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2 S. KINOSHITA
1. INTRODUCTION

We consider the Cauchy problem of the nonlinear Schrédinger equations (NLS):

i0yu + Au = N(u), (t,z) € R x RY,

| (L.1)
uli—o = ¢ € H*(RY),

and the Cauchy problem of the Klein-Gordon-Zakharov system (KGZ):

((@2 — A+ 1)u = —nu, (t,z) € [-T,T] x RY,
(02 — A)n = Alul?, (t,z) € [-T,T] x RY, (12)
(U,atujnaatn)’tzo = (U(),Ul,no,nl) '

€ HHY(RY) x H(RY) x H3(RY) x H*"H(RY),

\

where u,n are real valued functions, 0 < ¢ < 1. Our aim in this thesis is to prove
the local or global in time well-posedness of (1.1) and (1.2) in low regularity Sovolev

spaces. We first give an introduction and state our results on (NLS).

1.1. Introduction of (NLS). In (1.1), we consider two types of nonlinearities.
We first study the Cauchy problem of Hartree type nonlinear Schrodinger equations
(HNLS):

i0u + Au = F(u), (t,z) € R x RY,

. (1.3)
u|t:0 =pE HS(Rd)

F(u) is a nonlinear functional of Hartree type:
F(u) = (A\l2[7  [ul*)u, AeC\{0}, 0<y<d,

where * denotes the convolution in R¢. By the following scaling transformation:

d+2—

uy(t,x) =n" 2 u(n’t,nz), n >0,

we see that (HNLS) has the scaling invariance in H* with the critical index s, = =
The critical index is important in the sense that it is strongly believed that we cannot
obtain the well-posedness of (1.1) for s < s.. Therefore, it is natural that we aim to
get the well-posedness of (1.3) with the scaling critical regularity s = s.. Our first

result is as follows.

Theorem 1.1. Let d > 3, 4/3 < v < 2 and assume that ¢ € H*(R?) is radially
symmetric and small, then (1.3) is globally well-posed in H* (R%).
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We make a comment on Theorem 1.1. Seeing s. = A’T*Q, the critical index is
negative when 4/3 < v < 2. Generally speaking, it is difficult to show that (1.3)
is well-posed in a negative regularity space since we need to recover the derivative
(regularity) loss when we estimate the nonlinear term. The usual Strichartz esti-
mates for Schrodinger equations, however, cannot work such recovery. To overcome
this difficulty, we assume that an initial data is radially symmetric. It is known that
we can get the better Strichartz estimates for radially symmetric functions. See
[9]. However, the radial symmetricity of an initial data seems to be very restrictive.

Next theorem ensures that the similar result holds for non-radial initial data.

Theorem 1.2. Let d > 3, 4/3 < v < 2 and § = 6(d, ) > 0 be sufficiently
: 39
small. Assume that ¢ € ]—_Isc]-];;(2 7)+9

in Fs i

is small, then (1.3) is globally well-posed

The function space H*H% is defined as follows.
HHY = {f € S\P:||fllgegos <0}, s,a€R,

1 s rza = NIV IPDES 221,

1 fllzere = (/ </ If(m)|qu) ' Td_ldr) . 1<p,q<oo.
0 Sd—l

Here S is the Schwartz space, P denotes the totality of polynomials. |V| = v/—A,
and D,, = /1 — A, for the Laplace-Beltrami operator A,,. The operator on the unit
sphere D,, is very similar to v/1 — A. We refer to Appendix in [27] for the details of
D,,. Roughly speaking, Theorem 1.2 says that if the initial datum ¢(rw) has some

where

regularity with respect to the angular variable w then the same result as Theorem
1.1 holds. We also consider the subcritical case, s, < s < 0. The following two
theorems show the local well-posedness in time for large initial data. The important
difference from the sclaing critical case is that they include the case d = 2 and
0<y< % under the restriction —7 < s. They are established by the almost same

proof as that of the scaling critical case.
Theorem 1.3. Letd>2,0< v <2 and
max (sc, —%) <s< 0.

Assume that ¢ € H*(R?) is radially symmetric, then (1.3) is locally well-posed in
H*(RY).
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Theorem 1.4. Letd > 2,0 <~ < 2,
max (sc, —%) <s< 0,

and suppose that § = 6(d, s,v) > 0 is sufficiently small. Then (1.3) is locally well-
. _§S
posed in H*H, >* " (RY).

We next consider (1.1) with another nonlinearity called pure-power type nonlin-
earity.
i + Au = G(u), (t,z) € R x RY,
U/|t:0 =pc HS(Rd)

Here G(u) is a nonlinear functional of pure power type:

(1.4)

G(u) = MulP~tu, AeC\{0}, 1<np.
Similarly to (HNLS) case, the following scaling transformation
AFTu(N AT), A >0,

shows that (PNLS) has the scaling invariance in H» with the scale critical index

Sep = 4 — 2_ Our result is as follows.
P 2 p—1

Theorem 1.5. Let 3 < d <14, pg < p < 1+ 4/d where py is a unique solution of

1+ 75 <po <1473,

2p3 +6(d — 2)pE + (d?> — 13d + 10)py — d(d — 3) = 0,

and suppose that § = 6(d,p) > 0 is sufficiently small. Assume that ¢ € HSWHjO (R%)
is small, then (1.4) is globally well-posed in H» H* (R?) where

S (7T—3p) +0 (if d = 3),

Sog —
ot (C @+ D+ (d+T)p—2) +6  (if d > 4).

We make a comment on Theorem 1.5. In [21], Hidano proved the global existence
for radially symmetric small initial data ¢ € Héerif d > 3 and 1+ ﬁ <p<l+ %.
Compared to radial case, the conditions for d and p in Theorem 1.5 seem to be very
restrictive. This complicated restrictions is necessary when we apply the Moser type

estimate on the unit sphere such that
- —1
D5l )l g, S Mullfa 1D5ull Lo

where 1/2 = (p—1)/qo + 1/q1. The condition p < 1+4/d means p < 2 when d > 4.
Thus we need the condition s < 1 to verify the above estimate, which causes the

restriction in Theorem 1.5.
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1.2. Introduction of (KGZ). Next we consider the Klein-Gordon-Zakharov sys-
tem. By the transformation us := wyu + idu,ny = n + i(cw)on,w; = (1 —
A2 w = (=A)Y2, (1.2) can be written as follows;.

(10, F wi)us = £(1/4)(ng +n_)(wi uy +witul), (t,z) € [-T,T] x RY,
(10, F cw)ng = % (4c) " w|w; tuy + witu_|?, (t,z) € [-T,T] x RY,
(s, s ) 1m0 = (U0, nro) € H¥(RY) x H*(RY).
(1.5)
We state our results for d = 2 and for d > 5.

Theorem 1.6. Let d = 2 and —3/4 < s < 0. Then (1.5) is locally well-posed in
H5(R?) x H*(R?).

Theorem 1.7. Let d > 5,s = s, = d/2 —2 and assume the initial data (usg, nio) €
H5(RY) x H%(RY) is small. Then, (1.5) is globally well-posed in H*(RY) x H*(R%).

As a byproduct of Theorem 1.7, we can show that the obtained solution scatters.
Corollary 1.8. The solution obtained in Theorem 1.7 scatters ast — F00.

We make a comment on the above theorems. Theorems 1.6 and 1.7 are both
established by the Fourier restriction norm method introduced by Bourgain [5].
The Fourier restriction norm method, together with the function space X*° called
Bourgain space, has been applied to lots of dispersive equations and produced many
remarkable results. We can find that the method also works effectively for (1.5).
As an advantage of the Fourier restriction norm method, we can gain the extra
regularity when we estimate the nonlinear term. Precisely speaking, we recover a
half derivative loss. It should be emphasized that such recovery disappears in the
case ¢ = 1.

For the proof of Theorem 1.6, in fact, the Fourier restriction norm method is not
enough to get the well-posedness for s < —1/2. Hence we employ the new estimates
which was introduced in [3] and applied to Zakharov system in [1] and [2]. Zakharov

system consists of two equations, wave equation and Schrodinger equation;
(10, + A)u = nu, (t,x) € R x RY, (16)
(02 — A)n = Alul?, (t,z) € R x R%.

Roughly speaking, comparing (1.2) and (1.6), the two systems have similar struc-
tures, which suggests that we might get the well-posedness of (1.5) for s < —1/2 in

the same way as in [1] and [2].
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Theorem 1.7, which is joint work with I. Kato, is an improvement of his recent
work [25]. Precisely speaking, in [25] he showed that (1.5) is globally well-posed if
the the initial data (uio, nvo) € H*(RY) x H5(R%) is small and “radially symmetric”.
Theorem 1.7 says that the radial symmetry condition is not necessary for the well-
posedness. In the proof, we apply U2, V2 type function spaces, which are similar to
the Bourgain spaces in the sense that we can recover the derivative loss. It is known
that the Bourgain spaces X** do not work well at the scaling critical regularity
spaces. U2, V2 type spaces were developed in order to overcome such a weakness
of the Fourier restriction norm method. In fact, U2, V2type spaces were already
applied in [25]. In this thesis, the improvement is mainly done by using bilinear
Strichartz estimates. See Propositions 4.19, 4.21 and 4.23 which hold true under
the condition ¢ # 1.

1.3. Notations. We introduce notations which will be utilized throughout the pa-
per. A < B means that there exists C' > 0 such that A < CB. Also, A ~ B means
A< Band B S A Let u=u(t,z). Fru, Fyu denote the Fourier transform of u in
time, space, respectively. F; ,u = u denotes the Fourier transform of u in space and
time. yq denotes the characteristic function of a set  and (-) denotes (1 + |- [?)'/2.
We denote by H® and H*, s € R, the usual inhomogeneous Sobolev spaces and
homogeneous Sobolev spaces, respectively. We denote the space LY(R; X) by L{X
and its norm by || - [ ax for some Banach space X, and also LI([0,T]; X) by L X
and its norm by || - ||L§TX. We use the notations Cy(R; X) = C(R; X) N L>(R; X)
and L], = L{L%, L{ = LIL{ for ¢ e RY, 7 € R.

The thesis is organized as follows. In Section 2, we consider the Cauchy problem
of Nonlinear Schrodinger equations and establish Theorems 1.1-1.5. In Sections 3
and 4, we consider the Cauchy problem of Klein-Gordon-Zakharov system. Section
3 is devoted to the proof of Theorem 1.6 and finally we verify Theorem 1.7 in Section
4.

Acknowledgement. The author appreciates Professor Mitsuru Sugimoto, Profes-
sor Kotaro Tsugawa, Professor Isao Kato and Professor Tomoya Kato for giving

many useful advices to the author.
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2. THE CAUCHY PROBLEM OF HARTREE AND PURE POWER TYPE NONLINEAR
SCHRODINGER EQUATIONS

2.1. Introduction. We consider the Cauchy problem of Hartree type nonlinear
Schrodinger equations (HNLS):

i0wu(t, x) + Au(t,z) = F(u(t,z)), inR xR

(2.1)
u(0,z) = ¢(x), in RY.
Here A is the Laplacian in R?. F(u) is a nonlinear functional of Hartree type:
F(u) = (Mo 5 [ul2)u, A eC\{0}, 0<<d
From Duhamel’s formula, the solution u of (2.1) can be written as
u(t,z) = Ut) (¢ + &)(z), (2.2)
where .
U) = >, &, = By(u) = —i / U (=) F(u)(t))dt.
0
By the following scaling transformation:
uy(t,x) = nd+§7wu(n2t, nx), n>0,
=2

we see that (HNLS) has the scaling invariance in H* with the critical index s, = 5

There are lots of works on the Cauchy problem of (HNLS). Almost all of them
discussed the problem for ¢ € H®, s > max(0, s.). As a fundamental result, Miao,
Xu and Zhao [36] proved the local well-posedness in H® where s > s., s > 0.
Furthermore for s > 1, by the energy conservation law, they proved the global well-
posedness for 0 < v < 2, v < d, A > 0 and for 0 < v < min(2,d), A < 0, and

in particular, for s = 1, the global well-posedness was established for 2 < v < 4,

¥ < dand A > 0. In addition, the smallness condition of |[¢l|zsc ensures the
global existence in H® s > s. for 2 < v < d, d > 3. In [20], Hayashi and Ozawa
proved the global well-posedness in L? for 0 < v < min(2,d) (see [6] for general
nonlinearities). For the critical case, s = s. > 0, (HNLS) is locally well-posed in
H?e for 2 <~ < d, and globally well-posed and the solutions behave like linear ones
s (see [36, 7, 6]).
If initial data ¢ has finite energy, it is known that (HNLS) is globally well-posed in
H' for y =4, A >0, d > 5 (see [37], and see also [35] for radially symmetric initial
data).

As opposed to the case s > max(0, s.), we have few results for s, < s < 0. Miao,

in H* for 2 < < d, d > 3 under the smallness condition of |||

Xu and Zhao [36] proved some ill-posedness results for s < max(0, s.), while Cho,
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Hwang and Ozawa [8] proved the global well-posedness for radially symmetric small

dataanHSC,gzll—:g§7<2:

Theorem A ([8] Theorem 5). Let d > 2, =2 < v < 2. Then there exists a positive

constant ¢ = £(d,~) such that if ¢ € H*(R?) is radially symmetric and satisfies
[IV|*pll2 < e, then (2.2) has a unique radial solution

u € Cy(R; H*(RY)) N L*(R; L' (RY)).
Here r satisfies + = 5 — & — 2. In addition, u scatters in Hee(RY).

They also discussed the problem of global well-posedness without assuming radial

symmetry:

Theorem B ([8] Theorem 2). Let d >3, 2 — 575 <y <2, 51 = Zf% — 1 and

( o5d — 3 1) ) ( 3d 3(d—1)>
max | v — , =] < s <min |y — .

2d 42" 2 2d+2" 2d+2
Then there exist a positive constant € = (d,v) and a1, ay € [2,00], B1, f2 € R,
Y1, 72 € (0,00) such that if o € H%H%+52(RY) satisfies |||V D202 <€, then

(2.2) has a unique solution

u € Cy(R; Ho HA2(RY)) N L (R; || L2H)Y) N L°2(R; |22 L2 H?).
In addition, u scatters in H® H51+52(R%).
The main goal of this section is to widen the range of v in Theorems A and B in

the case d > 3. That is, we improve the conditions 8d 2 <~ < 2in Theorem A and

2—3 d 5 <7 < 2in Theorem B to > <v<2 To descrlbe it precisely, we should

introduce some function spaces. We deﬁne the norm

[ fllzzre = (/ (/ If(m)|qdw) ' Td_ldr) . 1<p,qg<oo.
0 gd-1

We also define the modified Sobolev space H*H® and its norm by
H*HZ = {f € S'\P:||fllgrepron < 0}, s, €R,
1 oo = NIV DES 2

Here S is the Schwartz space, P denotes the totality of polynomials. |V| = v/—A,
and D, = /1 — A, for the Laplace-Beltrami operator A,,. We refer to [27], Appen-
dix, [24] and [46] for the details of D,,. We denote H°H®4 and H*H%? by L2H®4
and H*H¢, respectively.
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Our results are the following. The first one is radially symmetric case, and the

second is general case:

Theorem 2.1. Let d > 3, % <7y <2andd = 6(d,y) > 0 be sufficiently small.
Then there exist a positive constant € = (d,~y) and exponents q1,q2,¢ € [2,00] such
that if p € H*(R?) is radially symmetric and satisfies |||V

has a unique radial solution

S|z < e, then (2.2)

u € Cy(R; H*(RY)) N L™ (R; |z[* O L*(RY)) N L2(R; |z|* LY(R?)).

Theorem 2.2. Let d > 3, % <7y <2andd = 6(d,y) > 0 be sufficiently small.

