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2 S. KINOSHITA

1. Introduction

We consider the Cauchy problem of the nonlinear Schrödinger equations (NLS):i∂tu+∆u = N(u), (t, x) ∈ R× Rd,

u|t=0 = φ ∈ Ḣs(Rd),
(1.1)

and the Cauchy problem of the Klein-Gordon-Zakharov system (KGZ):

(∂2t −∆+ 1)u = −nu, (t, x) ∈ [−T, T ]× Rd,

(∂2t − c2∆)n = ∆|u|2, (t, x) ∈ [−T, T ]× Rd,

(u, ∂tu, n, ∂tn)|t=0 = (u0, u1, n0, n1)

∈ Hs+1(Rd)×Hs(Rd)× Ḣs(Rd)× Ḣs−1(Rd),

(1.2)

where u, n are real valued functions, 0 < c < 1. Our aim in this thesis is to prove

the local or global in time well-posedness of (1.1) and (1.2) in low regularity Sovolev

spaces. We first give an introduction and state our results on (NLS).

1.1. Introduction of (NLS). In (1.1), we consider two types of nonlinearities.

We first study the Cauchy problem of Hartree type nonlinear Schrödinger equations

(HNLS): i∂tu+∆u = F (u), (t, x) ∈ R× Rd,

u|t=0 = φ ∈ Ḣs(Rd).
(1.3)

F (u) is a nonlinear functional of Hartree type:

F (u) = (λ|x|−γ ∗ |u|2)u, λ ∈ C \ {0}, 0 < γ < d,

where ∗ denotes the convolution in Rd. By the following scaling transformation:

uη(t, x) = η
d+2−γ

2 u(η2t, ηx), η > 0,

we see that (HNLS) has the scaling invariance in Ḣsc with the critical index sc =
γ−2
2
.

The critical index is important in the sense that it is strongly believed that we cannot

obtain the well-posedness of (1.1) for s < sc. Therefore, it is natural that we aim to

get the well-posedness of (1.3) with the scaling critical regularity s = sc. Our first

result is as follows.

Theorem 1.1. Let d ≥ 3, 4/3 < γ < 2 and assume that φ ∈ Ḣsc(Rd) is radially

symmetric and small, then (1.3) is globally well-posed in Ḣsc(Rd).
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We make a comment on Theorem 1.1. Seeing sc = γ−2
2
, the critical index is

negative when 4/3 < γ < 2. Generally speaking, it is difficult to show that (1.3)

is well-posed in a negative regularity space since we need to recover the derivative

(regularity) loss when we estimate the nonlinear term. The usual Strichartz esti-

mates for Schrödinger equations, however, cannot work such recovery. To overcome

this difficulty, we assume that an initial data is radially symmetric. It is known that

we can get the better Strichartz estimates for radially symmetric functions. See

[9]. However, the radial symmetricity of an initial data seems to be very restrictive.

Next theorem ensures that the similar result holds for non-radial initial data.

Theorem 1.2. Let d ≥ 3, 4/3 < γ < 2 and δ = δ(d, γ) > 0 be sufficiently

small. Assume that φ ∈ ḢscH
3
4
(2−γ)+δ

ω is small, then (1.3) is globally well-posed

in ḢscH
3
4
(2−γ)+δ

ω .

The function space ḢsHα,q
ω is defined as follows.

ḢsHα,q
ω = {f ∈ S ′ \ P : ∥f∥ḢsHα,q

ω
<∞}, s, α ∈ R,

∥f∥ḢsHα,q
ω

= ∥|∇|sDα
ωf∥L2

rL
q
ω
,

where

∥f∥Lp
rL

q
ω
=

(∫ ∞

0

(∫
Sd−1

|f(rω)|qdω
) p

q

rd−1dr

) 1
p

, 1 ≤ p, q <∞.

Here S is the Schwartz space, P denotes the totality of polynomials. |∇| =
√
−∆,

and Dω =
√
1−∆ω for the Laplace-Beltrami operator ∆ω. The operator on the unit

sphere Dω is very similar to
√
1−∆. We refer to Appendix in [27] for the details of

Dω. Roughly speaking, Theorem 1.2 says that if the initial datum φ(rω) has some

regularity with respect to the angular variable ω then the same result as Theorem

1.1 holds. We also consider the subcritical case, sc < s < 0. The following two

theorems show the local well-posedness in time for large initial data. The important

difference from the sclaing critical case is that they include the case d = 2 and

0 < γ ≤ 4
3
under the restriction −γ

4
< s. They are established by the almost same

proof as that of the scaling critical case.

Theorem 1.3. Let d ≥ 2, 0 < γ < 2 and

max
(
sc,−

γ

4

)
< s < 0.

Assume that φ ∈ Ḣs(Rd) is radially symmetric, then (1.3) is locally well-posed in

Ḣs(Rd).
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Theorem 1.4. Let d ≥ 2, 0 < γ < 2,

max
(
sc,−

γ

4

)
< s < 0,

and suppose that δ = δ(d, s, γ) > 0 is sufficiently small. Then (1.3) is locally well-

posed in ḢsH
− 3

2
s+δ

ω (Rd).

We next consider (1.1) with another nonlinearity called pure-power type nonlin-

earity. i∂tu+∆u = G(u), (t, x) ∈ R× Rd,

u|t=0 = φ ∈ Ḣs(Rd).
(1.4)

Here G(u) is a nonlinear functional of pure power type:

G(u) = λ|u|p−1u, λ ∈ C \ {0}, 1 < p.

Similarly to (HNLS) case, the following scaling transformation

λ
2

p−1u(λ2t, λx), λ > 0,

shows that (PNLS) has the scaling invariance in Ḣsc,p with the scale critical index

sc,p =
d
2
− 2

p−1
. Our result is as follows.

Theorem 1.5. Let 3 ≤ d ≤ 14, p0 < p < 1 + 4/d where p0 is a unique solution of1 + 4
d+1

≤ p0 < 1 + 4
d
,

2p30 + 6(d− 2)p20 + (d2 − 13d+ 10)p0 − d(d− 3) = 0,

and suppose that δ = δ(d, p) > 0 is sufficiently small. Assume that φ ∈ Ḣsc,pHs0
ω (Rd)

is small, then (1.4) is globally well-posed in Ḣsc,pHs0
ω (Rd) where

s0 =

 1
p−1

(7− 3p) + δ (if d = 3),

1
2(p−1)2

(−(d+ 1)p2 + (d+ 7)p− 2) + δ (if d ≥ 4).

We make a comment on Theorem 1.5. In [21], Hidano proved the global existence

for radially symmetric small initial data φ ∈ Ḣsc,p if d ≥ 3 and 1+ 4
d+1

< p < 1+ 4
d
.

Compared to radial case, the conditions for d and p in Theorem 1.5 seem to be very

restrictive. This complicated restrictions is necessary when we apply the Moser type

estimate on the unit sphere such that

∥Ds
ω(|u|p−1u)∥L2

ω
≲ ∥u∥p−1

L
q0
ω
∥Ds

ωu∥Lq1
ω

where 1/2 = (p− 1)/q0 +1/q1. The condition p < 1+ 4/d means p < 2 when d ≥ 4.

Thus we need the condition s ≤ 1 to verify the above estimate, which causes the

restriction in Theorem 1.5.
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1.2. Introduction of (KGZ). Next we consider the Klein-Gordon-Zakharov sys-

tem. By the transformation u± := ω1u ± i∂tu, n± := n ± i(cω)−1∂tn, ω1 := (1 −
∆)1/2, ω := (−∆)1/2, (1.2) can be written as follows;.

(i∂t ∓ ω1)u± = ±(1/4)(n+ + n−)(ω
−1
1 u+ + ω−1

1 u−), (t, x) ∈ [−T, T ]× Rd,

(i∂t ∓ cω)n± = ±(4c)−1ω|ω−1
1 u+ + ω−1

1 u−|2, (t, x) ∈ [−T, T ]× Rd,

(u±, n±)|t=0 = (u±0, n±0) ∈ Hs(Rd)× Ḣs(Rd).

(1.5)

We state our results for d = 2 and for d ≥ 5.

Theorem 1.6. Let d = 2 and −3/4 < s < 0. Then (1.5) is locally well-posed in

Hs(R2)× Ḣs(R2).

Theorem 1.7. Let d ≥ 5, s = sc = d/2−2 and assume the initial data (u±0, n±0) ∈
Hs(Rd)× Ḣs(Rd) is small. Then, (1.5) is globally well-posed in Hs(Rd)× Ḣs(Rd).

As a byproduct of Theorem 1.7, we can show that the obtained solution scatters.

Corollary 1.8. The solution obtained in Theorem 1.7 scatters as t→ ±∞.

We make a comment on the above theorems. Theorems 1.6 and 1.7 are both

established by the Fourier restriction norm method introduced by Bourgain [5].

The Fourier restriction norm method, together with the function space Xs,b called

Bourgain space, has been applied to lots of dispersive equations and produced many

remarkable results. We can find that the method also works effectively for (1.5).

As an advantage of the Fourier restriction norm method, we can gain the extra

regularity when we estimate the nonlinear term. Precisely speaking, we recover a

half derivative loss. It should be emphasized that such recovery disappears in the

case c = 1.

For the proof of Theorem 1.6, in fact, the Fourier restriction norm method is not

enough to get the well-posedness for s ≤ −1/2. Hence we employ the new estimates

which was introduced in [3] and applied to Zakharov system in [1] and [2]. Zakharov

system consists of two equations, wave equation and Schrödinger equation;(i∂t +∆)u = nu, (t, x) ∈ R× Rd,

(∂2t −∆)n = ∆|u|2, (t, x) ∈ R× Rd.
(1.6)

Roughly speaking, comparing (1.2) and (1.6), the two systems have similar struc-

tures, which suggests that we might get the well-posedness of (1.5) for s ≤ −1/2 in

the same way as in [1] and [2].
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Theorem 1.7, which is joint work with I. Kato, is an improvement of his recent

work [25]. Precisely speaking, in [25] he showed that (1.5) is globally well-posed if

the the initial data (u±0, n±0) ∈ Hs(Rd)×Ḣs(Rd) is small and “radially symmetric”.

Theorem 1.7 says that the radial symmetry condition is not necessary for the well-

posedness. In the proof, we apply U2, V 2 type function spaces, which are similar to

the Bourgain spaces in the sense that we can recover the derivative loss. It is known

that the Bourgain spaces Xs,b do not work well at the scaling critical regularity

spaces. U2, V 2 type spaces were developed in order to overcome such a weakness

of the Fourier restriction norm method. In fact, U2, V 2type spaces were already

applied in [25]. In this thesis, the improvement is mainly done by using bilinear

Strichartz estimates. See Propositions 4.19, 4.21 and 4.23 which hold true under

the condition c ̸= 1.

1.3. Notations. We introduce notations which will be utilized throughout the pa-

per. A ≲ B means that there exists C > 0 such that A ≤ CB. Also, A ∼ B means

A ≲ B and B ≲ A. Let u = u(t, x). Ftu, Fxu denote the Fourier transform of u in

time, space, respectively. Ft, xu = û denotes the Fourier transform of u in space and

time. χΩ denotes the characteristic function of a set Ω and ⟨·⟩ denotes (1+ | · |2)1/2.
We denote by Hs and Ḣs, s ∈ R, the usual inhomogeneous Sobolev spaces and

homogeneous Sobolev spaces, respectively. We denote the space Lq(R;X) by Lq
tX

and its norm by ∥ · ∥Lq
tX

for some Banach space X, and also Lq([0, T ];X) by Lq
IT
X

and its norm by ∥ · ∥Lq
IT

X . We use the notations Cb(R;X) = C(R;X) ∩ L∞(R;X)

and Lq
x,t = Lq

tL
q
x, L

q
ξ,τ = Lq

τL
q
ξ for ξ ∈ Rd, τ ∈ R.

The thesis is organized as follows. In Section 2, we consider the Cauchy problem

of Nonlinear Schrödinger equations and establish Theorems 1.1-1.5. In Sections 3

and 4, we consider the Cauchy problem of Klein-Gordon-Zakharov system. Section

3 is devoted to the proof of Theorem 1.6 and finally we verify Theorem 1.7 in Section

4.

Acknowledgement. The author appreciates Professor Mitsuru Sugimoto, Profes-

sor Kotaro Tsugawa, Professor Isao Kato and Professor Tomoya Kato for giving

many useful advices to the author.
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2. The Cauchy problem of Hartree and pure power type nonlinear

Schrödinger equations

2.1. Introduction. We consider the Cauchy problem of Hartree type nonlinear

Schrödinger equations (HNLS):i∂tu(t, x) + ∆u(t, x) = F (u(t, x)), in R× Rd,

u(0, x) = φ(x), in Rd.
(2.1)

Here ∆ is the Laplacian in Rd. F (u) is a nonlinear functional of Hartree type:

F (u) = (λ|x|−γ ∗ |u|2)u, λ ∈ C \ {0}, 0 < γ < d.

From Duhamel’s formula, the solution u of (2.1) can be written as

u(t, x) = U(t)(φ+ Φt)(x), (2.2)

where

U(t) = eit∆, Φt = Φt(u) = −i
∫ t

0

U(−t′)F (u)(t′)dt′.

By the following scaling transformation:

uη(t, x) = η
d+2−γ

2 u(η2t, ηx), η > 0,

we see that (HNLS) has the scaling invariance in Ḣsc with the critical index sc =
γ−2
2
.

There are lots of works on the Cauchy problem of (HNLS). Almost all of them

discussed the problem for φ ∈ Hs, s ≥ max(0, sc). As a fundamental result, Miao,

Xu and Zhao [36] proved the local well-posedness in Hs where s > sc, s ≥ 0.

Furthermore for s ≥ 1, by the energy conservation law, they proved the global well-

posedness for 0 < γ ≤ 2, γ < d, λ ≥ 0 and for 0 < γ < min(2, d), λ < 0, and

in particular, for s = 1, the global well-posedness was established for 2 < γ < 4,

γ < d and λ ≥ 0. In addition, the smallness condition of ∥φ∥Ḣsc
x

ensures the

global existence in Hs, s > sc for 2 ≤ γ < d, d ≥ 3. In [20], Hayashi and Ozawa

proved the global well-posedness in L2 for 0 < γ < min(2, d) (see [6] for general

nonlinearities). For the critical case, s = sc ≥ 0, (HNLS) is locally well-posed in

Hsc for 2 ≤ γ < d, and globally well-posed and the solutions behave like linear ones

in Hsc for 2 ≤ γ < d, d ≥ 3 under the smallness condition of ∥φ∥Ḣsc
x

(see [36, 7, 6]).

If initial data φ has finite energy, it is known that (HNLS) is globally well-posed in

Ḣ1 for γ = 4, λ ≥ 0, d ≥ 5 (see [37], and see also [35] for radially symmetric initial

data).

As opposed to the case s ≥ max(0, sc), we have few results for sc ≤ s < 0 . Miao,

Xu and Zhao [36] proved some ill-posedness results for s < max(0, sc), while Cho,
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Hwang and Ozawa [8] proved the global well-posedness for radially symmetric small

data φ ∈ Ḣsc , 8d−2
6d−3

≤ γ < 2:

Theorem A ([8] Theorem 5). Let d ≥ 2, 8d−2
6d−3

≤ γ < 2. Then there exists a positive

constant ε = ε(d, γ) such that if φ ∈ Ḣsc(Rd) is radially symmetric and satisfies

∥|∇|scφ∥L2
x
< ε, then (2.2) has a unique radial solution

u ∈ Cb(R; Ḣsc(Rd)) ∩ L3(R;Lr(Rd)).

Here r satisfies 1
r
= 1

2
− 2

3d
− s

d
. In addition, u scatters in Ḣsc(Rd).

They also discussed the problem of global well-posedness without assuming radial

symmetry:

Theorem B ([8] Theorem 2). Let d ≥ 3, 2− 3
2d+2

< γ < 2, s1 =
d−1
d+1

− γ−1
2

and

max

(
γ − 5d− 3

2d+ 2
,
1

2

)
< s2 < min

(
γ − 3d

2d+ 2
,
3(d− 1)

2d+ 2

)
.

Then there exist a positive constant ε = ε(d, γ) and α1, α2 ∈ [2,∞], β1, β2 ∈ R,
γ1, γ2 ∈ (0,∞) such that if φ ∈ ḢscHs1+s2

ω (Rd) satisfies ∥|∇|scDs1+s2
ω φ∥L2

x
< ε, then

(2.2) has a unique solution

u ∈ Cb(R; ḢscHs1+s2
ω (Rd)) ∩ Lα1(R; |x|β1L2

rH
γ1
ω ) ∩ Lα2(R; |x|β2L2

rH
γ2
ω ).

In addition, u scatters in ḢscHs1+s2
ω (Rd).

The main goal of this section is to widen the range of γ in Theorems A and B in

the case d ≥ 3. That is, we improve the conditions 8d−2
6d−3

≤ γ < 2 in Theorem A and

2 − 3
2d+2

< γ < 2 in Theorem B to 4
3
< γ < 2. To describe it precisely, we should

introduce some function spaces. We define the norm

∥f∥Lp
rL

q
ω
=

(∫ ∞

0

(∫
Sd−1

|f(rω)|qdω
) p

q

rd−1dr

) 1
p

, 1 ≤ p, q <∞.

We also define the modified Sobolev space ḢsHα
ω and its norm by

ḢsHα,q
ω = {f ∈ S ′ \ P : ∥f∥ḢsHα,q

ω
<∞}, s, α ∈ R,

∥f∥ḢsHα,q
ω

= ∥|∇|sDα
ωf∥L2

rL
q
ω
.

Here S is the Schwartz space, P denotes the totality of polynomials. |∇| =
√
−∆,

and Dω =
√
1−∆ω for the Laplace-Beltrami operator ∆ω. We refer to [27], Appen-

dix, [24] and [46] for the details of Dω. We denote Ḣ0Hα,q
ω and ḢsHα,2

ω by L2
rH

α,q
ω

and ḢsHα
ω , respectively.
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Our results are the following. The first one is radially symmetric case, and the

second is general case:

Theorem 2.1. Let d ≥ 3, 4
3
< γ < 2 and δ = δ(d, γ) > 0 be sufficiently small.

Then there exist a positive constant ε = ε(d, γ) and exponents q1,q2,ℓ ∈ [2,∞] such

that if φ ∈ Ḣsc(Rd) is radially symmetric and satisfies ∥|∇|scφ∥L2
x
< ε, then (2.2)

has a unique radial solution

u ∈ Cb(R; Ḣsc(Rd)) ∩ Lq1(R; |x|sc−δL2(Rd)) ∩ Lq2(R; |x|scLℓ(Rd)).

Theorem 2.2. Let d ≥ 3, 4
3
< γ < 2 and δ = δ(d, γ) > 0 be sufficiently small.

Then there exist a positive constant ε = ε(d, γ) and exponents q1,q2,ℓ, σ ∈ [2,∞]

such that if φ ∈ ḢscH
3
4
(2−γ)+δ

ω satisfies ∥|∇|scD
3
4
(2−γ)+δ

ω φ∥L2
x
< ε, then (2.2) has a

unique solution

u ∈ Cb(R; ḢscH
3
4
(2−γ)+δ

ω )∩Lq1(R; |x|sc−δL2
rH

3
4
(2−γ)+ 3

2
δ

ω )

∩ Lq2(R; |x|scLℓ
rH

3
4
(2−γ)+( 3

2
− 1

d
)δ,σ

ω ).

Remark 2.1. Actually, the solutions of Theorems 2.1 and 2.2 scatter in Ḣsc(Rd) and

ḢscH
3
4
(2−γ)+δ

ω , respectively. See [8] for the details.

Next, we consider the subcritical case, sc < s < 0. The following two theorems

show the local well-posedness in time for large initial data. The important difference

from the critical case is that they include the case d = 2 and 0 < γ ≤ 4
3
under the

restriction −γ
4
< s.

Theorem 2.3. Let d ≥ 2, 0 < γ < 2,

max
(
sc,−

γ

4

)
< s < 0,

and suppose that δ = δ(d, s, γ) > 0 is sufficiently small. Then there exist a positive

time T and exponents α ∈ R, q1,q2,ℓ ∈ [2,∞] such that if φ ∈ Ḣs(Rd) is radially

symmetric then (2.2) has a unique radial solution

u ∈ C([0, T ]; Ḣs(Rd)) ∩ Lq1([0, T ]; |x|s−δL2(Rd)) ∩ Lq2([0, T ]; |x|αLℓ(Rd)).

Theorem 2.4. Let d ≥ 2, 0 < γ < 2,

max
(
sc,−

γ

4

)
< s < 0,

and suppose that δ = δ(d, s, γ) > 0 is sufficiently small. Then there exist a positive

time T and exponents α,β ∈ R, q1,q2,ℓ,σ ∈ [2,∞] such that if φ ∈ ḢsH
− 3

2
s+δ

ω (Rd)

then (2.2) has a unique solution

u ∈ C([0, T ]; ḢsH
− 3

2
s+δ

ω ) ∩ Lq1([0, T ]; |x|s−δL2
rH

− 3
2
s+ 3

2
δ

ω ) ∩ Lq2([0, T ]; |x|αLℓ
rH

β,σ
ω ).
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Remark 2.2. If −s is sufficiently close to 0 then the necessary angular regularity

for φ is sufficiently small. This seems to be natural since we do not need angular

regularity assumption if s ≥ 0.

Next, we study the Cauchy problem of pure power type nonlinear Schrödinger

equations (PNLS): iut +∆u = G(u), in R× Rd,

u(0, x) = φ(x), in Rd.

Here G(u) is a nonlinear functional of pure power type:

G(u) = λ|u|p−1u, λ ∈ C \ {0}, 1 < p.

Similarly to (HNLS) case, the following scaling transformation

λ
2

p−1u(λ2t, λx), λ > 0,

shows that (PNLS) has the scaling invariance in Ḣsc,p with the scale critical index

sc,p = d
2
− 2

p−1
. There exist a lot of works on the Cauchy problem of (PNLS). See

[47, 7, 14, 41, 38, 39].

In [21], Hidano proved the global existence for radially symmetric small initial

data φ ∈ Ḣsc,p if d ≥ 3 and 1 + 4
d+1

< p < 1 + 4
d
. After that, Fang and Wang [13]

proved the global existence for small initial data φ ∈ Ḣsc,pH
1

p−1
ω if 3 ≤ d ≤ 6 and

1 +
√

2
d−1

< p < 1 + 4
d
. We relax the conditions of n and p in the general case. Our

result is the following:

Theorem 2.5. Let 3 ≤ d ≤ 14, p0 < p < 1 + 4/d where p0 is a unique solution of1 + 4
d+1

≤ p0 < 1 + 4
d
,

2p30 + 6(d− 2)p20 + (d2 − 13d+ 10)p0 − d(d− 3) = 0,

and suppose that δ = δ(d, p) > 0 is sufficiently small. Then there exist a positive con-

stant ε = ε(d, p) and exponents α ∈ R, q,ℓ, σ ∈ [2,∞] such that if φ ∈ Ḣsc,pHs0
ω (Rd)

satisfies ∥|∇|sc,pDs0
ω φ∥L2

x
< ε where

s0 =

 1
p−1

(7− 3p) + δ (if d = 3),

1
2(p−1)2

(−(d+ 1)p2 + (d+ 7)p− 2) + δ (if d ≥ 4),

then the integral equation

u(t, x) = U(t)(φ+ Φt,p)(x), (2.3)
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where

Φt,p = Φt,p(u) = −i
∫ t

0

U(−t′)G(u)(t′)dt′,

has a unique solution

u ∈ Cb(R; Ḣsc,pHs0
ω ) ∩ Lq(R; |x|αLℓHs0,σ

ω ).

Remark 2.3. Similarly to (HNLS) case, the solution of Theorem 2.5 scatters in

Ḣsc,pHs0
ω (Rd), and if d = 3, 4 the necessary angular regularity for φ gets close to

0 as −sc,p approaches 0.

In Section 2.2, we introduce some estimates as preliminaries. In Section 2.3, we

consider the Cauchy problem of (HNLS). To avoid redundancy, we only establish

Theorem 2.4. In Section 2.4, we establish Theorem 2.5. Lastly in Section 2.5, we

consider the Cauchy problem of inhomogeneous power type nonlinear Schrödinger

equations.

2.2. Preliminaries. In this section, we introduce some estimates which will be used

for the proof of the main results.

First, we introduce weighted Strichartz estimates for U(t).

Lemma 2.6 ([13] Theorem 1.15, [8] Lemma 2). Let d ≥ 2, 2 ≤ q ≤ ∞.

(i) If c, δ1 satisfy

−d
q
< c < −d

q
+
d− 1

2
, δ1 ≤ −d

q
+
d− 1

2
− c,

then we have

∥|x|c|∇|c+
d+2
q

− d
2Dδ1

ω [U(t)φ]∥Lq
tL

q
rL2

ω
≲ ∥φ∥L2

x
. (2.4)

(ii) If c, δ2 satisfy

−d
q
< c < −1

q
, δ2 ≤ −c− 1

q
,

then we have

∥|x|c|∇|c+
2
qDδ2

ω [U(t)φ]∥Lq
tL

2
x
≲ ∥φ∥L2

x
.

By interpolating between the inequality (2.4) and the classical Strichartz esti-

mates, we immediately get the following weighted Strichartz estimates.

Lemma 2.7. Let d ≥ 2, 2 ≤ σ ≤ ℓ ≤ ∞ and1
2
− 1

σ
≤ 1

q
< 1

2
+ 1

ℓ
− 1

σ
(if d = 2),

d
2

(
1
2
− 1

σ

)
≤ 1

q
≤ 1

2
+ 1

ℓ
− 1

σ
(if d ≥ 3).



12 S. KINOSHITA

If w, δ satisfy

d2

4
− d

q
− d2

2σ
< w <

d

4
− 1

q
− d− 1

ℓ
+
d− 2

2σ
,

δ ≤ −w +
d

4
− 1

q
− d− 1

ℓ
+
d− 2

2σ
,

then we have

∥|x|w|∇|w− d
2
+ 2

q
+ d

ℓDδ
ω[U(t)φ]∥Lq

tL
ℓ
rL

σ
ω
≲ ∥φ∥L2

x
. (2.5)

Proof. Suppose that

θ =
2

q
− 2

ℓ
+

2

σ
− d

(
1

2
− 1

σ

)
,

1

q0
=

d

2(1− θ)

(
1

2
− 1

σ

)
,

2

q0
= d

(
1

2
− 1

r0

)
,

1

q1
=

1

θ

(
1

q
− d

2

(
1

2
− 1

σ

))
.

It follows from the classical Strichartz estimates and Lemma 2.6 that

∥U(t)φ∥Lq0
t L

r0
x
≲ ∥φ∥L2

x
, (2.6)

∥|x|c|∇|c+
d+2
q1

− d
2Dδ1

ω [U(t)φ]∥Lq1
t L

q1
r L2

ω
≲ ∥φ∥L2

x
, (2.7)

if

− d

q1
< c < − d

q1
+
d− 1

2
, δ1 ≤ −c+ d− 1

2
− d

q1
.

By the complex interpolation between (2.6) and (2.7), we get (2.5). □

The following lemma is necessary to handle the nonlinear term.

Lemma 2.8 ([10] Lemma 4.3). Let p, q, q1 ∈ [1,∞], 0 ≤ δ < γ < (d− 1)/p′,

1

q1
≥ 1

q
− 1

p′
+

γ

d− 1
,

γ

d− 1
̸= 1

q1
− 1

p
.

