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The replica liquid theory (RLT) is a mean-field thermo-
dynamic theory of the glass transition of supercooled liquids.1

The theory was first developed for one-component monatomic
systems. The RLT enables one to predict the ideal glass tran-
sition temperature, TK , from a first-principles calculation, by
considering the m replicas of the original system.1 Thermody-
namic properties near TK are deduced by computing the free
energy of a liquid consisting of m-atomic replica molecules and
then taking the limit of m → 1 at the end of the calculation. The
RLT was later extended to binary systems.2,3 However, it has
been known that the binary RLT is inconsistent with its one-
component counterpart; in the limit that all atoms are identical,
the configurational entropy, Sc, and thus TK calculated by the
binary RLT differ from those obtained by the one-component
RLT.2,3 More specifically, an extra composition-dependent
term, or the mixing entropy, remains finite in Sc computed by
the binary RLT. As discussed by Coluzzi et al.,2 this contradic-
tion originates from the assumption that each replica molecule
consists of m-atoms of the same species. Physically, this is tan-
tamount to assuming that a permutation of atoms of one species
with atoms of the other species in a given glass configuration
is forbidden.2 This is indeed the case if, say, the atomic radii of
the two species are very different. Clearly this assumption is
inappropriate if the two species are very similar or exactly iden-
tical because a permutation of the atoms of different species
is allowed.

In this short note, we reformulate the RLT in order to
resolve this problem. We consider a binary liquid composed of
A and B atoms. The important step is to rewrite the expression
of the grand canonical partition function in a form discussed
by Morita and Hiroike4 as
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N!
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where β is the inverse temperature, N is the total number of
atoms, and VN is the total potential energy. xi, νi ∈ {A, B},
and µνi are the position, species, and chemical potential of i-
th atoms, respectively. Eq. (1) is mathematically equivalent to
the standard expression for Z.5 This expression can be read-
ily generalized to the replicated liquid consisting of m-atomic
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where ψνi (xi) ≡
m∑

a=1
µνa

i
− uνi (xi) is the generalized chemical

potential in which the external potential uνi (xi) is included.
xi ≡ (x1

i , . . . , xm
i ) and νi ≡ (ν1

i , . . . , νm
i ) denote the set of the

positions and components of m atoms of the i-th molecule.
The advantage to express Zm à la Morita-Hiroike as Eq. (2)
is that assigning a label of the component νi to each atom
enables one to describe replica molecules consisting of differ-
ent set of species. The density field conjugated to ψν(x) can be
written as

ρν(x) =
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i )δνa

i ,νa
i

〉
=
δ log Zm
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Following the standard procedure,5 one can express the free
energy, −βF, by the Legendre transformation from ψν(x) to
ρν(x), which can be written as the sum of the ideal and the
excess parts,

βF[ρν(x)] = −
∑
ν

∫
dxρν(x)(1 − log ρν(x)) + βFex[ρν(x)].

(4)

The equilibrium free energy is obtained by minimizing
Eq. (4) with respect to the density profile ρν(x). For one-
component systems, the standard procedure is to assume that
ρν(x) is Gaussian-shaped and use its width, or the cage size,
as the minimization parameter.1 Once the equilibrium free
energy is obtained, Sc is calculated by Sc= limm→1m2 ∂

∂m
βF
mN .

The ideal glass transition temperature, TK , is identified as the
point at which Sc vanishes.1 For binary liquids, however, the
full computation is a challenging task because the cage sizes
vary depending on the components ν. But, at least, one can
demonstrate that the one-component result is correctly derived
in the limit that atoms of two components are identical or very
similar. In this limit, the density profile in the replica space can
be written as

ρν(x) = ρ
∫

dX
m∏

a=1

*.
,

∑
µ

cµδµνaγ∆µ (xa − X)+/
-

, (5)
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where γA(x−X) = e−|x−X |2/2∆/(4π∆)d/2 is the Gaussian func-
tion centered at a reference position X with the cage size

√
∆.