Then there exist a positive constant ¢ = €(d,~) and exponents qi,q2,¢,0 € [2,00]
. e 7y 2 (2—)+6 . s. N2 (2=7)+6
such that if p € H* HJ satisfies |||V]% D

unique solution

¢llz2 < e, then (2.2) has a

u € Cy(R; B HA® ) Lo (R; o L2H2 %7772

N L% (R' |x scLéHE(Q*V)Jr(%*é)&U

).
Remark 2.1. Actually, the solutions of Theorems 2.1 and 2.2 scatter in I*(R%) and

C 3
o H3" V)H, respectively. See [8] for the details.

Next, we consider the subcritical case, s. < s < 0. The following two theorems
show the local well-posedness in time for large initial data. The important difference
from the critical case is that they include the case d =2 and 0 < v < % under the

restriction —% < 8.
Theorem 2.3. Letd > 2,0 < v < 2,

max (30, —%) <s< 0,

and suppose that § = 6(d, s,v) > 0 is sufficiently small. Then there exist a positive
time T and exponents o € R, q1,qo,0 € [2,00] such that if ¢ € H*(RY) is radially

symmetric then (2.2) has a unique radial solution
we O([0, T H*(RY) N L2 ([0, T); [« "~ LAR?)) N L=([0, T); |2[*L*(R)).
Theorem 2.4. Letd > 2,0 <~ < 2,
~y
max (sc, 4> <s< 0,

and suppose that 6 = 0(d, s,v) > 0 is sufficiently small. Then there exist a positive
.3,
time T and exponents o, € R, q1,q2,¢,0 € [2,00| such that if ¢ € H*H,,? +5(Rd)

then (2.2) has a unique solution

hy 7§S 7§S 3
we C([0,T); B Ho > ) n Lo ([0, T); )P L2HL, 2" 2°) n Lo ([0, TY; || *LEHE).
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Remark 2.2. If —s is sufficiently close to 0 then the necessary angular regularity
for ¢ is sufficiently small. This seems to be natural since we do not need angular

regularity assumption if s > 0.

Next, we study the Cauchy problem of pure power type nonlinear Schrodinger
equations (PNLS):
iug + Au = G(u), inRxRY
u(0,z) = p(x), in R%.

Here G(u) is a nonlinear functional of pure power type:
G(u) = MulP~'u, AeC\{0}, 1<np.
Similarly to (HNLS) case, the following scaling transformation
AFTu(A2t ), A >0,

shows that (PNLS) has the scaling invariance in H» with the scale critical index
Sep = g — p%l. There exist a lot of works on the Cauchy problem of (PNLS). See
[47, 7, 14, 41, 38, 39].

In [21], Hidano proved the global existence for radially symmetric small initial

data ¢ € Hé» if d > 3 and 1 + ﬁ < p <1+ 3. After that, Fang and Wang [13]

proved the global existence for small initial data ¢ € HérHZ ' if 3 < d < 6 and

1+4/ % <p<l+ é. We relax the conditions of n and p in the general case. Our

result is the following:
Theorem 2.5. Let 3 < d <14, pg < p < 1+ 4/d where py is a unique solution of

14+ 75 <po<1+73,
2p3 +6(d — 2)p2 + (d? — 13d + 10)py — d(d — 3) = 0,
and suppose that § = 6(d, p) > 0 is sufficiently small. Then there exist a positive con-

stant € = (d, p) and exponents a € R, q,0,0 € [2,00] such that if p € Hsc,prf, (RY)
satisfies |||V [*» D0l 2 < € where
o = p%1<7—3p)+5 (if d = 3),
ez (Cd+Dp?+(d+T)p—2)+0  (if d >4),

then the integral equation

u(t, z) = U(t)(p + ip) (@), (2.3)
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where
t
O, =Dy p(u) = —i/ U(—t’)G(u)(t’)dt’,
0

has a unique solution
u € Cy(R; H*» H) N LI(R; || *LEH7).

Remark 2.3. Similarly to (HNLS) case, the solution of Theorem 2.5 scatters in
Heer H(R%), and if d = 3,4 the necessary angular regularity for ¢ gets close to

0 as —s., approaches 0.

In Section 2.2, we introduce some estimates as preliminaries. In Section 2.3, we
consider the Cauchy problem of (HNLS). To avoid redundancy, we only establish
Theorem 2.4. In Section 2.4, we establish Theorem 2.5. Lastly in Section 2.5, we
consider the Cauchy problem of inhomogeneous power type nonlinear Schrédinger

equations.

2.2. Preliminaries. In this section, we introduce some estimates which will be used
for the proof of the main results.

First, we introduce weighted Strichartz estimates for U(t).

Lemma 2.6 ([13] Theorem 1.15, [8] Lemma 2). Let d > 2, 2 < g < o0.
(i) If ¢, 61 satisfy

e d n d—1 5 d d-1
—— << — + —— —_+ ——c
q q 2 ) 1 = 2 )
then we have
cpdi2_d s
2|V "2 DU )l parare S llellzz- (2.4)
(i) If ¢, b2 satisfy
d 1 1
——<c<——, 0 <—c——,
q q q

then we have

2
IV DZ Ul nerz < ez

By interpolating between the inequality (2.4) and the classical Strichartz esti-

mates, we immediately get the following weighted Strichartz estimates.

Lemma 2.7. Let d > 2,2 <0 </ <00 and

<

) <

|
SHL
IA
Q=
N

+
<

NI =

’ (if d = 2),
+3—1 (ifd>3).

N N
~~
DO |—
QI
Q=
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If w, § satisfy

d? 2 cw < d 1 d—1 d-2
S — w S —
4 q 20 4 q 14 20 '
5 < n d 1 d—1 d-2
_w — — — —
- 4 q 1 20 '
then we have
w_d24d
z[“IV ]2 a e DU )@l porerg < llepllee- (2.5)

Proof. Suppose that

2 2 2 1 1
f==—-4+=——-d|=—-=
q i <2 0)’
d

1 1/t dfl 1
a 0\q 2\2 o))

It follows from the classical Strichartz estimates and Lemma 2.6 that

1Tl < llells, (2.6)
cpg et —4 ne <
[zl IV a2 DGU Ol o pan e S el 2 (2.7)
if
d d d-1 d—1 d
——<c<—+—, h<—Ct———.
1 il 2 2 1
By the complex interpolation between (2.6) and (2.7), we get (2.5). O

The following lemma is necessary to handle the nonlinear term.

Lemma 2.8 ([10] Lemma 4.3). Let p,q,q1 € [1,00], 0 <0 <y < (d—1)/p,

111 11
e e s

@ q p d-=1 d—=1" q p

Then we have
_d_ (e
el (227" % llzzzg S Mel™O7 fll g

where L&' is the Lorentz space on the unit sphere.

The following lemma will be utilized for the time restriction ¢ < ¢. The general

case was proved in [11], and see also [44].
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Lemma 2.9 ([11] Theorem 1.1). Let 1 < r < q < o0, and X,Y be Banach spaces.
If

IU@)ellrevy S llellzz  and ||/ U(=t)g(t)dt |2 < Mgl ),
then we have

t
H/ Ut — )g()dt | 13ry < llzp0x-

2.3. (HNLS). In this section, we consider the Cauchy problem of (HNLS). For

convenience, we restate Theorems 2.1-2.4 with the explicit exponents.

Theorem 2.10. Let d > 3, % <y <2andd=0d(d,y) >0 be sufficiently small.
Then there exists a positive constant ¢ = e(d,~) such that if ¢ € H*(R?) is radially

symmetric and satisfies |||V[*p||2 < e, then (2.2) has a unique radial solution

u € Cy(R; H*e(RY)) N L2 (R; |]*~L*(RY)) N L% (R; |z|* L (R%))

where

1 1
= —2s. 49, =
(]1,sc q2,sc

1 2 3 )

1
G2 a w T

I
N

Theorem 2.11. Let d > 3, % <y <2andd=0d(d,y) >0 be sufficiently small.

. 39
Then there exists a positive constant € = e(d,v) such that if ¢ € HSCH;,‘(2 i

3(9-
satisfies H|V|3CD$(2 7)+5¢||L3 < g, then (2.2) has a unique solution

u € C’b(R- HscH§(2—w)+5)mL2q1,sc (R- ‘x sc—5L2H§(2—7)+ga)

N [%2:sc (R; |I|SCL£1 H§(2—’Y)+(%—é)5,01)

where
1 v o0
__2$c+57 = T 5
qlsc q2,sc 4 2
1_1+2 3 +5 1_1+2 3 —1—26
2 a2 T o 27d 244

Theorem 2.12. Letd > 2,0 <y < 2,
max (sc, —%) <s< 0,

and suppose that § = 0(d, s,7) > 0 is sufficiently small. Then there exists a positive
time T such that if ¢ € H*(R?) is radially symmetric then (2.2) has a unique radial

solution

w e C(0,T); B (RY) N L7577 ([0, T); 2~ LA(RY)) 0 L% ([0, TY; o] L' (R)),
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where
1 ¥ 1 v 6
—=1-2-s+§ —=4-=,
¢ 2 @ 4 2
s—6 (ifd=2), 1 t—1-s+0 (fd=2),
o = _— =
s (ifd>3), 2 |1-2-2548% (fd>3).

Theorem 2.13. Letd > 2,0 < v < 2,
max (sc, —%) <s< 0,

and suppose that § = 0(d, s,7) > 0 is sufficiently small. Then there exists a positive
N P ‘ ‘
time T such that if p € H°H,,? +6(Rd) then (2.2) has a unique solution

3

3 _§S S _3g 3
u e C([O,T]; H°H,? +5) n L27q1(2+12577) ([O,T]; |x|sf6Lsz 5 +25)

NL®([0, T]i[x|" L2 HZ™),

where
1 vy 1 v o4
—=1—=—=5s5+49, — == — -
q1 2 g2 4 2
s—o0 (ifd=2), —3s+36 (if d =2),
o= b=
s (if d > 3), 354352 (ifd>3),
1 125494 ifd=2), 1 1
1_ )i (fd=2), 1_1 v 2 2
b |-z 2498 (ifd>3), %0 2 2d

Since the proofs of Theorems 2.10, 2.11 and 2.12 are analogous to that of Theorem
2.13, here we establish only Theorem 2.13. We should mention that if d = 2,
as Theorems 2.10 and 2.11, we cannot prove the small data global existence for
¢ € H*(R?). See Remark 2.4 below for the details.

Throughout the section, we assume d > 2 and use the explicit exponents

11 1 ¥ ) y v o0
SR R (0 _ 2 11 5. L 2
(Q7Q1’Q2> (4+S 2’ 2 S+’4 2"’

111\ JGE-7+63+s-20,5-F—s+0) (if d = 2),
00y 1 v

2

1

—~

(3- s+ 5 a+3s—303—5—3s+5) (ifd=3),
! v o2 2
S _-_X_=z Zs
oo 2 24 da"Ta”
d—1 144 (if d = 2),
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with sufficiently small 6 = §(d, s,7y) > 0. Here ¢’ and ¢ are given by 1/¢+ 1/¢' =1
and 1/¢ 4+ 1/¢' = 1, respectively. Note that
1 1 1 1 1 1

q’_a G’ 0
Lemma 2.14. Let max(s., —v/4) < s < 0. Then we have

VD5 U 1)) e 12+ WaU(0)2) + WalU ()8,) S T (Wi ()] Walu)

where
2428 —17
AL}
— —3s+3s
Wi(u) = ||z ° Do 2w :

2—qq (2+2s—7) 9
Ly L2

6

s—0 7%S+% :
[|z|*~°Ds, (if d = 2),

5
al L L2

2\U) = _3 .
du||L3;L£2LgO (lf d 2 3)

_3 3
l|z[+D5>"*2°

Proof. (I) (d > 3)

First, we assume d > 3 and prove
—3545
IV D> U641 12 S T W (W) Wa(u). (2.8)

Let us set
o d=2 +d—25 o d+4 +d—|—2
METTL ST g Y T T T Ty

Note that s1 + s9 = —%s + 9. Since 2 < gy < £ < 0,

J.

it follows from Lemma 2.7 that
Nz IVIPDZ U@ Larergo S llepllez-
By the dual estimate, we have

|| OO F@E s £ el V1 D5 F) (29)

L4 L Lo
where 1/0¢" = 1 —1/00. By applying Lemma 2.9 to ||U(t)¢l|rerz = [l¢]lz2 and
(2.9), we have

IV D20 ()l e 22 S Nll2)° D2 F(w)l]

’ ol -
q o 0
LIT LY L,
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By Leibniz rule and Sobolev embedding on the unit sphere (see Appendix in [27]),
we have

S 1)S2 ,

el DEFG

SIDE Al [Pl os oo Mal*ull g e

- 2 S 1)s2
el e el Dl
T
- (d=1)(=1+Z+7)
S D (|| 7*IU|2)|ILL;;L@LZIIICCISDw Tl g

Here the exponents «, [ satisfy

1 11 1 11 s
e .
o oy O 15} op o d-—1

We deduce from Lemma 2.8 that

Cypd
1Dz (™ [l gy S Ml DZ () (2.10)

To estimate the right hand side of (2.10), we utilize Leibniz rule and Sobolev em-

bedding in the Lorentz spaces on the unit sphere:
1DZ (wa) [ pr S I1DZull o2 ull pp1 2, (2.11)
for s € (0,1), p, po, p1 € (1,00) and 1/p = 1/po + 1/p1.
ull 2 S 11DZull Lz, (2.12)
d—1 d—1

for —S=s=5F, 8> 0. The above two estimates are verified as follows. From the

arguments in Appendix [27] and the general Marcinkiewicz interpolation theorem
(Theorem 5.3.2 in [4]), (2.11) and (2.12) are easily transferred from the Euclidean

case. Thus it suffices to prove the followings:
IV @)l e S NIV Pull o2l 22, (2.13)
for s € (0,1), p, po, p1 € (1,00) and 1/p = 1/pg + 1/p1, and
lull o> S NIV FPull 2, (2.14)

for —g =s5—4% s> 0. (2.13) is immediately verified by the proof of Leibniz rule in
the Lebesgue spaces (see Proposition 3.3 in [12]), the simple inequality

iz S Nl oz el 12
x T
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and the general Marcinkiewicz interpolation theorem. Similarly, (2.14) is proved by
(real) interpolating Sobolev embedding in the Lebesgue spaces. By using (2.11) and
(2.12), we get

ez (u) e
O
< el Dl gy |2l )
g 0T T ppy 0T AT
fy—El_Ly/2
S [ M 8

Then we have

_3 3
1D (J| 7  [u]?) Iz~ D5 w2

<
a 7l o 2q1 72
L iy 20172

_3s43
SN Dol
LI2T7q1(2+287'Y) L2
This completes (2.8) if d > 3.
(II) (d =2)
Next, we assume d = 2 and establish (2.8). The strategy is almost the same as in

the case of d > 3 above. We set

S3 =

0 +
= Sy =—=5+ —.
2’ 4 2° " 9

We deduce from Lemma 2.7 that
]IV IPDEU el arerge S lelle-
By the similar argument as above, we get

s — 3545 s s
VD= U 0@l gz 12 S Nl Dt F(w)|

/ ol
q / 0
LIT LYr,

< 26 1S4 — 2 s—0 _H_%-'_%
S e R T PO [T o W T S
It follows from Lemma 2.8 that
- —v+E&+26
D (|l Jul?) oy S Ml 7T DE () — o (2.15)

i, TR

By Leibniz rule and Sobolev embedding in the Lorentz spaces on the unit sphere,
we have

_ s (satr—2=4)/2
== D (fuf) | e < e~ D Tl
g 1

LLlL,
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Then we have

_ 3,43
< 2l Do w2

llx* Dt (Jar| = i) g s S 2011

_3g543¢
ST Do 2 ) .
LIQT—q1(2+2S—“/) L2

This completes (2.8).