Then we have

∥|x|δ(|x|−
d
p
−γ ∗ f)∥Lp

rL
q1
ω
≲ ∥|x|−(γ−δ)f∥L1

rL
q,1
ω
,

where Lq,1
ω is the Lorentz space on the unit sphere.

The following lemma will be utilized for the time restriction t′ < t. The general

case was proved in [11], and see also [44].
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Lemma 2.9 ([11] Theorem 1.1). Let 1 ≤ r < q ≤ ∞, and X,Y be Banach spaces.

If

∥U(t)φ∥Lq
t (Y ) ≲ ∥φ∥L2

x
and ∥

∫ ∞

−∞
U(−t′)g(t′)dt′∥L2

x
≲ ∥g∥Lr

t (X),

then we have

∥
∫ t

−∞
U(t− t′)g(t′)dt′∥Lq

t (Y ) ≲ ∥g∥Lr
t (X).

2.3. (HNLS). In this section, we consider the Cauchy problem of (HNLS). For

convenience, we restate Theorems 2.1-2.4 with the explicit exponents.

Theorem 2.10. Let d ≥ 3, 4
3
< γ < 2 and δ = δ(d, γ) > 0 be sufficiently small.

Then there exists a positive constant ε = ε(d, γ) such that if φ ∈ Ḣsc(Rd) is radially

symmetric and satisfies ∥|∇|scφ∥L2
x
< ε, then (2.2) has a unique radial solution

u ∈ Cb(R; Ḣsc(Rd)) ∩ L2q1,sc (R; |x|sc−δL2(Rd)) ∩ Lq2,sc (R; |x|scLℓ1(Rd))

where

1

q1,sc
= −2sc + δ,

1

q2,sc
=
γ

4
− δ

2
,

1

ℓ1
=

1

2
+

2

d
− 3

2d
γ +

δ

d
.

Theorem 2.11. Let d ≥ 3, 4
3
< γ < 2 and δ = δ(d, γ) > 0 be sufficiently small.

Then there exists a positive constant ε = ε(d, γ) such that if φ ∈ ḢscH
3
4
(2−γ)+δ

ω

satisfies ∥|∇|scD
3
4
(2−γ)+δ

ω φ∥L2
x
< ε, then (2.2) has a unique solution

u ∈ Cb(R; ḢscH
3
4
(2−γ)+δ

ω )∩L2q1,sc (R; |x|sc−δL2
rH

3
4
(2−γ)+ 3

2
δ

ω )

∩ Lq2,sc (R; |x|scLℓ1
r H

3
4
(2−γ)+( 3

2
− 1

d
)δ,σ1

ω )

where

1

q1,sc
= −2sc + δ,

1

q2,sc
=
γ

4
− δ

2
,

1

ℓ1
=

1

2
+

2

d
− 3

2d
γ +

δ

d
,

1

σ1
=

1

2
+

2

d
− 3

2d
γ +

2

d
δ.

Theorem 2.12. Let d ≥ 2, 0 < γ < 2,

max
(
sc,−

γ

4

)
< s < 0,

and suppose that δ = δ(d, s, γ) > 0 is sufficiently small. Then there exists a positive

time T such that if φ ∈ Ḣs(Rd) is radially symmetric then (2.2) has a unique radial

solution

u ∈ C([0, T ]; Ḣs(Rd)) ∩ L
4q1

2−q1(2+2s−γ) ([0, T ]; |x|s−δL2(Rd)) ∩ Lq2([0, T ]; |x|αLℓ2(Rd)),
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where

1

q1
= 1− γ

2
− s+ δ,

1

q2
=
γ

4
− δ

2
,

α =

s− δ (if d = 2),

s (if d ≥ 3),

1

ℓ2
=

1
2
− γ

4
− s+ δ (if d = 2),

1
2
− γ

2d
− 2

d
s+ δ

d
(if d ≥ 3).

Theorem 2.13. Let d ≥ 2, 0 < γ < 2,

max
(
sc,−

γ

4

)
< s < 0,

and suppose that δ = δ(d, s, γ) > 0 is sufficiently small. Then there exists a positive

time T such that if φ ∈ ḢsH
− 3

2
s+δ

ω (Rd) then (2.2) has a unique solution

u ∈ C([0, T ]; ḢsH
− 3

2
s+δ

ω ) ∩ L
4q1

2−q1(2+2s−γ) ([0, T ]; |x|s−δL2
rH

− 3
2
s+ 3

2
δ

ω )

∩Lq2([0, T ];|x|αLℓ2
r H

β,σ0
ω ),

where

1

q1
= 1− γ

2
− s+ δ,

1

q2
=
γ

4
− δ

2
,

α =

s− δ (if d = 2),

s (if d ≥ 3),
β =

−3
2
s+ 3

2
δ (if d = 2),

−3
2
s+ 3

2
δ − δ

d
(if d ≥ 3),

1

ℓ2
=

1
2
− γ

4
− s+ δ (if d = 2),

1
2
− γ

2d
− 2

d
s+ δ

d
(if d ≥ 3),

1

σ0
=

1

2
− γ

2d
− 2

d
s+

2

d
δ.

Since the proofs of Theorems 2.10, 2.11 and 2.12 are analogous to that of Theorem

2.13, here we establish only Theorem 2.13. We should mention that if d = 2,

as Theorems 2.10 and 2.11, we cannot prove the small data global existence for

φ ∈ Ḣsc(Rd). See Remark 2.4 below for the details.

Throughout the section, we assume d ≥ 2 and use the explicit exponents(
1

q
,
1

q1
,
1

q2

)
=

(
γ

4
+ s− δ

2
, 1− γ

2
− s+ δ,

γ

4
− δ

2

)
,

(
1

ℓ
,
1

ℓ1
,
1

ℓ2

)
=


(
1
2
− γ

4
+ δ, γ

2
+ s− 2δ, 1

2
− γ

4
− s+ δ

)
(if d = 2),(

1
2
− γ

2d
+ δ

d
, γ
d
+ 2

d
s− 2

d
δ, 1

2
− γ

2d
− 2

d
s+ δ

d

)
(if d ≥ 3),

1

σ0
=

1

2
− γ

2d
− 2

d
s+

2

d
δ,

d− 1

σ
=


γ
2
+ s

2
− δ

2
(if d = 2),

d−1
d
γ + 5

2
s− 4

d
s− 5

2
δ + 3

d
δ (if d ≥ 3),
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with sufficiently small δ = δ(d, s, γ) > 0. Here q′ and ℓ′ are given by 1/q + 1/q′ = 1

and 1/ℓ+ 1/ℓ′ = 1, respectively. Note that

1

q′
=

1

q1
+

1

q2
,

1

ℓ′
=

1

ℓ1
+

1

ℓ2
.

Lemma 2.14. Let max(sc,−γ/4) < s < 0. Then we have

∥|∇|sD− 3
2
s+δ

ω U(t)Φt∥L∞
IT

L2
x
+W1(U(t)Φt) +W2(U(t)Φt) ≲ T θ[W1(u)]

2W2(u)

where

θ =
2 + 2s− γ

2
,

W1(u) = ∥|x|s−δD
− 3

2
s+ 3

2
δ

ω u∥
L

4q1
2−q1(2+2s−γ)
IT

L2
x

,

W2(u) =


∥|x|s−δD

− 3
2
s+ 3

2
δ

ω u∥
L
q2
IT

L
ℓ2
r L

σ0
ω

(if d = 2),

∥|x|sD− 3
2
s+ 3

2
δ− δ

d
ω u∥

L
q2
IT

L
ℓ2
r L

σ0
ω

(if d ≥ 3).

Proof. (I) (d ≥ 3)

First, we assume d ≥ 3 and prove

∥|∇|sD− 3
2
s+δ

ω U(t)Φt∥L∞
IT

L2
x
≲ T θ[W1(u)]

2W2(u). (2.8)

Let us set

s1 = −d− 2

d
s+

d− 2

2d
δ, s2 = −d+ 4

2d
s+

d+ 2

2d
δ.

Note that s1 + s2 = −3
2
s+ δ. Since 2 ≤ σ0 ≤ ℓ ≤ ∞,

d

2

(
1

2
− 1

σ0

)
≤ 1

q
≤ 1

2
+

1

ℓ
− 1

σ0
,

d2

4
− d

q
− d2

2σ0
< −s < d

4
− 1

q
− d− 1

ℓ
+
d− 2

2σ0
,

it follows from Lemma 2.7 that

∥|x|−s|∇|sDs1
ω [U(t)φ]∥Lq

tL
ℓ
rL

σ0
ω

≲ ∥φ∥L2
x
.

By the dual estimate, we have

∥
∫ ∞

−∞
U(−t′)F (u)(t′)dt′∥L2

x
≲ ∥|x|s|∇|−sD−s1

ω F (u)∥
Lq′
t Lℓ′

r L
σ′
0

ω

, (2.9)

where 1/σ0
′ = 1 − 1/σ0. By applying Lemma 2.9 to ∥U(t)φ∥L∞

t L2
x
= ∥φ∥L2

x
and

(2.9), we have

∥|∇|sDs1+s2
ω U(t)Φt∥L∞

IT
L2
x
≲ ∥|x|sDs2

ω F (u)∥
Lq′
IT

Lℓ′
r L

σ′
0

ω

.
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By Leibniz rule and Sobolev embedding on the unit sphere (see Appendix in [27]),

we have

∥|x|sDs2
ω F (u)∥

Lq′
IT

Lℓ′
r L

σ′
0

ω

≲ ∥Ds2
ω (|x|−γ ∗ |u|2)∥

L
q1
IT

L
ℓ1
r Lσ

ω
∥|x|su∥

L
q2
IT

L
ℓ2
r Lα

ω

+ ∥|x|−γ ∗ |u|2∥
L
q1
IT

L
ℓ1
r L

σ(d−1)
d−1−σs2
ω

∥|x|sDs2
ω u∥Lq2

IT
L
ℓ2
r Lβ

ω

≲ ∥Ds2
ω (|x|−γ ∗ |u|2)∥

L
q1
IT

L
ℓ1
r Lσ

ω
∥|x|sD

(d−1)(−1+ 2
σ0

+ 1
σ
)

ω u∥
L
q2
IT

L
ℓ2
r L

σ0
ω
.

Here the exponents α, β satisfy

1

α
= 1− 1

σ0
− 1

σ
,

1

β
= 1− 1

σ0
− 1

σ
+

s2
d− 1

.

We deduce from Lemma 2.8 that

∥Ds2
ω (|x|−γ ∗ |u|2)∥

L
ℓ1
r Lσ

ω
≲ ∥|x|−γ+ d

ℓ1Ds2
ω (|u|2)∥

L1
rL

d−1

d−1−(γ− d−1
σ − 1

ℓ1
)
,1

ω

. (2.10)

To estimate the right hand side of (2.10), we utilize Leibniz rule and Sobolev em-

bedding in the Lorentz spaces on the unit sphere:

∥Ds
ω(uū)∥Lp,1

ω
≲ ∥Ds

ωu∥Lp0,2
ω

∥u∥
L
p1,2
ω
, (2.11)

for s ∈ (0, 1), p, p0, p1 ∈ (1,∞) and 1/p = 1/p0 + 1/p1.

∥u∥Lp,2
ω

≲ ∥Ds
ωu∥L2

ω
, (2.12)

for −d−1
p

= s− d−1
2
, s > 0. The above two estimates are verified as follows. From the

arguments in Appendix [27] and the general Marcinkiewicz interpolation theorem

(Theorem 5.3.2 in [4]), (2.11) and (2.12) are easily transferred from the Euclidean

case. Thus it suffices to prove the followings:

∥|∇|s(uū)∥Lp,1
x

≲ ∥|∇|su∥
L
p0,2
x

∥u∥
L
p1,2
x
, (2.13)

for s ∈ (0, 1), p, p0, p1 ∈ (1,∞) and 1/p = 1/p0 + 1/p1, and

∥u∥Lq,2
x

≲ ∥|∇|su∥L2
x
, (2.14)

for −d
q
= s− d

2
, s > 0. (2.13) is immediately verified by the proof of Leibniz rule in

the Lebesgue spaces (see Proposition 3.3 in [12]), the simple inequality

∥uū∥Lp,1
x

≲ ∥u∥
L
p0,2
x

∥u∥
L
p1,2
x
,
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and the general Marcinkiewicz interpolation theorem. Similarly, (2.14) is proved by

(real) interpolating Sobolev embedding in the Lebesgue spaces. By using (2.11) and

(2.12), we get

∥|x|2(s−δ)Ds2
ω (|u|2)∥

L1
rL

d−1

d−1−(γ− d−1
σ − 1

ℓ1
)
,1

ω

≲ ∥|x|s−δDs2
ω u∥

L2
rL

2(d−1)

d−1−(γ− d−1
σ − 1

ℓ1
−s2)

,2

ω

∥|x|s−δu∥
L2
rL

2(d−1)

d−1−(γ− d−1
σ − 1

ℓ1
+s2)

,2

ω

≲ ∥|x|s−δD
(s2+γ− d−1

σ
− 1

ℓ1
)/2

ω u∥2L2
x
.

Then we have

∥Ds2
ω (|x|−γ ∗ |u|2)∥

L
q1
IT

L
ℓ1
r Lσ

ω
≲ ∥|x|s−δD

− 3
2
s+ 3

2
δ

ω u∥2
L
2q1
IT

L2
x

≲ T θ∥|x|s−δD
− 3

2
s+ 3

2
δ

ω u∥2
L

4q1
2−q1(2+2s−γ)
IT

L2
x

.

This completes (2.8) if d ≥ 3.

(II) (d = 2)

Next, we assume d = 2 and establish (2.8). The strategy is almost the same as in

the case of d ≥ 3 above. We set

s3 =
δ

2
, s4 = −3

2
s+

δ

2
.

We deduce from Lemma 2.7 that

∥|x|−s−δ|∇|sDs3
ω [U(t)φ]∥Lq

tL
ℓ
rL

σ0
ω

≲ ∥φ∥L2
x
.

By the similar argument as above, we get

∥|∇|sD− 3
2
s+δ

ω U(t)Φt∥L∞
IT

L2
x
≲ ∥|x|s+δDs4

ω F (u)∥
Lq′
IT

Lℓ′
r L

σ′
0

ω

≲ ∥|x|2δDs4
ω (|x|−γ ∗ |u|2)∥

L
q1
IT

L
ℓ1
r Lσ

ω
∥|x|s−δD

−1+ 2
σ0

+ 1
σ

ω u∥
L
q2
IT

L
ℓ2
r L

σ0
ω
.

It follows from Lemma 2.8 that

∥|x|2δDs4
ω (|x|−γ ∗ |u|2)∥

L
ℓ1
r Lσ

ω
≲ ∥|x|−γ+ 2

ℓ1
+2δ

Ds4
ω (|u|2)∥

L1
rL

1

1−(γ− 1
σ− 1

ℓ1
)
,1

ω

. (2.15)

By Leibniz rule and Sobolev embedding in the Lorentz spaces on the unit sphere,

we have

∥|x|2(s−δ)Ds4
ω (|u|2)∥

L1
rL

1

1−(γ− 1
σ− 1

ℓ1
)
,1

ω

≲ ∥|x|s−δD
(s4+γ− 1

σ
− 1

ℓ1
)/2

ω u∥2L2
x
.
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Then we have

∥|x|2δDs4
ω (|x|−γ ∗ |u|2)∥

L
q1
IT

L
ℓ1
r Lσ

ω
≲ ∥|x|s−δD

− 3
2
s+ 3

2
δ

ω u∥2
L
2q1
IT

L2
x

≲T θ∥|x|s−δD
− 3

2
s+ 3

2
δ

ω u∥2
L

4q1
2−q1(2+2s−γ)
IT

L2
x

.

This completes (2.8).

Remark 2.4. It should be noted that to get the estimate (2.15) above we need the

condition 1/ℓ1 > γ − 1. This causes the exception of d = 2 in the scaling critical

(s = sc) results, that is Theorems 2.10 and 2.11.

(III) Lastly, we prove

W1(U(t)Φt) +W2(U(t)Φt) ≲ T θ[W1(u)]
2W2(u), (2.16)

which completes the lemma. Here we only consider the case for d ≥ 3. The same

method can be utilized for d = 2. Since

− d

2q1
+

2 + 2s− γ

4
d < s− δ < − 1

2q1
+

2 + 2s− γ

4
,

we deduce from Lemma 2.6 (ii) that

∥|x|s−δ|∇|−sD
δ
2
ω [U(t)φ]∥

L

4q1
2−q1(2+2s−γ)
t L2

x

≲ ∥φ∥L2
x
. (2.17)

Applying Lemma 2.9 to (2.9) and (2.17), we have

∥|x|s−δ|∇|−sD
δ
2
ωU(t)Φt∥

L

4q1
2−q1(2+2s−γ)
IT

L2
x

≲ ∥|x|s|∇|−sD−s1
ω F (u)∥

Lq′
IT

Lℓ′
r L

σ′
0

ω

,

which implies

∥|x|s−δD
− 3

2
s+ 3

2
δ

ω U(t)Φt∥
L

4q1
2−q1(2+2s−γ)
IT

L2
x

≲ ∥|x|sDs2
ω F (u)∥

Lq′
IT

Lℓ′
r L

σ′
0

ω

.

As above, this estimate implies

W1(U(t)Φt) ≲ T θ[W1(u)]
2W2(u).

For W2, since 2 ≤ σ0 ≤ ℓ2 ≤ ∞,

d

2

(
1

2
− 1

σ0

)
≤ 1

q2
≤ 1

2
+

1

ℓ2
− 1

σ0
,

d2

4
− d

q2
− d2

2σ0
< s <

d

4
− 1

q2
− d− 1

ℓ2
+
d− 2

2σ0
,

we deduce from Lemma 2.7 that

||x|s|∇|−sD
δ
2
− δ

d
ω [U(t)φ]∥

L
q2
t L

ℓ2
r L

σ0
ω

≲ ∥φ∥L2
x
. (2.18)
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Applying Lemma 2.9 to (2.9) and (2.18), we have

||x|sD− 3
2
s+ 3

2
δ− δ

d
ω U(t)Φt∥Lq2

IT
L
ℓ2
r L

σ0
ω

≲ ∥|x|sDs2
ω F (u)∥

Lq′
IT

Lℓ′
r L

σ′
0

ω

,

which gives

W2(U(t)Φt) ≲ T θ[W1(u)]
2W2(u).

This completes (2.17). □

Proof of Theorem 2.13. We prove the existence by Banach’s fixed-point theorem.

Fix a positive constant ρ and a positive time T , to be chosen later, and we define a

complete metric space (Xρ,T , dX) by

Xρ,T ={u ∈ C([0, T ]; ḢsH
− 3

2
s+δ

ω (Rd)); ∥u∥
L∞
IT

ḢsH
− 3

2 s+δ
ω

+W1(u) +W2(u) ≤ ρ},

dX(u, v) = ∥u− v∥
L∞
IT

ḢsH
− 3

2 s+δ
ω

+W1(u− v) +W2(u− v),

and the mapping

NX(u) = U(t)(φ+ Φt) on Xρ,T .

Our strategy is to prove that NX is a contraction mapping on Xρ,T for sufficiently

small T .

It follows from ∥U(t)φ∥L∞
t L2

x
= ∥φ∥L2

x
, (2.17) and (2.18) (if d = 2, (2.17) and

||x|s−δ|∇|−sD
δ
2
ω [U(t)φ]∥Lq2

t L
ℓ2
r L

σ0
ω

≲ ∥φ∥L2
x
) that there exists a positive constant C1

such that

∥U(t)φ∥
L∞
IT

ḢsH
− 3

2 s+δ
ω

+W1(U(t)φ) +W2(U(t)φ) ≤ C1∥φ∥
ḢsH

− 3
2 s+δ

ω

. (2.19)

For u ∈ Xρ,T , we deduce from Lemma 2.14 that there exists a positive constant C2

such that

∥U(t)Φt∥
L∞
IT

ḢsH
− 3

2 s+δ
ω

+W1(U(t)Φt) +W2(U(t)Φt) ≤ C2T
θ[W1(u)]

2W2(u)

≤ C2T
θρ3. (2.20)

For u, v ∈ Xρ,T , we have

dX(NX(u),NX(v)) =∥U(t)(Φt(u)− Φt(v))∥
L∞
IT

ḢsH
− 3

2 s+δ
ω

+W1(U(t)(Φt(u)− Φt(v))) +W2(U(t)(Φt(u)− Φt(v))).

By the arguments similar to the proof of Lemma 2.14, we have

dX(NX(u),NX(v)) ≲ ∥|x|sDs2
ω (F (u)− F (v))∥

Lq′
IT

Lℓ′
r L

σ′
0

ω

.
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It follows from the following equality

F (u)− F (v) =λ(|x|−γ ∗ |u|2)u− λ(|x|−γ ∗ |v|2)v

=λ(|x|−γ ∗ (u(ū− v̄) + (u− v)v̄))u+ λ(|x|−γ ∗ |v|2)(u− v),

and the same estimates as in Lemma 2.14 that

dX(NX(u),NX(v))

≲ T θ(W1(u)+W2(u) +W1(v) +W2(v))
2(W1(u− v) +W2(u− v)).

Then there exists a positive constant C3 such that

dX(NX(u),NX(v)) ≤ C3T
θρ2dX(u, v). (2.21)

Now we define C = max(C1, C2, C3) and choose ρ, T such that

C∥φ∥
ḢsH

− 3
2 s+δ

ω

≤ ρ

2
, CT θρ2 ≤ 1

2
.

Then, from (2.19)-(2.21), NX is a contraction mapping on Xρ,T . □

2.4. (PNLS). In this section, we establish Theorem 2.5. We then consider the

problem in the scaling critical homogeneous Sobolev space Ḣsc,p(Rd). Let us recall

that sc,p = d
2
− 2

p−1
. For convenience, we restate Theorem 2.5 with the explicit

exponents.

Theorem 2.15. Let 3 ≤ d ≤ 14, p0 < p < 1 + 4/d where p0 is a unique solution of1 + 4
d+1

≤ p0 < 1 + 4
d
,

2p30 + 6(d− 2)p20 + (d2 − 13d+ 10)p0 − d(d− 3) = 0,

and suppose that δ = δ(d, p) is sufficiently small. Then there exists a positive con-

stant ε = ε(d, p) such that if φ ∈ Ḣsc,pHs0
ω (Rd) satisfies ∥|∇|sc,pDs0

ω φ∥L2
x
< ε where

s0 =

 1
p−1

(7− 3p) + δ (if d = 3),

1
2(p−1)2

(−(d+ 1)p2 + (d+ 7)p− 2) + δ (if d ≥ 4),

then (2.3) has a unique solution

u ∈ Cb(R; Ḣsc,pHs0
ω ) ∩ Lpq′(R; |x|αLpℓ′Hs0,σ

ω )
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where

α =

7
p
− 4

p−1
+ 2(p−1)

7p
δ (if d = 3),

d
2
− 2

p−1
+ (d−4)(p−1)

5p
δ (if d ≥ 4),

1

q
=


p−1
7
δ (if d = 3),

1− p
2
+ 2(p−1)

5
δ (if d ≥ 4),

1

ℓ
=

2− 2
p−1

(if d = 3),

1− 4
d
+ p

2
+ p

d
− 4

d(p−1)
+ p−1

5
δ − 8(p−1)

5d
δ (if d ≥ 4),

1

σ
=

−3
2
+ 4

p
+ 4(p−1)

7p
δ (if d = 3),

1
2d(p−1)

(−dp− 2p+ d+ 10) + 8(p−1)
5dp

δ (if d ≥ 4).

Similarly to (HNLS) case, by using weighted Strichartz estimates, we establish

the following crucial estimate.

Lemma 2.16. Let 3 ≤ d ≤ 14, pδ < p < 1 + 4/d where pδ satisfies the following:

(if d = 3) pδ = 2 + (pδ − 1)

√
3

14
δ,

(if d ≥ 4)

1 +
4

d+ 1
< pδ < 1 +

4

d
,

2p3δ + 6(d− 2)p2δ + (d2 − 13d+ 10)pδ − d(d− 3)

=
2(p− 1)2

5
(−3dpδ + 8pδ + 8d− 8)δ.

Then we have

∥|∇|sc,pDs0
ω U(t)Φt,p∥L∞

t L2
x
+ ∥|x|αDs0

ω U(t)Φt,p∥Lpq′
t Lpℓ′

r Lσ
ω

≲ ∥|x|αDs0
ω u∥

p

Lpq′
t Lpℓ′

r Lσ
ω

,

where the exponents q, ℓ, σ, s0, α are same as in Theorem 2.15.

Remark 2.5. Since δ is sufficiently small, it is easy to see that the above pδ exists

and is unique.

Proof. (I) (d = 3)

First, we assume d = 3 and prove

∥|∇|sc,pDs0
ω U(t)Φt,p∥L∞

t L2
x
≲ ∥|x|αDs0

ω u∥
p

Lpq′
t Lpℓ′

r Lσ
ω

. (2.22)

Let us set that

c0 = −3 +
4

p− 1
− 2

7
(p− 1)δ,

s1 =
p− 1

7
δ, s2 =

1

p− 1
(7− 3p) +

8− p

7
δ.
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Note that s1 + s2 = s0. Since 2 ≤ ℓ ≤ q ≤ ∞ and

−3

q
< c0 < 1− 1

q
− 2

ℓ
,

we deduce from Lemma 2.7 that

∥|x|c0 |∇|sc,pDs1
ω [U(t)φ]∥Lq

tL
ℓ
rL

2
ω
≲ ∥φ∥L2

x
.

By the dual estimate, we have

∥
∫ ∞

−∞
U(−t′)G(u)(t′)dt′∥L2

x
≲ ∥|x|−c0 |∇|−sc,pD−s1

ω G(u)∥
Lq′
t Lℓ′

r L2
ω
. (2.23)

By applying Lemma 2.9 to ∥U(t)φ∥L∞
t L2

x
= ∥φ∥L2

x
and (2.23), we have

∥|∇|sc,pDs1+s2
ω U(t)Φt,p∥L∞

t L2
x
≲ ∥|x|−c0Ds2

ω (|u|p−1u)∥
Lq′
t Lℓ′

r L2
ω
.

Since 0 ≤ s2 ≤ min([p](= 2), 1
p−1

(2p
σ
−1)), where [p] denotes the integral part of p, it

follows from Moser type estimates and Sobolev embedding on the unit sphere that

∥Ds2
ω (|u|p−1u)∥L2

ω
≲ ∥Ds2

ω u∥
p

L
σ0
ω

≲ ∥Ds0
ω u∥

p
Lσ
ω
.

Here we have used the exponent

1

σ0
=

1

2p
(1 + (p− 1)s2).

This gives

∥|∇|sc,pDs0
ω U(t)Φt,p∥L∞

t L2
x
≲ ∥|x|−

c0
p Ds0

ω u∥
p

Lpq′
t Lpℓ′

r Lσ
ω

,

which completes the proof of (2.22) if d = 3.

(II) (d ≥ 4)

Next we assume d ≥ 4 and obtain (2.22). Similarly to the d = 3 case, we set

c1 = −d
2
p+ 2 +

1

p− 1
− (d− 4)(p− 1)

5
δ,

s1 =
p

d
− d

2
+

3

2
− 4

d
+

2

p− 1
− 4

n(p− 1)
+

3(p− 1)

5
δ − 8(p− 1)

5d
δ,

s2 =
1

p− 1

(
−p

2

d
− 2p+

5

d
p− d

2
+

5

2
+

2

p− 1

)
+

8− 3p

5
δ +

8(p− 1)

5d
δ.

