we perform the following transformation∑
{L⟨ij⟩=0,1}

N∏
i=1

z
∑

j ̸=i L⟨ij⟩
i =

∏
⟨ij⟩

∑
L⟨ij⟩=0,1

(zizj)
L⟨ij⟩ =

∏
⟨ij⟩

(1 + zizj) ≈
∏
⟨ij⟩

ezizj ≈ e
1
2
(
∑

i zi)
2

. (A.3)

The Hubbard-Stratonovich transformation gives

e
1
2
(
∑

i zi)
2

= A

∫
dxe−

N
2
x2+

√
Nx

∑
i zi . (A.4)

The constant A is irrelevant and will be discarded hereafter. For the integration with respect

to zi, the surviving term is only∮
dzz−(c+1)

2πi
eqz =

∮
dzz−(c+1)

2πi

qc

c!
zc =

qc

c!
. (A.5)

Thus,

G =
N∏
k=1

∮
dzkz

−(c+1)
k

2πi
e

1
2(

∑
i zi)

2

=

∫
dxe−

N
2
x2

{(
xc

c!

)N
}
NNc/2

=

∫
dx expN

{
−1

2
x2 + log

xc

c!
+

c

2
logN

}
. (A.6)

The saddle-point condition gives x2 = c, and

1

N
log G = −1

2
c+

1

2
c log cN − log c!. (A.7)



Relative species abundance of replicator dynamics with sparse interactions 23

Appendix A.2. Computation of the free energy

We can perform similar transformations to the previous subsection for calculating the free

energy

[Zn] =
1

G

N∏
k=1

∮
dzkz

−(c+1)
k

2πi

∑
{L⟨ij⟩=0,1}

(
N∏
i=1

z
∑

j ̸=i L⟨ij⟩
i

)

× Tr

[
exp

{
β
∑
i<j

L⟨ij⟩J⟨ij⟩

n∑
a=1

xa
i x

a
j −

β

2
u
∑
i

∑
a

(xa
i )

2

}]
J

. (A.8)

We hereafter assume the symbols Tr and Tr denote the integrations over {xa}na=1 with and

without the constraint
∑

i x
a
i = N , respectively. If the argument is specified in a symbol like

Try, the integration is performed over the variable y, not over x. As eq. (A.3),∑
{L⟨ij⟩}=0,1

N∏
i=1

z
∑

j ̸=i L⟨ij⟩
i

[
eβ

∑
i<j L⟨ij⟩J⟨ij⟩

∑n
a=1 x

a
i x

a
j

]
≈
∏
⟨ij⟩

e
zizj

[
e
βJ

∑n
a=1 xai xaj

]
J . (A.9)

Here we introduce auxiliary variables {ya1 , ya2}na=1 and perform the following transformation[
eβJ

∑n
a=1 x

a
i x

a
j

]
J
= Try1,y2

[
eβJ

∑n
a=1 y

a
1y

a
2

]
J

∏
a

δ (ya1 − xa
i ) δ

(
ya2 − xa

j

)
, (A.10)

We introduce an order parameter function Q (y) = (1/N)
∑

i zi
∏

a δ (y
a − xa

i ). The constraint

of this relation is expressed by the delta function and the integration over Q (y). The replica

indices of the arguments of these functions are omitted again for simplicity. Employing the

Fourier expression of the delta function with auxiliary integrating variables Q̂ (y), we get

[Zn] =
1

Gn

N∏
k=1

∮
dzkz

−(c+1)
k

2πi

∫
DQDQ̂Tr exp

{
Try1,y2

1

2
N2Q(y1)Q(y2)

[
eβJ
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a
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a
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]
J

+ Try Q̂(y)

(∑
i

zi
∏
a

δ(ya − xa
i )−NQ(y)

)
− β

2
u
∑
i

∑
a

(xa
i )

2

}
. (A.11)

The symbols DQ and DQ̂ are the integrations over Q (y) and Q̂ (y) explained above. The

integration over x can now be performed independently over each site

Tr
N∏
i=1

eTry Q̂(y)zi
∏

a δ(ya−xa
i )−

β
2
u
∑

a(x
a
i )

2

=
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0

dxa
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e
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a ra(xa
i −1)+Q̂(xi)zi−β

2
u
∑

a(x
a
i )

2

}

≈
N∏
i=1

zci
c!

∫ n∏
a=1

drae
N log Trx eL , (A.12)

where we put

Trx e
L =

(
n∏

a=1

∫ ∞

0

dxa

)
e
∑

a ra(xa−1)+c log Q̂(x)−β
2
u
∑

a(x
a)2 . (A.13)
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The variables {ra}na=1 are introduced to hold the constraint
∑

i xi = N . Summarizing the

transformations so far, we get

[Zn] =
1

Gn

∫
DQDQ̂

(
n∏

a=1

dra

)
expN

{
Try1,y2

1

2
NQ(y1)Q(y2)

[
eβJ

∑
a ya1y

a
2
]
J

− Try Q(y)Q̂(y) + log Trx e
L − log c!

}
. (A.14)

Extracting normalization constants from Q, Q̂ as Q(y) = V P (y), Q̂(y) = V̂ P̂ (y) and taking the

saddle-point conditions with respect to V and V̂ , we obtain

NV Try1,y2 P (y1)P (y2)
[
eβJ

∑
a ya1y

a
2
]
J
= V̂ Try P (y)P̂ (y), (A.15)

c/V̂ = V Try P (y)P̂ (y). (A.16)

Inserting these relations into eq. (A.14), we see

ϕ(n) ≡ 1

N
log[Zn] =

1

2
c log Trx1,x2 P (x1)P (x2)

[
eβJ

∑
a xa

1x
a
2
]
J

− c log Trx P (x)P̂ (x) + log Trx e
M , (A.17)

where

Trx e
M =

(
n∏

a=1

∫ ∞

0

dxa

)
e
∑

a ra(xa−1)+ci log P̂ (x)−β
2
u
∑

a(x
a)2 , (A.18)

where we rewrite all the integrating variables as x.

Appendix A.2.1. Replica symmetry We assume the replica symmetry (RS):

ra = r, (A.19)

P (x) =

∫
dξq(ξ)

n∏
a=1

p(xa|ξ), (A.20)

P̂ (x) =

∫
dξ̂q̂(ξ̂)

n∏
a=1

p̂(xa|ξ̂). (A.21)

Under this assumption, each term of eq. (A.17) becomes
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[
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1 ]J ≈ 1 + n

∫
dξ1dξ2q(ξ1)q(ξ2) [logK1]J , (A.22)

Trx P (x)P̂ (x) =

∫
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Tr eM =
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l=1

dξ̂lq(ξ̂l)
∏
a
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dxa er(x
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≡
∫ c∏

l=1

dξ̂lq(ξ̂l)K
n
3 ≈ 1 + n
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l=1

dξ̂lq(ξ̂l) logK3, (A.24)

Hence,

ϕ(n) =
1

2
c log

∫
dξ1dξ2q(ξ1)q(ξ2)K

n
1

− c log

∫
dξdξ̂q(ξ)q̂(ξ̂)Kn

2 + log
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l=1

dξ̂lq(ξ̂l)K
n
3 . (A.25)

Taking the limit −βf = limn→0 ϕ(n)/n and extending the integration region with respect to x

from [0;∞] to [−∞;∞], we get eqs. (27-30).
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