Remark 2.4. 1t should be noted that to get the estimate (2.15) above we need the
condition 1/¢; > v — 1. This causes the exception of d = 2 in the scaling critical
(s = s.) results, that is Theorems 2.10 and 2.11.

(III) Lastly, we prove
Wi(U(#)®y) + Wa(U () ®,) S T°[Wh(u)]* W (u), (2.16)
which completes the lemma. Here we only consider the case for d > 3. The same
method can be utilized for d = 2. Since
1 2425 —v

d 24+ 25—
L B N R F PN 0 e e
2 T 4 iy 2 T 1

we deduce from Lemma 2.6 (ii) that

[
"IV DUl sy S llellez- (2.17)

LI
Applying Lemma 2.9 to (2.9) and (2.17), we have

[

s—0 —s 72 < s —s 1)—S1

Il DRU ORI S W1 DIF Wyt
T x
which implies
3..3
s—6 Py~ 35t30 < S 182
el D U0 S WA DEFWy
x

Ip

As above, this estimate implies
WU () ®:) S TO[Wi(u)*Wa(u).

For W5, since 2 < g9 < £y < 00,

2 o0) @ by o
? d d? e d 1 d-—1 d-—2
—_— e —— — 8 _— —— —
4 q2 20‘0 4 q2 22 20'0 ’

we deduce from Lemma 2.7 that

s_6
=[PV DS U@ g2 270 S llplla- (2.18)
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Applying Lemma 2.9 to (2.9) and (2.18), we have

844358
||z]* Dy, 2° 2 dU(t)q)t”Lg;L‘pLgo S |||x|8D22F(U)|IL?/TL£/LZg,
which gives
Wa(U(t)®,) S T°[Wi (u)*Wa(u).
This completes (2.17). O

Proof of Theorem 2.13. We prove the existence by Banach’s fixed-point theorem.

Fix a positive constant p and a positive time 7', to be chosen later, and we define a

complete metric space (X, 7, dx) by
Trs 35t mudy Y.
Xpr ={u e C([0,T]; H*Hy,*" " (RY)); [[ull
dx (u,v) = |lu—v “gers + Wiu —v) + Wa(u —v),
I

and the mapping

Nx(u) =U(t)(p + ®y) on X, .
Our strategy is to prove that Nx is a contraction mapping on X, r for sufficiently
small 7.
It follows from ||U(t)¢| reor2 = [[llz2, (2.17) and (2.18) (if d = 2, (2.17) and
|]:c\5_5|V\_SD§ [U(t)@]HLgQL?LgO S |lellr2) that there exists a positive constant Cy
such that

IU@)ell ~gors T WU (1)p) + Wa(U(t)p) < Cille| (2.19)

. . _3 S
Ly HeH,, frepo 2t

For uw € X, 7, we deduce from Lemma 2.14 that there exists a positive constant Cs

such that

1U(#) % gers + WUB)) + Wa(U () D) < CoT[Wa(u)*Wa(u)

L?;HSHW
< CyT?pP. (2.20)
For u, v € X, 1, we have

dx (Nx (1), Nx () =[U()(Pe(u) — i(v))]] Joks

Ly HeH,”
+WA (U ()(P(u) — Pe(v))) + Wa (U (8) (P4 (u) — Pi(v))).
By the arguments similar to the proof of Lemma 2.14, we have

dx (Nx(u), Nx(v)) S [l DZ (F(u) — F(v))]

’ ol
q o 0
LIT LY L,
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It follows from the following equality

F(u) = F(v) =A(j2] ™ * [u*)u — A(|2| 77 * [v[*)v
=A™ # (u(@ = 0) + (u = 0)0))u + A(Jz| 77 * [v]*) (u - v),

and the same estimates as in Lemma 2.14 that

dx (Nx (u), Nx(v))
< TOWy(u)+Wo(u) + Wi (v) + Wa(v)2(Wi(u — v) + Wa(u — v)).

Then there exists a positive constant C'3 such that
dx (Nx (u), Nx(v)) < CsT? p*dx (u, v). (2.21)

Now we define C' = max(Cy, Cy, C3) and choose p, T' such that

P 0 o 1
Clell,, 30 <5 CT0 < 5.
Then, from (2.19)-(2.21), Ny is a contraction mapping on X, r. ]

2.4. (PNLS). In this section, we establish Theorem 2.5. We then consider the
problem in the scaling critical homogeneous Sobolev space H*»(R%). Let us recall

that s., = 4 — p%l. For convenience, we restate Theorem 2.5 with the explicit

exponents.

Theorem 2.15. Let 3 < d < 14, py < p < 1+ 4/d where py is a unique solution of

1+ 75 <po<1+73,
2p3 + 6(d — 2)p2 + (d*> — 13d + 10)py — d(d — 3) = 0,

and suppose that 6 = 6(d,p) is sufficiently small. Then there exists a positive con-
stant € = e(d, p) such that if p € H» H*(RY) satisfies |||V

Ser DOl < € where

(7 —3p) +6 (if d = 3),
e (A DP?+ (d+T)p—2)+35  (if d>4),

So —

then (2.3) has a unique solution

u € Cy(R; Ho» HZ) N LMY (R; || LP" HZ)
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where
2(p—1) eoa -1 o7

L g—p%lJr ﬁp ) (1fd—3),1: =26 (if d = 3),

g_%Jr%(s (if d > 4), 4 1_§+@6 (if d > 4),
1: 2_1% (ifd:3),
R R e A = R A S E )
1| (if d =3),
7\ g (—dp — 2+ d+10) + 2205 (if d > 4).

Similarly to (HNLS) case, by using weighted Strichartz estimates, we establish

the following crucial estimate.

Lemma 2.16. Let 3 < d < 14, ps < p < 1 +4/d where ps satisfies the following:

3
(ifd=3)  ps=2+(ps — /50
(it d > 4)
4 4
1+ — 1+-=
+d—i—1 <ps < +d,
203 + 6(d — 2)p% + (d* — 13d 4 10)ps — d(d — 3)
2(p — 1)?

= = (~3dps + 8ps +8d — 83

Then we have
[V Pr DU @)l ez + (2" DEU @) Popll pur per 0

5 H ’x|aDizOuHifq/Lg;é’Lgv

where the exponents q, ¢, o, so, o are same as in Theorem 2.15.
Remark 2.5. Since ¢ is sufficiently small; it is easy to see that the above ps exists
and is unique.

Proof. (I) (d = 3)

First, we assume d = 3 and prove

Ve DU ) Pepllreerz S Mal* D ull” o, - (2.22)
Let us set that
4 2
=3+ ——=(p—1)d
CO + p _ 1 7( ) Y
p—1 1 8—p
=9 =—(7-3 —.
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Note that s; + s9 = s¢. Since 2 < ¢ < ¢ < 0o and

3 1 2
——<Co<1————,
q q

[

we deduce from Lemma 2.7 that
[V [** DIU )¢l orere S llellrz-
By the dual estimate, we have

II/ U(=t)G(u)()dt'|| 2 < [[l=[~[V]"*7 D% G(u) (2.23)

ey
By applying Lemma 2.9 to ||U(¢)p||rr2 = |||z and (2.23), we have

[V [er DI 22U (8) @il oz S |||$|_CODZQ(|U|p_lu)||Lg'L£/LZ'

Since 0 < sy < min([p](= 2), Iﬁ(% —1)), where [p| denotes the integral part of p, it
follows from Moser type estimates and Sobolev embedding on the unit sphere that
IDZ (lulP~ u)llze, S 1D ullf e

S IDZullzg-

Here we have used the exponent
1 1
— = (14 (p—1)s2).
0 Qp( +(p—1)s2)
This gives
1V

which completes the proof of (2.22) if d = 3.
(ID) (d = 4)
Next we assume d > 4 and obtain (2.22). Similarly to the d = 3 case, we set

_c
r DU () Py pll ooz S )™ 7 DYPull”

/ 0/ bl
2 1o

d 1 (d=4p-1
— _—“p+2 _
C1 2p+ +p—1 5 5,
p d 3 4 2 4 3(p—1). 8(p-1)
_r_¢,2 = - 5— 5
S R R R A Ry o A 5d
1 P 5 d 5 2 8—3p_ 8(p—1)
- (B g2y 82 5 5.
°2 p—l( g P 2+2+p—1)+ 5 0T T 5d
Note that s; + s9 = s¢. Since 2 </ < g < oo and
d_ _d-1 1 d-1
— — C S —
q 1 2 q Ea

we deduce from Lemma 2.7 that

[l [V >r DEU @)@ grers S llellrz-
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By the dual estimate, we have

|| OO0 | S el V1D G0y e (220
—00
which gives
V[ DEF=2U () Pepllrpers S Nl ™ DE (Il )l o g

Since 0 < sy < min([p|(= 1), T (£ — 3)), it follows from Moser type estimates and

Sobolev embedding on the unit sphere that
1D (Jul" " u)llzz S 1D ully,

which completes (2.22).
(I1I)
Lastly, we establish

[[z[*DIU )yl S [l DZull : (2.25)

! !
pq’ 1l ! !
LY LY Lg P PY Lg

To avoid redundancy, here we assume d > 4. We can prove (2.25) in case of d = 3

by the same way as below. Since 2 < o < pl/ < o,

df1 1 1 1 1 1
(- )<—< 24— -2
2\2 o) "pgd "2 pl' o

we deduce from Lemma 2.7 that
[V 7> U@l o o o S N2 (2.26)
By applying Lemma 2.9 to (2.24) and (2.26), we have

[[z[* DR U (£) Py

e 1 g S |||$|_61DZ2(|u|p_1“)HL?'Lf/LE'

By the same argument as above, this completes (2.25). U

Proof of Theorem 2.15. Obviously, pg in Theorem 2.15 is less than ps in Lemma 2.16,

and if 6 = d(d,p) > 0 is sufficiently small then ps is sufficiently close to pg. Thus
it suffices to prove Theorem 2.15 for any p such that ps < p < 1+ 4/d. Similarly
to the (HNLS) case, we prove Theorem 2.15 by the contraction mapping theorem.
Let the exponents sy, s1, «, ¢g, ¢; be the same as in Lemma 2.16. Fix a positive

constant &, to be chosen later, and we define a complete metric space (X.,dx) by
X. ={u € C(R; H**H?); HuHL?oHsc,pHZo + H]x‘aDZOuHqu/Leng <ce},

dx(u,v) = ||lu— U||L;>°H58,p + [[|2]*(u — U)Hqu’L’;e'Lg’
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and the mapping
Nx(u)=Ut)(p+ Pp)  on X..

We show that Nx is a contraction mapping on X, for sufficiently small €. It follows

from (2.26) and Lemma 2.16 that there exists a positive constant C' such that

1Tl e reer mizo + 2" DEU O o e, < Cllp
IO Lepll o roer o + [[[2]* DEU ) L

HSC,pHL‘ZO,
L ' pg S
Clll|* D ull]

g’
Next, we prove
dx (Nx(u), Nx(v))
< (lf«[* D ul?,, + [llz[* Dl )dx (u,v) (2.27)

! YA ! YA
P LY g P LY g

for any u, v € X..

Similarly to the proof of Lemma 2.16, we have
dx (Nx (u), Nx (v))

5mv&x£Uu—wmeHMﬂ—WWWﬂmwwmwg

+ |H:U|a(/0 U(t — t’)(‘u(t’ﬂp—lu(t’) _ ]v(t’)|p—1fu(t’))dt’)Hqu,ngz/Lg

S D (jul ™ — [P~ 0) |y

Note that pa satisfies

—co (if d=3),

pa =

By Sobolev embedding on the unit sphere, we have

e[ DG (Jul” = o]~ o) | S Ml (P~ + [P~ (w = v)|

/ !
a2 9 72/ 190
L2 ~ LY LY LY

S1
d—

where Uio = % + 7. By Holder’s inequality with
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we have
P (Ju[P~ + [P~ (u = )| oo
= [|[z|"= D (JuPt + o] ")]2]* (u — )| 20
S M@0 (P A+ JoP ) | o 2] (w = v) | g
S (|||flf|C“U|!Ef<p_1> + H!x|av|ligf<p_1))||\x|a(u —)||Lg,
where
. 1 4 S1 1
or 2 d—1 o
Since
d—1 d—1
_— — 8§y — ——
o(p—1) 0 o’

Sobolev embedding on the unit sphere gives
lz|*ull o0 S [[|2|* D ull g,

which completes (2.27).

From (2.27), there exists a positive constant C’ such that
dx(Nx<u>,Nx<U)) < Clép_ldx(u, U).

Now we choose € and an initial data ¢ such that

1
max(C, 0t < 5 Clgl

3
HSc,pH“ZO S 57

then the functional Ny becomes a contraction mapping on X,. O

2.5. (NLS) with inhomogeneous nonlinearities. We consider the Cauchy prob-

lem of nonlinear Schrodinger equations with inhomogeneous nonlinearities:

iug(t, ) + Au(t, ) = w(x)|u(t, )P u(t,z), in R x RY

(2.28)
u(0, ) = o(x), in R<.
Here we assume that |w(z)| < |2|~% Note that if |w(z)| = |z|~%, the scale critical
index for (2.28) is
d 2-a
Sea = = — :
’ 2 p—1

We prove that there exists a solution of (2.28) for s., < 0 and ¢ € H®«(R%).
In [8], the small data global well-posedness was established for each a and p if an
initial data ¢ is radially symmetric or under some angular regularity assumption.
The following theorem shows that we can get the small data global well-posedness

without angular conditions if the exponent a is positive.
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Theorem 2.17. Letd > 3, 0 < a < 2 and

p0<p<1+42a ( 2d1)
1+4&2cp<l e ( 24-1 <a<2),

where py € (1,1 + £=2%) satisfies

d(d — 2)py* — 2(d — 4 — 2ad + 4a)py — d* — 4d + 4a = 0.

Then there exists a positive constant € = e(d, p,a) such that if ¢ € H e satisfies
v

Seapl|r2 < e, then the integral equation

u(t,x) =U(t)(p + Pro)(x), (2.29)
where
By = Dy (1) = —i / U (—t) (w (a) [u(t) [P~ () )t
has a unique solution
u € C(R; H*) N LM (R; |a| @057t =50 [p0),
Here q satisfies the condition in Lemma 2.19 below.

Remark 2.6. (i) It should be noted that if a is sufficiently small then py is sufficiently
close to 1 + %.

(i) If we try to estimate the nonlinearity w(z)|ulP~'u with a < 0, loss of regularity
on the sphere arises and we need some angular regularity condition for ¢ to get the
well-posedness. Precisely, the estimate (2.30) in Corollary 2.18 below for positive

values of d does not hold. Therefore, we assume a > 0 in Theorem 2.17.

Since we do not have to mind an angular condition, the proof of Theorem 2.17 is

simple relatively. First we restate Lemma 2.7 with ¢ = ¢ = ¢ for convenience.

Corollary 2.18. Let d > 2 and

d 1 1 d?>  d®+2d d d+2
— < -< =, — = <w< — — —.
2(d+2) —q~ 2 4 2q 4 2q
Then we have
w,, +2
NIV (U @)llpors < Nl 2 (2.30)

The following lemma can be established by simple calculation. We omit the
details.
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Lemma 2.19. Letd >3, 0<a < 2 and

< <1+4 % 2d17
" 4p2 4-2a ( ) (2.31)
I+ <p<l+72 (If1 ).