Note that s1 + s2 = s0. Since 2 ≤ ℓ ≤ q ≤ ∞ and

−d
q
< c1 <

d− 1

2
− 1

q
− d− 1

ℓ
,

we deduce from Lemma 2.7 that

∥|x|c1 |∇|sc,pDs1
ω [U(t)φ]∥Lq

tL
ℓ
rL

2
ω
≲ ∥φ∥L2

x
.
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By the dual estimate, we have

∥
∫ ∞

−∞
U(−t′)G(u)(t′)dt′∥L2

x
≲ ∥|x|−c1 |∇|−sc,pD−s1

ω G(u)∥
Lq′
t Lℓ′

r L2
ω
, (2.24)

which gives

∥|∇|sc,pDs1+s2
ω U(t)Φt,p∥L∞

t L2
x
≲ ∥|x|−c1Ds2

ω (|u|p−1u)∥
Lq′
t Lℓ′

r L2
ω
.

Since 0 ≤ s2 ≤ min
(
[p](= 1), d−1

p−1

(
p
σ
− 1

2

))
, it follows from Moser type estimates and

Sobolev embedding on the unit sphere that

∥Ds2
ω (|u|p−1u)∥L2

ω
≲ ∥Ds0

ω u∥
p
Lσ
ω
,

which completes (2.22).

(III)

Lastly, we establish

∥|x|αDs0
ω U(t)Φt,p∥Lpq′

t Lpℓ′
r Lσ

ω
≲ ∥|x|αDs0

ω u∥
p

Lpq′
t Lpℓ′

r Lσ
ω

. (2.25)

To avoid redundancy, here we assume d ≥ 4. We can prove (2.25) in case of d = 3

by the same way as below. Since 2 ≤ σ ≤ pℓ′ ≤ ∞,

d

2

(
1

2
− 1

σ

)
≤ 1

pq′
≤ 1

2
+

1

pℓ′
− 1

σ
,

d2

4
− d

pq′
− d2

2σ
<α <

d

4
− 1

pq′
− d− 1

pℓ′
+
d− 2

2σ
,

we deduce from Lemma 2.7 that

∥|x|α|∇|−sc,pU(t)φ∥
Lpq′
t Lpℓ′

r Lσ
ω
≲ ∥φ∥L2

x
. (2.26)

By applying Lemma 2.9 to (2.24) and (2.26), we have

∥|x|αDs0
ω U(t)Φt,p∥Lpq′

t Lpℓ′
r Lσ

ω
≲ ∥|x|−c1Ds2

ω (|u|p−1u)∥
Lq′
t Lℓ′

r L2
ω
.

By the same argument as above, this completes (2.25). □

Proof of Theorem 2.15. Obviously, p0 in Theorem 2.15 is less than pδ in Lemma 2.16,

and if δ = δ(d, p) > 0 is sufficiently small then pδ is sufficiently close to p0. Thus

it suffices to prove Theorem 2.15 for any p such that pδ < p < 1 + 4/d. Similarly

to the (HNLS) case, we prove Theorem 2.15 by the contraction mapping theorem.

Let the exponents s0, s1, α, c0, c1 be the same as in Lemma 2.16. Fix a positive

constant ε, to be chosen later, and we define a complete metric space (Xε, dX) by

Xε ={u ∈ C(R; Ḣsc,pHs0
ω ); ∥u∥L∞

t Ḣsc,pH
s0
ω
+ ∥|x|αDs0

ω u∥Lpq′
t Lpℓ′

r Lσ
ω
≤ ε},

dX(u, v) = ∥u− v∥L∞
t Ḣsc,p + ∥|x|α(u− v)∥

Lpq′
t Lpℓ′

r Lσ
ω
,
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and the mapping

NX(u) = U(t)(φ+ Φt,p) on Xε.

We show that NX is a contraction mapping on Xε for sufficiently small ε. It follows

from (2.26) and Lemma 2.16 that there exists a positive constant C such that

∥U(t)φ∥L∞
t Ḣsc,pH

s0
ω
+ ∥|x|αDs0

ω U(t)φ∥Lpq′
t Lpℓ′

r Lσ
ω
≤ C∥φ∥Ḣsc,pH

s0
ω
,

∥U(t)Φt,p∥L∞
t Ḣsc,pH

s0
ω
+ ∥|x|αDs0

ω U(t)Φt,p∥Lpq′
t Lpℓ′

r Lσ
ω
≤

C∥|x|αDs0
ω u∥

p

Lpq′
t Lpℓ′

r Lσ
ω

.

Next, we prove

dX(NX(u),NX(v))

≤ (∥|x|αDs0
ω u∥

p−1

Lpq′
t Lpℓ′

r Lσ
ω

+ ∥|x|αDs0
ω v∥

p−1

Lpq′
t Lpℓ′

r Lσ
ω

)dX(u, v) (2.27)

for any u, v ∈ Xε.

Similarly to the proof of Lemma 2.16, we have

dX(NX(u),NX(v))

≲ ∥|∇|sc,p(
∫ t

0

U(t− t′)(|u(t′)|p−1u(t′)− |v(t′)|p−1v(t′))dt′)∥L∞
t L2

x

+ ∥|x|α(
∫ t

0

U(t− t′)(|u(t′)|p−1u(t′)− |v(t′)|p−1v(t′))dt′)∥
Lpq′
t Lpℓ′

r Lσ
ω

≲ ∥|x|pαD−s1
ω (|u|p−1u− |v|p−1v)∥

Lq′
t Lℓ′

r L2
ω
.

Note that pα satisfies

pα =

−c0 (if d = 3),

−c1 (if d ≥ 4).

By Sobolev embedding on the unit sphere, we have

∥|x|pαD−s1
ω (|u|p−1u− |v|p−1v)∥

Lq′
t Lℓ′

r L2
ω
≲ ∥|x|pα(|u|p−1 + |v|p−1)(u− v)∥

Lq′
t Lℓ′

r L
σ0
ω

where 1
σ0

= 1
2
+ s1

d−1
. By Holder’s inequality with

1

σ0
=

(
1

2
+

s1
d− 1

− 1

σ

)
+

1

σ
,
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we have

∥|x|pα(|u|p−1 + |v|p−1)(u− v)∥Lσ0
ω

= ∥|x|(p−1)α(|u|p−1 + |v|p−1)|x|α(u− v)∥Lσ0
ω

≲ ∥|x|(p−1)α(|u|p−1 + |v|p−1)∥Lσ1
ω
∥|x|α(u− v)∥Lσ

ω

≲ (∥|x|αu∥p−1

L
σ1(p−1)
ω

+ ∥|x|αv∥p−1

L
σ1(p−1)
ω

)∥|x|α(u− v)∥Lσ
ω
,

where
1

σ1
=

1

2
+

s1
d− 1

− 1

σ
.

Since

− d− 1

σ1(p− 1)
= s0 −

d− 1

σ
,

Sobolev embedding on the unit sphere gives

∥|x|αu∥
L
σ1(p−1)
ω

≲ ∥|x|αDs0
ω u∥Lσ

ω
,

which completes (2.27).

From (2.27), there exists a positive constant C ′ such that

dX(NX(u),NX(v)) ≤ C ′εp−1dX(u, v).

Now we choose ε and an initial data φ such that

max(C,C ′)εp−1 ≤ 1

2
, C∥φ∥Ḣsc,pH

s0
ω

≤ ε

2
,

then the functional NX becomes a contraction mapping on Xε. □

2.5. (NLS) with inhomogeneous nonlinearities. We consider the Cauchy prob-

lem of nonlinear Schrödinger equations with inhomogeneous nonlinearities:iut(t, x) + ∆u(t, x) = w(x)|u(t, x)|p−1u(t, x), in R× Rd,

u(0, x) = φ(x), in Rd.
(2.28)

Here we assume that |w(x)| ≲ |x|−a. Note that if |w(x)| = |x|−a, the scale critical

index for (2.28) is

sc,a =
d

2
− 2− a

p− 1
.

We prove that there exists a solution of (2.28) for sc,a < 0 and φ ∈ Ḣsc,a(Rd).

In [8], the small data global well-posedness was established for each a and p if an

initial data φ is radially symmetric or under some angular regularity assumption.

The following theorem shows that we can get the small data global well-posedness

without angular conditions if the exponent a is positive.
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Theorem 2.17. Let d ≥ 3, 0 < a < 2 andp0 < p < 1 + 4−2a
d

(If 0 < a < 1 + 2d−1
d2−4

),

1 + 4−2a
d+1

< p < 1 + 4−2a
d

(If 1 + 2d−1
d2−4

≤ a < 2),

where p0 ∈ (1, 1 + 4−2a
d

) satisfies

d(d− 2)p0
2 − 2(d− 4− 2ad+ 4a)p0 − d2 − 4d+ 4a = 0.

Then there exists a positive constant ε = ε(d, p, a) such that if φ ∈ Ḣsc,a satisfies

∥|∇|sc,aφ∥L2
x
< ε, then the integral equation

u(t, x) = U(t)(φ+ Φt,a)(x), (2.29)

where

Φt,a = Φt,a(u) = −i
∫ t

0

U(−t′)(w(x)|u(t′)|p−1u(t′))dt′,

has a unique solution

u ∈ C(R; Ḣsc,a) ∩ Lpq′(R; |x|−
1
p
(d+a− 2−a

p−1
− d+2

q
)Lpq′).

Here q satisfies the condition in Lemma 2.19 below.

Remark 2.6. (i) It should be noted that if a is sufficiently small then p0 is sufficiently

close to 1 + 4−2a
d

.

(ii) If we try to estimate the nonlinearity w(x)|u|p−1u with a < 0, loss of regularity

on the sphere arises and we need some angular regularity condition for φ to get the

well-posedness. Precisely, the estimate (2.30) in Corollary 2.18 below for positive

values of d does not hold. Therefore, we assume a > 0 in Theorem 2.17.

Since we do not have to mind an angular condition, the proof of Theorem 2.17 is

simple relatively. First we restate Lemma 2.7 with q = ℓ = σ for convenience.

Corollary 2.18. Let d ≥ 2 and

d

2(d+ 2)
≤ 1

q
≤ 1

2
,

d2

4
− d2 + 2d

2q
< w <

d

4
− d+ 2

2q
.

Then we have

∥|x|w|∇|w− d
2
+ d+2

q [U(t)φ]∥Lq
tL

q
x
≲ ∥φ∥L2

x
. (2.30)

The following lemma can be established by simple calculation. We omit the

details.
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Lemma 2.19. Let d ≥ 3, 0 < a < 2 andp0 < p < 1 + 4−2a
d

(If 0 < a < 1 + 2d−1
d2−4

),

1 + 4−2a
d+1

< p < 1 + 4−2a
d

(If 1 + 2d−1
d2−4

≤ a < 2).
(2.31)

Then there exists q such that

max

(
d

2(d+ 2)
, 1− p

2

)
≤ 1

q
≤ min

(
1

2
, 1− d

2(d+ 2)
p

)
,

2

d2 − 4

(
d2

4
− d+

2− a

p− 1

)
<

1

q
<

2

d+ 2

(
d

4
p+

d− 2

2
+ a− 2− a

p− 1

)
.

Lemma 2.20. Let d ≥ 3, 0 < a < 2. Suppose that p and q satisfy the condition

(2.31) and the conditions in Lemma 2.19, respectively. Then we have

∥|∇|sc,aU(t)Φt,a∥L∞
t L2

x
+ ∥|x|−

a+c
p U(t)Φt,a∥Lpq′

t Lpq′
x

≲ ∥|x|−
a+c
p u∥p

Lpq′
t Lpq′

x

,

where c = d− 2−a
p−1

− d+2
q
.

Proof. (I) First, we prove

∥|∇|sc,aU(t)Φt,a∥L∞
t L2

x
≲ ∥|x|−

a+c
p u∥p

Lpq′
t Lpq′

x

. (2.32)

If 2
d2−4

(
d2

4
− d+ 2−a

p−1

)
< 1

q
, the following inequality

d2

4
− d2 + 2d

2q
< c <

d

4
− d+ 2

2q

holds. Then we deduce from Corollary 2.18 that

∥|x|c|∇|sc,aU(t)φ∥Lq
tL

q
x
≲ ∥φ∥L2

x
.

By the dual estimate, we have

∥
∫ ∞

−∞
U(−t′)(w(x)|u(t′)|p−1u(t′))dt′∥L2

x
≲ ∥|x|−c|∇|−sc,a(w(x)|u|p−1u)∥

Lq′
t Lq′

x
,

(2.33)

which means

∥|∇|sc,aU(t)Φt,a∥L∞
t L2

x
≲ ∥|x|−(a+c)|u|p−1u∥

Lq′
t Lq′

x

= ∥|x|−
a+c
p u∥p

Lpq′
t Lpq′

x

.

This completes the proof of (2.32).

(II) Next, we prove

∥|x|−
a+c
p U(t)Φt,a∥Lpq′

t Lpq′
x

≲ ∥|x|−
a+c
p u∥p

Lpq′
t Lpq′

x

.
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From the inequalities 1− p
2
≤ 1

q
≤ 1− d

2(d+2)
p and

1

q
<

2

d+ 2

(d
4
p+

d− 2

2
+ a− 2− a

p− 1

)
,

we have d
2(d+2)

≤ 1
pq′

≤ 1
2
and

d2

4
− d2 + 2d

2pq′
< −a+ c

p
<
d

4
− d+ 2

2pq′
.

Then we deduce from Corollary 2.18 that

∥|x|−
a+c
p |∇|−sc,aU(t)φ∥

Lpq′
t Lpq′

x
≲ ∥φ∥L2

x
. (2.34)

Applying Lemma 2.9 to (2.33) and (2.34), we have

∥|x|−
a+c
p U(t)Φt,a∥Lpq′

t Lpq′
x

≲ ∥|x|−cw(x)|u|p−1u∥
Lq′
t Lq′

x

≲ ∥|x|−
a+c
p u∥p

Lpq′
t Lpq′

x

.

This completes the proof. □

From Lemmas 2.19 and 2.20, Theorem 2.17 is established with the contraction

mapping argument. The way of the proof is the same as in that of Theorems 2.13

and 2.15. We leave the details to the readers.
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3. Well-posedness of the Klein-Gordon-Zakharov system in 2D

3.1. Introduction. We consider the Cauchy problem of the Klein-Gordon-Zakharov

system:

(∂2t −∆+ 1)u = −nu, (t, x) ∈ [−T, T ]× Rd,

(∂2t − c2∆)n = ∆|u|2, (t, x) ∈ [−T, T ]× Rd,

(u, ∂tu, n, ∂tn)|t=0 = (u0, u1, n0, n1)

∈ Hs+1(Rd)×Hs(Rd)× Ḣs(Rd)× Ḣs−1(Rd),

(3.1)

where u, n are real valued functions, 0 < c < 1. As a physical model, (3.1) describes

the interaction of the Langmuir wave and the ion acoustic wave in a plasma. The

condition 0 < c < 1, which plays an important role, comes from a physical phe-

nomenon. There are some works on the Cauchy problem of (3.1) in low regularity

Sobolev spaces. For 3D, Ozawa, Tsutaya and Tsutsumi [40] proved that (3.1) is

globally well-posed in the energy space H1(R3) × L2(R3) × L2(R3) × Ḣ−1(R3). As

they mentioned in [40] that if c = 1, (3.1) is very similar to the Cauchy problem of

the following quadratic derivative nonlinear wave equation.(∂2t −∆)u = uDu, (t, x) ∈ [−T, T ]× R3,

(u, ∂tu)|t=0 = (u0, u1) ∈ Hs+1(R3)×Hs(R3).
(3.2)

For s > 0, the local well-posedness of (3.2) was obtained from the iteration argument

by using the Strichartz estimates. As opposed to that, it is known that (3.2) is ill-

posed for s ≤ 0 by the works of Lindblad [32]-[33]. In [40], the authors showed

that the difference between the propagation speeds of the two equations in (3.1)

enable us to get the better result. That is, they applied the Fourier restriction norm

method and obtained the local well-posedness of (3.1) in the energy space, and then,

by the energy conservation law, they extended an existent time of a local solution

globally in time. After that, for d = 3, Guo, Nakanishi and Wang [17] proved the

scattering in the energy class with small, radial initial data. They applied the normal

form reduction and the radial Strichartz estimates. For 4 and higher dimensions, I.

Kato [25] recently proved that (3.1) is locally well-posed at s = 1/4 when d = 4 and

s = sc + 1/(d + 1) when d ≥ 5 where sc = d/2− 2 is the critical exponent of (3.1).

He also proved that if the initial data are radially symmetric then the small data

globally well-posedness can be obtained at the scaling critical regularity for d ≥ 4.

He utilized the U2, V 2 spaces introduced by Koch-Tataru [31]. As we mentioned

in Section 1, we will improve his results in Section 4. We would like to emphasize
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that the above results hold under the condition 0 < c < 1. Our aim in this section

is to get the local well-posedness of (3.1) at very low regularity s in 2 dimensions.

Hereafter we assume d = 2.

By the transformation u± := ω1u ± i∂tu, n± := n ± i(cω)−1∂tn, ω1 := (1 −
∆)1/2, ω := (−∆)1/2, (3.1) can be written as follows;.

(i∂t ∓ ω1)u± = ±(1/4)(n+ + n−)(ω
−1
1 u+ + ω−1

1 u−), (t, x) ∈ [−T, T ]× R2,

(i∂t ∓ cω)n± = ±(4c)−1ω|ω−1
1 u+ + ω−1

1 u−|2, (t, x) ∈ [−T, T ]× R2,

(u±, n±)|t=0 = (u±0, n±0) ∈ Hs(R2)× Ḣs(R2).

(3.3)

We state our main result.

Theorem 3.1. Let −3/4 < s < 0. Then (3.3) is locally well-posed in Hs(R2) ×
Ḣs(R2).

We make a comment on Theorem 3.1. Applying the iteration argument by the

usual Strichartz estimates, we get the local well-posedness of (3.3) for −1/4 ≤ s.

This suggests that if c = 1 the minimal regularity such that the well-posedness of

(3.3) holds seems to be −1/4. If we utilize the condition 0 < c < 1 in the same

way as in [40] and [25] with minor modification, we can show that (3.3) is local

well-posed only for s > −1/2. We find that the known arguments is not enough to

get the well-posedness for s ≤ −1/2 which is the most difficult case. To overcome

this, we employ a new estimate which was introduced in [3] and applied to Zakharov

system in [1] and [2]. Zakharov system consists of two equations, wave equation and

Schrödinger equation;(i∂t +∆)u = nu, (t, x) ∈ R× Rd,

(∂2t −∆)n = ∆|u|2, (t, x) ∈ R× Rd.
(3.4)

Roughly speaking, comparing (3.1) and (3.4), the two systems have the similar

structure, which suggests that we might get the well-posedness of (3.3) for s ≤ −1/2

in the same way as in [1] and [2].

We will prove Theorem 3.1 by the iteration argument in the spaces Xs, b
± (R3) ×

Xs, b
±, c(R3). This spaces are defined as follows;

Let N , L ≥ 1 be dyadic numbers. We define the dyadic decompositions of R3.

K±
N,L := {(τ, ξ) ∈ R3|N ≤ ⟨ξ⟩ ≤ 2N,L ≤ ⟨τ ± |ξ|⟩ ≤ 2L},

K±,c
N,L := {(τ, ξ) ∈ R3|N ≤ ⟨ξ⟩ ≤ 2N,L ≤ ⟨τ ± c|ξ|⟩ ≤ 2L}.
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By using K±
N,L, K

±,c
N,L, we define the dyadic decomposition in Fourier side;

PK±
N,L

:= F−1
t, xχK±

N,L
Ft, x, PK±,c

N,L
:= F−1

t, xχK±,c
N,L

Ft, x.

We now introduce the solution spaces. Let s, b ∈ R. We define Xs, b
± (R3) and

Xs, b
±, c(R3) as follows;

Xs, b
± (R3) := {f ∈ S ′(R3) | ∥f∥Xs, b

±
<∞},

Xs, b
±, c(R3) := {f ∈ S ′(R3) | ∥f∥Xs, b

±, c
<∞},

∥f∥Xs,b
±

=

(∑
N,L

N2sL2b∥PK±
N,L
f∥2L2

x,t

)1/2

,

∥f∥Xs, b
±, c

=

(∑
N,L

N2sL2b∥PK±,c
N,L
f∥2L2

x,t

)1/2

.

The key estimates to prove Theorem 3.1 are the following.

Theorem 3.2. For any s ∈ (−3/4, 0), there exist b ∈ (1/2, 1) and C which depend

on c such that

∥u(ω−1
1 v)∥Xs, b−1

±2

≤ C∥u∥Xs, b
±0, c

∥v∥Xs, b
±1

, (3.5)

∥ω1((ω
−1
1 u)(ω−1

1 v))∥Xs, b−1
±0, c

≤ C∥u∥Xs, b
±1

∥v∥Xs, b
±2

. (3.6)

regardless of the choice of signs ±j.

Remark 3.1. In fact, the bilinear estimates naturally derived from (3.3) are slightly

different from (3.5)-(3.6). They are described as follows;

∥u(ω−1
1 v)∥Xs, b−1

±2

≤ C∥ωsu∥X0, b
±0, c

∥v∥Xs, b
±1

, (3.7)

∥ωs+1((ω−1
1 u)(ω−1

1 v))∥X0, b−1
±0, c

≤ C∥u∥Xs, b
±1

∥v∥Xs, b
±2

. (3.8)

It is easily confirmed that (3.5) and (3.6) are strict compared with (3.7) and (3.8),

respectively. We also mention that it might be natural that we use ⟨τ ± ⟨ξ⟩⟩ instead
of ⟨τ ± |ξ|⟩ in the definition of K±

N,L. As was seen in [40], these two weights are

equivalent and therefore Xs, b
± does not depend on the choice of them in the definition

of K±
N,L.

Once Theorem 3.2 is verified, we can obtain Theorem 3.1 by the iteration argu-

ment given in [15] and many other papers. For example, see [30] and [45]. Therefore

we focus on the proof of Theorem 3.2 in this section.

The sections are organized as follows. In Section 3.2, we introduce some funda-

mental estimates and property of the solution spaces as preliminary. In Section 3.3,
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we show (3.5) and (3.6) with ±1 = ±2 which is easier case compared to ±1 ̸= ±2.

Section 3.4 is devoted to the proof of (3.5) and (3.6) with ±1 ̸= ±2, and complete

the proof of Theorem 3.2.

3.2. Preliminaries. We first observe that fundamental properties ofXs, b
± andXs, b

±, c.

A simple calculation gives the followings;

(i) Xs, b
± = Xs, b

∓ , Xs, b
±, c = Xs, b

∓, c.

(ii) (Xs, b
± )∗ = X−s,−b

∓ , (Xs, b
±, c)

∗ = X−s,−b
∓, c ,

for s, b ∈ R. Next we define the angular decomposition of R3 in frequency. For a

dyadic number A ≥ 64 and an integer j ∈ [−A, A−1], we define the sets {DA
j } ⊂ R3

as follows;

DA
j =

{
(τ, |ξ| cos θ, |ξ| sin θ) ∈ R× R2 | θ ∈

[ π
A
j,

π

A
(j + 1)

] }
.

For any function u : R3 → C, {DA
j } satisfy

R3 =
∪

−A≤j≤A−1

DA
j , u =

A−1∑
j=−A

χDA
j
u a.e.

Lastly we introduce the useful two estimates which are called the bilinear Strichartz

estimates. The first one holds true regardless of c. As opposed to that, the second

one is given by using the condition 0 < c < 1. The first estimate is obtained by the

same argument as in the proof of Theorem 2.1 in [42]. We omit the proof.

Proposition 3.3 (Theorem 2.1. [42]).

∥P
K

±0
N0,L0

(K
±0,c
N0,L0

)
((P

K
±1
N1,L1

(K
±1,c
N1,L1

)
f)(P

K
±2
N2,L2

(K
±2,c
N2,L2

)
g))∥L2

x,t

≲ (N012
minL

12
min)

1/2(N12
minL

12
max)

1/4∥f∥L2
x,t
∥g∥L2

x,t
, (3.9)

regardless of the choice of signs ±j. Here N
012
min := min(N0, N1, N2), and N

12
min, L

12
min,

L12
max are defined similarly.

Proposition 3.4.

∥P
K

±0
N0,L0

((P
K

±1,c
N1,L1

f)(P
K

±2
N2,L2

g))∥L2
x,t

≲ (N012
minL1L2)

1/2∥f∥L2
x,t
∥g∥L2

x,t
(3.10)

holds regardless of the choice of ±j.

Proof. Let A = 210(1− c)−1/2. From Plancherel theorem, we observe that

∥P
K

±0
N0,L0

(
(P

K
±1,c
N1,L1

f)(P
K

±2
N2,L2

g)
)
∥L2

x,t

∼ ∥χ
K

±0
N0,L0

((
χ
K

±1,c
N1,L1

f̂
)
∗
(
χ
K

±2
N2,L2

ĝ
))

∥L2
ξ,τ

(3.11)
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where ∗ denotes the convolution of R3. It follows from the finiteness of A and

ĝ =
A−1∑
j=−A

χDA
j
ĝ a.e.

that we can replace ĝ with χDA
j
ĝ in (3.10) for fixed j. After applying rotation in

space, we may assume that j = 0. Also we can assume that there exists ξ′ ∈ R2

such that the support of χDA
j
ĝ is contained in the column

CN012
min

(ξ′) := {(τ, ξ) ∈ R3 | |ξ − ξ′| ≤ N012
min}.

We sketch the validity of the above assumption roughly. See [45] for more details. If

N2 ∼ N012
min the above assumption is harmless obviously. Therefore we may assume

that N0 = N012
min ≪ N2 or N1 = N012

min ≪ N2. Since both are treated similarly, we

here consider only the former case. Note that the condition N0 ≪ N2 means N2/2 ≤
N1 ≤ 2N2, otherwise (3.11) vanishes. We can choose the two sets {CN012

min
(ξ′k)}k and

{CN012
min

(ξ′′ℓ )}ℓ such that

#k ∼
(
N1

N0

)2

, suppχDA
0
ĝ ⊂

∪
k

CN012
min

(ξ′k), |ξ′k − ξ′k′ | ≥ N012
min for any k, k′,

#ℓ ∼
(
N1

N0

)2

, supp f̂ ⊂
∪
ℓ

CN012
min

(ξ′′ℓ ), |ξ′′ℓ − ξ′′ℓ′| ≥ N012
min for any ℓ, ℓ′,

where #k and #ℓ denote the numbers of k and ℓ, respectively. We see that for fixed

k, independently of N0, N1, N2, there is only a finite number of ℓ which satisfy∥∥∥∥χK
±0
N0,L0

((
χ
K

±1,c
N1,L1

∩C
N012
min

(ξ′k)
f̂

)
∗
(
χ
K

±2
N2,L2

∩C
N012
min

(ξ′′ℓ )∩D
A
0
ĝ

))∥∥∥∥
L2
ξ,τ

> 0,

and vice versa. This means that k and ℓ depend on each other. Once we obtain∥∥∥∥χK
±0
N0,L0

((
χ
K

±1,c
N1,L1

∩C
N012
min

(ξ′k)
f̂

)
∗
(
χ
K

±2
N2,L2

∩C
N012
min

(ξ′′
ℓ(k)

)∩DA
0
ĝ

))∥∥∥∥
L2
ξ,τ

≲ (N012
minL1L2)

1/2∥f∥L2
x,t
∥g∥L2

x,t

for fixed k, from Minkowski inequality and ℓ2 almost orthogonality, we confirm

∥χ
K

±0
N0,L0

((
χ
K

±1,c
N1,L1

f̂
)
∗
(
χ
K

±2
N2,L2

ĝ
))

∥L2
ξ,τ

≲
∑
k,ℓ

∥∥∥∥χK
±0
N0,L0

((
χ
K

±1,c
N1,L1

∩C
N012
min

(ξ′k)
f̂

)
∗
(
χ
K

±2
N2,L2

∩C
N012
min

(ξ′′
ℓ(k)

)∩DA
0
ĝ

))∥∥∥∥
L2
ξ,τ

≲(N012
minL1L2)

1/2
∑
k,ℓ

∥χC
N012
min

(ξ′k)
f̂∥L2

ξ,τ
∥χC

N012
min

(ξ′′
ℓ(k)

)ĝ∥L2
ξ,τ

≲(N012
minL1L2)

1/2∥f∥L2
x,t
∥g∥L2

x,t
,
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which verify the validity of the assumption. Hereafter, we call the above argument

“ℓ2 almost orthogonality”.

