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Abstract This paper describes the shape optimization of an electrostatic ca-
pacitive sensor used to detect fingers. We consider two state determination
problems. The first is a basic electrostatic field problem consisting of sensing
electrodes, an earth electrode, and air. The second is an electrostatic field
problem in which fingers are added to the basic electrostatic field problem. An
objective cost function is defined using the negative-signed squared H1-norm
of the difference between the solutions of the two state determination prob-
lems. The volume of the sensing electrode is used as the cost function. Using
the solutions of the two state determination problems and the two adjoint
problems, we present a method for evaluating the shape derivative of the ob-
jective cost function. To solve the shape optimization problem and minimize
the negative-signed difference norm under the volume constraint, we use an
iterative algorithm based on the H1 gradient method. An algorithm for the
shape optimization problem is developed to solve the boundary value prob-
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lems. Numerical examples show that reasonable shapes are obtained using the
present approach.

Keywords Shape optimization · Electromagnetics · Electrostatic capacitive
sensor · Shape derivative · H1 gradient method

1 Introduction

In the development of automobiles, the design of electronic devices is becoming
increasingly important. In the 1960s, the only electronic devices incorporated
in automobiles were alternators, but in recent years, the range of devices has
expanded to include navigation systems, hybrid systems, various intelligent
transport systems (ITS), and sensor devices.

To satisfy the changing needs of customers, it has become important to
shorten the development period. To achieve this, computer-aided engineering
(CAE) systems have been employed not only in the design of mechanical parts,
but also in the design of electronic devices. In recent years, there have also been
attempts to optimize these designs using CAE systems. Among the electronic
devices selected for optimization, capacitive sensors have been chosen because
their shape affects performance factors such as their sensitivity and signal-to-
noise ratio.

Research on the optimum design of capacitive sensors began in the 1990s.
The size of a capacitive sensor was optimized analytically [13]. In that study,
the ratio of the size of the movable electrode to that of the fixed electrode was
selected as a design variable. The sensitivity of the sensor and the signal-to-
noise ratio were chosen as the cost functions. The optimum ratio of the size of
the electrode to the size of the diaphragm was obtained as a function of the
input capacitance of the amplifier.

In another study that attempted to optimize the capacitive pressure sensor,
the linearity of capacitance with respect to pressure was chosen as the cost
function, and the radius of the electrode was used as the design variable [8].
A touch sensor was optimized by choosing the offset position of the electrode
as the design variable and the sensitivity of the touch sensor as the objective
cost function [10]. The nonparametric optimization of electronic capacitors was
achieved by defining the shape of the dielectric using a level set method [11].
Here, the term of “nonparametric” is used as the meaning of “of distributed
parameter” or “functional’. In the level set method, a level set function is used
as a design variable to determine the boundary in the Euler description. The
capacitance energy of the electric capacitor was chosen as the cost function,
and the optimum shape of the capacitor was obtained using two-dimensional
finite-element analysis.

A nonparametric method to optimize the shape of the domain in bound-
ary value problems was presented by the authors. This solution was originally
known as the traction method [1,6], but we have recently referred to it as the
H1 gradient method of domain variation type, because a density-variation-
type H1 gradient method has been developed for a topology optimization
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Table 1 Rules and definitions for notation

Symbol Meaning / definition

a, α, · · · Small letters mean R values or R valued functions.
a, α, · · · Bold letters mean Rd values or Rd valued functions.
A, Γ , · · · Bold capital letters mean Rd×d values or Rd×d valued functions.
A, Γ , · · · Capital letters mean sets.
afinger, XF, · · · Subscripts of roman type mean informative labels.

Lp
(
Ω;Rd

)
denotes the set of functions defined in Ω and having values in Rd

that are p ∈ [1,∞]-th order Lebesgue integrable.
Wk,p

(
Ω;Rd

)
denotes the set of functions that are k ∈ [0,∞] times differentiable
and p ∈ [1,∞]-th order Lebesgue integrable.

Hp
(
Ω;Rd

)
means W 2,p

(
Ω;Rd

)
∥x∥Hp(Ω;Rd) denotes the norm of x in Hp

(
Ω;Rd

)
.

L denotes the Lagrange function.
c , cfinger, · · · denote electrostatic capacitances.
u , uF denote electric potentials.
e , eF denote electric fields.
v0 , vF0 denote the adjoint electric potentials.
ϕ denotes a domain variation (displacement) from an initial domain.
φ denotes a variation of ϕ.

problem [4]. The primary advantages of this method and a comparison with
other techniques were presented in a different paper [7]. Although this ap-
proach is applicable to the design of electromagnetic devices, no such study
has been published.