Then there exists q such that
d 1 1
max —,1—]—J < — < min —,1—Lp ,
2(d+2) 2 q 2 2(d + 2)

2 (&, 2-a\_1_ 2 (d d=2  2-a
— — - <—\=p+—+a-— :
2—4\4 p—1) g ar2\& T p—1

Lemma 2.20. Let d > 3, 0 < a < 2. Suppose that p and q satisfy the condition

(2.31) and the conditions in Lemma 2.19, respectively. Then we have

Sc.a —ate _atc
V[0 (6 @eallzgerz + Nl ™ U Peall o gy S 2]~ UHqu L2e
where ¢ = d — 2= ‘f—w.
p— q
Proof. (1) First, we prove
NIV U ) ®pall oz S Il UHqu e (2.32)

If ﬁ(% —d+ ]23%‘11) < ;, the following inequality

> d*+2d e d d+2

—_—— C _———,—

4 2q 4 2q
holds. Then we deduce from Corollary 2.18 that

Nz V" U)ol rars S llellez-
By the dual estimate, we have

I / (@) @) u)dt |z < M=~V (w(@) ul )l Ly
(2.33)
which means
[IVPeeU#)Prallrgers S ||!95\_(“+C)IUIP_1U\|L3'L;'
- H’{E p uHqu qu
This completes the proof of (2.32).
(IT) Next, we prove
| (t>(pt,a||qu’qu |||x|_7u||qu e
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From the inequalities 1 — £ < % <1- Q(d;'_lﬂ)p and
1o 2 @y d-2,, 279
g Sd+2'a 2 p—17
Wehavez(d;‘iz)ﬁpiq,ﬁéand
d_2_d2+2d<_a+c d d+2
4 2pq p 4 2pg

Then we deduce from Corollary 2.18 that
—ate —Sc,a
Il IV U@ @l o o S 2 (2.34)

Applying Lemma 2.9 to (2.33) and (2.34), we have

_atc _ _
(1 U(t)cbt,aHLiW’qu’ S | w(@) |ul? luHLg’Lg/

_ate
5 |||l‘| P u“i?q’Liq"

This completes the proof. O
From Lemmas 2.19 and 2.20, Theorem 2.17 is established with the contraction
mapping argument. The way of the proof is the same as in that of Theorems 2.13

and 2.15. We leave the details to the readers.
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3. WELL-POSEDNESS OF THE KLEIN-GORDON-ZAKHAROV SYSTEM IN 2D

3.1. Introduction. We consider the Cauchy problem of the Klein-Gordon-Zakharov
System:

(

(0?2 — A+ 1)u = —nu, (t,z) € [-T,T] x RY,

(@ — A=A, (t2) € [T, T xR, (3.1)
(’LL, 8tu, n, atn) |t:0 = <U07 U1, Mo, nl)

€ HHY(RY) x H3(RY) x H3(RY) x H*~H(RY),

\

where u, n are real valued functions, 0 < ¢ < 1. As a physical model, (3.1) describes
the interaction of the Langmuir wave and the ion acoustic wave in a plasma. The
condition 0 < ¢ < 1, which plays an important role, comes from a physical phe-
nomenon. There are some works on the Cauchy problem of (3.1) in low regularity
Sobolev spaces. For 3D, Ozawa, Tsutaya and Tsutsumi [40] proved that (3.1) is
globally well-posed in the energy space H'(R3) x L*(R3) x L*(R?) x H '(R3). As
they mentioned in [40] that if ¢ = 1, (3.1) is very similar to the Cauchy problem of

the following quadratic derivative nonlinear wave equation.

(0?2 — A)u = uDu, (t,z) € [-T,T] x R,

(3.2)
(u, Opu) =0 = (ug,u1) € HTH(R3) x H*(R3).

For s > 0, the local well-posedness of (3.2) was obtained from the iteration argument
by using the Strichartz estimates. As opposed to that, it is known that (3.2) is ill-
posed for s < 0 by the works of Lindblad [32]-[33]. In [40], the authors showed
that the difference between the propagation speeds of the two equations in (3.1)
enable us to get the better result. That is, they applied the Fourier restriction norm
method and obtained the local well-posedness of (3.1) in the energy space, and then,
by the energy conservation law, they extended an existent time of a local solution
globally in time. After that, for d = 3, Guo, Nakanishi and Wang [17] proved the
scattering in the energy class with small, radial initial data. They applied the normal
form reduction and the radial Strichartz estimates. For 4 and higher dimensions, I.
Kato [25] recently proved that (3.1) is locally well-posed at s = 1/4 when d = 4 and
s =5.+1/(d+ 1) when d > 5 where s. = d/2 — 2 is the critical exponent of (3.1).
He also proved that if the initial data are radially symmetric then the small data
globally well-posedness can be obtained at the scaling critical regularity for d > 4.
He utilized the U?, V? spaces introduced by Koch-Tataru [31]. As we mentioned

in Section 1, we will improve his results in Section 4. We would like to emphasize
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that the above results hold under the condition 0 < ¢ < 1. Our aim in this section
is to get the local well-posedness of (3.1) at very low regularity s in 2 dimensions.
Hereafter we assume d = 2.

By the transformation uy = wju + idu,ny = n £ i(cw) On,w; = (1 —
A2 = (=A)2, (3.1) can be written as follows;.

(10, F wi)us = £(1/4)(ny +n_)(wy uy +witul), (t,x) € [-T,T] x R?,
(i10; F cw)ny = +(4e) " wlwy uy + wytu_|?, (t,x) € [-T,T] x R?
(Ui,ni)h:o = (Uio,nio) S HS(RQ) X HS(R2)

(3.3)

We state our main result.

Theorem 3.1. Let —3/4 < s < 0. Then (3.3) is locally well-posed in H*(R?) x
H5(R?).

We make a comment on Theorem 3.1. Applying the iteration argument by the
usual Strichartz estimates, we get the local well-posedness of (3.3) for —1/4 < s.
This suggests that if ¢ = 1 the minimal regularity such that the well-posedness of
(3.3) holds seems to be —1/4. If we utilize the condition 0 < ¢ < 1 in the same
way as in [40] and [25] with minor modification, we can show that (3.3) is local
well-posed only for s > —1/2. We find that the known arguments is not enough to
get the well-posedness for s < —1/2 which is the most difficult case. To overcome
this, we employ a new estimate which was introduced in [3] and applied to Zakharov
system in [1] and [2]. Zakharov system consists of two equations, wave equation and

Schrodinger equation;

(i0; + A)u = nu, (t,z) € R x RY,

(3.4)
0?2 — A)n = Alul?, t,x) € R x R%
t

Roughly speaking, comparing (3.1) and (3.4), the two systems have the similar
structure, which suggests that we might get the well-posedness of (3.3) for s < —1/2
in the same way as in [1] and [2].

We will prove Theorem 3.1 by the iteration argument in the spaces X5 °(R3) x
Xi’i(R‘g). This spaces are defined as follows;

Let N, L > 1 be dyadic numbers. We define the dyadic decompositions of R3.

Ky, ={(1,§) e R*|N < (¢) <2N,L < (r £ [¢]) < 2L},
K5 = {(1,6) e R} N < (€) < 2N, L < (r £ cl¢]) < 2L}.



LOW REGULARITY WELL-POSEDNESS FOR NONLINEAR DISPERSIVE EQUATIONS 31
By using K ]j\? L Kﬁ’z, we define the dyadic decomposition in Fourier side;

. —1 o —1
Pus = Fixgs Foe Pibe = Fixse Foa

+ +,c
N,L N,L

We now introduce the solution spaces. Let s,b € R. We define X5°(R?) and
X7°(R?) as follows;

X2 = {f € S'(B) | [|f]l e < o0},
X20(RY) = {f €SB | [1f]lyp < oo},

1/2
x5 = (Z NQSL%”PKJiV,Lin;t) 5

N, L

1.f]

/]

1/2
Xyt = (Z N?SL%HPK;;;ing,t) :

N, L

The key estimates to prove Theorem 3.1 are the following.

Theorem 3.2. For any s € (—3/4, 0), there exist b € (1/2,1) and C' which depend

on ¢ such that
Ju(wr o)l g < Cllullgpe ol (3.5)

[0l .o (3.6)

Jeor () (0D g1 < Cllulo
0>¢ 1
regardless of the choice of signs %;.

Remark 3.1. In fact, the bilinear estimates naturally derived from (3.3) are slightly
different from (3.5)-(3.6). They are described as follows;

Julor o)l < Cllotullges Ty, (3.7

xph (3.8)

It is easily confirmed that (3.5) and (3.6) are strict compared with (3.7) and (3.8),

respectively. We also mention that it might be natural that we use (7 £ (£)) instead

oo (i )i o)) g omr < Clul g el

of (r£¢]) in the definition of Ki ;- As was seen in [40], these two weights are
equivalent and therefore X7} ® does not depend on the choice of them in the definition
of K ]j\c, 7

Once Theorem 3.2 is verified, we can obtain Theorem 3.1 by the iteration argu-
ment given in [15] and many other papers. For example, see [30] and [45]. Therefore
we focus on the proof of Theorem 3.2 in this section.

The sections are organized as follows. In Section 3.2, we introduce some funda-

mental estimates and property of the solution spaces as preliminary. In Section 3.3,
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we show (3.5) and (3.6) with +; = £ which is easier case compared to £, # +,.
Section 3.4 is devoted to the proof of (3.5) and (3.6) with +; # 45, and complete
the proof of Theorem 3.2.

3.2. Preliminaries. We first observe that fundamental properties of X3” and X ibc

A simple calculation gives the followings;

(i) x3'=x2" Xx3h=x%0
(i) (X2 = X227 (X230 = X537
for s, b € R. Next we define the angular decomposition of R? in frequency. For a

dyadic number A > 64 and an integer j € [-A, A—1], we define the sets {D#'} C R?

as follows;

D/ = {(¢lcost, [¢]sin0) eRx R |6 € [ 2 j, T

j A A(j+1)}}'

For any function v : R®* — C, {97} satisfy
A-1
R? = U @f, u= Z Xpau  a.e.
—A<j<A-1 j=—A
Lastly we introduce the useful two estimates which are called the bilinear Strichartz
estimates. The first one holds true regardless of ¢. As opposed to that, the second

one is given by using the condition 0 < ¢ < 1. The first estimate is obtained by the

same argument as in the proof of Theorem 2.1 in [42]. We omit the proof.
Proposition 3.3 (Theorem 2.1. [42]).

||PKi0’LO(KiO’C )((PKil (Kiie )f)(PKIj\Eé’LQ(KiZ’C )g))”Li’t

Ny Ng,Lg Ny,L1 PNy Ly Na,Lo
< (NDZL2 V(N2 L2 VA f e, (39)
regardless of the choice of signs £;. Here N2 := min(Ny, N1, Na), and N3z, Li2

L2 are defined similarly.

Proposition 3.4.

1Pzo, ((Pve NPt oDz, S (N LAL) 2 f iz Jlglsz,  (3:10)

holds regardless of the choice of £;.
Proof. Let A =2'°(1 — ¢)~"/2. From Plancherel theorem, we observe that
1Peza ((Prre HPrza 9)) Iz,

~ HXK;g,LO ( (x;q;;;;j) * (XKﬁg,ng» Iz, (3.11)
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where * denotes the convolution of R3. It follows from the finiteness of A and

A-1
g= Z X@JA:(J\ a.e.
j=—A
that we can replace g with X@;‘Z]\ in (3.10) for fixed j. After applying rotation in
space, we may assume that j = 0. Also we can assume that there exists ¢ € R?

such that the support of xpag is contained in the column
J

Cronz (&) = {(7,6) €R? | |¢ = &' < Npia}-

We sketch the validity of the above assumption roughly. See [45] for more details. If

Ny ~ N92 the above assumption is harmless obviously. Therefore we may assume

min

that Ny = N%2 < N, or N; = N%2 <« N,. Since both are treated similarly, we

min min

here consider only the former case. Note that the condition Ny < Ny means Ny /2 <
N; < 2Ny, otherwise (3.11) vanishes. We can choose the two sets {Cyo12(&},) } and
{Cro2(&])}e such that

min

N 2
h ~ (ﬁ) . swpxoad C | JCno(€0), 1€, — €| = Noii for any k, K,
k
N2 -
#Hl~ (ﬁl) , supp f C U Croiz(&)), &) — &) > N2 for any £, 0,
0 min
l

where #k and #¢ denote the numbers of k£ and ¢, respectively. We see that for fixed
k, independently of Ny, Ny, Ny, there is only a finite number of ¢ which satisfy
XKiO

+1,c * + q
‘ No-Lo ((XKNiﬂLﬁCNsﬁ@%’f > (XKN?LZ“CN%%@%’W?‘(])>

and vice versa. This means that £ and ¢ depend on each other. Once we obtain

+ +q, * + q
XKNS,LO < (XKNf,ElﬂCNggig (f;e)f> (XKN;LQ NCyo12 (52/(/%))(7@619) )

min

> 0,

2
Ler

2
Lg’T

< (NainLaLa) [ llzz Mgl ez,

min

for fixed k, from Minkowski inequality and ¢2 almost orthogonality, we confirm
sy, (G, F) * Cacsz, 9)) sz,
< . n .
N%; XKJ%/(?,LO ((XKJJ\[fi:leCN&ﬁ(%)f) ¥ <XKJ$22-,LQQCN211H2](Q?k)mgoAg))

SRR L1 L) Y lIxeyona 60l IXCyora )82,
k0

Lgﬁ

min

S(Noi L L) 2\ fll 2 Ml 22,
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which verify the validity of the assumption. Hereafter, we call the above argument
“¢? almost orthogonality”.
Now we turn to the proof of (3.10).

||XK]:587L0 <(XKillclf> (XK]:EIQL ﬂCD nC 012(51) )) ||L§’T

rnln

Sty 06 [ (vt 7) =16 =6 (St rmgre g ) (o&)dmdeilis

Hl in

R 1/2
SHXK]:S(?’LO(T? §) (/ [fIP(r =7, & — 51)|/9\|2(71,§1)d71d§1) (£(r, 5))1/2||L§,T

1/2
< sw B MR+ 6P
(T7§)EKN8,LO

< sw BEOMle, gz,

+o
(7, )EKNO Lo

where

E(1,€) = {(1,&) € Cnon (&) NDG | (T = £ el = &) ~ L, (m £ [&]) ~ Lo}

Thus it suffices to show that

sup |B(7,€)| < N22Ly Lo. (3.12)
7,
From (1t — 1 +¢|§ — &) ~ Ly and (1 £ |&]) ~ Lo, for fixed &,

{r | (m1,&1) € B(T, )} S Ligin- (3.13)

It follows from (7,&;) € D that

—~

SY!
ISY

- ((fsll)rl) -
1o ()

> (1-¢)/2, (3.14)

—C

01(T £ [&1] £ c|§ = &) >

where (&)1 is the first component of & and 0; is the derivative with respect to (£;)1.
Combining |7 + |&;] + ¢[€ — & || < L2, with (3.14), for fixed (&;)2 we have

H(€ | (1,&) € B(T,6)} < Ligase (3.15)

Collecting (3.13), (3.15) and & € Cyo2(£'), we get (3.12). O
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3.3. Proof of Theorem 3.2 for +; = +,. In (3.5)-(3.6), replacing v and n with
its complex conjugates u and v respectively, we easily find that there is no difference
between the case (£¢, %1, £2) and (Fo, F1, F2). Here F; denotes a different sign to
+,. Therefore we assume £; = — in (3.5)-(3.6) hereafter. By the dual argument,

we observe that
(3.5) «~— ‘/f(wflgl)ggdtdx

= 2

Nj,L;(j=0,1,2)

< /]

Xiob,c||gl|

xb |92||X;;vl—b,

N[ (P, DU P

No,Lg Ni,Lq

91) (P | go)dtdx

S /]

stc’ob,c ||gl| Xxb ||g2||X;2571*b.

di PORED VRS DD DENED DEED DI R

N1 1<No<Ni~N2 No 1<N1<No~N2 No 1<N2<No~Ni

S lge loallyoloallyoner  (316)

where

)(PKE,LQ go)dtdx| .