Now we turn to the proof of (3.10).

∥χ
K

±0
N0,L0

((
χ
K

±1,c
N1,L1

f̂
)
∗
(
χ
K

±2
N2,L2

∩DA
0 ∩C

N012
min

(ξ′)
ĝ

))
∥L2

ξ,τ

≲∥χ
K

±0
N0,L0

(τ, ξ)

∫ (
χ
K

±1,c
N1,L1

f̂
)
(τ − τ1, ξ − ξ1)

(
χ
K

±2
N2,L2

∩DA
0 ∩C

N012
min

(ξ′)
ĝ

)
(τ1, ξ1)dτ1dξ1∥L2

ξ,τ

≲∥χ
K

±0
N0,L0

(τ, ξ)

(∫
|f̂ |2(τ − τ1, ξ − ξ1)|ĝ|2(τ1, ξ1)dτ1dξ1

)1/2

(E(τ, ξ))1/2∥L2
ξ,τ

≲ sup
(τ,ξ)∈K±0

N0,L0

|E(τ, ξ)|1/2∥|f̂ |2 ∗ |ĝ|2∥1/2
L1
ξ,τ

≲ sup
(τ,ξ)∈K±0

N0,L0

|E(τ, ξ)|1/2∥f∥L2
x,t
∥g∥L2

x,t

where

E(τ, ξ) := {(τ1, ξ1) ∈ CN012
min

(ξ′) ∩DA
0 | ⟨τ − τ1 ± c|ξ − ξ1|⟩ ∼ L1, ⟨τ1 ± |ξ1|⟩ ∼ L2}.

Thus it suffices to show that

sup
τ,ξ

|E(τ, ξ)| ≲ N012
minL1L2. (3.12)

From ⟨τ − τ1 ± c|ξ − ξ1|⟩ ∼ L1 and ⟨τ1 ± |ξ1|⟩ ∼ L2, for fixed ξ1,

|{τ1 | (τ1, ξ1) ∈ E(τ, ξ)}| ≲ L12
min. (3.13)

It follows from (τ1, ξ1) ∈ DA
0 that

|∂1(τ ± |ξ1| ± c|ξ − ξ1|)| ≥
(ξ1)1
|ξ1|

− c

≥
(
(ξ1)1
|ξ1|

)2

− c

= 1− c−
(
(ξ1)2
|ξ1|

)2

≥ (1− c)/2, (3.14)

where (ξ1)1 is the first component of ξ1 and ∂1 is the derivative with respect to (ξ1)1.

Combining |τ ± |ξ1| ± c|ξ − ξ1|| ≲ L12
max with (3.14), for fixed (ξ1)2 we have

|{(ξ1)1 | (τ1, ξ1) ∈ E(τ, ξ)}| ≲ L12
max. (3.15)

Collecting (3.13), (3.15) and ξ1 ∈ CN012
min

(ξ′), we get (3.12). □



LOW REGULARITY WELL-POSEDNESS FOR NONLINEAR DISPERSIVE EQUATIONS 35

3.3. Proof of Theorem 3.2 for ±1 = ±2. In (3.5)-(3.6), replacing u and n with

its complex conjugates ū and v̄ respectively, we easily find that there is no difference

between the case (±0,±1,±2) and (∓0,∓1,∓2). Here ∓j denotes a different sign to

±j. Therefore we assume ±1 = − in (3.5)-(3.6) hereafter. By the dual argument,

we observe that

(3.5) ⇐⇒
∣∣∣∣∫ f(ω−1

1 g1)g2dtdx

∣∣∣∣ ≤ C∥f∥Xs, b
±0, c

∥g1∥Xs, b
−
∥g2∥X−s, 1−b

±2
.

⇐=
∑

Nj ,Lj(j=0,1,2)

∣∣∣∣N−1
1

∫
(PK±,c

N0,L0

f)(PK−
N1,L1

g1)(PK±
N2,L2

g2)dtdx

∣∣∣∣
≲ ∥f∥Xs, b

±0, c
∥g1∥Xs, b

−
∥g2∥X−s, 1−b

±2

.

⇐⇒

∑
N1

∑
1≤N0≲N1∼N2

+
∑
N0

∑
1≤N1≲N0∼N2

+
∑
N0

∑
1≤N2≲N0∼N1

 I1

≲ ∥f∥Xs, b
±0, c

∥g1∥Xs, b
−
∥g2∥X−s, 1−b

±2

, (3.16)

where

I1 :=
∑
Lj

∣∣∣∣N−1
1

∫
(P

K
±0,c
N0,L0

f)(PK−
N1,L1

g1)(PK
±2
N2,L2

g2)dtdx

∣∣∣∣ .
Similarly, (3.6) is verified by the following estimate.∑

N1

∑
1≤N0≲N1∼N2

+
∑
N0

∑
1≤N1≲N0∼N2

+
∑
N0

∑
1≤N2≲N0∼N1

 I2

≲ ∥f∥X−s, 1−b
±0, c

∥g1∥Xs, b
−
∥g2∥Xs, b

±2

, (3.17)

where

I2 :=
∑
Lj

∣∣∣∣N0N
−1
1 N−1

2

∫
(P

K
±0,c
N0,L0

f)(PK−
N1,L1

g1)(PK
±2
N2,L2

g2)dtdx

∣∣∣∣ .
We now try to establish (3.16) and (3.17). First we assume that ±2 = −. In

this case, we can obtain (3.16) and (3.17) by using the bilinear Strichartz estimates

Propositions 3.3, 3.4 and the following estimate:

Lemma 3.5. Let τ = τ1 + τ2, ξ = ξ1 + ξ2. Then we have

max(⟨τ ±0 c|ξ|⟩, ⟨τ1 − |ξ1|⟩, ⟨τ2 − |ξ2|⟩) ≳ max(|ξ1|, |ξ2|). (3.18)
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Proof.

max(⟨τ ±0 c|ξ|⟩, ⟨τ1 − |ξ1|⟩, ⟨τ2 − |ξ2|⟩) ≥ |τ ±0 c|ξ| − (τ1 − |ξ1|)− (τ2 − |ξ2|)|

≥ ||ξ1|+ |ξ2| − c|ξ||

≥ |ξ1|+ |ξ2| − c(|ξ1|+ |ξ2|)

= (1− c)(|ξ1|+ |ξ2|)

□

For simplicity, we use f±,c := PK±,c
N0,L0

f , g−k := PK−
Nk,Lk

g for k = 1, 2.

Theorem 3.6. For any s ∈ (−3/4, 0), there exists b ∈ (1/2, 1) such that for

f, g1, g2 ∈ S(R× R2), the following estimates hold:

∑
N1

∑
1≤N0≲N1∼N2

+
∑
N0

∑
1≤N1≲N0∼N2

+
∑
N0

∑
1≤N2≲N0∼N1

 I−1

≲ ∥f∥Xs, b
±, c

∥g1∥Xs, b
−
∥g2∥X−s, 1−b

−
, (3.19)∑

N1

∑
1≤N0≲N1∼N2

+
∑
N0

∑
1≤N1≲N0∼N2

+
∑
N0

∑
1≤N2≲N0∼N1

 I−2

≲ ∥f∥X−s, 1−b
±, c

∥g1∥Xs, b
−
∥g2∥Xs, b

−
, (3.20)

where

I−1 :=
∑
Lj

∣∣∣∣N−1
1

∫
(PK±,c

N0,L0

f)(PK−
N1,L1

g1)(PK−
N2,L2

g2)dtdx

∣∣∣∣ ,
I−2 :=

∑
Lj

∣∣∣∣N0N
−1
1 N−1

2

∫
(PK±,c

N0,L0

f)(PK−
N1,L1

g1)(PK−
N2,L2

g2)dtdx

∣∣∣∣ .
Proof. Since the proof of (3.20) is analogous to that of (3.19), we establish only

(3.19). From Lemma 3.5, it holds that L012
max ≳ N12

max. We decompose the proof into

the three cases:

(I) 1 ≤ N0 ≲ N1 ∼ N2, (II) 1 ≤ N1 ≲ N0 ∼ N2, (III) 1 ≤ N2 ≲ N0 ∼ N1.

First we consider the case (I). Considering that L012
max ≳ N12

max, we subdivide the

cases further:
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(Ia) N1 ≲ L0. We deduce from Hölder inequality and Proposition 3.3 that

∑
N1

∑
1≤N0≲N1∼N2

∑
Lj

∣∣∣∣N−1
1

∫
f±,cg−1 g

−
2 dtdx

∣∣∣∣
≲
∑
N1

∑
1≤N0≲N1∼N2

∑
Lj

N−1
1 ∥f±,c∥L2

x,t
∥PK±,c

N0,L0

(g−1 g−2 )∥L2
x,t

≲
∑
N1

∑
1≤N0≲N1∼N2

∑
L1,L2

N−1
1 N

1/2
0 N

1/4
1 L

1/2
1 L

1/4
2 N−b

1 ∥f±,c∥X0,b
±,c

∥g−1 ∥L2
x,t
∥g−2 ∥L2

x,t

≲
∑
N1

∑
1≤N0≲N1∼N2

N
1/2−s
0 N

−3/4−b
1 N s

0∥f±,c∥X0,b
±,c
N s

1∥g−1 ∥X0,b
−
N−s

2 ∥g−2 ∥X0,1−b
−

≲∥f∥Xs, b
±, c

∥g1∥Xs, b
−
∥g2∥X−s, 1−b

−
.

(Ib) N1 ≲ L1. Similarly, from Hölder inequality and Proposition 3.3 we get

∑
N1

∑
1≤N0≲N1∼N2

∑
Lj

∣∣∣∣N−1
1

∫
f±,cg−1 g

−
2 dtdx

∣∣∣∣
≲
∑
N1

∑
1≤N0≲N1∼N2

∑
Lj

N−1
1 ∥PK−

N1,L1

(f±,cg−2 )∥L2
x,t
∥g−1 ∥L2

x,t

≲
∑
N1

∑
1≤N0≲N1∼N2

∑
L0,L2

N−1
1 N

3/4
0 L

1/2
0 L

1/4
2 ∥f±,c∥L2

x,t
N−b

1 ∥g−1 ∥X0,b
−
∥g−2 ∥L2

x,t

≲
∑
N1

∑
1≤N0≲N1∼N2

N
3/4−s
0 N−1−b

1 N s
0∥f±,c∥X0,b

±,c
N s

1∥g−1 ∥X0,b
−
N−s

2 ∥g−2 ∥X0,1−b
−

≲∥f∥Xs, b
±, c

∥g1∥Xs, b
−
∥g2∥X−s, 1−b

−
.

(Ic) N1 ≲ L2.∑
N1

∑
1≤N0≲N1∼N2

∑
Lj

∣∣∣∣N−1
1

∫
f±,cg−1 g

−
2 dtdx

∣∣∣∣
≲
∑
N1

∑
1≤N0≲N1∼N2

∑
Lj

N−1
1 ∥PK−

N2,L2

(f±,cg−1 )∥L2
x,t
∥g−2 ∥L2

x,t

≲
∑
N1

∑
1≤N0≲N1∼N2

∑
L0,L1

N−1
1 N

3/4
0 L

1/2
0 L

1/4
1 ∥f±,c∥L2

x,t
∥g−1 ∥L2

x,t
N−1+b

1 ∥g−2 ∥X0,1−b
−

≲
∑
N1

∑
1≤N0≲N1∼N2

N
3/4−s
0 N−2+b

1 N s
0∥f±,c∥X0,b

±,c
N s

1∥g−1 ∥X0,b
−
N−s

2 ∥g−2 ∥X0,1−b
−

≲∥f∥Xs, b
±, c

∥g1∥Xs, b
−
∥g2∥X−s, 1−b

−
.

For the case (II), we can show (3.19) in the same manner as above. We omit the

proof. Lastly, we consider the case (III).
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(IIIa) N0 ≲ L0. We deduce from Hölder inequality and Proposition 3.3 that∑
N0

∑
1≤N2≲N0∼N1

∑
Lj

∣∣∣∣N−1
1

∫
f±,cg−1 g

−
2 dtdx

∣∣∣∣
≲
∑
N0

∑
1≤N2≲N0∼N1

∑
Lj

N−1
0 ∥f±,c∥L2

x,t
∥PK±

N0,L0

(g−1 g−2 )∥L2
x,t

≲
∑
N0

∑
1≤N2≲N0∼N1

∑
L1,L2

N−1
0 N

3/4
2 L

1/2
1 L

1/4
2 N−b

0 ∥f±,c∥X0,b
±,c

∥g−1 ∥L2
x,t
∥g−2 ∥L2

x,t

≲
∑
N0

∑
1≤N2≲N0∼N1

N−1−b−2s
0 N

3/4+s
2 N s

0∥f±,c∥X0,b
±,c
N s

1∥g−1 ∥X0,b
−
N−s

2 ∥g−2 ∥X0,1−b
−

≲∥f∥Xs, b
±, c

∥g1∥Xs, b
−
∥g2∥X−s, 1−b

−
.

(IIIb) N0 ≲ L1. Similarly,∑
N0

∑
1≤N2≲N0∼N1

∑
Lj

∣∣∣∣N−1
1

∫
f±,cg−1 g

−
2 dtdx

∣∣∣∣
≲
∑
N0

∑
1≤N2≲N0∼N1

∑
Lj

N−1
0 ∥PK−

N1,L1

(f±,cg−2 )∥L2
x,t
∥g−1 ∥L2

x,t

≲
∑
N0

∑
1≤N2≲N0∼N1

∑
L0,L2

N−1
0 N

3/4
2 L

1/2
0 L

1/4
2 ∥f±,c∥L2

x,t
N−b

0 ∥g−1 ∥X0,b
−
∥g−2 ∥L2

x,t

≲
∑
N0

∑
1≤N2≲N0∼N1

N−1−b−2s
0 N

3/4+s
2 N s

0∥f±,c∥X0,b
±,c
N s

1∥g−1 ∥X0,b
−
N−s

2 ∥g−2 ∥X0,1−b
−

≲∥f∥Xs, b
±, c

∥g1∥Xs, b
−
∥g2∥X−s, 1−b

−
.

(IIIc) N0 ≲ L2. In this case, we need to utilize Proposition 3.4 instead of Proposition

3.3. ∑
N0

∑
1≤N2≲N0∼N1

∑
Lj

∣∣∣∣N−1
1

∫
f±,cg−1 g

−
2 dtdx

∣∣∣∣
≲
∑
N0

∑
1≤N2≲N0∼N1

∑
Lj

N−1
0 ∥PK−

N2,L2

(f±,cg−1 )∥L2
x,t
∥g−2 ∥L2

x,t

≲
∑
N0

∑
1≤N2≲N0∼N1

∑
L0,L1

N−1
0 N

1/2
2 L

1/2
0 L

1/4
1 ∥f±,c∥L2

x,t
∥g−1 ∥L2

x,t
N−1+b

0 ∥g−2 ∥X0,1−b
−

≲
∑
N0

∑
1≤N2≲N0∼N1

N−2+b−2s
0 N

1/2+s
2 N s

0∥f±,c∥X0,b
±,c
N s

1∥g−1 ∥X0,b
−
N−s

2 ∥g−2 ∥X0,1−b
−

≲∥f∥Xs, b
±, c

∥g1∥Xs, b
−
∥g2∥X−s, 1−b

−
.

□
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3.4. Proof of Theorem 3.2 for ±1 ̸= ±2. In this section, we establish (3.16)

and (3.17) with ±2 = +. Note that if one of the inequalities |ξ2| ≤ 1−c
2(1+c)

|ξ1| and
|ξ1| ≤ 1−c

2(1+c)
|ξ2| holds, then we observe that for τ = τ1 + τ2, ξ = ξ1 + ξ2,

max(⟨τ ±0 c|ξ|⟩, ⟨τ1 − |ξ1|⟩, ⟨τ2 + |ξ2|⟩) ≥ | ± c|ξ| − |ξ1|+ |ξ2||

≥ ||ξ1| − |ξ2|| − c|ξ1| − c|ξ2|

≥ 1− c

2
max(|ξ1|, |ξ2|)

and we can verify (3.16) and (3.17) by the same proof as in the case ±2 = −. To

avoid redundancy, we omit the proof.

Proposition 3.7. For any s ∈ (−3/4, 0), there exists b ∈ (1/2, 1) such that for

f, g1, g2 ∈ S(R× R2), the following estimates hold:

(∑
N0

∑
1≤N1≪N0∼N2

+
∑
N0

∑
1≤N2≪N0∼N1

)
I+1

≲ ∥f∥Xs, b
±, c

∥g1∥Xs, b
−
∥g2∥X−s, 1−b

−
,(∑

N0

∑
1≤N1≪N0∼N2

+
∑
N0

∑
1≤N2≪N0∼N1

)
I+2

≲ ∥f∥X−s, 1−b
±, c

∥g1∥Xs, b
−
∥g2∥Xs, b

−
,

where

I+1 :=
∑
Lj

∣∣∣∣N−1
1

∫
(PK±,c

N0,L0

f)(PK−
N1,L1

g1)(PK+
N2,L2

g2)dtdx

∣∣∣∣ ,
I+2 :=

∑
Lj

∣∣∣∣N0N
−1
1 N−1

2

∫
(PK±,c

N0,L0

f)(PK−
N1,L1

g1)(PK+
N2,L2

g2)dtdx

∣∣∣∣ .
Thanks to Proposition 3.7, we may assume that 1 ≤ N0 ≲ N1 ∼ N2. In this case,

we no longer make use of the useful estimate such as (3.18) and, as we mentioned in

Introduction, it appears that the bilinear Strichartz estimates Propositions 3.3, 3.4

are not enough to show (3.16) and (3.17). Thus we employ new estimate developed

by Bejenaru-Herr-Tataru [3] and applied to Zakharov system in [1]. To describe

it precisely, we introduce the decomposition of R3 × R3 utilized in [3]. For dyadic
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numbers M0, M1, to be chosen later, we decompose R3 × R3 by the sets {DA
j }.

R3 × R3 =

{
∠(ξ1, ξ2) ≤

16

M0

π

}
∪

∪
64≤A≤M0

{
16

A
π ≤ ∠(ξ1, ξ2) ≤

32

A
π

}

∪
{
π − 16

M1

π ≤ ∠(ξ1, ξ2)
}
∪

∪
64≤A≤M1

{
π − 32

A
π ≤ ∠(ξ1, ξ2) ≤ π − 16

A
π

}
=

∪
−M0≤j1,j2≤M0−1

|j1−j2|≤16

DM0
j1

×DM0
j2

∪
∪

64≤A≤M0

∪
−A≤j1,j2≤A−1
16≤|j1−j2|≤32

DA
j1
×DA

j2

∪
∪

−M1≤j1,j2≤M1−1
|j1−j2±M1|≤16

DM1
j1

×DM1
j2

∪
∪

64≤A≤M1

∪
−A≤j1,j2≤A+1

16≤|j1−j2±A|≤32

DA
j1
×DA

j2
,

where ∠(ξ1, ξ2) ∈ [0, π] is the smaller angle between ξ1 and ξ2.

First we assume that π/2 ≤ ∠(ξ1, ξ2) ≤ π. We find that if ∠(ξ1, ξ2) is sufficiently

close to π , then the following helpful inequality holds true.

Lemma 3.8. Let τ = τ1 + τ2, ξ = ξ1 + ξ2 and M1 be the minimal dyadic number

which satisfies

M1 ≥ 27(1− c)−
1
2
(|ξ1||ξ2|)

1
2

|ξ|
, (3.21)

then for any (τ1, ξ1) ∈ DM1
j1

, (τ2, ξ2) ∈ DM1
j2

where |j1 − j2 ±M1| ≤ 16, the following

inequality holds:

max(⟨τ ± c|ξ|⟩, ⟨τ1 − |ξ1|⟩, ⟨τ2 + |ξ2|⟩) ≳ |ξ|

Proof. After rotation, we may assume ξ1 = (|ξ1|, 0), and then |j2 ±M1| ≤ 16. It

follows from the inequality

max(⟨τ ± c|ξ|⟩, ⟨τ1 − |ξ1|⟩, ⟨τ2 + |ξ2|⟩) ≥ ||ξ1| − |ξ2|| − c|ξ|,

it suffices to show ||ξ1| − |ξ2|| >
√

1+c
2
|ξ|. Indeed,√

1 + c

2
− c >

1

4
(1− c)(1 + 2c) >

1− c

4
.

From |j2 ±M1| ≤ 16, we obtain

|ξ|2 = (|ξ1|+ |ξ2| cos(∠(ξ1, ξ2)))2 + (N2 sin(∠(ξ1, ξ2)))2

< (|ξ1| − |ξ2|)2 + 2|ξ1||ξ2|(1 + cos(∠(ξ1, ξ2)))

< (|ξ1| − |ξ2|)2 + 4|ξ1||ξ2|(∠(ξ1, ξ2))2

< (|ξ1| − |ξ2|)2 +
1− c

2
|ξ|2,
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which gives

1 + c

2
|ξ|2 < (|ξ1| − |ξ2|)2.

This completes the proof. □

Next we consider the case 64 ≤ A ≤M1 and 16 ≤ |j1 − j2 ± A| ≤ 32.

Proposition 3.9. Let τ = τ1 + τ2, ξ = ξ1 + ξ2 and f , g1, g2 ∈ L2 be satisfy

supp f ⊂ K±,c
N0,L0

, supp g1 ⊂ DA
j1
∩K−

N1,L1
, supp g2 ⊂ DA

j2
∩K+

N2,L2
,

and 64 ≤ N0 ≲ N1 ∼ N2, 64 ≤ A ≤ M1, 16 ≤ |j1 − j2 ± A| ≤ 32. Then the

following estimate holds:∣∣∣∣∫ f(τ, ξ)g1(τ1, ξ1)g2(τ2, ξ2)dτ1dτ2dξ1dξ2

∣∣∣∣ ≲ A
7
8 (L0L1L2)

1
2∥f∥L2

ξ,τ
∥g1∥L2

ξ,τ
∥g2∥L2

ξ,τ
.

For the proof of the above proposition, we introduce the important estimate. See

[2] for more general case.

Proposition 3.10 ([3] Corollary 1.5). Assume that the surface S̃i (i = 1, 2, 3) is an

open and bounded subset of S̃∗
i which satisfies the following conditions (Assumption

1.1 in [3]).

(i) S̃∗
i is defined as

S̃∗
i = {σ̃i ∈ Ui | Φi(σ̃i) = 0,∇Φi ̸= 0,Φi ∈ C1,1(Ui)},

for a convex Ui ⊂ R3 such that dist(S̃i, U
c
i ) ≥ diam(S̃i);

(ii) the unit normal vector field ñi on S̃∗
i satisfies the Hölder condition

sup
σ̃,σ̃′∈S̃∗

i

|ñi(σ̃)− ñi(σ̃
′)|

|σ̃ − σ̃′|
+

|ñi(σ̃)(σ̃ − σ̃′)|
|σ̃ − σ̃′|2

≲ 1;

(iii) the matrix Ñ(σ̃1, σ̃2, σ̃3) = (ñ1(σ̃1), ñ2(σ̃2), ñ3(σ̃3)) satisfies the transversality

condition

1

2
≤ detÑ(σ̃1, σ̃2, σ̃3) ≤ 1

for all (σ̃1, σ̃2, σ̃3) ∈ S̃∗
1 × S̃∗

2 × S̃∗
3 .

We also assume diam(S̃i) ≤ 1. Let T : R3 → R3 be an invertible, linear map and

Si = T S̃i. Then for functions f ∈ L2(S1) and g ∈ L2(S2), the restriction of the

convolution f ∗ g to S3 is a well-defined L2(S3)-function which satisfies

∥f ∗ g∥L2(S3) ≲
1√
d
∥f∥L2(S1)∥g∥L2(S2),
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where

d = inf
σi∈Si

|detN(σ1, σ2, σ3)|

and N(σ1, σ2, σ3) is the matrix of the unit normals to Si at (σ1, σ2, σ3).

Remark 3.2. As was mentioned in [3], the condition of S∗
i (i) is used only to ensure

the existence of a global representation of Si as a graph. In the proof of Proposition

3.9, the implicit function theorem and the other conditions may show the existence

of such a graph. Thus we will not treat the condition (i) in the proof of Proposition

3.9.

By utilizing Proposition 3.10, we verify Proposition 3.9.

Proof of Proposition 3.9. Let θ±0 ∈ (0, π) be defined as cos θ±0 = ±c. We divide the

proof into the following two cases:

(I) |∠(ξ, ξ1)− θ+0 | > 210(1− c)−1A−3/4 and |∠(ξ, ξ1)− θ−0 | > 210(1− c)−1A−3/4,

(II) |∠(ξ, ξ1)− θ+0 | ≤ 210(1− c)−1A−3/4 or |∠(ξ, ξ1)− θ−0 | ≤ 210(1− c)−1A−3/4,

where ∠(ξ, ξ1) ∈ (0, π) is the smaller angle between ξ and ξ1. We here assume that

A > 220(1− c)−2. If A ≤ 220(1− c)−2, the proposition is verified by the almost same

proof as that for the case (II) below.

We first consider the case (I). The proof is very similar to that for ±1 = ±2. We

utilize the following two estimates.

Lemma 3.11. Let τ = τ1 + τ2, ξ = ξ1 + ξ2, 2
20(1 − c)−2 < A ≤ M1 and ∠(ξ, ξ1)

satisfies (I). Then the following inequality holds:

max(⟨τ ± c|ξ|⟩, ⟨τ1 − |ξ1|⟩, ⟨τ2 + |ξ2|⟩) ≳ A−3/4|ξ|

Proof. After rotation, we may assume that ξ1 = (|ξ1|, 0) and ξ = (|ξ| cos θ, |ξ| sin θ)
with θ ∈ (0, π). By the simple calculation, we have

max(⟨τ ± c|ξ|⟩, ⟨τ1 − |ξ1|⟩, ⟨τ2 + |ξ2|⟩)

≥| ± c|ξ|+ |ξ1| − |ξ2||

≥
∣∣∣±c|ξ|+ |ξ1| −

√
|ξ1|2 − 2|ξ||ξ1| cos θ + |ξ|2

∣∣∣
≥ |±c|ξ|+ |ξ| cos θ| −

∣∣∣∣∣ 2|ξ||ξ1| cos θ − |ξ|2

|ξ1|+
√

|ξ1|2 − 2|ξ||ξ1| cos θ + |ξ|2
− |ξ| cos θ

∣∣∣∣∣
=: K1 −K2.
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From θ±0 , θ ∈ (0, π) and (I), we get

K1 = |ξ|| cos θ∓0 − cos θ|

≥ |ξ|
√
1− c

4
|θ∓0 − θ|

≥ 28(1− c)−
1
2 |ξ|A− 3

4 .