In the present paper, we propose a cost function that represents the per-
formance of an electrostatic capacitive sensor, and we demonstrate the ap-
plicability of the H1 gradient method to the nonparametric optimization of
the shape of an electrostatic capacitive sensor. To define the cost function, we
set two state determination problems. The first is an electrostatic field prob-
lem that consists of a sensing electrode with a certain electric potential, an
earth electrode, and air. The second is similar, but has the additional consid-
eration of fingers. As an objective cost function, we use the negative-signed
squared H1-norm of the difference between the solutions of these two state
determination problems. The volume of the sensing electrode is used as the
cost function.

To explain our approach to optimizing the shape of electrostatic capacitive
sensors, we present our research in the following order. In Section 2, we ob-
serve the operating principle of electrostatic capacitive sensors, and construct
a mathematical model of the sensor. Based on this model, we define the initial
domain of an electrostatic field and the domain variation in Section 3. In Sec-
tion 4, we use Maxwell’s equations to formulate the two state determination
problems in the varying domain. In Section 5, using the solutions to the two
state determination problems, we formulate a shape optimization problem us-
ing the negative-signed squared H1 norm of the difference between the two
solutions to the state determination problems as an objective cost function,
and the volume of the sensing electrode as another cost function. Methods
for evaluating the Fréchet derivatives of the cost functions with respect to
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Fig. 1 Equivalent circuit of the capacitive touch sensor based on GND potential

the variation of the domain (the shape derivatives of the cost functions) are
presented in Section 6. Using these shape derivatives, Section 7 describes a
method to obtain the domain variations that decrease the cost functions. A
scheme to solve the shape optimization problem with constraints is presented
in Section 8. Finally, in Section 9, we show the numerical results of optimizing
the shapes of electrostatic capacitive sensors.

In the present paper, many symbols are used to describe the electrostatic
field and the domain variation. The notation is presented in Table 1. We use
R to denote the set of real numbers and d ∈ {2, 3} for the dimension number
of the domains.

2 Operating principle of electrostatic capacitive sensors

First, we clarify the operating principle of an electrostatic capacitive touch
sensor for detecting a human finger [9]. Figure 1 shows an equivalent circuit
considered in this paper to the sensor based on GND potential. The touch
sensor measures the capacitance cdetect (see Fig. 1), and discriminates between
the touched and untouched states by detecting a change in capacitance. In this
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Fig. 2 Initial domain Ω0 = D0 \
(
Ē0 ∪ Ḡ0

)
for the electrostatic field problem

circuit, the detecting capacitance cdetect is given by

cdetect =
1

1

cfinger
+

1

cbody
+

1

cfoot

+ cerror

= cfinger
1

1 +
cfinger
cbody

+
cfinger
cfoot

+ cerror, (2.1)

where cfinger, cbody, cfoot, and cerror are the capacitance between the elec-
trode and finger, the capacitance of the human body, the capacitance be-
tween the human body and GND, and the error capacitance that is based
on the electrostatic coupling between surrounding conductors, respectively.
From measurements in a real environment, we estimated that cfinger < 1 [pF],
cbody > 100 ∼ 1000 [pF], and cfoot > 200 [pF] when wearing shoes. Therefore,
substituting cfinger ≪ cbody and cfinger ≪ cfoot into (2.1), we can assume

cdetect ≈ cfinger + cerror. (2.2)

This approximation means that the finger has the GND potential. Moreover,
as cerror is difficult to evaluate through simulations, cfinger is chosen as the first
maximization target to increase the performance of the electrostatic capacitive
touch sensor. To maximize cfinger, we develop a mathematical model of an
electrostatic capacitive sensor and define a shape optimization problem using
appropriate cost functions in Section 5.

3 Mathematical modeling

Based on the operating principle of an electrostatic capacitive sensor, we for-
mulate a mathematical model of the sensor in the following way.
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Figure 2 shows the initial domains for the electrostatic field. Let D0 be
a d (∈ {2, 3})-dimensional bounded domain (open set) in which electrostatic
fields are permitted. In the present paper, we use the notation that ∂D0 is the
boundary of D0 and D̄0 is D0 ∪ ∂D0. Moreover, let Ē0, Ḡ0, and F̄0 be non-
overlapping subsets of D0 for the initial domains of a sensing electrode with
a given positive electric potential, an earth electrode with zero electric poten-
tial, and a detection object with zero electric potential, respectively. Based
on these definitions, we assume Ω0 = D0 \

(
Ē0 ∪ Ḡ0

)
is the initial domain

of the electrostatic field. To define a shape optimization problem for Ω0, its
boundary ∂Ω0 must be at least a Lipschitz boundary.