Ny,Lq

I = LZ ‘Nll/(PKjgg;zof)(PK

Similarly, (3.6) is verified by the following estimate.

PO D O DD DD DD DR R

N1 1<No<Ni~Ns Ny 1<N1<No~N2  No 1<N2<No~Np

S s -sllgnllsellgall s v, (3.17)
where
=
] NO N / P :i:oc K;, 5 1)(PK]:522,L2g2)dtdl’ .
We now try to establish (3.16) and (3.17). First we assume that 5 = —. In

this case, we can obtain (3.16) and (3.17) by using the bilinear Strichartz estimates

Propositions 3.3, 3.4 and the following estimate:

Lemma 3.5. Let 7 =1 + 75, £ =& + &. Then we have

max((7 %o cl¢]), (1 —[&]), (72— &) 2 max([&], [€2]). (3.18)
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Proof.

max ({7 %o cl¢]), (11 —[&l), (12 = [&[)) = |7 F0 cl¢] = (11 = [&1]) — (72 = [&])]
> [[&1] + €] — clé]|
> [&] + [&] = c(l&] + 1&])
= (1= o)(|&] + |&])

For simplicity, we use f*¢ := Pyte f, gy =Py gfork=12.
0-+~0 k' Tk

Theorem 3.6. For any s € (—3/4, 0), there exists b € (1/2, 1) such that for
f, 91,92 € S(R x R?), the following estimates hold:

P D D D P D DR E

N1 1<No<N1~No No 1<N1SNo~No No 1<N2<No~N1

S /]

Xi’bc||gl| Xi,b |92|‘X:s,17b, (319)

)OS P D k9

N1 1<Ng<N1i~Na  No 1<N1<No~Nz  Nop 1<No<No~Np

|92| Xi>b7 (320)

N HfHXif‘él*”Hgﬂ Xt

where

Proof. Since the proof of (3.20) is analogous to that of (3.19), we establish only
(3.19). From Lemma 3.5, it holds that L0912 > N12

max ~v max*

We decompose the proof into
the three cases:
M 1<Ny<Ni~No, (IN1<N, <Ny~ No, (II) 1< Ny < Ny ~ N,

First we consider the case (I). Considering that L012 > N12

max ~v max’

we subdivide the

cases further:
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(Ia) N1 < Lo. We deduce from Hoélder inequality and Proposition 3.3 that

DI DD Bl PR

N1 1<NogSNi~N2 Lj

S D ZN1||fi’6||Lg,t||PK§gﬁLo<91_92_)”%

N1 1<NoSNi~N> L;j

— 1/2 A71/4 +1/2 y1/4 A7— c
S Y NNN LY N ol ez, g Nz,

N1 1<No<Ny~N3 L1,La

1/2— —-3/4-b — — —
SO D NTUNTNGI N s N g o Ny g oo

N1 1<No<Ni~Na

S

Xj:’,bc ||gl| Xi’b |g2HX:S,1—b,

(Ib) Ny < L. Similarly, from Hélder inequality and Proposition 3.3 we get

D SR DI Fa

N1 1<No<Ni~Ny L;

S NP, Pz o Nz,

N1 1<Np<SNi~N2 j

—1Ar3/411/2,1/4 e — _ _
ST ST NN L L e N g [ onllgz |22,

N1 1<No<SNi~N3 Lg,L2

3/4— —1— — — —_
S NNTNG e Nl s N g o

N1 1<No<Ni~Ny

SIS

s, b

Xi’,bc||gl| X*

[

(IC) N1 5 LQ.

DIED DD Bl PR

N1 1<NoSNi~Ng Lj

S NP, (el oz lle,

N1 1<No<Ni~Ny L;

— 3/4+1/251/4 c _ _ _
<S> ST NN LGP N e g e, N gy o

N1 ISN()SNlNNQ LD,Ll

3/4— — _ _ _
N Z Z NO/ le 2+bN6g‘|fi’C"Xj°[vf’cNis‘|gl Hxﬂ’sz 8”92 ng’l—b

N1 1<NoSNi~Na2

<l o

i

2

2

xb |gg||X:s,17b.

For the case (II), we can show (3.19) in the same manner as above. We omit the

proof. Lastly, we consider the case (III).
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(ITIa) Ny < Lo. We deduce from Hoélder inequality and Proposition 3.3 that

> Z‘Nfl/fi’cgfgﬂtdx

No ]_<N2<N0NN1 j

SO 2 NGl I Pes  (on 92,

No 1<N2<No~N;p j

1 Ar3/471/2 711/4 A7 c _ _
S Y NS N LY LY NG I el ez, N Nz,

No 1<N2<SNo~Nj Li,L2

—1—b— 3/4 _ _ _
<Y N 2N,/ +SNS||JME’C||X3EZbCNf||91 | 00 N3 *[ g2 | o1

No 1<N2SNo~N1

SIS

X;bc||gl| |g2||x:571—b'

Xs,b

(ITIb) Ny < Ly. Similarly,

> ) Z‘Nf/fi’cglgzdtdw

No 1<N2<No~Ni ]

S22 NPk, (P llee oz,

No 1<N3<No~Ny Lj

—1ar3/471/2,1/4 ¢ _ — _
ST T NN LY e N g el e,

No 1<N2<No~Nj Lo,L2

—1—b—2s £73/4 _ el —
SJZ Z Ny b 2SN2/ +3N5\|fi’c|lxi,chf\|gl HXO_»sz *llg3 HXE’H)

No 1<N2<No~Ny

Sl

Xi,bc ||gl| Xi’b ‘QQHX:S,l—b‘

(IlIc) Ny < Lo. In this case, we need to utilize Proposition 3.4 instead of Proposition
3.3.

DD D P\ /ficgfggdtdx

No 1<N2SNo~Npi Lj

DY ZNlH i, o, 90z Nlg ez,

No 1<N2<No~Ni Lj

1/2 71/2 +1/4 ,C
S)DRED DI DR 0\ 2y 2 Faskl PR 7y PR\l Vg IR

No 1<N2SNo~Njy Lo,La

<SS NSEEN NG N ot s Ny oo

No 1<N2<No~N1

S

Xi,bc ”ngXi’b HgQHX:s,lfb,
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3.4. Proof of Theorem 3.2 for +; # =£,. In this section, we establish (3.16)

and (3. 17) with +5 = 4. Note that if one of the inequalities |&| < \§1| and
1&1] < BT 1+C |€2| holds, then we observe that for 7 =1 + 7, £ =& + {2,
max((7 o clé]), (n = [&l), (2 +1&)) = [+ cl¢] = [&] + (&l
> [[&] = [&ll = cl&u] = cl&]
l1—-c
> Tmax(|§1|, [$3))
and we can verify (3.16) and (3.17) by the same proof as in the case 5 = —. To

avoid redundancy, we omit the proof.

Proposition 3.7. For any s € (—=3/4,0), there exists b € (1/2, 1) such that for
f, 91,92 € S(R x R?), the following estimates hold:

X x x ¥ i

No 1§N1<<N0NN2 No 1SN2<<N0NN1

S /]

|g2||X:5»1*ba

Xi,bcHgl| xb

v oy > Ju

No 1<N1<K<No~N2 No 1<N2<No~Nip

S llze=llgnllxevligall v,

where
Z\N Pete. NP, , a0)(Ps, , auditda].
-1
] N() N / KI:{:TOCLO KI(’ ngl)<PKJJ\r72,L2 )dtdl’ .

Thanks to Proposition 3.7, we may assume that 1 < Ny < Ny ~ Ny. In this case,
we no longer make use of the useful estimate such as (3.18) and, as we mentioned in
Introduction, it appears that the bilinear Strichartz estimates Propositions 3.3, 3.4
are not enough to show (3.16) and (3.17). Thus we employ new estimate developed
by Bejenaru-Herr-Tataru [3] and applied to Zakharov system in [1]. To describe

it precisely, we introduce the decomposition of R? x R? utilized in [3]. For dyadic
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numbers My, M;, to be chosen later, we decompose R3 x R? by the sets {DJA}.

R’ x R® = {4(517 &) < %W} U U {%67T < Z(&, &) < %7‘(‘}

0 64< A<M

U{W—JL—GIWSZ(&, fg)}U U {W—%WSZ(&, 52)§7T—%7r}

64< A<M,
= nxopru U U 25x2;
- U 05, xDj," U D5, x D3,
—Mo<ji1,j2<Mp—1 64<A<My —A<j1,J2<A-1
[71—372|<16 16<]j1—J2[<32
nxopu U U 2ix2;
v J @ xoaiu D4 x D,
—M1<j1,j2<My1 -1 64<A<M; —A<j1,J2<A+1
|71 —j2+M1]|<16 16<[j1 —j2+A|<32

where Z(&;, &) € [0, 7] is the smaller angle between &; and &,.
First we assume that 7/2 < Z(&1,&) < m. We find that if Z(&, &) is sufficiently
close to 7 , then the following helpful inequality holds true.

Lemma 3.8. Let 7 =1 + 7o, £ = & + & and My be the minimal dyadic number

which satisfies

My > 271 — o) Usill&l)® (3.21)

€]

then for any (11,&,) € DM (15, &) € @%1 where |j1 — jo £ My| < 16, the following

J1 7’
inequality holds:

max((1 £ cl¢]), (1 —[&l), (r+[&1) Z €]

Proof. After rotation, we may assume & = (|£|, 0), and then |jo £ M;| < 16. It

follows from the inequality

max((7 £ clg]), (n =&l (2 +&0) = [|6] = [&l] = cl¢],

it suffices to show [|&] — |&]] > /1E<|¢]. Indeed,

1 1 11—
\/ ;C_C>Z(1_C)(1+20)> 40.

From |js + M;| < 16, we obtain

€17 = (J&] + €] cos(£ (&, €))% + (Nasin(£(&, &)))°
< (|&] = 1&])* + 2|&]|&[ (1 + cos(£ (&, &)))
< (J&1] = 1&])? + 4&1&|(L(&, &)

< (] el + 5l
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which gives

e < () - )

This completes the proof. 0

Next we consider the case 64 < A < M; and 16 < |j; — jo + A| < 32.
Proposition 3.9. Let 7 =7+ 7, E =& + & and f, g1, g2 € L? be satisfy
+.c A — A +
supp f C Ky 1,» suppg1 C D5 N Ky 1, suppga C D5 NKY, 1.,

and 64 S N() 5 N1 ~ NQ, 64 S A S Ml, 16 S |j1 —jgitA| S 32. Then the

following estimate holds:

/f(ﬂ §)g1(71, 1) 92(72, &2)dT1dT2d61dés| S A%(LOLILQ)%HfHLg’THngLg’T||92||L§’T‘

For the proof of the above proposition, we introduce the important estimate. See

[2] for more general case.

Proposition 3.10 ([3] Corollary 1.5). Assume that the surface S; (i = 1,2,3) is an
open and bounded subset of 5: which satisfies the following conditions (Assumption
1.1 in [3]).

(i) Sr is defined as

Sr={6, € U; | ®;(6;) =0,V®; #0,0; € CY(U;)},

for a convex U; C R? such that dist(S;, U?) > diam(S;);

(i) the unit normal vector field w; on S* satisfies the Hélder condition

n:() —mi(@)| | [mi(o)(6 = )]
/’2

sup

G,5'€Sk

— —— S L
o — &'| |6 — &

(iii) the matriz N(d’l,ﬁg,fg) = (n1(01),n2(d2), n3(0d3)) satisfies the transversality
condition
1 ~
5 S detN(0717072,073> S 1
for all (61,62, 73) € Sf x S3 x S5
We also assume diam(S;) < 1. Let T : R® — R be an invertible, linear map and
S; = TS;. Then for functions f € L*(Sy) and g € L*(S,), the restriction of the

convolution f * g to Ss is a well-defined L*(S3)-function which satisfies

1
1f * gll2(ss) S ﬁ”fHLQ(Sl)HgHLQ(Sz)a
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where

d = inf |detN(oy,09,03)]

0, ES;

and N (o1, 09,03) is the matriz of the unit normals to S; at (01,09, 03).

Remark 3.2. As was mentioned in [3], the condition of S} (i) is used only to ensure
the existence of a global representation of S; as a graph. In the proof of Proposition
3.9, the implicit function theorem and the other conditions may show the existence
of such a graph. Thus we will not treat the condition (i) in the proof of Proposition
3.9.

By utilizing Proposition 3.10, we verify Proposition 3.9.

Proof of Proposition 3.9. Let 65 € (0,7) be defined as cos#7 = 4c. We divide the
proof into the following two cases:

(M) 14(6&) = 051> 21— )7 A7  and |£(§, &) — 05| > 27(1 — )T AT,
) [£(6.6) =051 <2°(1 =) TA™ or |£(€,6) — 05 <201 — )T AT,
where Z(£,&;) € (0,7) is the smaller angle between £ and &. We here assume that
A>220(1—c¢)™2 If A <2%°(1—c¢)72, the proposition is verified by the almost same

proof as that for the case (II) below.
We first consider the case (I). The proof is very similar to that for £; = +5. We

utilize the following two estimates.

Lemma 3.11. Let 7 =11+ 7, E =&+ &, 22°(1 —0) 2 < A < My and Z(£,&)
satisfies (I). Then the following inequality holds:

max ({7 £ cl¢]), (11— [&]), (2 + &) 2 A7

Proof. After rotation, we may assume that & = (|£;],0) and £ = (|£] cos 8, |£] sin 9)
with 6 € (0, 7). By the simple calculation, we have

max((T £ c[¢]), (r —[&l), (2 + (&)
>| £ clg] +[&] = [&]|
> |£clé] + [&1] — V€2 — 21¢]16 ] cos 0 + [€]?

‘ 2/¢|¢1| cos O — [¢]?
|&1] + \/|51’2 — 2|€[|&1 | cos O + [€]?

> [£cfé| + |¢] cos O] — — [§] cos @

= Kl — Kz.
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From 65,60 € (0,7) and (I), we get
K, = [€]| cos O — cos |

1—
> |el ¥

> 28(1 — ¢) "3 [¢]AT L.

|66 — 0l

From 22°(1 — ¢)™2 < A < M, we have

g2
K2 — 2|£||§1| cos |§| . ’£| cos 6
&1l + V& ? = 20€]|€x] cos 6 + [€2
. 2eljea] cos 2l cost| | I¢P
~ 6]+ V16 = 21Elén] cos b + (€2 24151 |1
[§1]€1]| cos 0] £?
< 6] = V&2 = 2[¢][é ] cos 8 + [¢2] + =
&l (VTGP —2ieafcosf+[eP) 0 Y 1 &
2
< 4@ <2191 — o)A
131
<2(1—co)2fgATs.
From above, we have
K — Ky 2 ¢]A75.
This completes the proof. (]

Lemma 3.12. Let g1, go € L? be satisfy
A — A +
suppg1 C D5, N Ky, 1., suppgs C D NKY, 1.,

and 64 S No 5 N1 ~ NQ, 64 S A S Ml, 16 S |j1 —jgzl:A| S 32. Then the

following estimate holds:
1
Igeso (91% 92) lrz, S (ANoLiLo)3 llgnllzz [l
Ng,Lg T T T

Proof. By the same way as in the proof of Proposition 3.4, we observe that the

desired estimate is proved by

sup |E(T, £)| SJ ANOL1L2 (322)
T’g

where

N o - NLa NL,
Em::{m,sl)e@émcm(s) r=n=le=ah~ Ly (n+lal }

(r— 71,6 — &) €D
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with 16 < |jo & A] < 32 and fixed ¢ € R?. From (7 — 71 —[§ — &) ~ L; and
(11 + |&1]) ~ Lo, for fixed &,

{n | (m1,6) € B(7,€)} < L (3.23)
It follows from (71,&) € DF and (7 —7,€ — &) € D) that
) ) (): (€&
|02(7 — [&1] + 1€ = &) = &) + €&l
> AN (3.24)

Combining |7 — [&| + [€ — & || £ L2, with (3.24), for fixed (&;); we have

max

{(€)2 | (11,&) € B(7,6)} < AL,y (3.25)
Collecting (3.23), (3.25) and & € Cn,(&'), we get (3.22). O

We now prove Proposition 3.9 for the case (I). From Lemma 3.11, it holds that
L0122 > A-3N,. We decompose the proof into the three cases:

(Ia) A=1N, < Lo, (Ib) A~iNy < Ly, (Ic) A~1Ny < Lo.