From 220(1− c)−2 < A ≤M1, we have

K2 =

∣∣∣∣∣ 2|ξ||ξ1| cos θ − |ξ|2

|ξ1|+
√

|ξ1|2 − 2|ξ||ξ1| cos θ + |ξ|2
− |ξ| cos θ

∣∣∣∣∣
≤

∣∣∣∣∣ 2|ξ||ξ1| cos θ
|ξ1|+

√
|ξ1|2 − 2|ξ||ξ1| cos θ + |ξ|2

− 2|ξ||ξ1| cos θ
2|ξ1|

∣∣∣∣∣+ |ξ|2

|ξ1|

≤ |ξ||ξ1|| cos θ|
|ξ1|(

√
|ξ1|2 − 2|ξ||ξ1| cos θ + |ξ|2)

∣∣∣|ξ1| −√|ξ1|2 − 2|ξ||ξ1| cos θ + |ξ|2
∣∣∣+ |ξ|2

|ξ1|

≤ 4
|ξ|2

|ξ1|
≤ 210(1− c)−1|ξ|A−1

≤ 25(1− c)−
1
2 |ξ|A− 3

4 .

From above, we have

K1 −K2 ≳ |ξ|A− 3
4 .

This completes the proof. □

Lemma 3.12. Let g1, g2 ∈ L2 be satisfy

supp g1 ⊂ DA
j1
∩K−

N1,L1
, supp g2 ⊂ DA

j2
∩K+

N2,L2
,

and 64 ≤ N0 ≲ N1 ∼ N2, 64 ≤ A ≤ M1, 16 ≤ |j1 − j2 ± A| ≤ 32. Then the

following estimate holds:

∥χ
K

±0
N0,L0

(g1 ∗ g2) ∥L2
ξ,τ

≲ (AN0L1L2)
1
2∥g1∥L2

ξ,τ
∥g2∥L2

ξ,τ

Proof. By the same way as in the proof of Proposition 3.4, we observe that the

desired estimate is proved by

sup
τ,ξ

|E(τ, ξ)| ≲ AN0L1L2 (3.22)

where

E(τ, ξ) :=

{
(τ1, ξ1) ∈ DA

0 ∩ CN0(ξ
′)

∣∣∣∣∣ ⟨τ − τ1 − |ξ − ξ1|⟩ ∼ L1, ⟨τ1 + |ξ1|⟩ ∼ L2,

(τ − τ1, ξ − ξ1) ∈ DA
j2
.

}
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with 16 ≤ |j2 ± A| ≤ 32 and fixed ξ′ ∈ R2. From ⟨τ − τ1 − |ξ − ξ1|⟩ ∼ L1 and

⟨τ1 + |ξ1|⟩ ∼ L2, for fixed ξ1,

|{τ1 | (τ1, ξ1) ∈ E(τ, ξ)}| ≲ L12
min. (3.23)

It follows from (τ1, ξ1) ∈ DA
0 and (τ − τ1, ξ − ξ1) ∈ DA

j2
that

|∂2(τ − |ξ1|+ |ξ − ξ1|)| ≥
∣∣∣∣(ξ1)2|ξ1|

+
(ξ − ξ1)2
|ξ − ξ1|

∣∣∣∣
≳ A−1. (3.24)

Combining |τ − |ξ1|+ |ξ − ξ1|| ≲ L12
max with (3.24), for fixed (ξ1)1 we have

|{(ξ1)2 | (τ1, ξ1) ∈ E(τ, ξ)}| ≲ AL12
max. (3.25)

Collecting (3.23), (3.25) and ξ1 ∈ CN0(ξ
′), we get (3.22). □

We now prove Proposition 3.9 for the case (I). From Lemma 3.11, it holds that

L012
max ≳ A− 3

4N0. We decompose the proof into the three cases:

(Ia) A− 3
4N0 ≲ L0, (Ib) A− 3

4N0 ≲ L1, (Ic) A− 3
4N0 ≲ L2.

(Ia) From Hölder inequality and Lemma 3.12, we have∣∣∣∣∫ f(τ, ξ)g1(τ1, ξ1)g2(τ2, ξ2)dτ1dτ2dξ1dξ2

∣∣∣∣ ≲ ∥f∥L2
ξ,τ
∥g1 ∗ g2∥L2

ξ,τ

≲ A
7
8 (L0L1L2)

1
2∥f∥L2

ξ,τ
∥g1∥L2

ξ,τ
∥g2∥L2

ξ,τ
.

(Ib) From Hölder inequality and Lemma 3.4, we have∣∣∣∣∫ f(τ, ξ)g1(τ1, ξ1)g2(τ2, ξ2)dτ1dτ2dξ1dξ2

∣∣∣∣ ≲ ∥g1∥L2
ξ,τ
∥f ∗ g2,−∥L2

ξ,τ

≲ A
3
8 (L0L1L2)

1
2∥f∥L2

ξ,τ
∥g1∥L2

ξ,τ
∥g2∥L2

ξ,τ
.

(Ic) From Hölder inequality and Lemma 3.4, we have∣∣∣∣∫ f(τ, ξ)g1(τ1, ξ1)g2(τ2, ξ2)dτ1dτ2dξ1dξ2

∣∣∣∣ ≲ ∥g2∥L2
ξ,τ
∥f ∗ g1,−∥L2

ξ,τ

≲ A
3
8 (L0L1L2)

1
2∥f∥L2

ξ,τ
∥g1∥L2

ξ,τ
∥g2∥L2

ξ,τ
.

Here gj,− is defined as gj,−(·) = gj(−·).
We next consider the case (II). We apply the same strategy as that of the proof of

Proposition 4.4 in [1]. Applying the transformation τ1 = |ξ1|+c1 and τ2 = −|ξ2|+c2
and Fubini’s theorem, we find that it suffices to prove∣∣∣∣∫ f(ϕ+

c1
(ξ1) + ϕ−

c2
(ξ2))g1(ϕ

+
c1
(ξ1))g2(ϕ

−
c2
(ξ2))dξ1dξ2

∣∣∣∣
≲ A

7
8∥g1 ◦ ϕ+

c1
∥L2

ξ
∥g2 ◦ ϕ−

c2
∥L2

ξ
∥f∥L2

ξ,τ
, (3.26)
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where f(τ, ξ) is supported in c0 ≤ τ ± c|ξ| ≤ c0 + 1 and

ϕ±
ck
(ξ) = (±|ξ|+ ck, ξ) for k = 1, 2.

First we decompose f by angular localization characteristic functions
{
χ
D

A1
j

}A1+1

j1=−A1

where A1 is the minimal dyadic number which satisfies A1 ≥ 220(1 − c)−2A and

thickened circular localization characteristic functions
{
χSN0+kδ

δ

}[N0
δ ]+1

k=−[N0
2δ ]

where [s]

denotes the maximal integer which is not greater than s ∈ R and Sξ0

δ = {(τ, ξ) ∈
R× R2 | ξ0 ≤ |ξ| ≤ ξ0 + δ} with δ = 2−20(1− c)2N0A

−1/2 as follows:

f =

[N0
δ ]+1∑

k=−[N0
2δ ]

A1+1∑
j1=−A1

χSN0+kδ
δ

χ
D

A1
j
f.

From the assumption (II), we see that the sum of (k, j1) is ∼ A
3
4 . Therefore we only

need to verify∣∣∣∣∫ f(ϕ+
c1
(ξ1) + ϕ−

c2
(ξ2))g1(ϕ

+
c1
(ξ1))g2(ϕ

−
c2
(ξ2))dξ1dξ2

∣∣∣∣
≲ A

1
2∥g1 ◦ ϕ+

c1
∥L2

ξ
∥g2 ◦ ϕ−

c2
∥L2

ξ
∥f∥L2

ξ,τ
, (3.27)

for supp f ⊂ DA1
j ∩SN0+kδ

δ with fixed k, j1. We use the scaling (τ, ξ) → (N0τ, N0ξ)

to define

f̃(τ, ξ) = f(N0τ,N0ξ), g̃k(τk, ξk) = gk(N0τk, N0ξk).

If we set c̃k = N−1
0 ck, inequality (3.27) reduces to∣∣∣∣∫ f̃(ϕ+

c̃1
(ξ1) + ϕ−

c̃2
(ξ2))g̃1(ϕ

+
c̃1
(ξ1))g̃2(ϕ

−
c̃2
(ξ2))dξ1dξ2

∣∣∣∣
≲ A

1
2N

− 1
2

0 ∥g̃1 ◦ ϕ+
c̃1
∥L2

ξ
∥g̃2 ◦ ϕ−

c̃2
∥L2

ξ
∥f̃∥L2

ξ,τ
. (3.28)

Note that f̃ is supported in S∓
3 (N

−1
0 ) where

S∓
3 (N

−1
0 ) =

{
(τ, ξ) ∈ DA1

j ∩ S1+kδ̃

δ̃
| ∓ c|ξ|+ c0

N0

≤ τ ≤ ∓c|ξ|+ c0 + 1

N0

}
with δ̃ = N−1

0 δ. Thus from the ℓ2 almost orthogonality, we may assume that there

exist ξ01 , ξ
0
2 such that

N1

2N0

≤ |ξ01 | ≤ 4
N1

N0

,
N2

2N0

≤ |ξ02 | ≤ 4
N2

N0

(3.29)
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such that space variables of supp g̃1 ◦ ϕ+
c̃1

and supp g̃2 ◦ ϕ−
c̃2

are contained in the

balls Bδ̃(ξ
0
1) and Bδ̃(ξ

0
2), respectively. By density and duality it suffices to show for

continuous g̃1 and g̃2 that

∥g̃1|S1 ∗ g̃2|S2∥L2(S±
3 (N−1

0 )) ≲ A
1
2N

− 1
2

0 ∥g̃1∥L2(S1)∥g̃2∥L2(S2) (3.30)

where S1, S2 denote the following surfaces

S1 = {ϕ+
c̃1
(ξ1) ∈ R3 | ξ1 ∈ Bδ̃(ξ

0
1)},

S2 = {ϕ−
c̃2
(ξ2) ∈ R3 | ξ2 ∈ Bδ̃(ξ

0
2)}.

(3.30) is immediately established from

∥g̃1|S1 ∗ g̃2|S2∥L2(S±
3 ) ≲ A

1
2∥g̃1∥L2(S1)∥g̃2∥L2(S2) (3.31)

where

S∓
3 = {(ψ∓(ξ), ξ) ∈ DA1

j ∩ S1+kδ̃

δ̃
| ψ∓(ξ) = ∓c|ξ|+ c0

N0

}.

For any σi ∈ Si, i = 1, 2, 3, there exist ξ1, ξ2, ξ such that

σ1 = ϕ+
c̃1
(ξ1), σ2 = ϕ+

c̃2
(ξ2), σ3 = (ψ(ξ), ξ),

and the unit normals ni on σi are written as

n1(σ1) =
1√
2

(
−1,

(ξ1)1
|ξ1|

,
(ξ1)2
|ξ1|

)
,

n2(σ2) =
1√
2

(
1,

(ξ2)1
|ξ2|

,
(ξ2)2
|ξ2|

)
,

n3(σ3) =
1√
c2 + 1

(
±1, c

(ξ)1
|ξ|

, c
(ξ)2
|ξ|

)
.

We deduce from 1 ≲ |ξ| and (3.29) that the surfaces S1, S2, S
∓
3 satisfy the following

Hölder condition.

sup
σi,σ′

i∈Si

|ni(σi)− ni(σ
′
i)|

|σi − σ′
i|

+
|ni(σi)(σi − σ′

i)|
|σi − σ′

i|2
≲ 1, (3.32)

sup
σ3,σ′

3∈S
±
3

|n3(σ3)− n3(σ
′
3)|

|σ3 − σ′
3|

+
|n3(σ3)(σ3 − σ′

3)|
|σ3 − σ′

3|2
≲ 1. (3.33)

We may assume that there exist ξ′1, ξ
′
2, ξ

′ ∈ R2 such that

ξ′1 + ξ′2 = ξ′, ϕ+
c̃1
(ξ′1) ∈ S1, ϕ

−
c̃2
(ξ′2) ∈ S2, (ψ

∓(ξ′), ξ′) ∈ S∓
3 ,
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otherwise the left-hand side of (3.30) vanishes. Let σ′
1 = ϕ+

c̃1
(ξ′1), σ

′
2 = ϕ−

c̃2
(ξ′2),

σ′
3 = (ψ∓(ξ′), ξ′). For any σ1 = ϕ+

c̃1
(ξ1) ∈ S1, we deduce from ξ1, ξ

′
1 ∈ Bδ̃(ξ

0
1) and

A ≤M1 ≤ 210(1− c)−1N1/N0 that

|n1(σ1)− n1(σ
′
1)| ≤ 2−18N0

N1

(1− c)2A− 1
2 ≤ 2−8(1− c)A− 3

2 . (3.34)

Similarly, for any σ2 = ϕ−
c̃2
(ξ2) ∈ S2 we have

|n2(σ2)− n2(σ
′
2)| ≤ 2−18N0

N2

(1− c)2A− 1
2 ≤ 2−8(1− c)A− 3

2 . (3.35)

For any σ3 ∈ S∓
3 , it follows from S∓

3 ⊂ DA1
j that

|n3(σ3)− n3(σ
′
3)| ≤ 2−10(1− c)A−1. (3.36)

It is obvious that |σ1 − σ′
1|, |σ2 − σ′

2| ≤ 2δ̃ ≤ 2−10(1 − c)2A−1/2, then we get from

(3.34) and (3.35) that

|(σ1 − σ′
1) · n1(σ′

1)| ≤ 2−15(1− c)2A−2, (3.37)

|(σ2 − σ′
2) · n2(σ′

2)| ≤ 2−15(1− c)2A−2. (3.38)

Similarly, we deduce from
∣∣∣σ3 − |σ3|

|σ′
3|
σ′
3

∣∣∣ ≤ 2−10(1− c)2A−1 and (3.36) that

|(σ3 − σ′
3) · n3(σ′

3)| =
∣∣∣∣(σ3 − |σ3|

|σ′
3|
σ′
3

)
· n3(σ′

3)

∣∣∣∣ ≤ 2−15(1− c)2A−2. (3.39)

(3.37) means that S1 is contained in an slab of thickness 2−15(1−c)2A−2 with respect

to the n1(σ
′
1) direction. From ℓ2 orthogonality, we may assume that S2 and S3 are

also contained in similar 2−15(1− c)2A−2 thick slabs;

|(σ2 − σ′
2) · n1(σ′

1)| ≤ 2−15(1− c)2A−2,

|(σ3 − σ′
3) · n1(σ′

1)| ≤ 2−15(1− c)2A−2.

Similarly, we may assume that surfaces S1, S2 are contained in slabs of thickness

2−15(1 − c)2A−2 with respect to the n2(σ
′
2) direction and the surfaces S1, S2 are

contained in slabs of thickness 2−15(1− c)2A−2 with respect to the n3(σ
′
3) direction.

Collection the above assumptions, for i, j = 1, 2, 3,

|(σi − σ′
i) · nj(σ′

j)| ≤ 2−15(1− c)2A−2. (3.40)

We define T : R3 → R3 as

T = 2−10(1− c)2A−2(N⊤)−1, N = N(σ′
1, σ

′
2, σ

′
3).
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If the following conditions are established, we immediately obtain the desired esti-

mate (3.31) by applying Proposition 3.10 with T and S̃i := T−1Si (i = 1, 2, 3).

(I)
1− c

2
A−1 ≤ |detN(σ1, σ2, σ3)| for any σi ∈ Si.

(II) diam(S̃i) < 1.

(III)
1

2
≤ det(ñ1(σ̃1), ñ2(σ̃2), ñ3(σ̃3)) ≤ 1 for any σ̃i ∈ S̃i.

(IV) sup
σ̃i,σ̃0

i ∈S̃i

|ñi(σ̃i)− ñi(σ̃
0
i )|

|σ̃i − σ̃0
i |

+
|ñi(σ̃0

i ) · (σ̃i − σ̃0
i )|

|σ̃i − σ̃0
i |2

≤ 1 for the unit normals ñi on S̃i.

We first show (I). From (3.34)-(3.36) it suffices to show

(1− c)A−1 ≤ |detN(σ′
1, σ

′
2, σ

′
3)|. (3.41)

Seeing that σ′
1 = ϕ+

c̃1
(ξ′1), σ

′
2 = ϕ−

c̃2
(ξ′2), σ

′
3 = (ψ∓(ξ′), ξ′) and ξ′1 + ξ′2 = ξ′, we get

|detN(σ′
1, σ

′
2, σ

′
3)| ≥

1

4

∣∣∣∣∣∣∣∣det


−1 1 ±1
(ξ′1)1
|ξ′1|

(ξ′2)1
|ξ′2|

c (ξ
′)1

|ξ′|
(ξ′1)2
|ξ′1|

(ξ′2)2
|ξ′2|

c (ξ
′)2

|ξ′|


∣∣∣∣∣∣∣∣

≥1

4

∣∣∣∣(ξ′1)1(ξ′2)2 − (ξ′1)2(ξ
′
2)2

|ξ′1||ξ′2|

∣∣∣∣ (1− c

∣∣∣∣ |ξ′2||ξ′|
− |ξ′1|

|ξ′|

∣∣∣∣)
≥(1− c)A−1. (3.42)

(II) is established from (3.40).

|T−1(σi − σi)| = 210(1− c)−2A2

∣∣∣∣∣∣∣
n1(σ

′
1) · (σi − σ′

i)

n2(σ
′
2) · (σi − σ′

i)

n3(σ
′
3) · (σi − σ′

i)


∣∣∣∣∣∣∣

≤ 2−3 <
1

2
.

Next we show (III). Note that the unit normals ñi on S̃i are written as follows.

ñi(σ̃i) =
(T−1)⊤ni(T σ̃i)

|(T−1)⊤ni(T σ̃i)|
=

N−1ni(T σ̃i)

|N−1ni(T σ̃i)|
.

In particular, the unit normals on T−1σ′
i are the unit vectors ei;

ñi(T
−1σ′

i) = N−1ni(σ
′
i) = ei. (3.43)

From (3.42), we get

∥N−1∥ = ∥(N⊤)−1∥ ≤ 2|detN⊤|−1∥N⊤∥2 ≤ 12(1− c)−1A. (3.44)



LOW REGULARITY WELL-POSEDNESS FOR NONLINEAR DISPERSIVE EQUATIONS 49

Thus we obtain

∥T∥ ≤ 2−6(1− c)A−1. (3.45)

We deduce from (3.34)-(3.36), (3.43), (3.44) that

|N−1ni(T σ̃i)− ei| = |N−1(ni(T σ̃i)− ni(σ
′
i))| ≤ 2−7. (3.46)

This gives |ñi(σ̃i) − ei| ≤ 2−5 and (III) is now obtained. Finally we show (IV). It

follows from (3.44)-(3.46) that

|ñi(σ̃i)− ñi(σ̃
0
i )|

|σ̃i − σ̃0
i |

≤ 3
|N−1(ni(T σ̃i)− ni(T σ̃

0
i ))|

|σ̃i − σ̃0
i |

≤ 3∥N−1∥∥T∥|ni(T σ̃i)− ni(T σ̃
0
i )|

|T σ̃i − T σ̃0
i |

≲ 1.

The last inequality is verified from (3.32) and (3.33). Similarly, from (3.45) and

(T−1)⊤N−1 = 210(1− c)−2A2E we have

|ñi(σ̃0
i ) · (σ̃i − σ̃0

i )|
|σ̃i − σ̃0

i |2
≤ 2∥T∥2 |N

−1ni(T σ̃
0
i ) · (T−1T σ̃i − T−1T σ̃0

i )|
|T σ̃i − T σ̃0

i |2

≤ 2∥T∥2 |(T
−1)⊤N−1ni(T σ̃

0
i ) · (T σ̃i − T σ̃0

i )|
|T σ̃i − T σ̃0

i |2

≤ 1

2

|ni(T σ̃0
i ) · (T σ̃i − T σ̃0

i )|
|T σ̃i − T σ̃0

i |2
≲ 1.

This completes (IV). □

We now consider 0 ≤ ∠(ξ1, ξ2) ≤ π/2. First we show the estimate which is similar

to Proposition 3.9 for 64 ≤ A ≤ N
1
2
0 and 16 ≤ |j1 − j2| ≤ 32. In this case, thanks

to 0 ≤ ∠(ξ1, ξ2) ≤ π/2, N0 ∼ N1 ∼ N2 always holds true and we can obtain the

better estimates compared to Proposition 3.9.

Proposition 3.13. Let f , g1, g2 ∈ L2 be satisfy

supp f ⊂ K±,c
N0,L0

, supp g1 ⊂ DA
j1
∩K−

N1,L1
, supp g2 ⊂ DA

j2
∩K+

N2,L2
,

and N0 ∼ N1 ∼ N2, 64 ≤ A ≤ N
1
2
0 , 16 ≤ |j1 − j2| ≤ 32. Then the following

estimate holds:∣∣∣∣∫ f(τ, ξ)g1(τ1, ξ1)g2(τ2, ξ2)dτ1dτ2dξ1dξ2

∣∣∣∣ ≲ A
1
2 (L0L1L2)

1
2∥f∥L2

ξ,τ
∥g1∥L2

ξ,τ
∥g2∥L2

ξ,τ
.

(3.47)

Proof. The proof is almost analogous to that of Proposition 3.9. Difference between

them is a step of decomposition. Precisely, in the proof of Proposition 3.9, we

decomposed f into ∼ A
3
4 pieces. We here decompose functions into finite pieces.
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From supp g1 ⊂ DA
j1
, supp g2 ⊂ DA

j2
and 16 ≤ |j1 − j2| ≤ 32, after suitable and

harmless decomposition, we can assume that there exists j such that 16 ≤ |j1− j| ≤
32 and supp f ∈ DA

j . Furthermore we decompose f , g1, g2 into finite pieces as

follows;

f =

j0+k∑
j′=j0

χ
D

A1
j′
f, g1 =

j01+k∑
j′1=j01

χ
D

A1
j′1

g1, g2 =

j02+k∑
j′2=j02

χ
D

A1
j′2

g2

where k is the minimal dyadic number which satisfies k ≥ 220(1 − c)−2, A1 := kA

and j0, j01 , j
0
2 satisfy∪

j0≤j′≤j0+k

DA1

j′ = DA
j ,

∪
j01≤j′1≤j01+k

DA1

j′1
= DA

j1
,

∪
j02≤j′2≤j02+k

DA1

j′2
= DA

j2
.

Thanks to the finiteness of k, it suffices to prove the desired estimate (3.47) for

supp f ⊂ DA1

j′ , supp g1 ⊂ DA1

j′1
, supp g2 ⊂ DA1

j′2

with fixed j′ ∈ [j0, j0 + k], j′1 ∈ [j01 , j
0
1 + k], j′2 ∈ [j02 , j

0
2 + k].

We utilize the same notations as in the proof of Proposition 3.9. By the same

argument as of the proof of Proposition 3.9, we only need to verify the following

estimate;

∥g̃1|S1 ∗ g̃2|S2∥L2(S3) ≲ A
1
2∥g̃1∥L2(S1)∥g̃2∥L2(S2) (3.48)

where

S1 =

{
ϕ+
c̃1
(ξ1) ∈ DA1

j′1
| 1− c

4
≤ |ξ1| ≤ 2

}
,

S2 =

{
ϕ−
c̃2
(ξ2) ∈ DA1

j′2
| 1− c

4
≤ |ξ2| ≤ 2

}
,

S3 =

{
(ψ∓(ξ), ξ) ∈ DA1

j′ | 1
2
≤ |ξ| ≤ 4, ψ∓(ξ) = ∓c|ξ|+ c0

N0

}
.

We recall that the unit normals on σi ∈ Si (i = 1, 2, 3) are written as;

n1(σ1) =
1√
2

(
−1,

(ξ1)1
|ξ1|

,
(ξ1)2
|ξ1|

)
,

n2(σ2) =
1√
2

(
1,

(ξ2)1
|ξ2|

,
(ξ2)2
|ξ2|

)
,

n3(σ3) =
1√
c2 + 1

(
±1, c

(ξ)1
|ξ|

, c
(ξ)2
|ξ|

)
.

where

σ1 = ϕ+
c̃1
(ξ1), σ2 = ϕ+

c̃2
(ξ2), σ3 = (ψ(ξ), ξ).
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We may assume that there exist ξ′1, ξ
′
2, ξ

′ ∈ R2 such that

ξ′1 + ξ′2 = ξ′, (σ′
1 :=)ϕ+

c̃1
(ξ′1) ∈ S1, (σ

′
2 :=)ϕ−

c̃2
(ξ′2) ∈ S2, (σ

′
3 :=)(ψ∓(ξ′), ξ′) ∈ S3.

From S1 ⊂ DA1

j′1
, S2 ⊂ DA1

j′2
and S3 ⊂ DA1

j′ , we easily observe

|n1(σ1)− n1(σ
′
1)| ≤ 2−10(1− c)A−1, (3.49)

|n2(σ2)− n2(σ
′
2)| ≤ 2−10(1− c)A−1, (3.50)

|n3(σ3)− n3(σ
′
3)| ≤ 2−10(1− c)A−1. (3.51)

The above estimates (3.49)-(3.51) give

|(σ1 − σ′
1) · n1(σ′

1)| =
∣∣∣∣(σ1 − |σ1|

|σ′
1|
σ′
1

)
· n1(σ′

1)

∣∣∣∣ ≤ 2−20(1− c)2A−2,

|(σ2 − σ′
2) · n2(σ′

2)| =
∣∣∣∣(σ2 − |σ2|

|σ′
2|
σ′
2

)
· n2(σ′

2)

∣∣∣∣ ≤ 2−20(1− c)2A−2,

|(σ3 − σ′
3) · n3(σ′

3)| =
∣∣∣∣(σ3 − |σ3|

|σ′
3|
σ′
3

)
· n3(σ′

3)

∣∣∣∣ ≤ 2−20(1− c)2A−2.

By the same argument as in the proof of Proposition 3.9, we can assume

|(σi − σ′
i) · nj(σ′

j)| ≤ 2−20(1− c)2A−2 for any i, j = 1, 2, 3. (3.52)

The remaining part is only to prove (I)-(IV) in Proposition 3.9 with

T = 2−10(1− c)2A−2(N⊤)−1, N = N(σ′
1, σ

′
2, σ

′
3)

and S̃i := T−1Si (i = 1, 2, 3). (I)-(IV) are verified from (3.49)-(3.52) as we proved in

the proof of Proposition 3.9. To avoid redundancy, we omit the proof of them. □

Lastly, we consider the case of sufficiently small ∠(ξ1, ξ2).

Proposition 3.14. Let f , g1, g2 ∈ L2 and M0 is the minimal dyadic number which

satisfies N
1
2
0 ≤M0. We assume that f , g1, g2 satisfy

supp f ⊂ K±,c
N0,L0

, supp g1 ⊂ DM0
j1

∩K−
N1,L1

, supp g2 ⊂ DM0
j2

∩K+
N2,L2

,

with N0 ∼ N1 ∼ N2, |j1 − j2| ≤ 16. Then the following estimate holds:∣∣∣∣∫ f(τ, ξ)g1(τ1, ξ1)g2(τ2, ξ2)dτ1dτ2dξ1dξ2

∣∣∣∣
≲ N

1
4
0 (L0L

12
min)

1
2∥f∥L2

ξ,τ
∥g1∥L2

ξ,τ
∥g2∥L2

ξ,τ
. (3.53)
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Proof. From supp g1 ⊂ DM0
j1

and supp g2 ⊂ DM0
j2

, we may assume supp f ⊂ DM0
j .