The design variable in the shape optimization of Ω0 is defined in the follow-
ing way. Let ϕ be the domain variation (deformation) from the initial domain
D0. Using ϕ, the varied domain is created by a continuous one-to-one mapping
i+ ϕ : D0 → Rd as

Ω (ϕ) = { (i+ ϕ) (x) | x ∈ Ω0} ,

where i is the identity mapping. In the same manner, let ( · ) (ϕ) be defined
as { (i+ ϕ) (x) | x ∈ ( · )0} for the domain variation of an initial domain ( · )0.
For a function space of the design variable ϕ, we set

X =
{
ϕ ∈ H1

(
D0;Rd

) ∣∣ ϕ = 0Rd on ∂D0 ∪ ∂F0 ∪ ∂G0 ∪ ΓC0 ∪ Ω̄C0

}
(3.1)

in order that the Fréchet derivatives of the cost functions can be defined in
the dual space of X. In (3.1), ΓC0 and Ω̄C0 denote a boundary and a domain,
respectively, in which domain variation is fixed according to the design de-
mands. In the case of Fig. 2, ΓC0 is set in order to keep a plane as a touch
panel. Ω̄C0 is supposed to be used for an invariable domain. Moreover, to se-
cure the continuous one-to-one mapping of ϕ, we define an admissible set of
the design variable ϕ as

D =
{
ϕ ∈ X ∩W 1,∞ (

Rd;Rd
) ∣∣ ∥ϕ∥W 1,∞(Rd;Rd) < σ

}
, (3.2)

where σ is a positive constant such that the inverse mapping of i+ϕ becomes
a continuous one-to-one mapping ([12] p. 23 Proposition 1.41).

4 State determination problems

Using the above definitions, let us define the state determination problems for
an electrostatic capacitive sensor.

In an electrostatic or magnetostatic field, Maxwell’s equations result in the
independent Poisson equations of the electric or magnetic fields, respectively.
Here, we introduce the electric potential u : Ω (ϕ) → R. Then, using the
constitutive equation of the electric field, we have

−∆u = ∇ · e (u) = ρ

ε
in Ω (ϕ) , (4.1)
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where e (u) = −∇u is the electric field, and ρ and ε denote the space charge
density and the electric permittivity, respectively.

In the design process of an electrostatic capacitive sensor, the charge den-
sity of air is sufficiently small that ρ can be assumed to be 0. Then, (4.1)
becomes a Laplace equation with respect to u:

−∆u = ∇ · e (u) = 0 in Ω (ϕ) . (4.2)

Based on the definition and assumption, we define the first of the state
determination problems in the following way.

Problem 1 (Basic electrostatic field) For ϕ ∈ D and a given function
uD : D0 → R, find u : Ω (ϕ) → R such that

−∇ · e (u) = 0 in Ω (ϕ) = D0 \
(
Ē (ϕ) ∪ Ḡ (ϕ)

)
,

∂νu = 0 on ∂D0,

u = uD on ∂E (ϕ) ,

u = 0 on ∂G (ϕ) .

In Problem 1, we have assumed the Neumann condition on ∂D0. The valid-
ity of this assumption was confirmed by comparing the numerical result given
by a finite element method with actual measurements. We can confirm that
there exists a weak solution of ũ = u− uD in

U =
{
u ∈ H1 (D0;R)

∣∣ u = 0 on ∂E (ϕ) ∪ ∂G (ϕ)
}
, (4.3)

where uD ∈ H1
(
D0;Rd

)
is a function satisfying uD = 0 on ∂G (ϕ), by the

Lax–Milgram theorem. The domain Ω (ϕ) is extended to D0 by Calderón’s
extension theorem. Moreover, we define the admissible set of ũ by

S = U ∩W 1,∞ (D0;R) (4.4)

in order to use the H1 gradient method to obtain the domain variation in
W 1,∞ (

Rd;Rd
)
without singular points [2,5].