(Ia) From Hélder inequality and Lemma 3.12, we have
S Iz Nlgr * g2llez

< ANLoLaLo) 11z Nz lgallzz

(Ib) From Holder inequality and Lemma 3.4, we have

/f 7,80 7’1,51)92(7'2,52)d7'1d7'2d§1d§2

‘/f(ﬂ §)91(11,£1)92(72, &) dmidTad&idEo| S llgallrz [1f * 92,112

3 1
< ANLoLaLo) 711z Nz lgallzz

(Ic) From Holder inequality and Lemma 3.4, we have

/f(T, §)g1(71,£1)2(72, £2)dTidT2d&1dE> | S HQ2HL§,T”JC * gl,fHLZT

3 1
< AY(LoLa L) flliz Nollz Ngaloz -

Here g, is defined as g; _(-) = g;(—).
We next consider the case (II). We apply the same strategy as that of the proof of
Proposition 4.4 in [1]. Applying the transformation 71 = |&;|+¢; and 75 = —|&| + ¢

and Fubini’s theorem, we find that it suffices to prove

‘/f (&) + &, (£2)) 91 (0 (&1))92(9o, (&2))dErdEs

< A¥lgio ol lizllgz o dg izl flliz . (3:26)
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where f(7,€) is supported in ¢g < 7+ ¢|¢] < ¢p+ 1 and

=6 = (£|¢] + e, &) fork=1,2.

Ck

A1+1
First we decompose f by angular localization characteristic functions { XpA1 }

Il p=—A

where A; is the minimal dyadic number which satisfies A; > 22°(1 — ¢)7?A and
2o+

thickened circular localization characteristic functions {XSN0+k6}[ ’ ][ ) where [s]
) k=— =5

denotes the maximal integer which is not greater than s € R and Sgo ={(r,¢) €
R x R? | €0 < |€] < €04 6} with 0 = 2720(1 — ¢)2NyA~Y/? as follows:

[%]Jrl Ar1+1

f= Z Z XS§10+k6X®?1f-

k:—[%] ji=—A1

From the assumption (II), we see that the sum of (k, j;) is ~ A1. Therefore we only

need to verify

‘ [ 16656 + bnlean o (€)m (o € ende
<A2H910¢ HL2H92 ¢C2HL2”fHL2 , (3.27)

for supp f C @?1 ﬂSéVOJrk‘S with fixed k, j;. We use the scaling (7, £) — (No7, No&)
to define

F(1,8) = F(NoT, No&),  Gie(Ths &) = gio(NoTi, No&y).
If we set ¢, = N; 'cx, inequality (3.27) reduces to
[ o0+ dm @it @aton (@)iade

A2Ny 2||91<>9f> Iz2llge o 05112l flle - (3:28)

Note that f is supported in SF (N; ') where

-1y — Al ~ Ql4ké o co+1
S5 (N )_{(77€>€©]‘ nS;™ | :FC|§|+FO§T§¢C|§’+ N, }

with § = Ny 8. Thus from the ¢ almost orthogonality, we may assume that there
exist &9, &9 such that

N1 N Na Ny
<4— 2
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such that space variables of suppg; o (b:fl and supp g» o ¢, are contained in the
balls B5(£)) and B;(&9), respectively. By density and duality it suffices to show for

continuous ¢g; and g that

- - 1.—2 . -
19115, * Golsoll 2(st (vy) S A2Ng 2l g1l e2esy 192 22css) (3.30)

where S, S5 denote the following surfaces

S1={¢L (&) e R’ [ & € B5(&)},
Sy = {¢5,(&2) € R® | & € B;(£3)}-

(3.30) is immediately established from

- - 1 -
1g1]s0 * Galso | 252y S A2 g1l 2y |2l 2252 (3.31)

where
5 C
ST ={(W7(9),6) € D NS [ 7(§) = Felel + 37}
For any o; € S;, 1 = 1,2, 3, there exist &, &, € such that

o1=05(1), 02=04(&), 03=(1(§),5),

and the unit normals n; on g; are written as

n(oy) = L (_1’ (&h (51)2> |

N A GRRT
A, (@ (@
n2(o2) \/§<1’ &l \le)’

(4 0
mal(os) = 5= (ﬂ’ g )

We deduce from 1 < [¢] and (3.29) that the surfaces Sy, Sa, S7 satisfy the following

Holder condition.

ni(oi) —ni(oi)| | Ini(o3)(o: — 07| <

“up <1 3.32

oioles; |0 — 0] joi — aif® | -
n — n3(o n — 0

p | 3<<|fs>_ :/3|(03)| ns(0a)(n —o3)] (3.33)

03,0l eSE 03 — 03 o3 — 03

We may assume that there exist &, &5, € € R? such that
Y 1,62

G+&=¢, 05(6) €51, 65(&) €5, (¥7(€).€) € 55,
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otherwise the left-hand side of (3.30) vanishes. Let of = ¢f(&]), oy = ¢z (&),
of = (T(¢),&). For any o1 = ¢f (&) € Sy, we deduce from &, & € B;(£)) and
A < M < 210(1 — C)ilNl/NO that

Iny(01) — n1(c)] < 218%(1 —¢)?PA7T <278(1 —¢)Ae. (3.34)
1
Similarly, for any oy = ¢, (§2) € So we have
/ —18N0 2 4—1 -8 1
Ing(o2) — na(oy)| < 2 F(l —¢)*AT2 <27°(1—¢)A2. (3.35)
2
For any o3 € S, it follows from S C D" that
In3(o3) —ng(oy)| <2701 — )AL (3.36)

It is obvious that |oy — o], oo — 05| < 20 < 2719(1 — ¢)2A~/2, then we get from

(3.34) and (3.35) that

(o1 — o)) -ni(o])| <27°(1 — ¢)2A72, (3.37)
(02 — ab) - na(oy)| < 27(1 —¢)2A2 (3.38)
los| 1

<2711 —¢)?A7! and (3.36) that

Similarly, we deduce from ‘03 RREALE

|U3’ / ’
_—— - n
R
(3.37) means that S} is contained in an slab of thickness 271°(1—¢)? A2 with respect

to the ny(o}) direction. From ¢? orthogonality, we may assume that S, and Ss are

also contained in similar 271°(1 — ¢)?A~2 thick slabs;

(03 — 03) - n3(03)| = <278(1 —¢)?A72 (3.39)

(o2 = 03) (o) < 277(1 = 0)*A77,

(o3 = 03) (o) < 277(1 — ¢)?A7%

Similarly, we may assume that surfaces Si, Sy are contained in slabs of thickness
2715(1 — ¢)2A~? with respect to the ny(oj) direction and the surfaces S;, Sy are
contained in slabs of thickness 2715(1 — ¢)2A~2 with respect to the nz(c%) direction.

Collection the above assumptions, for 7,7 = 1,2, 3,
(05— 07) -n;(0))] <27°(1 — ) A2 (3.40)
We define T : R3 — R? as

T=27"(1—PA(NT)", N =N(o},04,0%).
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If the following conditions are established, we immediately obtain the desired esti-
mate (3.31) by applying Proposition 3.10 with T and S; := T1S; (i = 1,2, 3).

(M 1—c

(I)  diam(S;) < 1.

A7 < |detN(oy,09,03)] for any o; € ;.

1 o - B ~ ~
(HI) 5 < det( 1(0'1>,ﬂ2(0'2),113(0'3)) <1 for any o; € SZ
1.(59 1.(6 5. — g9 .
(IV) sup ’nl(ai) tjlo(ai ) |n,(al~) <Uf0 5 %) < 1 for the unit normals n; on S;
5:,69€S; |0; — 0; |07 — 07|

We first show (I). From (3.34)-(3.36) it suffices to show
(1—c)A™! < |detN (o), o, ob)). (3.41)

Secing that o} = 0% (€)), 05 = 05,(&), o5 = (WF(€),€) and & + & = ¢/, we get

-1 1 +1
1 GG TN
/ / /
@ € ()
€11 13 €]
L1606 € (1 _ 161151
4 |§111€5] IS
>(1—c)A™" (3.42)
(IT) is established from (3.40).
ny(o}) - (o — o)

|T_1(0,~ —oy)| = 210(1 — c)_2A2 ny(o

WS NS =~
S~—
—~
S
S|

<278 < =,

Next we show (III). Note that the unit normals fi; on S; are written as follows.

(G = (T "™i(T6;) _ N'ny(T6,)
W) =TT (Te)] ~ TN n(Ta)]

In particular, the unit normals on T~ !¢} are the unit vectors e;;
INLL'(T_lUD = N_lnz‘(O';) = €;. (343)
From (3.42), we get

IN = V) < 2detNTNTIP S 1200 - )AL (3.44)
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Thus we obtain
1T <27%(1 —c)A™h (3.45)
We deduce from (3.34)-(3.36), (3.43), (3.44) that
IN"'i(T6;) — e;| = [N (ns(T6;) — (o)) <277 (3.46)

This gives [0;(d;) — e;] < 27° and (III) is now obtained. Finally we show (IV). It
follows from (3.44)-(3.46) that

0:(03) — 14(57)] IN~'(ni(T5;) — wi(T57))]
T <3 ——
6: — 7| N 6; — 7|
_ In;(T';) — wi(T57)]
< 3[INH||T)] S

T6, —T&? ~
The last inequality is verified from (3.32) and (3.33). Similarly, from (3.45) and
(T~1HTN-1 =211 — ¢)"2A%F we have

(60) (6~ 30| _ o [N (T0) - (7175, T30
lo; — 9|2 - |To; — T?)?
< 2||TH2 ‘(T_I)TN_lni(Ta-?) ) (T&Z - T5?)|
- To; — Ta)|?
(T&9Y . 5. — T&0
_ 1T (T~ To)| _
-2 |To; — Ta?? ~
This completes (IV). O

We now consider 0 < (&, &) < m/2. First we show the estimate which is similar

1
to Proposition 3.9 for 64 < A < Ng and 16 < |j; — j2| < 32. In this case, thanks
to 0 < Z(&, &) < /2, Ny ~ Ny ~ N, always holds true and we can obtain the

better estimates compared to Proposition 3.9.

Proposition 3.13. Let f, g1, g» € L? be satisfy

+,c —
supp f C Ky 1,» suppgi C ’Dﬁ N Ky, 1,» suppga C ’Df N K;(,%LQ,

2
and Ng ~ Ny ~ Ny, 64 < A < NO%, 16 < |j1 — jo| < 32. Then the following
estimate holds:
1 1
[ 17001 € aatra, )imdndsadés] S AHLoLaLa) 1z ol ool
(3.47)

Proof. The proof is almost analogous to that of Proposition 3.9. Difference between
them is a step of decomposition. Precisely, in the proof of Proposition 3.9, we

decomposed f into ~ Al pieces. We here decompose functions into finite pieces.
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From suppg; C D%, suppgy C @3‘; and 16 < [j; — jo| < 32, after suitable and

Jio
harmless decomposition, we can assume that there exists j such that 16 < [j; —j| <

32 and supp f € @]A. Furthermore we decompose f, g1, g» into finite pieces as

follows;
jO+k J2+k
F=> XQAlf Z Xohd: 2= Z X492
3'=3° J1=37 75=39

where k is the minimal dyadic number which satisfies k > 22°(1 — ¢)™2, A; := kA
and 7°, 79, 79 satisfy
Al _ A A A Al _ ;A
U o0 =2 U 95 =25, U 95 =25
§O<<50+k ]1<]1<]1+k j2<j2<j2+]€

Thanks to the finiteness of k, it suffices to prove the desired estimate (3.47) for
A1 Ay Aq
supp f C ©j',  suppgi C D', suppgs C Dy

with fixed j € [5%, 7% + K], j1 € [71, 47 + kI, ja € 53, 42 + K.
We utilize the same notations as in the proof of Proposition 3.9. By the same

argument as of the proof of Proposition 3.9, we only need to verify the following

estimate;
- ~ 1., - -
G115, * Golso llL2ss) S A2[G1l|2es) 1921l 252 (3.48)
where
5 = ¢+<s>e©A1|1—‘c<\s|<2
1 — ¢ \S1 i 4 = |S1] = )
5= {¢E(€z) |<2}

= {(W(ﬁ)&“) €D} | % < [€] < 4, ¥F(E) = Fel¢] +%}
0

We recall that the unit normals on o; € S; (i = 1,2, 3) are written as;

n(oy) = € <_17 (&) (51)2) |

AR

A
“2<"2)‘¢§(1’ &l |§2|)’

(4 0
na(0s) = c2+1(ﬂ’ ik |§|>‘

where

o1 =05 (&), 02=05(&), o3=(¥(),E).
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We may assume that there exist &, &5, & € R? such that

Gt+&=¢ (01:=)04(&) € 51, (0 :=)05(85) € B2, (05 :=) (7 (¢), &) € Ss.

From S; C @ﬁl, Sy C @21 and S3 C @ﬁl, we easily observe
1

ny(oy) —my(o))| <2701 —c)A™, (3.49)
Iny(02) — na(0)] < 270(1 — ) A7, (3.50)
In3(o3) —nz(o5)| <2701 —c)A™h (3.51)

The above estimates (3.49)-(3.51) give

o1 = o) miop)] = | (o1 = ot} -mlol)| £ 271 - oA

|71

o _ _
(03— o) - na(0})] = (az—%a;) my(oh)| < 27(1 - 02472,
2

foa = o4) o) = | (02— 03] - malel)| < 2721 = A
By the same argument as in the proof of Proposition 3.9, we can assume
(05— 0}) - my(0})] <27%°(1 —¢)?A7% for any i,j =1,2,3. (3.52)
The remaining part is only to prove (I)-(IV) in Proposition 3.9 with
T=2""1—-¢)?A2(N"), N = N(o}, 04,0%)

and S; ;= T7'S; (i = 1,2,3). (I)-(IV) are verified from (3.49)-(3.52) as we proved in
the proof of Proposition 3.9. To avoid redundancy, we omit the proof of them. [J

Lastly, we consider the case of sufficiently small Z(&;,&s).

Proposition 3.14. Let f, g1, g» € L* and M, is the minimal dyadic number which
1
satisfies Ny < My. We assume that f, g1, go satisfy

supp f C K]j\[,(fLO, supp g1 C @?140 NKy p,, suppgs C @%ﬂ NEKR, L,
with Nog ~ Ny ~ Ny, |j1 — ja| < 16. Then the following estimate holds:
‘/f(ﬂ §)g1(71,&1)92(72, §2)dTidTod€1 S

1 1
S N LoL2) 412 llallie Ngellzz . (3:53)
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Proof. From supp ¢, C @jl and supp go C DM we may assume supp f C @;WO.