We also assume L1 ≤ L2 by symmetry. By Hölder inequality, (3.53) is established

if we show

∥PK+
N2,L2

((PK±,c
N0,L0

f)(PK−
N1,L1

g1))∥L2
x,t

≲ N
1
4
0 (L0L1)

1/2∥f∥L2
x,t
∥g1∥L2

x,t
. (3.54)

It is easily confirmed that (3.54) can be verified by the proof of Proposition 3.4 with

minor modification. Indeed, same as in the proof of Proposition 3.4, we find that

the desired estimate (3.54) is shown by

sup
τ,ξ

|E(τ, ξ)| ≲ N
1
2
0 L0L1 (3.55)

where

E(τ, ξ) := {(τ1, ξ1) ∈ DM0
0 | ⟨τ − τ1 ± c|ξ − ξ1|⟩ ∼ L0, ⟨τ1 − |ξ1|⟩ ∼ L1}.

Applying the same proof as in Proposition 3.4, we immediately obtain (3.55) thanks

to N1M
−1
0 ∼ N

1
2
0 . □

We now prove the crucial estimates (3.16) and (3.17) with ±2 = + and N0 ≲
N1 ∼ N2.

Theorem 3.15. For any s ∈ (−3/4, 0), there exists b ∈ (1/2, 1) such that for

f, g1, g2 ∈ S(R× R2), the following estimates hold:∑
N1

∑
1≤N0≲N1∼N2

∑
Lj

I+1 ≲ ∥f∥Xs, b
±, c

∥g1∥Xs, b
−
∥g2∥X−s, 1−b

+
, (3.56)

∑
N1

∑
1≤N0≲N1∼N2

∑
Lj

I+2 ≲ ∥f∥X−s, 1−b
±, c

∥g1∥Xs, b
−
∥g2∥Xs, b

+
, (3.57)

where

I+1 :=

∣∣∣∣N−1
1

∫
(PK±,c

N0,L0

f)(PK−
N1,L1

g1)(PK+
N2,L2

g2)dtdx

∣∣∣∣ ,
I+2 :=

∣∣∣∣N0N
−1
1 N−1

2

∫
(PK±,c

N0,L0

f)(PK−
N1,L1

g1)(PK+
N2,L2

g2)dtdx

∣∣∣∣ .
Proof. We first note that if N1 ≲ L012

max then (3.56) and (3.57) are obtained by the

same proof as that of Theorem 3.6. Therefore we can assume L012
max ≲ N1. We can

also assume that 1 ≪ N0. Indeed, if N0 ∼ 1 (3.56) and (3.57) are immediately

obtained by using Proposition 3.3 as N0 ∼ 1.

If s ∈ (−3/4, −1/2), considering N0 ≲ N1 ∼ N2, we observe that the latter

estimate (3.57) is difficult to show compared with the former one. Clearly, the proof

of (3.56) and (3.57) become easier as s gets greater. Therefore, we here focus our

attention on proving (3.57) for s ∈ (−3/4, −1/2).
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Considering (3.57) in Fourier side, it is easily confirmed that (3.57) is equivalent

to∑
N1

∑
N0≲N1∼N2

∑
Lj≲N1

N0N
−2
1

∣∣∣∣∫ f±,c(τ1 + τ2, ξ1 + ξ2)g
−
1 (τ1, ξ1)g

+
2 (τ2, ξ2)dτ1dτ2dξ1dξ2

∣∣∣∣
≲ ∥f∥X̂−s, 1−b

±, c
∥g1∥X̂s, b

−
∥g2∥X̂s, b

+
, (3.58)

Here we utilized the redefined denotations f±,c := χK±,c
N0,L0

f , g−1 := χK−
N1,L1

g, g+2 :=

χK+
N2,L2

, and the norms

∥ ·̂ ∥X̂−s, 1−b
±, c

= ∥ · ∥X−s, 1−b
±, c

, ∥ ·̂ ∥X̂s, b
−

= ∥ · ∥Xs, b
−
, ∥ ·̂ ∥X̂s, b

+
= ∥ · ∥Xs, b

+
.

For simplicity, we use

I(f, g, h) := N0N
−2
1

∣∣∣∣∫ f(τ, ξ)g(τ1, ξ1)h(τ2, ξ2)dτ1dτ2dξ1dξ2

∣∣∣∣
where τ = τ1 + τ2 and ξ = ξ1 + ξ2. By the decomposition of R3 × R3

R3 × R3 =
∪

−M0≤j1,j2≤M0−1
|j1−j2|≤16

DM0
j1

×DM0
j2

∪
∪

64≤A≤M0

∪
−A≤j1,j2≤A−1
16≤|j1−j2|≤32

DA
j1
×DA

j2

∪
∪

−M1≤j1,j2≤M1−1
|j1−j2±M1|≤16

DM1
j1

×DM1
j2

∪
∪

64≤A≤M1

∪
−A≤j1,j2≤A+1

16≤|j1−j2±A|≤32

DA
j1
×DA

j2
.

where M0 and M1 are the minimal dyadic number which satisfies respectively

N
1
2
0 ≤M0, 27(1− c)−

1
2
(N1N2)

1
2

N0

≤M1,

we only need to show

(I)
∑

N0∼N1∼N2

∑
Lj≲N1

∑
−M0≤j1,j2≤M0−1

|j1−j2|≤16

I(f±,c, g−,M0,j1
1 , g+,M0,j2

2 )

≲ ∥f∥X̂−s, 1−b
±, c

∥g1∥X̂s, b
−
∥g2∥X̂s, b

+
,

(II)
∑

N0∼N1∼N2

∑
Lj≲N1

∑
64≤A≤M0

∑
−M0≤j1,j2≤M0−1

|j1−j2|≤16

I(f±,c, g−,A,j1
1 , g+,A,j2

2 )

≲ ∥f∥X̂−s, 1−b
±, c

∥g1∥X̂s, b
−
∥g2∥X̂s, b

+
,

(III)
∑
N1

∑
1≪N0≲N1∼N2

∑
Lj≲N1

∑
−M1≤j1,j2≤M1−1
|j1−j2±M1|≤16

I(f±,c, g−,M1,j1
1 , g+,M1,j2

2 )

≲ ∥f∥X̂−s, 1−b
±, c

∥g1∥X̂s, b
−
∥g2∥X̂s, b

+
,

(IV)
∑
N1

∑
1≪N0≲N1∼N2

∑
Lj≲N1

∑
64≤A≤M1

∑
−A≤j1,j2≤A−1
|j1−j2±A|≤16

I(f±,c, g−,A,j1
1 , g+,A,j2

2 )

≲ ∥f∥X̂−s, 1−b
±, c

∥g1∥X̂s, b
−
∥g2∥X̂s, b

+
,
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where g−,A,j1
1 := g−1 |DA

j1
and g+,A,j2

2 := g+2 |DA
j2
. We further simplify (I)-(IV). From

ℓ2 Cauchy-Schwarz inequality and Lj ≲ N1, it suffices to show that there exists

0 < ε < 1 such that the following estimates hold;

(I)′
∑

−M0≤j1,j2≤M0−1
|j1−j2|≤16

I(f±,c, g−,M0,j1
1 , g+,M0,j2

2 )

≲ N s−ε
0 (L0L1L2)

1
2∥f±,c∥L2

ξ,τ
∥g−1 ∥L2

ξ,τ
∥g+2 ∥L2

ξ,τ
,

(II)′
∑

64≤A≤M0

∑
−A≤j1,j2≤A−1

|j1−j2|≤16

I(f±,c, g−,A,j1
1 , g+,A,j2

2 )

≲ N s−ε
0 (L0L1L2)

1
2∥f±,c∥L2

ξ,τ
∥g−1 ∥L2

ξ,τ
∥g+2 ∥L2

ξ,τ
,

(III)′
∑

−M1≤j1,j2≤M1−1
|j1−j2±M1|≤16

I(f±,c, g−,M1,j1
1 , g+,M1,j2

2 )

≲ N−s
0 N2s−ε

1 (L0L1L2)
1
2∥f±,c∥L2

ξ,τ
∥g−1 ∥L2

ξ,τ
∥g+2 ∥L2

ξ,τ
,

(IV)′
∑

64≤A≤M1

∑
−A≤j1,j2≤A−1
|j1−j2±A|≤16

I(f±,c, g−,A,j1
1 , g+,A,j2

2 )

≲ N−s
0 N2s−ε

1 (L0L1L2)
1
2∥f±,c∥L2

ξ,τ
∥g−1 ∥L2

ξ,τ
∥g+2 ∥L2

ξ,τ
.

If −3/4 < s, (I)′ is immediately established by using Proposition 3.13.

∑
−M0≤j1,j2≤M0−1

|j1−j2|≤16

I(f±,c, g−,M0,j1
1 , g+,M0,j2

2 )

∼
∑

−M0≤j1,j2≤M0−1
|j1−j2|≤16

N−1
0

∣∣∣∣∫ f±,c(τ, ξ)g−,M0,j1
1 (τ1, ξ1)g

+,M0,j2
2 (τ2, ξ2)dτ1dτ2dξ1dξ2

∣∣∣∣
≲ N

− 3
4

0 (L0L1)
1
2∥f±,c∥L2

ξ,τ

∑
−M0≤j1,j2≤M0−1

|j1−j2|≤16

∥g−,M0,j1
1 ∥L2

ξ,τ
∥g+,M0,j2

2 ∥L2
ξ,τ
,

≲ N
− 3

4
0 (L0L1L2)

1
2∥f±,c∥L2

ξ,τ
∥g−1 ∥L2

ξ,τ
∥g+2 ∥L2

ξ,τ
.

Next we prove (II)′. It follows from Proposition 3.13 that

∑
64≤A≤M0

∑
−A≤j1,j2≤A−1

|j1−j2|≤16

I(f±,c, g−,A,j1
1 , g+,A,j2

2 )

∼
∑

64≤A≤M0

∑
−A≤j1,j2≤A−1

|j1−j2|≤16

N−1
0

∣∣∣∣∫ f±,c(τ, ξ)g−,A,j1
1 (τ1, ξ1)g

+,A,j2
2 (τ2, ξ2)dτ1dτ2dξ1dξ2

∣∣∣∣
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≲
∑

64≤A≤M0

N−1
0 A

1
2 (L0L1L2)

1
2∥f±,c∥L2

ξ,τ

∑
−A≤j1,j2≤A−1

|j1−j2|≤16

∥g−,A,j1
1 ∥L2

ξ,τ
∥g+,A,j2

2 ∥L2
ξ,τ

≲ N
− 3

4
0 (L0L1L2)

1
2∥f±,c∥L2

ξ,τ
∥g−1 ∥L2

ξ,τ
∥g+2 ∥L2

ξ,τ
.

(III)′ is verified as follows. By Lemma 3.8, we have N0 ≲ L012
max. For the sake of

simplicity, we here consider the case of N0 ≲ L0. The other cases can be proved

similarly. We deduce from Proposition 3.3 and Hölder inequality that∑
−M1≤j1,j2≤M1−1
|j1−j2±M1|≤16

I(f±,c, g−,M1,j1
1 , g+,M1,j2

2 )

∼N0N
−2
1

∑
−M1≤j1,j2≤M1−1
|j1−j2±M1|≤16

∣∣∣∣∫ f±,c(τ, ξ)g−,M1,j1
1 (τ1, ξ1)g

+,M1,j2
2 (τ2, ξ2)dτ1dτ2dξ1dξ2

∣∣∣∣
≲N0N

−2
1

∑
−M1≤j1,j2≤M1−1
|j1−j2±M1|≤16

∥χK±,c
N0,L0

(g−,M1,j1
1 ∗ g+,M1,j2

2 )∥L2
ξ,τ
∥f±,c∥L2

ξ,τ

≲N0N
−2
1 N

1
2
0 N

1
4
1 L

1
2
1L

1
4
2N

− 1
2

0 L
1
2
0 ∥f±,c∥L2

ξ,τ

∑
−M1≤j1,j2≤M1−1
|j1−j2±M1|≤16

∥g−,M0,j1
1 ∥L2

ξ,τ
∥g+,M0,j2

2 ∥L2
ξ,τ
.

≲N−s
0 N2s−ε

1 (L0L1L2)
1
2∥f±,c∥L2

ξ,τ
∥g−1 ∥L2

ξ,τ
∥g+2 ∥L2

ξ,τ
.

Lastly, we prove (IV)′. We use the two estimations depending on N0 and N1.

Precisely, we utilize Proposition 3.4 ifN3
0 ≲ N2

1 , and if not so, we employ Proposition

3.9. We first assume N3
0 ≲ N2

1 .∑
64≤A≤M1

∑
−A≤j1,j2≤A−1
|j1−j2±A|≤16

I(f±,c, g−,A,j1
1 , g+,A,j2

2 )

∼N0N
−2
1

∑
64≤A≤M1

∑
−A≤j1,j2≤A−1
|j1−j2±A|≤16

∣∣∣∣∫ f±,c(τ, ξ)g−,A,j1
1 (τ1, ξ1)g

+,A,j2
2 (τ2, ξ2)dτ1dτ2dξ1dξ2

∣∣∣∣
≲N0N

−2
1

∑
64≤A≤M1

∑
−A≤j1,j2≤A−1
|j1−j2±A|≤16

∥χK−
N1,L1

(f±,c ∗ g+,A,j2
2,− )∥L2

ξ,τ
∥g−,A,j1

1 ∥L2
ξ,τ

≲N0N
−2
1 N

1
2
0 (L0L2)

1
2

∑
64≤A≤M1

∥f±,c∥L2
ξ,τ

∑
−A≤j1,j2≤A−1
|j1−j2±A|≤16

∥g−,A,j1
1 ∥L2

ξ,τ
∥g+,A,j2

2 ∥L2
ξ,τ
.

≲N
3
2
0 N

−2+ε
1 (L0L1L2)

1
2∥f±,c∥L2

ξ,τ
∥g−1 ∥L2

ξ,τ
∥g+2 ∥L2

ξ,τ

≲N
3
2
0 N

−2−2s+2ε
1 N2s−ε

1 (L0L1L2)
1
2∥f±,c∥L2

ξ,τ
∥g−1 ∥L2

ξ,τ
∥g+2 ∥L2

ξ,τ

≲N−s+3(ε− 2
3(s+

3
4))

0 N2s−ε
1 (L0L1L2)

1
2∥f±,c∥L2

ξ,τ
∥g−1 ∥L2

ξ,τ
∥g+2 ∥L2

ξ,τ
.
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If 0 < ε ≤ 2
3

(
s+ 3

4

)
, this completes (IV)′. We next assume N3

0 ≳ N2
1 . From

Proposition 3.9 and M1 ∼ N1/N0, we observe that∑
64≤A≤M1

∑
−A≤j1,j2≤A−1
|j1−j2±A|≤16

I(f±,c, g−,A,j1
1 , g+,A,j2

2 )

∼N0N
−2
1

∑
64≤A≤M1

∑
−A≤j1,j2≤A−1
|j1−j2±A|≤16

∣∣∣∣∫ f±,c(τ, ξ)g−,A,j1
1 (τ1, ξ1)g

+,A,j2
2 (τ2, ξ2)dτ1dτ2dξ1dξ2

∣∣∣∣
≲N0N

−2
1

∑
64≤A≤M1

A
7
8 (L0L1L2)

1
2∥f±,c∥L2

ξ,τ

∑
−A≤j1,j2≤A−1
|j1−j2±A|≤16

∥g−,A,j1
1 ∥L2

ξ,τ
∥g+,A,j2

2 ∥L2
ξ,τ

≲N0N
−2
1 N

7
8
1 N

− 7
8

0 (L0L1L2)
1
2∥f±,c∥L2

ξ,τ
∥g−1 ∥L2

ξ,τ
∥g+2 ∥L2

ξ,τ

≲N
1
8
0 N

− 9
8

1 (L0L1L2)
1
2∥f±,c∥L2

ξ,τ
∥g−1 ∥L2

ξ,τ
∥g+2 ∥L2

ξ,τ

≲N−s
0 N

s+ 1
8

0 N
− 9

8
1 (L0L1L2)

1
2∥f±,c∥L2

ξ,τ
∥g−1 ∥L2

ξ,τ
∥g+2 ∥L2

ξ,τ

≲N−s
0 N

2s−( 4
3
s+ 25

24)
1 (L0L1L2)

1
2∥f±,c∥L2

ξ,τ
∥g−1 ∥L2

ξ,τ
∥g+2 ∥L2

ξ,τ
.

This completes the proof of (IV)′. □
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4. Well-posedness of the Klein-Gordon-Zakharov system in d ≥ 5

4.1. Introduction. We continue the study of the Cauchy problem of the Klein-

Gordon-Zakharov system:

(∂2t −∆+ 1)u = −nu, (t, x) ∈ [−T, T ]× Rd,

(∂2t − c2∆)n = ∆|u|2, (t, x) ∈ [−T, T ]× Rd,

(u, ∂tu, n, ∂tn)|t=0 = (u0, u1, n0, n1)

∈ Hs+1(Rd)×Hs(Rd)× Ḣs(Rd)× Ḣs−1(Rd),

(4.1)

where u, n are real valued functions, d ≥ 5, c > 0 and c ̸= 1. As opposed to d = 2,

the proof for c > 1 is quite similar to that of the case 0 < c < 1. Therefore we also

consider the case c > 1. Similarly to 2D, (4.1) is equivalent to the following.
(i∂t ∓ ω1)u± = ±(1/4)(n+ + n−)(ω

−1
1 u+ + ω−1

1 u−), (t, x) ∈ [−T, T ]× Rd,

(i∂t ∓ cω)n± = ±(4c)−1ω|ω−1
1 u+ + ω−1

1 u−|2, (t, x) ∈ [−T, T ]× Rd,

(u±, n±)|t=0 = (u±0, n±0) ∈ Hs(Rd)× Ḣs(Rd).

(4.2)

Our main result is as follows.

Theorem 4.1. Let d ≥ 5, s = sc = d/2−2 and assume the initial data (u±0, n±0) ∈
Hs(Rd)× Ḣs(Rd) is small. Then, (4.2) is globally well-posed in Hs(Rd)× Ḣs(Rd).

Corollary 4.2. The solution obtained in Theorem 4.1 scatters as t→ ±∞.

For more precise statement of Theorem 4.1 and Corollary 4.2, see Propositions

4.25, 4.26. [25] considered (4.2) for d ≥ 4, 0 < c and c ̸= 1. [25] applied U2, V 2

type spaces and established that (4.2) is globally well-posed in Hsc(Rd) × Ḣsc(Rd)

if the initial data is small and radial. U2, V 2 type spaces were introduced by Koch

and Tataru [31]. As we mentioned in Introduction, these spaces work well when

we consider well-posedness at the critical space [18], [22], [23], [26]. Theorem 4.1

is proved by the Banach fixed point theorem. The key is the bilinear estimate

(Proposition 4.24). For d ≥ 5, it appears to be difficult to prove Proposition 4.24

only by applying U2, V 2 type spaces, the modulation estimate (Proposition 4.14,

Lemma 4.15) and the Strichartz type estimates (Proposition 4.10) for a nonlinear

interaction [25]. In this thesis, to overcome the difficulty, we derive the bilinear

Strichartz estimate for the nonlinear interaction and then we are able to prove

Proposition 4.24. See Proposition 4.23 for the bilinear Strichartz estimate. c ̸= 1



58 S. KINOSHITA

plays an important role in the proof of the bilinear Strichartz estimate as well as in

the proof of Lemma 4.15.

In Section 4.2, we prepare some notations and lemmas with respect to Up, V p, in

Section 4.3, we prove the bilinear estimates and in Section 4.4, we prove the main

result.

4.2. Notations and Preliminary Lemmas. In this section, we define Up V p

spaces and prepare some lemmas, propositions and notations to prove the main

theorem. Let Z be the set of finite partitions −∞ = t0 < t1 < ... < tK = ∞ and let

Z0 be the set of finite partitions −∞ < t0 < t1 < ... < tK ≤ ∞.

Definition 1. Let 1 ≤ p <∞. For {tk}Kk=0 ∈ Z and {ϕk}K−1
k=0 ⊂ L2

x with
∑K−1

k=0 ∥ϕk∥pL2
x
=

1, we call the function a : R → L2
x given by

a =
K∑
k=1

χ[tk−1, tk)ϕk−1

a Up-atom. Furthermore, we define the atomic space

Up :=

{
u =

∞∑
j=1

λjaj

∣∣∣ aj : Up-atom, λj ∈ C such that
∞∑
j=1

|λj| <∞
}

with norm

∥u∥Up := inf

{ ∞∑
j=1

|λj|
∣∣∣u =

∞∑
j=1

λjaj, λj ∈ C, aj : Up-atom

}
.

Proposition 4.3. Let 1 ≤ p < q <∞.

(i) Up is a Banach space.

(ii) The embeddings Up ⊂ U q ⊂ L∞
t (R;L2

x) are continuous.

(iii) For u ∈ Up, it holds that limt→t0+ ∥u(t) − u(t0)∥L2
x
= 0, i.e. every u ∈ Up is

right-continuous.

(iv) The closed subspace Up
c of all continuous functions in Up is a Banach space.

The above proposition is in [18] (Proposition 2.2).

Definition 2. Let 1 ≤ p < ∞. We define V p as the normed space of all functions

v : R → L2
x such that limt→±∞ v(t) exist and for which the norm

∥v∥V p := sup
{tk}Kk=0∈Z

( K∑
k=1

∥v(tk)− v(tk−1)∥pL2
x

)1/p
is finite, where we use the convention that v(−∞) := limt→−∞ v(t) and v(∞) := 0.

Likewise, let V p
− denote the closed subspace of all v ∈ V p with limt→−∞ v(t) = 0.
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The definitions of V p and V p
−, see also [19].

Proposition 4.4. Let 1 ≤ p < q <∞.

(i) Let v : R → L2
x be such that

∥v∥V p
0
:= sup

{tk}Kk=0∈Z0

( K∑
k=1

∥v(tk)− v(tk−1)∥pL2
x

)1/p
is finite. Then, it follows that v(t+0 ) := limt→t0+ v(t) exists for all t0 ∈ [−∞,∞) and

v(t−0 ) := limt→t0− v(t) exists for all t0 ∈ (−∞,∞] and moreover,

∥v∥V p = ∥v∥V p
0
.

(ii) We define the closed subspace V p
rc (V

p
−, rc) of all right-continuous V p functions

(V p
− functions). The spaces V p, V p

rc, V
p
− and V p

−, rc are Banach spaces.

(iii) The embeddings Up ⊂ V p
−, rc ⊂ U q are continuous.

(iv) The embeddings V p ⊂ V q and V p
− ⊂ V q

− are continuous.

The proof of Proposition 4.4 is in [18] (Proposition 2.4 and Corollary 2.6). Let

{F−1
ξ [φn](x)}n∈Z ⊂ S(Rd) be the Littlewood-Paley decomposition with respect to

x, that is to say φ(ξ) ≥ 0,

suppφ(ξ) = {ξ | 2−1 ≤ |ξ| ≤ 2},

φn(ξ) := φ(2−nξ),
∞∑

n=−∞

φn(ξ) = 1 ( ξ ̸= 0), ψ(ξ) := 1−
∞∑
n=0

φn(ξ).

Let N = 2n (n ∈ Z) be dyadic number. PN and P<1 denote

Fx[PNf ](ξ) := φ(ξ/N)Fx[f ](ξ) = φn(ξ)Fx[f ](ξ),

Fx[P<1f ](ξ) := ψ(ξ)Fx[f ](ξ).

Similarly, let Q̃N be

Ft[Q̃Ng](τ) := ϕ(τ/N)Ft[g](τ) = ϕn(τ)Ft[g](τ),

where {F−1
τ [ϕn](t)}n∈Z ⊂ S(R) be the Littlewood-Paley decomposition with re-

spect to t. Let K±(t) = exp{∓it(1 − ∆)1/2} : L2
x → L2

x be the Klein-Gordon

unitary operator such that Fx[K±(t)u0](ξ) = exp{∓it⟨ξ⟩}Fx[u0](ξ). Similarly, we
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define the wave unitary operator W±c(t) = exp{∓ict(−∆)1/2} : L2
x → L2

x such that

Fx[W±c(t)n0](ξ) = exp{∓ict|ξ|}Fx[n0](ξ). We set

W±c
L :=

{
(τ, ξ) ∈ R× Rd |L/2 ≤

∣∣τ ± c|ξ|
∣∣ ≤ 2L

}
,

KG±
L :=

{
(τ, ξ) ∈ R× Rd |L/2 ≤

∣∣τ ± ⟨ξ⟩
∣∣ ≤ 2L

}
.

Definition 3. We define

(i)Up
K±

= K±(·)Up with norm ∥u∥Up
K±

= ∥K±(−·)u∥Up ,

(ii)V p
K±

= K±(·)V p with norm ∥u∥V p
K±

= ∥K±(−·)u∥V p .

For dyadic numbers N,M ,

Q
K±
N := K±(·)Q̃NK±(−·), Q

K±
≥M :=

∑
N≥M

QN , Q
K±
<M := Id−Q

K±
≥M .

Here summation overN means summation over n ∈ Z. Similarly, we define Up
W±c

, V p
W±c

.

Remark 4.1. For L2
x unitary operator A = K± or W±c,

U2
A ⊂ V 2

−, rc, A ⊂ L∞(R;L2
x)

Definition 4. For the Klein-Gordon equation, we define Y s
K±

(resp. Zs
K±

) as the clo-

sure of all u ∈ C(R;Hs
x(Rd))∩⟨∇x⟩−sV 2

−, rc,K±
(resp. u ∈ C(R;Hs

x(Rd))∩⟨∇x⟩−sU2
K±

)

with Y s
K±

(resp. Zs
K±

) norm, where

∥u∥Y s
K±

:= ∥P<1u∥V 2
K±

+
(∑
N≥1

N2s∥PNu∥2V 2
K±

)1/2
,

∥u∥Zs
K±

:= ∥P<1u∥U2
K±

+
(∑
N≥1

N2s∥PNu∥2U2
K±

)1/2
.

For the wave equation, we define Ẏ s
W±c

, Żs
W±c

as the closure of all n ∈ C(R;Hs
x(Rd))∩

|∇x|−sV 2
−, rc,W±c

(resp. n ∈ C(R;Hs
x(Rd)) ∩ |∇x|−sU2

W±c
) with Ẏ s

W±c
(resp. Żs

W±c
)

norm, where

∥n∥Ẏ s
W±c

:=
(∑

N

N2s∥PNn∥2V 2
W±c

)1/2
, ∥n∥ŻW±c

:=
(∑

N

N2s∥PNn∥2U2
W±c

)1/2
.

Definition 5. For a Hilbert space H and a Banach space X ⊂ C(R;H), we define

Br(H) := {f ∈ H | ∥f∥H ≤ r},

X([0, T )) := {u ∈ C([0, T );H) | ∃ũ ∈ X, ũ(t) = u(t), t ∈ [0, T )}

endowed with the norm ∥u∥X([0,T )) = inf{∥ũ∥X | ũ(t) = u(t), t ∈ [0, T )}.
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We denote the Duhamel term

IT,K±(n, v) := ±
∫ t

0

χ[0,T ](t
′)K±(t− t′)n(t′)(ω−1

1 v(t′))dt′,

IT,W±c(u, v) := ±
∫ t

0

χ[0,T ](t
′)W±c(t− t′)ω

(
(ω−1

1 u(t′))(ω−1
1 v(t′))

)
dt′

for the Klein-Gordon equation and the wave equation respectively. The following

proposition is in [18] (Theorem 2.8 and Proposition 2.10).