Problem 1 will be used as an equality constraint in the shape optimization
problem derived below. We define the Lagrange function for Problem 1 as

LN (ϕ, u, v) = −
∫
Ω(ϕ)

e (u) · e (v) dx, (4.5)

for ũ ∈ S and v ∈ U . v was introduced as the Lagrange multiplier for Problem
1. If u is the solution of Problem 1,

LN (ϕ, u, v) = 0

holds for all v ∈ U .
As the second state determination problem, we define the electrostatic field

with the object F0.
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Problem 2 (Electrostatic field with an object) For ϕ ∈ D and the func-
tion uD : D0 → R used in Problem 1, find uF : Ω (ϕ) \ F̄0 → R such that

−∇ · e (uF) = 0

in Ω (ϕ) \ F̄0 = D0 \
(
Ē (ϕ) ∪ Ḡ (ϕ) ∪ F̄0

)
,

∂νuF = 0 on ∂D0,

uF = uD on ∂E (ϕ) ,

uF = 0 on ∂G (ϕ) ∪ ∂F0.

As for Problem 1, we define

UF =
{
u ∈ H1 (D0;R)

∣∣ u = 0 on ∂E (ϕ) ∪ ∂G (ϕ) ∪ ∂F0

}
, (4.6)

SF = UF ∩W 1,∞ (D0;R) (4.7)

as the function spaces for ũF = uF−uD and the Lagrange function for Problem
2 as

LF (ϕ, uF, vF) = −
∫
Ω(ϕ)\F̄0

e (uF) · e (vF) dx. (4.8)

vF ∈ UF was introduced as the Lagrange multiplier for Problem 2. If uF is the
solution of Problem 2,

LF (ϕ, uF, vF) = 0

holds for all vF ∈ UF.

5 Shape optimization problem

Using the solutions of the state determination problems, we now formulate the
shape optimization problem for an electrostatic capacitive sensor.

As explained in Section 2, the performance of the sensor is determined by
the difference in the capacitance cfinger between the touched and non-touched
states. The difference is caused by the difference in the electric fields e (u)
and e (uF). Because the electric field is defined with the first derivative of the
electric potential, the difference is evaluated using the error norm between u
and uF up to the first derivative. In the mathematical sense, this means the
error norm in H1

(
Ω (ϕ) \ F̄0;R

)
. Thus, we define an objective cost function

as

f0 (ϕ, u, uF)

= −
∫
Ω(ϕ)\F̄0

{
c0 (u− uF)

2
+ (e (u)− e (uF)) · (e (u)− e (uF))

}
dx. (5.1)

Here c0 is a positive constant with the unit of [1/m2] to make the unit of
the first and the second terms of the integrand even. In this study, c0 =
1 is assumed in order to accord with the error norm in H1

(
Ω (ϕ) \ F̄0;R

)
.
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Additionally, we confirmed that c0 = 0 does not work well as an objective
function.

Moreover, for the sake of reducing material costs, we define

f1 (ϕ) =

∫
E(ϕ)

dx− s1, (5.2)

as the cost function, where s1 is a positive constant for which there exists
some ϕ ∈ D such that f1 (ϕ) ≤ 0. We confirmed that the electrode expands
infinitely if f1 (ϕ) is not used as the constraint condition.

Using these cost functions, we define the shape optimization problem in
the following way.

Problem 3 (Shape optimization problem) Let D and S be as defined in
(3.2) and (4.7). For ϕ ∈ D, let ũ = u − uD ∈ S and ũF = uF − uD ∈ S be
the solutions of Problem 1 and Problem 2. For f0 and f1 defined in (5.1) and
(5.2), respectively, find Ω (ϕ) such that

min
ϕ∈D

{
f0 (ϕ, u, uF) | f1 (ϕ) ≤ 0,

ũ ∈ S, Problem 1, ũF ∈ S, Problem 2
}
.

6 Shape derivatives of cost functions

To solve Problem 3, we will use the H1 gradient method in the reshaping
algorithm. The H1 gradient method uses the shape derivatives of the cost
functions. As the objective cost function f0 (ϕ, u, uF) contains u and uF, we
consider the two state determination problems as equality constraints. Hence,
the Lagrange function for f0 (ϕ, u, uF) is defined as

L0 (ϕ, u, v0, uF, vF0)

= f0 (ϕ, u, uF) + LN (ϕ, u, v0)− LF (ϕ, uF, vF0)

=

∫
Ω(ϕ)\F̄0

{
−c0 (u− uF)

2 − (e (u)− e (uF)) · (e (u)− e (uF))

+ e (uF) · e (vF0)
}
dx−

∫
Ω(ϕ)

e (u) · e (v0) dx. (6.1)