ρ = N/V is the number density and cν = Nν/N is the number
fraction of the ν ∈ {A, B} species. Eq. (5) expresses that atoms
of different species constitute single replica molecules with
the composition ratio of cA:cB. This ansatz corresponds to the
limit where a permutation of the atoms of different species
is allowed in a given glass configuration. The difference of
the free energy from that of the one-component system F1

is expressed by the difference in the ideal gas part (since the
excess parts are identical in this limit) as

β∆F ≡ β {F[ρν] − F1[ρ]}

= −
∑
ν

∫
dxρν(x)(1 − log ρν(x))

+

∫
dxρ(x)(1 − log ρ(x)), (6)

where ρ(x) is the density profile of the one-component sys-
tem. Because ρν(x)= ρ(x) × (

∏
acνa ) in the one-component

limit, we arrive at β∆F = mN
∑
µ cµ log cµ. This implies

that the Sc of the binary RLT correctly converges to that of
the one-component Sc ,1 because ∆Sc ≡ Sc − Sc,1 = m2∂m

(β∆F/mN) = 0.
In the opposite limit where the atoms of the two species

are very different and one replica molecule consists of atoms
solely of one species, one can show that the previous results
of binary RLT3 are recovered. In this case, the density profile
should be written as

ρ′ν(x) = ρ
∫

dX
∑
µ

cµ *
,

m∏
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δµνaγ∆µ (xa − X)+
-

. (7)

Note the difference from Eq. (5); the order of the prod-
uct over the atoms a and the summation over the species
µ has been exchanged. Due to the factor (

∏
aδµνa ) in Eq.

(7), ρ′
ν
(x) vanishes unless each molecule consists of a sin-

gle species. The non-vanishing component of the density
profile is cν ρ ∫ dX

∏
aγ∆ν (xa − X) (ν = A or B), which is

exactly the density field employed in previous studies of
the binary RLT.3 Eq. (7) should not be used in the one-
component limit because it gives a solution which is less
stable than Eq. (5): Substituting Eq. (7) into Eq. (4) and opti-
mizing the parameter ∆ν , one finds β∆F = N

∑
µ cµ log cµ,

which is larger than β∆F from Eq. (5).6 This solution also
leads to a pathological result ∆Sc = −

∑
µ cµ log cµ > 0; that

is, Sc calculated assuming Eq. (7) is larger than the cor-
rect one-component configurational entropy by the mixing
entropy.8

In summary, we reformulate the RLT of binary, or multi-
component mixtures, which correctly accounts for a permu-

tation of the atoms in a glass configuration and show that it
resolves the inconsistency between the one-component RLT
and the binary RLT. The binary RLT in the previous studies
is valid only in the limit where the atoms of different species
are so different that a permutation of the atoms of different
components is forbidden. In the one-component limit, one
has to consider all possible permutations of atoms and adopt
the density profile expressed as Eq. (5) to obtain the correct
configurational entropy. For general cases between these two
extreme limits, the density profile should be determined so as
to minimize the free energy, Eq. (4). Its implementation, how-
ever, may be challenging. The results discussed above imply
a possibility, for example, that a binary liquid of small and
large hard spheres undergoes the glass-glass transition from
the “disordered” glass where both types of spheres constitute
a replica molecule to the “ordered” glass where one replica
molecule consists solely of one of the components, as the size
ratio between the two components is varied, much the same
way as the metallic alloys undergo the order-disorder phase
transition as the interactions are varied.7 Note that this pos-
sibility has also been pointed out in Ref. 8 in the context of
the numerical simulation of the multi-component mixtures.
Finally, we note that the generalization to n-component system
is straightforward by allowing νi in Eq. (1) to take n-different
states. Polydisperse case can be obtained in the n → ∞
limit with a caveat about a subtlety to take the continuous
limit (see Ref. 8).
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