Proposition 4.5. Let u ∈ V 1
−, rc ⊂ U2 be absolutely continuous on compact intervals.

Then, ∥u∥U2 = sup
v∈V 2, ∥v∥V 2=1

∣∣∣∫ ∞

−∞
⟨u′(t), v(t)⟩L2

x
dt
∣∣∣.

Corollary 4.6. Let A = K± or W±c and u ∈ V 1
−, rc, A ⊂ U2

A be absolutely continuous

on compact intervals. Then,

∥u∥U2
A
= sup

v∈V 2
A, ∥v∥

V 2
A
=1

∣∣∣∫ ∞

−∞
⟨A(t)(A(−·)u)′(t), v(t)⟩L2

x
dt
∣∣∣.

Proposition 4.7. Let T0 : L2
x × . . . × L2

x → L1
loc(Rd;C) be a n-linear operator.

Assume that for some 1 ≤ p <∞ and 1 ≤ q ≤ ∞, it holds that

∥T0(K±(·)ϕ1, . . . , K±(·)ϕn)∥Lp
t (R;L

q
x(Rd)) ≲

n∏
i=1

∥ϕi∥L2
x
.

Then, there exists T : Up
K±

× . . .× Up
K±

→ Lp
t (R;Lq

x(Rd)) satisfying

∥T (u1, . . . , un)∥Lp
t (R;L

q
x(Rd)) ≲

n∏
i=1

∥ui∥Up
K±
,

such that T (u1, . . . , un)(t)(x) = T0(u1(t), . . . , un(t))(x) a.e.

See Proposition 2.19 in [18] for the proof of the above proposition.

Proposition 4.8. Let d ≥ 3, 2 ≤ r <∞, 2/q = (d− 1)(1/2− 1/r), (q, r) ̸= (2, 2(d−
1)/(d− 3)) and s = 1/q − 1/r + 1/2. Then it holds that

∥W±c(t)f∥Lq
t Ẇ

−s,r
x (R1+d) ≲ ∥f∥L2

x(Rd).

For the proof of Proposition 4.8, see [28], [16].

Proposition 4.9. Let d ≥ 3, 2 ≤ r <∞, 2/q = (d− 1)(1/2− 1/r), (q, r) ̸= (2, 2(d−
1)/(d− 3)) and s = 1/q − 1/r + 1/2. Then, it holds that

∥K±(t)f∥Lq
tW

−s,r
x (R1+d) ≲ ∥f∥L2

x(Rd).

For the proof of Proposition 4.9, see [34]. Combining Proposition 4.4, Proposition

4.7, Proposition 4.8 and Proposition 4.9, we have the following.
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Proposition 4.10. Let d ≥ 3, 2 ≤ r < ∞, 2/q = (d − 1)(1/2 − 1/r), (q, r) ̸=
(2, 2(d− 1)/(d− 3)) and s = 1/q − 1/r + 1/2. If p < q, then it holds that

∥f∥Lq
tW

−s,r
x (R1+d) ≲ ∥f∥V p

K±
, ∥f∥Lq

t Ẇ
−s,r
x (R1+d) ≲ ∥f∥V p

W±c
.

Proposition 4.11. (i) Let T > 0 and u ∈ Y s
K±

([0, T ]), u(0) = 0. Then, there exists

0 ≤ T ′ ≤ T such that ∥u∥Y s
K±

([0,T ′]) < ε.

(ii) Let T > 0 and n ∈ Ẏ s
W±c

([0, T ]), n(0) = 0. Then, there exists 0 ≤ T ′ ≤ T such

that ∥n∥Ẏ s
W±c

([0,T ′]) < ε.

For the proofs of (i) and (ii), see Proposition 2.24 in [18].

Lemma 4.12. Let a ≥ 0. Then for A = K± or W±c, it holds that

∥⟨∇x⟩af∥V 2
A
≲ ∥f∥Y a

A
.

Proof. We only prove it for A = K± since we can prove it similarly for A = W±c.

By L2
x orthogonality, we have

∥⟨∇x⟩af∥2V 2
K±

≲ sup
{ti}Ii=0∈Z

I∑
i=1

(∥P<1(K±(−ti)f(ti)−K±(−ti−1)f(ti−1))∥2L2
x

+
∑
N≥1

N2a∥PN(K±(−ti)f(ti)−K±(−ti−1)f(ti−1))∥2L2
x
)

≲ sup
{ti}Ii=0∈Z

I∑
i=1

∥K±(−ti)P<1f(ti)−K±(−ti−1)P<1f(ti−1)∥2L2
x

+
∑
N≥1

N2a sup
{ti}Ii=0∈Z

I∑
i=1

∥K±(−ti)PNf(ti)−K±(−ti−1)PNf(ti−1)∥2L2
x

≲ ∥f∥2Y a
K±
.

□

Remark 4.2. Similarly, we see

∥|∇x|af∥V 2
A
≲ ∥f∥Ẏ a

A
.

Lemma 4.13. If f, g are measurable functions, then for Q = QA
<M or QA

≥M , A = K±

or W±c, it holds that∫
R1+d

f(t, x)Qg(t, x)dxdt =

∫
R1+d

(
Qf(t, x)

)
g(t, x)dxdt.

For the proof of Lemma 4.13, see [26], Lemma 2.17. Since QA
<M = Id−QA

≥M , we

also obtain the result for Q = QA
<M .
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Proposition 4.14. It holds that

∥QK±
M u∥L2

t,x(R1+d) ≲ M−1/2∥u∥V 2
K±
, ∥QK±

≥Mu∥L2
t,x(R1+d) ≲ M−1/2∥u∥V 2

K±
, (4.3)

∥QK±
<Mu∥V 2

K±
≲ ∥u∥V 2

K±
, ∥QK±

≥Mu∥V 2
K±

≲ ∥u∥V 2
K±
,

∥QK±
<Mu∥U2

K±
≲ ∥u∥U2

K±
, ∥QK±

≥Mu∥U2
K±

≲ ∥u∥U2
K±
.

The same estimates hold by replacing the Klein-Gordon operator K± by the wave

operator W±c.

Lemma 4.15. Let c > 0, c ̸= 1 and τ3 = τ1 − τ2, ξ3 = ξ1 − ξ2. If |ξ1| ≫ ⟨ξ2⟩ or

⟨ξ1⟩ ≪ |ξ2|, then it holds that

max
{∣∣τ1 ± ⟨ξ1⟩

∣∣, ∣∣τ2 ± ⟨ξ2⟩
∣∣, ∣∣τ3 ± c|ξ3|

∣∣} ≳ max{|ξ1|, |ξ2|}. (4.4)

Proof. We only prove the case |ξ1| ≫ ⟨ξ2⟩ since the case ⟨ξ1⟩ ≪ |ξ2| is proved by the

same manner.

(l.h.s.) ≳
∣∣(τ1 ± (1 + |ξ1|)

)
−
(
τ2 ± (1 + |ξ2|)

)
− (τ3 ± c|ξ3|)

∣∣ (4.5)

If 0 < c < 1, then we take εc such that 0 < εc < (1− c)/(1 + c), |ξ2| ≤ εc|ξ1|. Then,
the right hand side of (4.5) is bounded by

(1 + |ξ1|)− (1 + |ξ2|)− c|ξ1 − ξ2| ≥ |ξ1| − εc|ξ1| − c(1 + εc)|ξ1| ≳ |ξ1|.

If c > 1, then we take ε̃c such that 0 < ε̃c < (c− 1)/(c+ 3), |ξ2| ≤ ε̃c|ξ1|, |ξ1| ≥ 1/ε̃c.

Then, the right hand side of (4.5) is bounded by

c|ξ1 − ξ2| − (1 + |ξ1|)− (1 + |ξ2|) ≥ c(1− ε̃c)|ξ1| − (1 + ε̃c)|ξ1| − 2ε̃c|ξ1| ≳ |ξ1|.

□

Remark 4.3. From (4.3) and (4.4), we can obtain a half derivative.

Lemma 4.16. Let ũN1 := χ[0,T )PN1u, ṽN2 := χ[0,T )PN2v, ñN3 := χ[0,T )PN3n,Q1, Q2 ∈
{QK±

<M , Q
K±
≥M}, Q3 ∈ {QW±c

<M , Q
W±c

≥M }. Let d ≥ 5, s = sc = d/2− 2. Then the following

estimates hold for all 0 < T <∞ :

(i) If N3 ≲ N2 ∼ N1, then

|I1| :=
∣∣∣∫

R1+d

(ω−1
1 ũN1)(ω

−1
1 ṽN2)(ωñN3)dxdt

∣∣∣ ≲ N s
3∥uN1∥V 2

K±
∥vN2∥V 2

K±
∥nN3∥V 2

W±c
.

(ii) It holds that

|I2| :=
∣∣∣∫

R1+d

ñ(ω−1
1 ṽ)(P<1ũ)dxdt

∣∣∣ ≲ ∥n∥Ẏ s
W±c

∥v∥Y s
K±

∥P<1u∥V 2
K±
.
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(iii) If N1 ∼ N2, then

|I3| :=
∣∣∣∫

R1+d

( ∑
N3 ≲ N2

ñN3

)
(ω−1

1 ṽN2)ũN1dxdt
∣∣∣ ≲ ∥n∥Ẏ s

W±c

∥vN2∥V 2
K±

∥uN1∥V 2
K±
.

(iv) If N1 ∼ N3, N1 ≫ 1,M = εN1 and ε > 0 is sufficiently small, then

|Ii| ≲ ∥nN3∥V 2
W±c

∥v∥Y s
K±

∥uN1∥V 2
K±
, (i = 4, 5)

where

I4 :=

∫
R1+d

(Q
W±c

≥M ñN3)
( ∑
N2≪N1

Q2ω
−1
1 ṽN2

)
(Q1ũN1)dxdt,

I5 :=

∫
R1+d

(Q3ñN3)
( ∑
N2≪N1

Q2ω
−1
1 ṽN2

)
(Q

K±
≥M ũN1)dxdt.

Proof. We show (i) first. For f ∈ V 2
A , A ∈ {K±,W±c}, we see

∥χ[0,T )f∥V 2
A
≲ ∥f∥V 2

A
. (4.6)

For d ≥ 5, we apply the Hölder inequality to have

|I1| ≲ ∥ω−1
1 ũN1∥L2(d+1)/(d−1)

t,x
∥ω−1

1 ṽN2∥L2(d+1)/(d−1)
t,x

∥ωñN3∥L(d+1)/2
t,x

. (4.7)

We apply Proposition 4.10, (4.6) and the Sobolev inequality, then we have

∥ω−1
1 f̃N∥L2(d+1)/(d−1)

t,x
≲ ⟨N⟩1/2−1∥fN∥V 2

K±
= ⟨N⟩−1/2∥fN∥V 2

K±
, (4.8)

∥ωñN3∥L(d+1)/2
t,x

≲ ∥|∇x|d(d−5)/2(d−1)ωñN3∥L(d+1)/2
t L

2(d2−1)/(d2−9)
x

≲ ∥|∇x|d/2−2ωñN3∥V 2
W±c

(4.9)

≲ N sc+1
3 ∥nN3∥V 2

W±c
(4.10)

Collecting (4.7), (4.8), (4.10) and N3 ≲ N1 ∼ N2, we obtain

|I1| ≲ N sc
3 ∥uN1∥V 2

K±
∥vN2∥V 2

K±
∥nN3∥V 2

W±c
.

Next, we prove (ii). For d ≥ 5, by the Hölder inequality to have

|I2| ≲ ∥ñ∥
L
(d+1)/2
t,x

∥ω−1
1 ṽ∥

L
2(d+1)/(d−1)
t,x

∥P<1ũ∥L2(d+1)/(d−1)
t,x

. (4.11)

From Proposition 4.10, (4.9), Remark 4.2 and Lemma 4.12, we obtain

∥ñ∥
L
(d+1)/2
t,x

≲ ∥n∥Ẏ sc
W±c

, (4.12)

∥ω−1
1 ṽ∥

L
2(d+1)/(d−1)
t,x

≲ ∥⟨∇x⟩−1/2v∥V 2
K±

≲ ∥⟨∇x⟩scv∥V 2
K±

≲ ∥v∥Y sc
K±
, (4.13)

∥P<1ũ∥L2(d+1)/(d−1)
t,x

≲ ∥⟨∇x⟩1/2P<1u∥V 2
K±

≲ ∥P<1u∥V 2
K±
. (4.14)
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Collecting (4.11)–(4.14), we obtain

|I2| ≲ ∥n∥Ẏ sc
W±c

∥v∥Y sc
K±

∥P<1u∥V 2
K±
.

We prove (iii) for d ≥ 5. We apply the Hölder inequality to have

|I3| ≲
∥∥∥ ∑
N3 ≲ N2

ñN3

∥∥∥
L
(d+1)/2
t,x

∥ω−1
1 ṽN2∥L2(d+1)/(d−1)

t,x
∥ũN1∥L2(d+1)/(d−1)

t,x
. (4.15)

Similar to (4.9), the Sobolev inequality and Proposition 4.10, we have∥∥∥ ∑
N3 ≲ N2

ñN3

∥∥∥
L
(d+1)/2
t,x

≲
∥∥∥|∇x|sc

∑
N3 ≲ N2

ñN3

∥∥∥
V 2
W±c

. (4.16)

By the L2
x orthogonality, we obtain∥∥∥|∇x|sc
∑

N3 ≲ N2

ñN3

∥∥∥2
V 2
W±c

≲ sup
{ti}Ii=0∈Z

I∑
i=1

∑
N

N2sc
∥∥∥PN

{
W±c(−ti)

( ∑
N3 ≲ N2

ñN3(ti)
)

−W±c(−ti−1)
( ∑
N3 ≲ N2

ñN3(ti−1)
)}∥∥∥2

L2
x

. (4.17)

Since PN ñN3 = 0 if N3 > 2N or N3 < N/2 and PN is projection, the right-hand side

is bounded by

sup
{ti}Ii=0∈Z

I∑
i=1

∑
N

N2sc∥W±c(−ti)PN ñ(ti)−W±c(−ti−1)PN ñ(ti−1)∥2L2
x

≲
∑
N

N2sc sup
{ti}Ii=0∈Z

∥W±c(−ti)PN ñ(ti)−W±c(−ti−1)PN ñ(ti−1)∥2L2
x

≲ ∥n∥2
Ẏ sc
W±c

. (4.18)

Hence, from (4.15)–(4.18), (4.8) and N1 ∼ N2, we have

|I3| ≲ ∥n∥Ẏ sc
W±c

⟨N2⟩−1/2∥vN2∥V 2
K±

⟨N1⟩1/2∥uN1∥V 2
K±

≲ ∥n∥Ẏ sc
W±c

∥vN2∥V 2
K±

∥uN1∥V 2
K±
.

We prove (iv). The estimate for I5 is obtained by the same manner as the estimate

for I4, so we only estimate I4. We apply the Hölder inequality to have

|I4| ≲ ∥QW±c

≥M ñN3∥L2
t,x

∥∥∥ ∑
N2≪N1

Q2ω
−1
1 ṽN2

∥∥∥
Ld+1
t,x

∥Q1ũN1∥L2(d+1)/(d−1)
t,x

. (4.19)

By Proposition 4.14, (4.8) and (4.6), we have

∥QW±c

≥M ñN3∥L2
t,x

≲ N
−1/2
1 ∥nN3∥V 2

W±c
, (4.20)

∥Q1ũN1∥L2(d+1)/(d−1)
t,x

≲ ⟨N1⟩1/2∥uN1∥V 2
K±
. (4.21)
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We apply the Sobolev inequality, Proposition 4.10, Proposition 4.14 and (4.6), we

have∥∥∥ ∑
N2≪N1

Q2ω
−1
1 ṽN2

∥∥∥
Ld+1
t,x

≲
∥∥∥⟨∇x⟩d(d−3)/2(d−1)

∑
N2≪N1

Q2ω
−1
1 ṽN2

∥∥∥
Ld+1
t L

2(d2−1)/(d2−5)
x

≲
∥∥∥⟨∇x⟩d(d−3)/2(d−1)+1/(d−1)−1

∑
N2≪N1

ṽN2

∥∥∥
V 2
K±

. (4.22)

Similar to (4.17) and (4.18), we have∥∥∥⟨∇x⟩d(d−3)/2(d−1)+1/(d−1)−1
∑

N2≪N1

ṽN2

∥∥∥
V 2
K±

≲ ∥v∥Y sc
K±
. (4.23)

Collecting (4.19)–(4.23) and N1 ≫ 1, we obtain

|I4| ≲ ∥nN3∥V 2
W±c

∥v∥Y sc
K±

∥uN1∥V 2
K±
.

□

The following proposition is in [43], Proposition 10.

Proposition 4.17. (L4 Strichartz estimate) For all dyadic numbers H ≥ 1 and N ,

it holds that

∥W±c(t)PNϕ∥L4
t,x

≲ N (d−1)/4∥PNϕ∥L2
x
, ∥K±(t)PHφ∥L4

t,x
≲ H(d−1)/4∥PHφ∥L2

x
.

From Proposition 4.7 and the above proposition, we obtain the following.

Proposition 4.18. For dyadic numbers H ≥ 1 and N , it holds that

∥uN∥L4
t,x

≲ N (d−1)/4∥uN∥U4
W±c

, ∥vH∥L4
t,x

≲ H(d−1)/4∥vH∥U4
K±
.

Proposition 4.19. Let uM , vN ∈ L2(R1+d) be such that

suppFuM ⊂ W±c
L1

∩
(
R× (C ∩ PM)

)
, suppFvN ⊂ KG±

L2
∩ (R× PN)

for dyadic numbers L1, L2,M,N and a cube C ⊂ Rd of side length L. If L≪M ∼
N, c > 0 and c ̸= 1, it holds that

∥PL(uMvN)∥L2
t,x

≲ L(d−1)/2(L1L2)
1/2∥uM∥L2

t,x
∥vN∥L2

t,x
.

Proof. Let f := FuM , g := FvN . By the Cauchy-Schwarz inequality, we have∥∥∥∫
|ξ|∼L

f(τ1, ξ1)g(τ − τ1, ξ − ξ1)dτ1dξ1

∥∥∥
L2
τ,ξ

≲ sup
τ, ξ

|E(τ, ξ)|1/2∥f∥L2∥g∥L2

where

E(τ, ξ) = {(τ1, ξ1) ∈ supp f ; (τ − τ1, ξ − ξ1) ∈ supp g, |ξ| ∼ L} ⊂ R1+d.
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Put l := min{L1, L2}, l := max{L1, L2}. By the Fubini theorem,

|E(τ, ξ)| ≤ l
∣∣{ξ1; |τ ± c|ξ1| ± |ξ − ξ1|| ≲ l, ξ1 ∈ C, |ξ1| ∼M, |ξ − ξ1| ∼ N, |ξ| ∼ L}

∣∣ .
For some i ∈ {1, ..., d}, we set |(ξ − ξ1)i| ≳ N , where (ξ − ξ1)i denotes the i-th

component of ξ − ξ1. We compute

|∂ξ1,i(τ ± c|ξ1| ± (1 + |ξ − ξ1|))| =
∣∣∣∣(ξ − ξ1)i
|ξ − ξ1|

± c
ξ1,i
|ξ1|

∣∣∣∣ , (4.24)

where ξ1,i be the i-th component of ξ1. Since |(ξ − ξ1)i| ≳ N and |ξ| ∼ L, it suffices

to consider the case |ξ0,i| ≪ |ξ1,i|, where ξ0,i be the i-th component of ξ. Firstly, we

consider the case 0 < c≪ 1. We have

r.h.s. of (4.24) ≥ |(ξ − ξ1)i|
|ξ − ξ1|

− c
|ξ1,i|
|ξ1|

≳ 1− c

from |(ξ − ξ1)i| ≳ N ∼ |ξ − ξ1| and |ξ1| ≥ |ξ1,i|. Secondly, we consider the case

c ∼ 1, c ̸= 1. The assumption L≪ N ∼M implies

max{(1− (1− c)2), 1/2}|ξ1,i|
|ξ1|

≤ |(ξ − ξ1)i|
|ξ − ξ1|

≤ min{(1 + (1− c)2), 3/2}|ξ1,i|
|ξ1|

.

From the above inequality, we obtain

r.h.s. of (4.24) ≳
∣∣∣∣c |ξ1,i||ξ1|

− |(ξ − ξ1)i|
|ξ − ξ1|

∣∣∣∣ ≳ |c− 1|.

Finally, we consider the case c≫ 1. We have

r.h.s. of (4.24) ≳ c
|ξ1,i|
|ξ1|

− |(ξ − ξ1)i|
|ξ − ξ1|

≳ c− 1

since |(ξ − ξ1)i| ≳ N and |ξ0,i| ≪ |ξ1,i|. Therefore,

|∂ξ1,i(τ ± c|ξ1| ± (1 + |ξ − ξ1|))| ≳ |c− 1|. (4.25)

Hence by (4.25) and the mean value theorem, we have∣∣{ξ1; |τ ± c|ξ1| ± |ξ − ξ1|| ≲ l, ξ1 ∈ C, |ξ1| ∼M, |ξ − ξ1| ∼ N, |ξ| ∼ L}
∣∣

≲ |c− 1|−1md−1l.

From m ∼ L, we have

|E(ξ, τ)|1/2 ≲ (l|c− 1|−1md−1l)1/2 ∼ |c− 1|−1/2(L1L2)
1/2L(d−1)/2.

Thus, we obtain the result. □

Proposition 4.19 implies the following.
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Proposition 4.20. Let L≪M ∼ N, c > 0 and c ̸= 1. For uM = W±c(t)PMϕ, vN =

K±(t)PNφ, it holds that

∥PL(uMvN)∥L2
t,x

≲ L(d−1)/2∥PMϕ∥L2
x
∥PNφ∥L2

x
.

From Proposition 4.7 and the above proposition, we have the following.

Proposition 4.21. Let L≪M ∼ N, c > 0 and c ̸= 1. It holds that

∥PL(uMvN)∥L2
t,x

≲ L(d−1)/2∥uM∥U2
W±c

∥vN∥U2
K±
.

The following proposion is in [18], Proposition 2.20.

Proposition 4.22. Let q > 1, E be a Banach space, A = K± or W±c and T : U q
A →

E be a bounded, linear operator with ∥Tu∥E ≤ Cq∥u∥Uq
A
for all u ∈ U q

A. In addition,

assume that for some 1 ≤ p < q there exists Cp ∈ (0, Cq] such that the estimate

∥Tu∥E ≤ Cp∥u∥Up
A
holds true for all u ∈ Up

A. Then, T satisfies the estimate

∥Tu∥E ≤ Cp

(
1 + ln(Cq/Cp)

)
∥u∥V p

A
, u ∈ V p

A .

Proposition 4.23. Let L ≪ M ∼ N,N ≥ 1, c > 0 and c ≠ 1. For sufficiently

small ε > 0, it holds that

∥PL(uMvN)∥L2
t,x

≲ L(d−1)/2 (M/L)ε ∥uM∥V 2
W±c

∥vN∥V 2
K±
.

Proof. By the Hölder inequality, M ∼ N,N ≥ 1 and Proposition 4.18, we obtain

∥PL(uMvN)∥L2
t,x

≲ ∥uM∥L4
t,x
∥vN∥L4

t,x
≲ M (d−1)/2∥uM∥U4

W±c
∥vN∥U4

K±
. (4.26)

Let Sv := PL(P̃MuP̃Nv), where P̃M = PM/2+PM +P2M , such that P̃MPM = PM .P̃N

is defined by the same manner as P̃M . From (4.26) and U2
W±c

⊂ U4
W±c

, we have

∥S∥U4
K±

→L2 ≲ M (d−1)/2∥u∥U4
W±c

≲ M (d−1)/2∥u∥U2
W±c

. (4.27)

From Proposition 4.21, we have

∥S∥U2
K±

→L2 ≲ L(d−1)/2∥u∥U2
W±c

. (4.28)

From (4.27), (4.28) and Proposition 4.22, for sufficiently small ε′ > 0, we have

∥S∥V 2
K±

→L2 ≲ L(d−1)/2 (M/L)ε
′
∥u∥U2

W±c
. (4.29)

Let Tu := PL(P̃MuP̃Nv). From Proposition 4.18, M ∼ N and V 2
K±

⊂ U4
K±

, we have

∥T∥U4
W±c

→L2 ≲ N (d−1)/2∥vN∥U4
K±

≲ N (d−1)/2∥vN∥V 2
K±

≲ N (d−1)/2∥v∥V 2
K±
. (4.30)

By (4.29), we have

∥T∥U2
W±c

→L2 ≲ L(d−1)/2 (M/L)ε
′
∥v∥V 2

K±
. (4.31)
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Collecting (4.30), (4.31), M ∼ N and Proposition 4.22, we obtain

∥T∥V 2
W±c

→L2 ≲ L(d−1)/2 (M/L)2ε
′
∥v∥V 2

K±
.

Taking ε = 2ε′, the claim follows. □

4.3. Bilinear estimates.

Proposition 4.24. Let d ≥ 5, s = sc = d/2 − 2 and c > 0, c ̸= 1. Then for all

0 < T <∞, it holds that

∥IT,K±(n, v)∥Zs
K±

≲ ∥n∥Ẏ s
W±c

∥v∥Y s
K±
, (4.32)

∥IT,W±c(u, v)∥Żs
W±c

≲ ∥u∥Y s
K±

∥v∥Y s
K±
. (4.33)

Remark 4.4. In (4.32) and (4.33), the implicit constant does not depend on T .

Proof. We denote ũN1 := χ[0,T )PN1u, ṽN2 := χ[0,T )PN2v, ñN3 := χ[0,T )PN3n. To prove

(4.32), we need to estimate the following.

∥IT,K±(n, v)∥2Zsc
K±

≲
3∑

i=0

Ji

where

J0 :=
∥∥∥∫ t

0

χ[0,T )(t
′)K±(t− t′)P<1(ñ(ω

−1
1 ṽ))(t′)dt′

∥∥∥2
U2
K±

,

J1 :=
∑
N1≥1

N2sc
1

∥∥∥∫ t

0

χ[0,T )(t
′)K±(t− t′)

∑
N2∼N1

∑
N3 ≲ N2

PN1(ñN3(ω
−1
1 ṽN2))(t

′)dt′
∥∥∥2
U2
K±

,

J2 :=
∑
N1≥1

N2sc
1

∥∥∥∫ t

0

χ[0,T )(t
′)K±(t− t′)

∑
N2≪N1

∑
N3∼N1

PN1(ñN3(ω
−1
1 ṽN2))(t

′)dt′
∥∥∥2
U2
K±

,

J3 :=
∑
N1≥1

N2sc
1

∥∥∥∫ t

0

χ[0,T )(t
′)K±(t− t′)

∑
N2≫N1

∑
N3∼N2

PN1(ñN3(ω
−1
1 ṽN2))(t

′)dt′
∥∥∥2
U2
K±

.