Hereafter, let φ denote a variation of ϕ ∈ D and be an arbitrary element in D.
Based on the definition, the shape derivative of L0 with respect to arbitrary
variations (φ, u′, v′0, u

′
F, v

′
F0) ∈ D × U2 × U2

F can be written as

L ′
0 (ϕ, u, v0, uF, vF0) [φ, u

′, v′0, u
′
F, v

′
F0]

= L0ϕ (ϕ, u, v0, uF, vF0) [φ] + L0u (ϕ, u, v0, uF, vF0) [u
′]

+ L0v0 (ϕ, u, v0, uF, vF0) [v
′
0] + L0uF (ϕ, u, v0, uF, vF0) [u

′
F]

+ L0vF0 (ϕ, u, v0, uF, vF0) [v
′
F0] . (6.2)
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The third and fifth terms on the right-hand side of (6.2) become 0 if u and uF

are solutions to Problem 1 and Problem 2, respectively. Moreover, the second
term on the right-hand side of (6.2) becomes 0 if v0 is a solution of the following
problem.

Problem 4 (Adjoint problem for Problem 1) For ϕ ∈ D, let u be the
solution of Problem 1. Find v0 : Ω (ϕ) → R such that

−∇ · e (v0) = 2∇ · (e (u)− e (uF))− 2c0 (u− uF)

in Ω (ϕ) \ F̄0 = D0 \
(
Ē (ϕ) ∪ Ḡ (ϕ) ∪ F̄0

)
,

−∇ · e (v0) = 0 in F0,

∂νv0 = 0 on ∂D0,

v0 = 0 on ∂E (ϕ) ∪ ∂G (ϕ) .

The fourth term on the right-hand side of (6.2) becomes 0 if vF0 is a solution
of the following problem.

Problem 5 (Adjoint problem for Problem 2) For ϕ ∈ D, let uF be the
solution of Problem 2. Find vF0 : Ω (ϕ) \ F̄0 → R such that

−∇ · e (vF0) = 2∇ · (e (u)− e (uF))− 2c0 (u− uF)

in Ω (ϕ) \ F̄0 = D0 \
(
Ē (ϕ) ∪ Ḡ (ϕ) ∪ F̄0

)
,

∂νvF0 = 0 on ∂D0,

vF0 = 0 on ∂E (ϕ) ∪ ∂G (ϕ) ∪ ∂F0.

The first term on the right-hand side of (6.2) becomes

L0ϕ (ϕ, u, v0, uF, vF0) [φ]

=

∫
Ω(ϕ)\F̄0

[
2 (e (u)− e (uF)) ·

{
∇φT (e (u)− e (uF))

}
− e (uF) ·

(
∇φTe (vF0)

)
− e (vF0) ·

(
∇φTe (uF)

)
+
{
−c0 (u− uF)

2 − (e (u)− e (uF)) · (e (u)− e (uF))

+ e (uF) · e (vF0)
}
∇ ·φ

]
dx

+

∫
Ω(ϕ)

{
e (u) ·

(
∇φTe (v0)

)
+ e (v0) ·

(
∇φTe (u)

)
− e (u) · e (v0)∇ ·φ

}
dx. (6.3)

Here, we have used Proposition 1 in Appendix A and the Dirichlet conditions
in Problem 1, Problem 2, Problem 4, and Problem 5.

From the results above, if u, uF, v0, and vF0 are solutions to Problem 1,
Problem 2, Problem 4, and Problem 5, respectively, and if we write f0 (ϕ, u (ϕ) , uF (ϕ))
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as f̃0 (ϕ), we have

f̃ ′
0 (ϕ) [φ] = L0ϕ (ϕ, u, v0, uF, vF0) [φ] = ⟨g0,φ⟩

=

∫
Ω(ϕ)\F̄0

(
G0Ω(ϕ)\F̄0

·∇φT + g0Ω(ϕ)\F̄0
∇ ·φ

)
dx

+

∫
Ω(ϕ)

(
G0Ω(ϕ) ·∇φT + g0Ω(ϕ)∇ ·φ

)
dx, (6.4)

where

G0Ω(ϕ)\F̄0
= 2 (e (u)− e (uF)) (e (u)− e (uF))

T

− e (uF) · eT (vF0)− e (vF0) · eT (uF) , (6.5)

g0Ω(ϕ)\F̄0
= −c0 (u− uF)

2 − (e (u)− e (uF)) · (e (u)− e (uF))

+ e (uF) · e (vF0) , (6.6)

G0Ω(ϕ) = e (u) · eT (v0) + e (v0) · eT (u) , (6.7)

g0Ω(ϕ) = −e (u) · e (v0) . (6.8)

To obtain (6.4) from (6.3), we use the identical equation a · (Bc) =
(
acT

)
·B

for a ∈ Rd, B ∈ Rd×d and c ∈ Rd, where A · B for A = (aij) ∈ Rd×d and
B = (bij) ∈ Rd×d denotes

∑
(i,j)∈{1,··· ,d}2 aijbij .