]2’

We also assume L; < Ly by symmetry. By Holder inequality, (3.53) is established

if we show

1
[Pyt gi)llzz, S No (LoL) 2| flliz lonlle, - (3.54)

No,Lo

((Pgre (P

NooLo N
It is easily confirmed that (3.54) can be verified by the proof of Proposition 3.4 with
minor modification. Indeed, same as in the proof of Proposition 3.4, we find that
the desired estimate (3.54) is shown by

sup |E(7,&)| S N& LoLy (3.55)
7,8

where

E(1,6) = {(n,&) € 95" | {r = £ € = &) ~ Lo, (m1 — [&l) ~ Ln}.
Applying the same proof as in Proposition 3.4, we immediately obtain (3.55) thanks
1
to NyMy ' ~ N§. O
We now prove the crucial estimates (3.16) and (3.17) with 9 = + and Ny <
Ny ~ Ns.

Theorem 3.15. For any s € (—3/4,0), there exists b € (1/2, 1) such that for
f, 91,92 € S(R x R?), the following estimates hold:

Z Z Z If_ S ||f| Xi’bc||gl| Xt |92||X;Svl—b7 (3'56>
N1 1<Nog<SNi~Ny Lj ’
Z Z Z Iz+ N ||fHX;fé1*b||91| x5 | 92| X3t (3.57)

N1 1<No<Ni~Ny Lj

where

91)(PK;\“, ’L2g2)dtd$ ,

Iy

| ot / P, NPz, o0)(Pucg,, go)dtds).

Proof. We first note that if Ny < L2 then (3.56) and (3.57) are obtained by the

same proof as that of Theorem 3.6. Therefore we can assume LY'2 < N;. We can
also assume that 1 < Ny. Indeed, if Ny ~ 1 (3.56) and (3.57) are immediately
obtained by using Proposition 3.3 as Ny ~ 1.

If s € (=3/4, —1/2), considering Ny < N; ~ Ny, we observe that the latter
estimate (3.57) is difficult to show compared with the former one. Clearly, the proof
of (3.56) and (3.57) become easier as s gets greater. Therefore, we here focus our

attention on proving (3.57) for s € (—3/4, —1/2).
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Considering (3.57) in Fourier side, it is easily confirmed that (3.57) is equivalent

to

2 2. 2 NN

N1 NoSN1~N2 L; <Ny

2+ 72,6 + &)1 (11, 61) 93 (T2, &) dridradé dés

N Hf”)?;él*b”gﬂ Xsb |92 Xt (3.58)
Here we utilized the redefined denotations f*¢ := Xicke fy 97 = Xk , 9> gy =
0-~0 1
Xk, , » and the norms
2,42
o T P B i Py

For simplicity, we use

I(f,g,h) = NoNf2 ‘/f(ﬂ §)g(11, &) (7o, &o)dTidTodE1dEy

where 7 = 7 + 75 and & = & + &. By the decomposition of R? x R?

M M A A
—Mo<j1,j2<Mo—1 64<A<My —A<j1,j2<A-1
[71—j2|<16 16<|j1—j2|<32
M M A A
v J ofx2u U 2=
—My<j1,j2<M;—1 64<A<M; —A<j1,J25A+1
[j1—j2+M;1|<16 16<|j1 —j2+A[<32

where M, and M; are the minimal dyadic number which satisfies respectively

1 N, N,)z
NE < M, 27(1 — C)—%M < M,

0

we only need to show

(D Z Z Z (fﬁ: ,C Mo,]l ’ g;—,Mo,]é)

N()NN1NN2 L <N1 —Mo<ji1,j2<Mop—1
l71—321<16

S Il llonlls

(H) Z Z Z Z (fﬁ: < —Ag g+,A7jz)

No~N1~N2 L;j<N1 64<A< Mo —Mo<j1,j2<Mo—1
~ lj1—j21<16

oo llg2ll

sb,

S ||f||)z—s,1—b||91||)2§vb||92||)?jb’

(0D Z Z Z Z (fEe, g gz

N1 1<<N0<N1NN2 L <N1 —M;<j1,j2<M;—1
[j1—j2+M1|<16

S Il pe - llgnllgoollgzll g,

POEDDEED DD DU DI (¢ e N

Ni 1<No<SNi~Ny Ly<Ny 64<A<M; —A<j1j2<A-1
[j1—j2+A|<16

5 Hf")?;fél_b”gl”)?i’ngzﬂ)?ib’
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AR = g |©A We further simplify (I)-(IV). From

¢? Cauchy-Schwarz 1nequahty and L; < Nl, it suffices to show that there exists

where g, = g7 |®A and g,

0 < e < 1 such that the following estimates hold;

D S (i

—Mo<j1,j2<Mp—1
|71 —J21<16

S N (LoLnLo)? | £l 2 Nlow Nz Nlod Nz

> Yoo I gt

64<A<My —A<j1,j2<A-1
[j1—352|<16

S—¢& 1 c —
S NS (Lol L) 174Nz _llor ez Nl ez
(IH)/ Z (fj: ,C M1,J1 g+7M1 7j2)

—Mi1<j1,j2<M1—1
[j1—jotM]|<16

S No NP (LoLa L) 2 L F*Il 2 llor Iz N9 Iz

(IV)/ Z Z (fic —A 51 g+,A,J2)

64<A<M; —A<j1,j2<A-1
[j1—j2+A|<16

—S S—¢& 1 C
S Ne* NS (LoLa L)} ¥l sl i 193 sz
If —3/4 < s, (I)' is immediately established by using Proposition 3.13.

,C M, M
Z (fﬂ: 0]1,9; 0]2)

—Mp<j1,j2<Mo—1
[j1—372|<16

~ )

—Mp<j1,j2<Mp—1

FEE(r, g M (11, €0) g3 MO (1, &) dry drady dEs

|71 —321<16
_3 ) o .
< No H(LoLa)2 | f*“l 2., > 191 ’Mo’hHLgTﬂg;’MO’”HLgT,
" Mo<j1,2<Mo—1 ’ ’
71 —721<16

w

-3 1 . _
< No *(LoLiLo)Z (| £=N sz _lovllzz Nlg3 Nz -

Next we prove (II)'. It follows from Proposition 3.13 that

> > I g M gt

64<A<My —A<j1,j2<A-1
[71—372|<16

~ DL ) N

64<A<My —A<j1,j2<A-1
[71—372|<16

(1, 89y J1<7'1>f )9; ’]2(72752)d71d72d51d52
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_ 1 1 —Aj LA,
S Z Ny ' A2 (LoLyLy)? || f+° L2, Z 191 leLg’THg; JQHLg’T
64< A<My —A<j1,jo<A-1
o l51—321<16

-3 1 _
< Ny H(LoLaL)} 17N ez Nt ez Nos ez

(IIT)’ is verified as follows. By Lemma 3.8, we have Ny < LY2 . For the sake of

~Y max*

simplicity, we here consider the case of Ny < Ly. The other cases can be proved

similarly. We deduce from Proposition 3.3 and Holder inequality that

S I g M g MR

—M;y<j1,j2<M;1—1
[j1—j2+M;1|<16

~NoNyP )

—M; <ji1,j2<M;1—1
[j1—j2+M1|<16

_ —,Mi,j ,Mi,7 )
SNNT® D ke, (oM g ) e 55

=My <j1,j2<My—1
[j1—j2+M;1|<16

<N0N—2N%N%L%L%N*%L%”fi,cH 5 Z H —,Mo,j1|| ) H +,Mo7j2|| )
~ 1 Vo IVp g g fVg "Ly L%, 91 Lz 1192 LE -

—Mi1<j1,j2<M1—1
[j1—j2+M1[|<16

/ FET, g M (71, €0) g3 M (10, &) dmided€ydEy

_ _ 1 _
SNy NP (LoLa L) 175z Nlgi Nz Nloi Nz

Lastly, we prove (IV)". We use the two estimations depending on Ny and Nj.
Precisely, we utilize Proposition 3.4 if N3 < N7, and if not so, we employ Proposition
3.9. We first assume N§ < N7.

~

> Ut

64<A<M; —A<j1,j2<A-1
[j1—j2+£A|<16

RGN UEDS

64<A<M; —A<j1,j2<A-1
[j1—j2£A|<16

— JALG —Aj
S S S O P ar ¥ | P P

BA<A<M; —A<j1,j2<A-1
li1—j2£A[<16

/fi’c(ﬂ gy M (11, &) g3 (1, &) dmidradér dEy

1 . .
SNONTING (L)t S I, Sl e g e

64<A<M; —A<j1,2SA-1
[j1—j2+A|<16

3 1 _
NG N2 (LoLaLo)* | £ 2 Nlgi Nz llg3 oz

S o _ 1 _
NG N2 N (Lo L L)} 5Nz N ez Nd iz

—s+3

e—2(s+3 s— 1 c _
<y D N Lo n L) el o sl s
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If 0 < e < 2(s+2), this completes (IV). We next assume N 2 Ni. From
Proposition 3.9 and M; ~ N;/Ny, we observe that

2 > Ut

64<A< My —A<j1,j2<A-1
[j1—j2+£A|<16

~NN DL D)

64<A<M; —A<j1,j2<A-1
[j1—j2£A|<16

- 7 1 o "
SNoN; 2 AS(LoLy L) 2 || f5°| 2 lgr 7 lzz gy e
&7 & &7

64<A<M; —A<j1,J2SA-1
- l[j1—j2+£A|<16

B T 1 _
SNoNT2NF No ™ (LoLaLo)* | £z llov ez o3 ez

/ FET, €) gy M (1, 60) g3 2 (12, &) dmydady dEs

L2 1 _
NG Ny * (LaLaLa)* 15 Nsz Nlgr ez Nlgi oz
—sarStE a1 1 _
NG Ng TN, (LoLu Lo (175N iz Nlgv Nz 1o llee
042)

_ 25— 1 _
IO M AN TP Pre (PO P

This completes the proof of (IV)'. O
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4. WELL-POSEDNESS OF THE KLEIN-GORDON-ZAKHAROV SYSTEM IN d > 5

4.1. Introduction. We continue the study of the Cauchy problem of the Klein-
Gordon-Zakharov system:

(

(0?2 — A+ 1)u = —nu, (t,z) € [-T,T] x RY,

(0 — A= Alul?,  (tx) € [<T,T) x RY, (4.1)
(u, 8tu, n, 8,577/) ’t:(] - (u(J? Ui, No, nl)

€ HHY(RY) x H3(RY) x H3(RY) x H*~H(RY),

\

where u, n are real valued functions, d > 5,¢ > 0 and ¢ # 1. As opposed to d = 2,
the proof for ¢ > 1 is quite similar to that of the case 0 < ¢ < 1. Therefore we also

consider the case ¢ > 1. Similarly to 2D, (4.1) is equivalent to the following.

(10, F w)us = £(1/4)(ny +n_)(wy uy +witul), (t,x) € [-T,T) x RY,
(10, F cw)ng = %(4c) " rw|w; tuy + witu_|?, (t,z) € [-T,T] x RY,
(ui,ni)’t:() = (Uio,nio) S HS(Rd) X HS<Rd)

(4.2)

Our main result is as follows.

Theorem 4.1. Letd > 5,s = s, = d/2—2 and assume the initial data (usg, n+o) €
H*(RY) x H*(RY) is small. Then, (4.2) is globally well-posed in H*(RY) x H*(R?).

Corollary 4.2. The solution obtained in Theorem 4.1 scatters ast — F00.

For more precise statement of Theorem 4.1 and Corollary 4.2, see Propositions
4.25, 4.26. [25] considered (4.2) for d > 4,0 < ¢ and ¢ # 1. [25] applied U? V?
type spaces and established that (4.2) is globally well-posed in H* (R%) x H®(R%)
if the initial data is small and radial. U?, V? type spaces were introduced by Koch
and Tataru [31]. As we mentioned in Introduction, these spaces work well when
we consider well-posedness at the critical space [18], [22], [23], [26]. Theorem 4.1
is proved by the Banach fixed point theorem. The key is the bilinear estimate
(Proposition 4.24). For d > 5, it appears to be difficult to prove Proposition 4.24
only by applying U?, V? type spaces, the modulation estimate (Proposition 4.14,
Lemma 4.15) and the Strichartz type estimates (Proposition 4.10) for a nonlinear
interaction [25]. In this thesis, to overcome the difficulty, we derive the bilinear
Strichartz estimate for the nonlinear interaction and then we are able to prove

Proposition 4.24. See Proposition 4.23 for the bilinear Strichartz estimate. ¢ # 1
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plays an important role in the proof of the bilinear Strichartz estimate as well as in
the proof of Lemma 4.15.

In Section 4.2, we prepare some notations and lemmas with respect to UP, VP, in
Section 4.3, we prove the bilinear estimates and in Section 4.4, we prove the main

result.

4.2. Notations and Preliminary Lemmas. In this section, we define U? V?
spaces and prepare some lemmas, propositions and notations to prove the main
theorem. Let Z be the set of finite partitions —oco =ty < t; < ... < tg = oo and let
Zy be the set of finite partitions —oo < ty <t < ... < tx < 00.

Definition 1. Let 1 < p < oo. For {t,}i<, € Z and {¢y}1—, C L2 with ZkK:_Ol Pellse =
1, we call the function a : R — L2 given by

K
@=> Xttt
k=1

a UP-atom. Furthermore, we define the atomic space

UP = {u = Zx\jaj
j=1

with norm

a; : UP-atom, \; € C such that Z I\ < oo}

j=1

fullr = int{ 31y
j=1

Proposition 4.3. Let 1 < p < g < oo.

oo
u = Z)\jaj, A €Caj: Up—atom}.
j=1

(i) U? is a Banach space.

(ii) The embeddings UP C U4 C L{°(R; L?) are continuous.

(iii) For w € UP, it holds that limy_,, 4 |[u(t) — u(to)||z2 = 0, i.e. every u € UP is
right-continuous.

(iv) The closed subspace UP of all continuous functions in UP is a Banach space.
The above proposition is in [18] (Proposition 2.2).

Definition 2. Let 1 < p < co. We define V? as the normed space of all functions

v: R — L2 such that limy .., v(¢) exist and for which the norm

K 1/p
[ollve == sup (3 flotte) = vt

{te} 02 “im1
is finite, where we use the convention that v(—o00) := lim;_,_, v(¢) and v(c0) := 0.
Likewise, let V* denote the closed subspace of all v € V? with lim; , ., v(t) = 0.
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The definitions of V? and V*| see also [19].

Proposition 4.4. Let 1 < p < g < .
(1) Let v: R — L2 be such that

ol == (Z fo(t) — (b))

{tk}k OGZO k=1

is finite. Then, it follows that v(ty) = limy ;4 v(t) exists for all ty € [—o00,00) and

v(ty) == limyy,— v(t) exists for all ty € (—o0, 00| and moreover,
[vllve = [lvllve.

(ii) We define the closed subspace VP (VP ..) of all right-continuous VP functions
(V® functions). The spaces VP, VP,

(iii) The embeddings UP C V' . C U? are continuous.
(iv) The embeddings VP C V9 and V¥ C VI are continuous.

VP and V? .. are Banach spaces.