By Corollary 4.6 and Lemma 4.16 (ii), we have

J
1/2
0 ≲ sup

∥u∥
V 2
K±

=1

∣∣∣∫
R1+d

ñ(ω−1
1 ṽ)(P<1ũ)dxdt

∣∣∣
≲ ∥n∥Ẏ sc

W±c

∥v∥Y sc
K±
. (4.34)
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We apply Corollary 4.6, N1 ∼ N2, Lemma 4.16 (iii) and ∥ũN1∥V 2
K±

≲ ∥u∥V 2
K±

, then

J1 ≲
∑
N1≥1

N2sc
1 sup

∥u∥
V 2
K±

=1

∣∣∣ ∑
N2∼N1

∑
N3 ≲ N2

∫
R1+d

ñN3(ω
−1
1 ṽN2)ũN1dxdt

∣∣∣2
≲

∑
N2 ≳ 1

N2sc
2 ∥n∥2

Ẏ sc
W±c

∥vN2∥2V 2
K±

≲ ∥n∥2
Ẏ sc
W±c

∥v∥2Y sc
K±
. (4.35)

For the estimate of J2, we take M = εN1 for sufficiently small ε > 0. Then, from

Lemma 4.15, we have

PN1Q
K±
<M

(
(Q

W±c

<M ñN3)(Q
K±
<Mω

−1
1 ṽN2)

)
= PN1Q

K±
<M

[
F−1

(∫
τ1=τ2+τ3, ξ1=ξ2+ξ3

̂(Q
W±c

<M ñN3)(τ3, ξ3)
̂(Q

K±
<Mω

−1
1 ṽN2)(τ2, ξ2)

)]
= 0

when N1 ≫ ⟨N2⟩. Therefore,

PN1

(
ñN3(ω

−1
1 ṽN2)

)
=

3∑
i=1

PN1Fi,

where

F1 := Q1

(
(Q

W±c

≥M ñN3)(Q2ω
−1
1 ṽN2)

)
, F2 := Q1

(
(Q3ñN3)(Q

K±
≥Mω

−1
1 ṽN2)

)
,

F3 := Q
K±
≥M

(
(Q3ñN3)(Q2ω

−1
1 ṽN2)

)
.

Here, Q1, Q2 ∈ {QK±
<M , Q

K±
≥M} andQ3 ∈ {QW±c

<M , Q
W±c

≥M }. For the estimate of F1, we ap-

ply Corollary 4.6, Lemma 4.13, Lemma 4.16 (iv), N3 ∼ N1 ≥ 1 and ∥ũN1∥V 2
K±

≲ ∥u∥V 2
K±

,

then we have

∑
N1≥1

N2sc
1

∥∥∥∫ t

0

χ[0,T )(t
′)K±(t− t′)

∑
N2≪N1

∑
N3∼N1

PN1F1(t
′)dt′

∥∥∥2
U2
K±

≲
∑
N1≥1

N2sc
1 sup

∥u∥
V 2
K±

=1

∣∣∣ ∑
N2≪N1

∑
N3∼N1

∫
R1+d

(Q
W±c

≥M ñN3)(Q2ω
−1
1 ṽN2)(Q1ũN1)dxdt

∣∣∣2
≲

∑
N3 ≳ 1

N2sc
3 ∥nN3∥2V 2

W±c

∥v∥2Y sc
K±

≲ ∥n∥2
Ẏ sc
W±c

∥v∥2Y sc
K±
. (4.36)
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For the estimate of F2, we apply Corollary 4.6, Lemma 4.13 and the triangle in-

equality, we have∑
N1≥1

N2sc
1

∥∥∥∫ t

0

χ[0,T )(t
′)K±(t− t′)

∑
N2≪N1

∑
N3∼N1

PN1F2(t
′)dt′

∥∥∥2
U2
K±

≲
∑
N1≥1

N2sc
1 sup

∥u∥
V 2
K±

=1

∣∣∣ ∑
N2≪N1

∑
N3∼N1

∫
R1+d

(Q3ñN3)(Q
K±
≥Mω

−1
1 ṽN2)(Q1ũN1)dxdt

∣∣∣2
≲
∑
N1≥1

N2sc
1 sup

∥u∥
V 2
K±

=1

∑
N2≪N1

∑
N3∼N1

∣∣∣∫
R1+d

(Q3ñN3)(Q
K±
≥Mω

−1
1 ṽN2)(Q1ũN1)dxdt

∣∣∣2.
(4.37)

By Proposition 4.23, N2 ≪ N1 ∼ N3, N1 ≥ 1 and Proposition 4.14, we have∣∣∣∫
R1+d

(Q3ñN3)(Q
K±
≥Mω

−1
1 ṽN2)(Q1ũN1)dxdt

∣∣∣
≲ ∥QK±

≥Mω
−1
1 ṽN2∥L2

t,x
∥PN2

(
(Q3ñN3)(Q1ũN1)

)
∥L2

t,x

≲ N
−1/2
3 ⟨N2⟩−1∥vN2∥V 2

K±
N

(d−1)/2
2 (N3/N2)

ε∥nN3∥V 2
±c
∥uN1∥V 2

K±

≲ N sc
2 (N2/N3)

1/2−ε∥vN2∥V 2
K±

∥nN3∥V 2
±c
∥uN1∥V 2

K±
. (4.38)

By (4.38) and the Cauchy-Schwarz inequality, the right-hand side of (4.37) is bounded

by ∑
N3 ≳ 1

N2sc
3 ∥nN3∥2V 2

W±c

( ∑
N2≪N3

(
N2/N3

)1/2−ε
N sc

2 ∥vN2∥V 2
K±

)2
≲ ∥n∥2

Ẏ sc
W±c

∥v∥2Y sc
K±
. (4.39)

For the estimate for F3, we apply Corollary 4.6, Lemma 4.13, Lemma 4.16 (iv), N3 ∼
N1 ≥ 1 and ∥ũN1∥V 2

K±
≲ ∥u∥V 2

K±
, then we obtain

∑
N1≥1

N2sc
1

∥∥∥∫ t

0

χ[0,T )(t
′)K±(t− t′)

∑
N2≪N1

∑
N3∼N1

PN1F3(t
′)dt′

∥∥∥2
U2
K±

≲
∑
N1≥1

N2sc
1 sup

∥u∥
V 2
K±

=1

∣∣∣ ∑
N2≪N1

∑
N3∼N1

∫
R1+d

(Q3ñN3)(Q2ω
−1
1 ṽN2)(Q

K±
≥M ũN1)dxdt

∣∣∣2
≲

∑
N3 ≳ 1

N2sc
3 ∥nN3∥2V 2

W±c

∥v∥2Y sc
K±

≲ ∥n∥2
Ẏ sc
W±c

∥v∥2Y sc
K±
. (4.40)

Collecting (4.36), (4.39) and (4.40), we have

J2 ≲ ∥n∥2
Ẏ sc
W±c

∥v∥2Y sc
K±
. (4.41)
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By Corollary 4.6 and the triangle inequality to have

J3 ≲
∑
N1≥1

N2sc
1 sup

∥u∥
V 2
K±

=1

∣∣∣ ∑
N2≫N1

∑
N3∼N2

∫
R1+d

ñN3(ω
−1
1 ṽN2)ũN1dxdt

∣∣∣2
≲
∑
N1≥1

N2sc
1

( ∑
N2≫N1

∑
N3∼N2

sup
∥u∥

V 2
K±

=1

∣∣∣∫
R1+d

ñN3(ω
−1
1 ṽN2)ũN1dxdt

∣∣∣)2. (4.42)

By the same manner as the estimate for Lemma 4.16 (iii), we obtain∣∣∣∫
R1+d

ñN3(ω
−1
1 ṽN2)ũN1dxdt

∣∣∣ ≲ N sc
3 ∥nN3∥V 2

W±c
∥vN2∥V 2

K±
∥uN1∥V 2

K±
. (4.43)

From (4.43), the right-hand side of (4.42) is bounded by∑
N1≥1

( ∑
N2≫N1

∑
N3∼N2

N sc
1 N

sc
3 ∥nN3∥V 2

W±c
∥vN2∥V 2

K±

)2
.

From sc > 0, ∥ · ∥l2l1 ≲ ∥ · ∥l1l2 and the Cauchy-Schwarz inequality, we have

J
1/2
3 ≲

∑
N2 ≳ 1

∑
N3∼N2

( ∑
N1≪N2

N2sc
1 N2sc

3 ∥nN3∥2V 2
W±c

∥vN2∥2V 2
K±

)1/2
≲

∑
N2 ≳ 1

∑
N3∼N2

N sc
2 N

sc
3 ∥nN3∥V 2

W±c
∥vN2∥V 2

K±

≲ ∥n∥Ẏ sc
W±c

∥v∥Y sc
K±
. (4.44)

Collecting (4.34), (4.35), (4.41) and (4.44), we obtain (4.32). We prove (4.33) below.

By Corollary 4.6, we only need to estimate Ki (i = 1, 2, 3):

K1 :=
∑
N3

N2sc
3 sup

∥n∥
V 2
W±c

=1

∣∣∣ ∑
N2∼N3

∑
N1≪N3

∫
R1+d

(ω−1
1 ũN1)(ω

−1
1 ṽN2)(ωñN3)dxdt

∣∣∣2,
K2 :=

∑
N3

N2sc
3 sup

∥n∥
V 2
W±c

=1

∣∣∣ ∑
N2≪N3

∑
N1∼N3

∫
R1+d

(ω−1
1 ũN1)(ω

−1
1 ṽN2)(ωñN3)dxdt

∣∣∣2,
K3 :=

∑
N3

N2sc
3 sup

∥n∥
V 2
W±c

=1

∣∣∣ ∑
N2 ≳ N3

∑
N1∼N2

∫
R1+d

(ω−1
1 ũN1)(ω

−1
1 ṽN2)(ωñN3)dxdt

∣∣∣2.
First, we estimate K1. Put K1 = K1,1 +K1,2 where

K1,1 :=
∑

N3 ≲ 1

N2sc
3 sup

∥n∥
V 2
W±c

=1

∣∣∣ ∑
N2∼N3

∑
N1≪N3

∫
R1+d

(ω−1
1 ũN1)(ω

−1
1 ṽN2)

× (ωñN3)dxdt
∣∣∣2, (4.45)

K1,2 :=
∑
N3≫1

N2sc
3 sup

∥n∥
V 2
W±c

=1

∣∣∣ ∑
N2∼N3

∑
N1≪N3

∫
R1+d

(ω−1
1 ũN1)(ω

−1
1 ṽN2)(ωñN3)dxdt

∣∣∣2.
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By the same manner as the proof for Lemma (4.16) (i), we see∣∣∣∫
R1+d

( ∑
N1≪N3

ω−1
1 ũN1

)
(ω−1

1 ṽN2)(ωñN3)dxdt
∣∣∣

≲ ⟨N2⟩−1/2⟨N3⟩3/2∥u∥Y sc
K±

∥vN2∥V 2
K±

∥nN3∥V 2
W±c

. (4.46)

Collecting (4.45), (4.46) and N2 ∼ N3 ≲ 1, we obtain

K1,1 ≲
∑

N2 ≲ 1

N2sc
2 (∥u∥Y sc

K±
⟨N2⟩−1/2+3/2∥vN2∥V 2

K±
)2

≲ ∥u∥2Y sc
K±

∑
N2 ≲ 1

N2sc
2 ∥vN2∥2V 2

K±

≲ ∥u∥2Y sc
K±

∥v∥2Y sc
K±
.

For the estimate for K1,2, we take M = εN2 for sufficiently small ε > 0. Then, from

Lemma 4.15, we have

PN1Q
K±
<Mω

−1
1

(
(Q

K±
<Mω

−1
1 ṽN2)(Q

W±c

<M ω ñN3)
)

= PN1Q
K±
<Mω

−1
1

[
F−1

(∫
τ1=τ2+τ3, ξ1=ξ2+ξ3

̂(Q
K±
<Mω

−1
1 ṽN2)(τ2, ξ2)

̂(Q
W±c

<M ω ñN3)(τ3, ξ3)
)]

= 0

when N2 ≫ ⟨N1⟩. Therefore,

PN1

(
(ω−1

1 ṽN2)(ω ñN3)
)
=

3∑
i=1

PN1Gi,

where

G1 := Q
K±
≥M

(
(Q2ω

−1
1 ṽN2)(Q3ω ñN3)

)
, G2 := Q1

(
(Q

K±
≥Mω

−1
1 ṽN2)(Q3ω ñN3)

)
,

G3 := Q1

(
(Q2ω

−1
1 ṽN2)(Q

W±c

≥M ω ñN3)
)
.

Here, Q1, Q2 ∈ {QK±
<M , Q

K±
≥M} and Q3 ∈ {QW±c

<M , Q
W±c

≥M }. Hence, it follows that

K1,2 ≤
3∑

i=1

K1,2,i

where

K1,2,i :=
∑
N3≫1

N2sc
3 sup

∥n∥
V 2
W±c

=1

∣∣∣ ∑
N2∼N3

∑
N1≪N3

∫
R1+d

(ω−1
1 ũN1)Gidxdt

∣∣∣2, i = 1, 2, 3.
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By Lemma 4.13, we have

K1,2,1 ≲
∑
N3≫1

N2sc
3 sup

∥n∥
V 2
W±c

=1

∣∣∣ ∑
N2∼N3

∑
N1≪N3

∫
R1+d

(Q
K±
≥Mω

−1
1 ũN1)(Q2ω

−1
1 ṽN2)

× (Q3ωñN3)dxdt
∣∣∣2, (4.47)

K1,2,2 ≲
∑
N3≫1

N2sc
3 sup

∥n∥
V 2
W±c

=1

∣∣∣ ∑
N2∼N3

∑
N1≪N3

∫
R1+d

(Q1ω
−1
1 ũN1)(Q

K±
≥Mω

−1
1 ṽN2)

× (Q3ωñN3)dxdt
∣∣∣2, (4.48)

K1,2,3 ≲
∑
N3≫1

N2sc
3 sup

∥n∥
V 2
W±c

=1

∣∣∣ ∑
N2∼N3

∑
N1≪N3

∫
R1+d

(Q1ω
−1
1 ũN1)(Q2ω

−1
1 ṽN2)

× (Q
W±c

≥M ωñN3)dxdt
∣∣∣2. (4.49)

By the same manner as the estimate for F2, we apply Proposition 4.23, N1 ≪ N2 ∼
N3, N3 ≫ 1 and Proposition 4.14, then we obtain∣∣∣∫

R1+d

(Q
K±
≥Mω

−1
1 ũN1)(Q2ω

−1
1 ṽN2)(Q3ωñN3)dxdt

∣∣∣
≲ ∥QK±

≥Mω
−1
1 ũN1∥L2

t,x
∥PN1

(
(Q2ω

−1
1 ṽN2)(Q3ωñN3)

)
∥L2

t,x

≲ N
−1/2
3 ⟨N1⟩−1∥uN1∥V 2

K±
N

(d−1)/2
1 (N3/N1)

ε⟨N2⟩−1∥vN2∥V 2
K±
N3∥nN3∥V 2

W±c

≲ N sc
1 (N1/N3)

1/2−ε⟨N2⟩−1N3∥uN1∥V 2
K±

∥vN2∥V 2
K±

∥nN3∥V 2
W±c

. (4.50)

From (4.47), (4.50), N3 ≫ 1, N2 ∼ N3 and the Cauchy-Schwarz inequality, we have

K1,2,1 ≲
∑
N2≫1

N2sc
2

( ∑
N1≪N2

N sc
1 ∥uN1∥V 2

K±
(N1/N2)

1/2−ε⟨N2⟩−1N2∥vN2∥V 2
K±

)2
≲ ∥u∥2Y sc

K±
∥v∥2Y sc

K±
.

By Lemma 4.16 (iv), i = 5, we obtain∣∣∣∫
R1+d

( ∑
N1≪N3

Q1ω
−1
1 ũN1

)
(Q

K±
≥Mω

−1
1 ṽN2)(Q3ωñN3)dxdt

∣∣∣
≲ ⟨N2⟩−1N3∥u∥Y sc

K±
∥vN2∥V 2

K±
∥nN3∥V 2

W±c
. (4.51)

From (4.48), (4.51), N3 ≫ 1 and N2 ∼ N3, we have

K1,2,2 ≲
∑
N2≫1

N2sc
2 (∥u∥Y sc

K±
∥vN2∥V 2

K±
)2 ≲ ∥u∥2Y sc

K±
∥v∥2Y sc

K±
.
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By Lemma 4.16 (iv), i = 4, we obtain∣∣∣∫
R1+d

( ∑
N1≪N3

Q1ω
−1
1 ũN1

)
(Q2ω

−1
1 ṽN2)(Q

W±c

≥M ωñN3)dxdt
∣∣∣

≲ ⟨N2⟩−1N3∥u∥Y sc
K±

∥vN2∥V 2
K±

∥nN3∥V 2
W±c

. (4.52)

From (4.49), (4.52), N3 ≫ 1 and N2 ∼ N3, we have

K1,2,3 ≲
∑
N2≫1

N2sc
2 (∥u∥Y sc

K±
∥vN2∥V 2

K±
)2 ≲ ∥u∥2Y sc

K±
∥v∥2Y sc

K±
.

By symmetry, the estimate for K2 is obtained by the same manner as the estimate

for K1. Hence, we omit the estimate for K2. By the triangle inequality, Lemma 4.16

(i) and the Cauchy-Schwarz inequality, we have

K
1/2
3 ≲

∑
N2

∑
N1∼N2

{ ∑
N3 ≲ N2

N2sc
3 sup

∥n∥
V 2
W±c

=1

∣∣∣∫
R1+d

(ω−1
1 ũN1)(ω

−1
1 ṽN2)(ωñN3)dxdt

∣∣∣2}1/2

≲
∑
N2

∑
N1∼N2

{ ∑
N3 ≲ N2

N2sc
3 (N sc

3 ∥uN1∥V 2
K±

∥vN2∥V 2
K±

)2
}1/2

≲
∑
N2

∑
N1∼N2

N sc
1 N

sc
2 ∥uN1∥V 2

K±
∥vN2∥V 2

K±

≲ ∥u∥Y sc
K±

∥v∥Y sc
K±
.

Therefore, we obtain (4.33). □

4.4. The proof of the main theorem. We define

u± := ω1u± i∂tu, n± := n± i(cω)−1∂tn

where ω1 := (1−∆)1/2, ω := (−∆)1/2. Then the wave equation in (4.1) is rewritten

into
i∂tu± ∓ ω1u± = ±(1/4)(n+ + n−)(ω

−1
1 u+ + ω−1

1 u−), (t, x) ∈ [−T, T ]× Rd,

i∂tn± ∓ cωn± = ±(4c)−1ω|ω−1
1 u+ + ω−1

1 u−|2, (t, x) ∈ [−T, T ]× Rd,

(u±, n±)|t=0 = (u±0, n±0) ∈ Hs(Rd)× Ḣs(Rd).

(4.53)

Hence by the Duhamel principle, we consider the following integral equation cor-

responding to (4.53) on the time interval [0, T ) with 0 < T ≤ ∞ :

u± = Φ1(u±, n+, n−), n± = Φ2(n±, u+, u−), (4.54)
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where

Φ1(u±, n+, n−) := K±(t)u±0 ± (1/4){IT,K±(n+, u+)(t) + IT,K±(n+, u−)(t)

+ IT,K±(n−, u+)(t) + IT,K±(n−, u−)(t)},

Φ2(n±, u+, u−) := W±c(t)n±0 ± (4c)−1{IT,W±c(u+, u+)(t) + IT,W±c(u+, u−)(t)

+ IT,W±c(u−, u+)(t) + IT,W±c(u−, u−)(t)}.

Proposition 4.25. (i) Let d ≥ 5, s = sc = d/2− 2 and δ > 0 be sufficiently small.

For all (u±0, n±0) ∈ Bδ(H
s(Rd) × Ḣs(Rd)) and for all 0 < T < ∞, there exists a

unique solution of (4.54) on [0, T ] such that

(u±, n±) ∈ Y s
K±([0, T ])× Ẏ s

W±c
([0, T ]) ⊂ C([0, T ];Hs(Rd))× C([0, T ]; Ḣs(Rd)).

(ii) The flow map obtained by (i):

Bδ(H
s(Rd)) × Bδ(Ḣ

s(Rd)) ∋ (u±0, n±0) 7→ (u±, n±) ∈ Y s
K±

([0, T ]) × Ẏ s
W±c

([0, T ]) is

Lipschitz continuous.

Remark 4.5. Due to the time reversibility of the Klein-Gordon-Zakharov equation,

Porpositions 4.25 also holds in corresponding time interval [−T, 0]

Remark 4.6. By (i) in Proposition 4.25 and Remark 4.5, for any T > 0, we have so-

lutions to (4.54) (u±(t), n±(t)) on [0, T ] and [−T, 0]. If initial data (u±0, n±0) ∈
Bδ(H

s(Rd) × Ḣs(Rd)), then we can take T arbitrary large and by uniqueness,

(u±(t), n±(t)) ∈ C((−∞,∞);Hs(Rd))×C((−∞,∞); Ḣs(Rd)) can be defined uniquely.

Proposition 4.26. Let the solution (u±(t), n±(t)) to (4.54) on (−∞,∞) obtained

by Proposirion 4.25, Remark 4.5 and Remark 4.6 with initial data (u±0, n±0) ∈
Bδ(H

s(Rd) × Ḣs(Rd)). Then, there exist (u±,+∞, n±,+∞) and (u±,−∞, n±,−∞) in

Hs(Rd)× Ḣs(Rd) such that

lim
t→+∞

(∥u±(t)−K±(t)u±,+∞∥Hs
x(Rd) + ∥n±(t)−W±c(t)n±,+∞∥Ḣs

x(Rd)) = 0,

lim
t→−∞

(∥u±(t)−K±(t)u±,−∞∥Hs
x(Rd) + ∥n±(t)−W±c(t)n±,−∞∥Ḣs

x(Rd)) = 0.

proof of Proposition 4.25. First, we prove (i). By Proposition 4.10, there exists

C > 0 such that

∥K±(t)u±0∥Y s
K±

≤ C∥u±0∥Hs , ∥W±c(t)n±0∥Ẏ s
W±c

≤ C∥n±0∥Ḣs .

We denote time interval I := [0, T ]. If (u±0, n±0) ∈ Bδ(H
s(Rd) × Ḣs(Rd)) is small

and (u±, n±) ∈ Br(Y
s
K±

(I) × Ẏ s
W±c

(I)), s = d/2 − 2, then by Proposition 4.24 and
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Remark 4.4, we have

∥Φ1(u±, n+, n−)∥Y s
K±

(I)

≤ Cδ + (C/4)(∥n+∥Ẏ s
W+c

(I)∥u+∥Y s
K+

(I) + ∥n+∥Ẏ s
W+c

(I)∥u−∥Y s
K−

(I)

+ ∥n−∥Ẏ s
W−c

(I)∥u+∥Y s
K+

(I) + ∥n−∥Ẏ s
W−c

(I)∥u−∥Y s
K−

(I)),

∥Φ2(n±, u+, u−)∥Ẏ s
W±c

(I)

≤ Cδ + (C/4c)(∥u+∥2Y s
K+

(I) + 2∥u+∥Y s
K+

(I)∥u−∥Y s
K−

(I) + ∥u−∥2Y s
K−

(I)).

Taking δ = r2 and r = min{1, c}/(4C), then we have

∥Φ1(u±, n+, n−)∥Y s
K±

(I) ≤ r, ∥Φ2(n±, u+, u−)∥Ẏ s
W±c

(I) ≤ r.

Hence, (Φ1,Φ2) is a map from Br(Y
s
K±

([0, T ]) × Ẏ s
W±c

([0, T ])) into itself. If we also

assume (v±,m±) ∈ Br(Y
s
K±

(I)× Ẏ s
W±c

(I)), then we have

∥Φ1(u±, n+, n−)− Φ1(v±,m+,m−)∥Y s
K±

(I)

≤ (1/8)(∥u+ − v+∥Y s
K+

(I) + ∥u− − v−∥Y s
K−

(I)

+ ∥n+ −m+∥Ẏ s
W+c

(I) + ∥n− −m−∥Ẏ s
W−c

(I)), (4.55)

∥Φ2(n±, u+, u−)− Φ2(m±, v+, v−)∥Ẏ s
W±c

(I)

≤ (1/4)(∥u+ − v+∥Y s
K+

(I) + ∥u− − v−∥Y s
K−

(I)). (4.56)

Thus, (Φ1,Φ2) is a contraction mapping on Br(Y
s
K±

([0, T ]) × Ẏ s
W±c

([0, T ])). Hence,

by the Banach fixed point theorem, we have a solution to (4.54) in it. We as-

sume that (u±(0), n±(0)), (v±(0),m±(0)) are both small and s = d/2 − 2 for d ≥
5. Let (u±, n±), (v±,m±) ∈ Y s

K±
([0, T ]) × Ẏ s

W±c
([0, T ]) are two solutions satisfying

(u±(0), n±(0)) = (v±(0),m±(0)). Moreover,

T ′ := sup{0 ≤ t ≤ T ;u±(t) = v±(t), n±(t) = m±(t)} < T.

By a translation in t, it suffices to consider T ′ = 0. Let 0 < τ ≤ T be fixed later.

From (4.55)–(4.56) and Proposition 4.11, we obtain

∥u± − v±∥Y s
K±

([0,τ ])

≤ (1/7)(∥n+ −m+∥Ẏ s
W+c

([0,τ ]) + ∥n− −m−∥Ẏ s
W−c

([0,τ ]) + ∥u∓ − v∓∥Y s
K∓

([0,τ ])),

(4.57)

∥n± −m±∥Ẏ s
W±c

([0,τ ]) ≤ (1/4)(∥u+ − v+∥Y s
K+

([0,τ ]) + ∥u− − v−∥Y s
K−

([0,τ ])). (4.58)
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From (4.57) and (4.58), we obtain

u± = v±, n± = m±

on [0, τ ] if 0 < τ ≤ T be sufficiently small. This contradicts the definition of T ′.

Therefore, the uniqueness of the solution (u±, n±) is showed. (ii) follows from the

standard argument, so we omit the proof. □

Finally, we prove Proposition 4.26. The proof is the same manner as the proof

for Proposition 4.2 in [26].

Proof. There exists M > 0 such that for all 0 < T <∞,

∥u±∥Y s
K±

([0,T ]) + ∥n±∥Ẏ s
W±c

([0,T ]) < M,

∥u±∥Y s
K±

([−T,0]) + ∥n±∥Ẏ s
W±c

([−T,0]) < M

holds since r in the proof of Proposition 4.25 does not depend on T . Take {tk}Kk=0 ∈
Z0 and 0 < T <∞ such that −T < t0, tK < T . By L2

x orthogonality,( K∑
k=1

∥⟨∇x⟩s
(
K±(−tk)u±(tk)−K±(−tk−1)u±(tk−1)

)
∥2L2

x

)1/2
≲ ∥⟨∇x⟩su±∥V 2

K±
([0,T ]) + ∥⟨∇x⟩su±∥V 2

K±
([−T,0])

≲ ∥u±∥Y s
K±

([0,T ]) + ∥u±∥Y s
K±

([−T,0])

< 2M.

Thus,

sup
{tk}Kk=0∈Z0

( K∑
k=1

∥⟨∇x⟩sK±(−tk)u±(tk)− ⟨∇x⟩sK±(−tk−1)u±(tk−1)∥2L2
x

)1/2
≲ M.

Hence, there exists f± := limt→±∞ ⟨∇x⟩sK±(−t)u±(t) in L2
x(Rd). Then put u±∞ :=

⟨∇x⟩−sf±, we obtain

∥⟨∇x⟩sK±(−t)u±(t)− f±∥L2
x
= ∥u±(t)−K±(t)u±∞∥Hs

x
→ 0

as t→ ±∞. The scattering result for the wave equation is obtained similarly.

□
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