For f1 (ϕ), we obtain

f ′
1 (ϕ) [φ] =

∫
E(ϕ)

∇ ·φ dx = ⟨g1,φ⟩ . (6.9)

We call g0 and g1 the shape derivatives of f0 and f1, respectively.

7 The H1 gradient method

The H1 gradient method gives the variation in a design variable, such as the
domain mapping or the density parameter that decreases the cost function,
as a solution to a boundary value problem of an elliptic partial differential
equation [6,4,3,2]. In the case of the shape derivative gi of cost function fi (ϕ)
for i ∈ {0, 1}, the H1 gradient method can be described as follows.

Problem 6 (H1 gradient method for Problem 3) LetX be a Hilbert space
defined in (3.1), and let a : X × X → R be a bounded and coercive bilinear
form on X such that there exist positive constants α and β that satisfy

a (w,z) ≤ α ∥w∥X ∥z∥X , a (w,w) ≥ β ∥w∥2X
for all w, z ∈ X. For gi ∈ X ′ (dual space of X), which is a Fréchet derivative
of the cost function f (ϕ) at ϕ ∈ X, find φgi ∈ X such that

a (φgi,w) = −⟨gi,w⟩ (7.1)

for all w ∈ X.
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Problem 6 can be solved numerically with the standard finite-element
method by considering that (7.1) is a weak form of a boundary value problem
of an elliptic partial differential equation. In the present paper, we use

a (φ,ψ) =

∫
Ω(ϕ)

(E (φ) ·E (ψ) + cbφ ·ψ) dx (7.2)

for φ ∈ X and ψ ∈ X, where

E (φ) =
1

2

(
∂φi

∂xj
+

∂φj

∂xi

)
(i,j)∈{1,··· ,d}2

,

and cb is a positive constant.
If ũ and ũF are included in S, we can confirm that the solution φg0 of

Problem 6 belongs to W 1,∞ (
Rd;Rd

)
[2].

8 Solution to the shape optimization problem

We use an iterative method based on theH1 gradient method to solve Problem
3. To determine the domain variation that reduces f0 (ϕ, u, uF) while satisfying
f1 (ϕ) ≤ 0, we use the solution of the following problem. In this section, we
denote f0 (ϕ, u, uF) as f0 (ϕ) and its shape derivative as g0.

Problem 7 (SQ approximation) For ϕ ∈ D satisfying f1 (ϕ) ≤ 0, let g0
and g1 be given, a ( · , · ) be given as in (7.2), and ca be a positive constant to
control the step size. Find φ such that

min
φ∈X

{
q (φ) =

ca
2
a (φ,φ) + ⟨g0,φ⟩

∣∣∣ f1 (ϕ) + ⟨g1,φ⟩ ≤ 0
}
.

The Lagrange function of Problem 7 is defined as

LSQ (φ, λ1) = q (φ) + λ1 (f1 (ϕ) + ⟨g1,φ⟩) ,

where λ1 ∈ R is the Lagrange multiplier for the constraint f1 (φ) ≤ 0. The
Karush–Kuhn–Tucker conditions for Problem 7 are given as

caa (φ,φ) + ⟨g0 + λ1g1,φ⟩ = 0, (8.1)

f1 (ϕ) + ⟨g1,φ⟩ ≤ 0, (8.2)

λ1 (f1 (ϕ) + ⟨g1,φ⟩) = 0, (8.3)

λ1 ≥ 0 (8.4)

for all φ ∈ X. Here, let φgi for i ∈ {0, 1} be the solutions to Problem 6, and
set

φg = φg0 + λ1φg1. (8.5)
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Then, by substituting φg of (8.5) for φ in (8.1), we can see that (8.1) holds.
If the constraint in (8.2) is active, i.e., (8.2) holds with the equality, we have

⟨g1,φg1⟩λ1 = −f1 (ϕ) + ⟨g1,φg0⟩ . (8.6)

Equation (8.6) has a unique solution for λ1. Moreover, if f1 (ϕ) = 0, we have

⟨g1,φg1⟩λ1 = −⟨g1,φg0⟩ . (8.7)

Because (8.7) is independent of the magnitude of φg0 and φg1, we determine
λ1 using (8.7) in the numerical scheme for the initial domain Ω0, where we
assume f1 (ϕ) = 0 is satisfied. If λ1 < 0 in the solution to (8.6) or (8.7), we
can set λ1 = 0 to satisfy (8.1)–(8.4).

The numerical scheme is described below.

1. Set Ω0 and ϕ0 = i as f1 (ϕ0) ≤ 0. Set ca, ϵ0, and ϵ1 appropriately. Set
k = 0.

2. Solve Problem 1 and Problem 2 at ϕk by a numerical method, and compute
f0 (ϕk) and f1 (ϕk).

3. Solve Problem 4 and Problem 5 at ϕk by a numerical method, and compute
g0 and g1.

4. Solve φg0 and φgi1 using

caa (φgi,w) = −⟨gi,w⟩

for all w ∈ X by a numerical method.
5. Solve λ1k+1 using (8.7) when k = 0 and (8.6) when k > 0.
6. Compute φg using (8.5), set ϕk+1 = ϕk +φg, and compute f0 (ϕk+1) and

f1 (ϕk+1).
7. Assess |f0 (ϕk+1)− f0 (ϕk)| ≤ ϵ0.

– If the condition in step 6 holds, proceed to step 8.
– If not, replace k + 1 with k and return to step 3.

8. Stop the algorithm.

9 Numerical examples

In the present study, we developed a computer program in JAVA API using the
commercial software package COMSOL Multiphysics to solve the boundary
value problems. With this program, we solved two types of problems. The
first type consisted of plain plates for the earth electrode G0 and the detection
object F0 located in parallel. The second type consisted of a protruding shaped
G0 and a stick-type F0.



14 M. Satake et al.

E0

F0

G0

∂D0

Ω0

ΓC0

(a) Problem setting (b) Finite-element model

Fig. 3 Example 1a: Two-dimensional electrostatic field with parallel electrodes

(a) Initial (b) Optimized (not converged)

Fig. 4 Example 1a: Shapes before and after domain variation

9.1 Examples of parallel electrodes

The setting and the finite-element mesh of Example 1a are shown in Fig. 3.
We assumed that the domain variation was fixed in the normal direction on
ΓC0 and fixed perfectly at the center of ΓC0. Figure 4 shows the initial and
optimized domains of the electrostatic field. From the problem setting, we
expected that a flatter shape would result in a greater decrease in the cost
function. Actually, the optimized shape shown in Fig. 4 (b) was flatter than
the initial shape in Fig. 4 (a). Figures 5–6 show the iteration history of the cost
functions and capacitances. From Figs. 5–6, we can confirm that f0 decreases
under constant f1, and the difference in electrostatic capacitances with and
without the finger increases. However, after the 13th iteration, we encountered
some mesh distortion due to the thin shape of the electrode, and terminated
the algorithm.
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Fig. 6 Example 1a: Iteration history of sensing capacitance and rate of capacitance differ-
ence against initial shape

To obtain a converged shape, we analyzed an additional problem. Figure 7
shows the setting and the finite-element mesh of Example 1b. In this problem,
the design domain of the electrode was limited to D0 \ Ω̄C0. Figure 8 shows
the shapes before and after domain variation. The iteration history of the
cost functions and the detected capacitance values are shown in Figs. 9–10.
As expected, the cost function f0 decreased under constant f1, and converged
after 25 iterations.

9.2 Examples of protruding electrodes

In Example 2a, we examined a more complex shape (see Fig. 11). Here, we as-
sumed that the domain variation was fixed in the upper direction in Fig. 11 on
ΓC0 and fixed perfectly at the center point of ΓC0. Figure 12 shows the shapes
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E0
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G0

∂D0

D0\ΩC0¯

(a) Problem setting (b) Finite-element model

Fig. 7 Example 1b: Two-dimensional electrostatic field with parallel electrodes

(a) Initial (b) Optimized (convergence)

Fig. 8 Example 1b: Shapes before and after domain variation

before and after domain variation. Figures 13–14 show the iteration history of
the cost functions and capacitances. From Figs. 13–14, we can observe that f0
decreased when satisfying the constraint condition f1 ≤ 0, and the difference
in electrostatic capacitance with and without the finger increased. The opti-
mized electrode becomes thinner, although the objective function f0 does not
converge because of the mesh distortion problem encountered in Example 1a.

Hence, we analyzed the additional example shown in Fig. 15, with the
design domain of the electrode D0 \ Ω̄C0. The shape obtained by the present
method is shown in Fig. 16. It is apparent that the optimized shape becomes
rounded at both ends of the electrode. From the iteration history shown in Figs.
17–18, we can confirm that the cost function f0 decreased under a constant
f1, and converged after 21 iterations. At the same time, the difference in
electrostatic capacitance with and without the finger increased.
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Fig. 10 Example 1b: Iteration history of sensing capacitance and rate of capacitance dif-
ference against initial shape

10 Conclusions

In this paper, we have formulated a shape optimization problem for a capac-
itive sensor for detecting fingers in an electrostatic field. The sensitivity of
the finger detection was defined using a cost function of the negative-signed
squared H1-norm of the difference between the solutions of two state deter-
mination problems. The first problem is a basic electrostatic field problem
consisting of a sensing electrode, an earth electrode, and air. The second prob-
lem considers the presence of fingers in the first problem. The volume of the
sensing electrode was used as the constraint cost function. The shape deriva-
tive of the objective cost function was evaluated with the solutions of the
two state determination problems and the two adjoint problems. To solve the
shape optimization problem such that it minimizes the negative-signed differ-
ence norm with the volume constraint, an iterative algorithm based on the H1
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¡C0

Ω0

(a) Problem setting (b) Finite-element model

Fig. 11 Example 2a: Two-dimensional electrostatic field with protruding earth electrode

(a) Initial (b) Optimized (not converged)

Fig. 12 Example 2a: Shapes before and after domain variation

gradient method was used. A computer program was developed with JAVA
API, using the commercial software package COMSOL Multiphysics to solve
the boundary value problems.

In a series of numerical examples, we found that an open electrode design
domain leads to thin shapes without convergence. When the design domain of
the electrode was restricted, we attained solid shapes with convergence.

Although we used constraints on the design domain of the electrode to
obtain the converged shapes, we could consider another method using a con-
straint on the boundary measure. However, this is left for future work.

A Formula of shape derivative

In Section 6, the following formula is used ([2] p. 96 Proposition 4.4).
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Fig. 13 Example 2a: Iteration history of cost functions

0 2 4 6 8 10 12
0

20

40

60

80

S
en

ci
n
g 

ca
p
ac

it
an

ce
 [
p
F
/m

]

In
cr

ea
si

n
g 

ra
te

 o
f 
ca

p
ac

it
an

ce

Number of Iteration

0

0.1

0.2

0.3

0.4

with finger 
without finger 
increasing rate

Fig. 14 Example 2a: Iteration history of sensing capacitance and rate of capacitance dif-
ference against initial shape

Proposition 1 (Shape derivative of domain integral)
Let ϕ ∈ D, u ∈ U = C1

(
D;H1

(
Rd;R

))
, ∇u ∈ V = C1

(
D;L2

(
Rd;Rd

))
, and h (u,∇u) ∈

C1
(
U × V;L2

(
Rd;R

))
. Writing z = x+ φ (x), let

f (ϕ+ φ, u (ϕ+ φ) ,∇zu (ϕ+ φ))

=

∫
Ω(ϕ+φ)

h (u (ϕ+ φ) ,∇zu (ϕ+ φ)) dz
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F0
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C0D0\¯

Ω0

(a) Problem setting (b) Finite-element model

Fig. 15 Example 2b: Two-dimensional electrostatic field with protruding earth electrode

(a) Initial (b) Optimized (convergence)

Fig. 16 Example 2b: Shapes before and after domain variation

for an arbitrary φ ∈ D. Then, the shape derivative (Fréchet derivative with respect to
domain variation) of f is given by

f ′ (ϕ, u (ϕ) ,∇u (ϕ)) [φ]

=

∫
Ω(ϕ)

{
hu (u (ϕ) ,∇u (ϕ))

[
u′ (ϕ) [φ]

]
+ h∇u (u (ϕ) ,∇u (ϕ))

[
∇u′ (ϕ) [φ]−∇φT∇u (ϕ)

]
+ h (u (ϕ) ,∇u (ϕ))∇ · φ

}
dx, (A.1)

where u′ (ϕ) [φ] is the shape derivative of u (ϕ) with respect to φ ∈ D.
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