The proof of Proposition 4.4 is in [18] (Proposition 2.4 and Corollary 2.6). Let
{Fe Henl(2)}nez C S(R?) be the Littlewood-Paley decomposition with respect to
x, that is to say

p(§) >0,
supp (&) = {£]27" < J¢] < 2},

n(€) = Z Pn(€) =1 (£#0), —1—2%

n=—oo

Let N = 2" (n € Z) be dyadic number. Py and P, denote
FalPnf1(§) := o(&§/N)FL[f1(§) = nl§) Ful £1(S),
FulP<1 f1(€) := (&) Falf1(E)-

Similarly, let Qx be
FilQng)(r) = 6(1/N)Filg)() = ¢u(r) Filg](7),

where {F1[¢,](t)}nez € S(R) be the Littlewood-Paley decomposition with re-
spect to t. Let Ki(t) = exp{Fit(1 — A)Y/?} : L2 — L? be the Klein-Gordon
unitary operator such that F,[Ky(t)uo](§) = exp{Fit(€)} Fu[uo](§). Similarly, we
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define the wave unitary operator Wi.(t) = exp{Fict(—A)"/?} : L2 — L? such that
FuWae(t)nol(§) = exp{=Fict[]} Fulno](§). We set
Wi = {(r,§) e Rx R?|L/2 < |7 +¢[¢]| < 2L},
KGp ={(1,§) e RxRY|L/2 < |7+ (¢)| < 2L}.
Definition 3. We define
(i) Uk, = K+(-)U? with norm ||u||U}-;i = || Kx(=")ul|u,

(i) Vg, = K+(-)V? with norm HuHVIz;i = | K+ (—)ul|ve.
For dyadic numbers N, M,

v KeOOQnKL(—), Qi =) Qn, Q% =1d- Q%

N>M

Here summation over N means summation over n € Z. Similarly, we define Uy, , V{7, .
Remark 4.1. For L? unitary operator A = K. or Wi,
U124 - V—Q,'rc,A - Loo(Ra L?p)

Definition 4. For the Klein-Gordon equation, we define Y3, (resp. Zj, ) as the clo-
sure of all u € C(R; H:(RY))N(V,) °V? (resp. u € C(R; HE(R")N(V,) "Ugk,)

—,re, K+
3 S S
with Y3, (resp. Zj, ) norm, where

1/2
Vi, T HP<1U“V;%1 * (Z N2SHPNUH%/I2&> ’

Ju
N>1

2s 2 1/2

lullzg,, = IPerullog, + (D2 N*I1Pxuly )"
N>1

For the wave equation, we define szvica Z"V*Vic as the closure of all n € C(R; H:(R4))N

|Vx|*SV_27rC,Wﬂ (resp. n € C(R; H:(RY)) N |Vx|’sU3Vic) with YVL}’,ﬂ (resp. ZﬁVﬂ)
norm, where
12 1/2

Definition 5. For a Hilbert space H and a Banach space X C C(R; H), we define

B.(H)={feH||flla<r}
X([0,7)) := {u e C([0,T); H) | It € X, a(t) = u(t),t € [0,T)}

endowed with the norm [|ul|xo,r)) = inf{||a| x| a(t) = u(t),t € [0,T)}.
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We denote the Duhamel term

Irre.(n,v) = + /0 YotV K (t — )n(t') (wp o(t'))dt

Irw,, (u,v) = i/o X0, (8 )Wae(t — t/)w((wl_lu(t'))(wflv(t’)))dt'

for the Klein-Gordon equation and the wave equation respectively. The following

proposition is in [18] (Theorem 2.8 and Proposition 2.10).

Proposition 4.5. Letu € V_17 . C U? be absolutely continuous on compact intervals.

Then, |[ullys =  sup )/ (u’(t),v(t))L%dt‘.

veV?2, ||lvll,2=1
Corollary 4.6. Let A= K. or Wee andu € V! ., C U3 be absolutely continuous
on compact intervals. Then,

g = sw | [ AGMAC 00,00 ]

veVZ lloflyz=1

Proposition 4.7. Let Ty : L2 x ... x L2 — L} (R%:C) be a n-linear operator.

loc
Assume that for some 1 < p < oo and 1 < g < oo, it holds that

n

ITo (e (Yo, Ka ()l peansceayy S [T 10lez-
i=1

Then, there exists T : Uy, % ... x Uk — L{(R; LL(R?)) satisfying

1T Curs s un) lpeics ey S |1 Nwillog,

i=1
such that T(uy, ..., u,)(t)(z) = To(ui(t),...,u,(t))(z) a.e.
See Proposition 2.19 in [18] for the proof of the above proposition.

Proposition 4.8. Letd > 3,2 <r <o00,2/qg=(d—1)(1/2—1/r),(q,7) # (2,2(d —
1)/(d—3)) and s =1/q—1/r +1/2. Then it holds that

HWic(t)fHLgW;”(RHd) S Hf“Lg(Rd)-
For the proof of Proposition 4.8, see [28], [16].

Proposition 4.9. Letd > 3,2 <r <o00,2/qg=(d—1)(1/2—1/r),(q,7) # (2,2(d —
1)/(d—3)) and s =1/q—1/r +1/2. Then, it holds that

||Ki(t)fHL§WI—S"“(R1+d) SJ Hf”Lg(Rd)-

For the proof of Proposition 4.9, see [34]. Combining Proposition 4.4, Proposition
4.7, Proposition 4.8 and Proposition 4.9, we have the following.
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Proposition 4.10. Let d > 3,2 < r < 00,2/q = (d — 1)(1/2 — 1/r),(q,r) #
(2,2(d—1)/(d—3)) and s =1/q—1/r+1/2. If p < q, then it holds that

HfHLgW;S‘T(]R1+d) N ”fHV}zg HfHLgW;S’T(R1+d) IS Hf“Vv'ﬁc

Proposition 4.11. (i) Let T'> 0 and v € Y, ([0,T]),u(0) = 0. Then, there exists
0<T' < L (o) <&

(i1) Let T'> 0 and n € va,ic([O,T]),n(O) = 0. Then, there exists 0 < T' < T such
that HnHys (o <€

For the proofs of (i) and (ii), see Proposition 2.24 in [18].
Lemma 4.12. Let a > 0. Then for A = K4 or W, it holds that

KVa) Fllvg < 1Ny

Proof. We only prove it for A = K. since we can prove it similarly for A = W..
By L2 orthogonality, we have

I

(V) Iz, S sup Y P (Ka(=ti) f(t:) = Ka(—tima) f(tim)1 72

{t: }1 0€Z i=1
+ Z N Py (K (=) f(t:) = Ke(=ti1) f(ti1))ll72)

N>1

S sup ZHKi )P f(ti) — Ka(—tioa) Pa f(tia)|I72

{t} OGZz 1

+ZN2“ sup Z”Ki i) P f(t:) = Ke(—ti) Py f(tio1) |72

N>1 {t,} —0€Z =1

< 1%,

Remark 4.2. Similarly, we see

IVel“fllvz S 1 llya-
Lemma 4.13. If f, g are measurable functions, then for Q = Q%2,, or Q>M, A=Ky
or Wi, it holds that
fit. Qg ot = [ (Qf(t.)glE,)dudr.
R1+d

R1+d

For the proof of Lemma 4.13, see [26], Lemma 2.17. Since Q2,, = Id — Q>M, we
also obtain the result for () = Qé M
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Proposition 4.14. It holds that

K - K _
HQMiuHLf@(RHd) S M 1/2||U||V§i, ”QZZT/[UHL?’I(RHUZ) S M UQH“HVIQ{ia (4.3)
K K
lQ<rullvz, S llullvz,,  1Qcwullvg, S llullvz,
K K
155l < lulloz, . 1Q5%ullog S llullg,

The same estimates hold by replacing the Klein-Gordon operator Ky by the wave

operator Wi..

Lemma 4.15. Let ¢ > 0,c # 1 and 73 = 11 — 7o, & = & — & If |&1] > (&) or
(&1) < |&l, then it holds that

|2 £ (&2)

Proof. We only prove the case |£1]| > (&) since the case (&) < |&] is proved by the

max { |71 £ (&1)

s £l 2 max{|&l], €]} (4.4)

Salne manner.

(Lhs) Z [(m £ (T+ &) — (£ (1+ &) — (73 £ clés])| (4.5)

If 0 < ¢ < 1, then we take e, such that 0 < e, < (1 —¢)/(1 4 ¢),|&| < e.]&1]. Then,
the right hand side of (4.5) is bounded by

L+ 1&]) = (L + &) — & — &f = [&1] —ecl&] — (1 +e0)|&] 2 &

If ¢ > 1, then we take £, such that 0 < &. < (¢ —1)/(c+3), |&2] < E.l&], |&1] > 1/E..
Then, the right hand side of (4.5) is bounded by

cfér = &l = (T4 &) = (L+ &) = el = &)[&] — (1 +&)|&] = 28]&] 2 16

0
Remark 4.3. From (4.3) and (4.4), we can obtain a half derivative.

Lemma 4.16. Let uy, := Xjo,1) PN, On, 1= X[o,1)PNoVs Ny i= Xjo,1) Py, Q1, Q2 €
{Qfﬁv QIE(J@}, Qs € {QZ@C, Qg]]@”}. Letd > 5, s =s.=d/2—2. Then the following
estimates hold for all 0 < T < oo :

(Z) Ing rg N2 ~ Nl, then

= [ (o i) o o) @ ]| S Nl v o g, s,

(i) It holds that

Rl= | [ A o) (Pa)dadt] S Inllyg, ol [Pz,



64 S. KINOSHITA

(ZZZ) [f N1 ~ NQ, then

= [, (30 ) o o Tteat] 5 o

3 S N2

o lomallvz, s vz

(iv) If Ny ~ N3, Ny > 1, M = Ny and £ > 0 is sufficiently small, then

1L S nwsllve, ol lumllve, o (0=4,5)

where

I = /R @) (> Quer v, ) @i,

N2 Ny
Lim [ (@) (Y Qoo ) @ v .
Ri+d Na<M1 -

Proof. We show (i) first. For f € V3, A € {Ki, W4}, we see

Ixpo) fllvz < I fllvz- (4.6)
For d > 5, we apply the Hélder inequality to have
|]1| < ||w1_1ﬂN1 || 2(d+1)/(d—1) ||w1_17§N2 H 2(d+1)/(d—1) ||wﬁN3|| (d+1)/2. (4.7)
L L L
t,x t,x t,x
We apply Proposition 4.10, (4.6) and the Sobolev inequality, then we have
i Fvll pparvran S N wllve, = (N2l wllve,, (48)
lwnng | e Sl |V, [ A2 Dqy, I ga+1r72 p2az-1 a2
S Va2 2w, llvg,, (4.9)
< N g g, (4.10)
Collecting (4.7), (4.8), (4.10) and N3 < Ny ~ Ny, we obtain
1] N5l g, ol g,
Next, we prove (ii). For d > 5, by the Holder inequality to have
L] < HleLgd;rl)/E wal’f)HLf(:H)/(dﬂ) HP<11~LHL?<;+1)/(¢171>. (4.11)

From Proposition 4.10, (4.9), Remark 4.2 and Lemma 4.12, we obtain

17ll pgasnrz S llnllyge (4.12)
1~ —1/2 c
[y 1U||L§,<zd+1>/<vlfl> S Ve~ vllve, S V) vllve, S lvllve s (4.13)

[Pl p2arnsa-n S ||<Vz)1/2P<1u||V}2{i S 1Paullve, - (4.14)
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Collecting (4.11)—(4.14), we obtain

12| < Il

Y, vl YRl \|P<1U’\v§i-

We prove (iii) for d > 5. We apply the Holder inequality to have

LS| Y

N3 S N2

P2 Jwi "o, ”Lffﬁ“)/(‘i_” |, ”Lffj*“/‘d‘”' (4.15)

Similar to (4.9), the Sobolev inequality and Proposition 4.10, we have

|3 o > o

N3§N2 ’ N3§N2

(4.16)

,
VWic

By the L? orthogonality, we obtain

/9 30 ), < sw zw
W.

{W:I:c( z)( > ﬁNs(fi)>

N3 5 N2 +c {t }»{ OEZ =1 N3 5 NQ
2
~Wael—ti)( Y Amtn)f| o @17
N3 5 N2 v

Since Pyniy, = 0 if N3 > 2N or N3 < N/2 and Py is projection, the right-hand side
is bounded by

I

sup > N NP Wae(—ti) Puit(ti) — Wee(—tia) Pai(ti) |72

{titi_o€Z2 21 N

< ZNZSC sup  [|[Wae(—t:) Pn(t;) — Wae(—ti- 1)PNﬁ<tifl)H%3
N

{ti}{:o ez

S lnlle (4.18)

c

Hence, from (4.15)—(4.18), (4.8) and Ny ~ N,, we have

I < Il

—1/2 1/2
v, (V)™ lloms vz, (N2 umlvg,

S lnl

s, lowallvg, e vz,

We prove (iv). The estimate for [5 is obtained by the same manner as the estimate

for I, so we only estimate I,. We apply the Holder inequality to have

|[4’ < HQW;tcﬁNgHLz ‘ Z ngl UN, dHHQluNlHLQ(dH)/(d 1). (4.19)
Na< N1
By Proposition 4.14, (4.8) and (4.6), we have
1Q%knsllzz, S N7 Inglva, (4.20)

1@t || 2@+ 11 S <N1>1/2||UN1||v§i- (4.21)
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We apply the Sobolev inequality, Proposition 4.10, Proposition 4.14 and (4.6), we

have
d(d—3)/2(d—1)
H Z Q2w1 UNZ d+1 ~ H Z Qle UNQ LdJrl 2(d2 1)/(d2 5)
N2V Na<Ny
< H<V >d(d—3)/2(d—1)+1/(d—1)—1 Z o (4.22)
~ T 2 .
N2 Ny K+
Similar to (4.17) and (4.18), we have
d(d—3)/2(d—1)+1/(d—1)—1 -
A il L, Sl (4.23)
Na<N1 K
Collecting (4.19)—(4.23) and N; > 1, we obtain
(L] S linwvsllvg, vl llum vz, -
O

The following proposition is in [43], Proposition 10.

Proposition 4.17. (L* Strichartz estimate) For all dyadic numbers H > 1 and N,
it holds that

IWae(®)Pyélle, S NV Polliz, 1K) Prollie, S H V| Prollz-
From Proposition 4.7 and the above proposition, we obtain the following.

Proposition 4.18. For dyadic numbers H > 1 and N, it holds that
lunlle, S N uwllos, o lorlle, S HSD ooy,
Proposition 4.19. Let uy, vy € L2 (RY™) be such that
supp Fuy C Wic N (R x (C'N PM)), supp Fuy C KGth2 N (R x Py)

for dyadic numbers L1, Ly, M, N and a cube C C R of side length L. If L < M ~
N,c>0 and c # 1, it holds that

1Pe(unron)llzz, S L7V (LiLo) P llundllzz o2z -
Proof. Let f := Fuy, g = Fuy. By the Cauchy-Schwarz inequality, we have

|, Jo&det —ng—ginds] . S swp Bl
g|~L L7 ™

where

E(1,8) = {(m,&) €supp f; (1 — 11, — &) €suppy, |¢| ~ L} C R
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Put [ := min{L,, Ly},l := max{L,, Ly}. By the Fubini theorem,
[E(rOl <U{gulr £l £l - &ll L& € Cl&] ~ M€ — &~ N, [¢] ~ L}

For some i € {1,...,d}, we set [({§ — & )| = N, where (§ — & ); denotes the i-th

component of £ —&. We compute

§—&)i | Sui

00, 2 e £ (14 Je — )] = =50 ¢ o5

E=&l &l

where £ ; be the i-th component of &;. Since |(§ —&1);| 2 N and €| ~ L, it suffices
to consider the case £ ;| < [£1,], where &y; be the i-th component of €. Firstly, we

consider the case 0 < ¢ < 1. We have

r.h.s. of (4.24) > €= il Jeu]

R

from [(§ — &)l 2 N ~ | — & and |&| > |&14]. Secondly, we consider the case
¢~ 1,¢c# 1. The assumption L < N ~ M implies

: (4.24)

Z1l—c

mac(1— (1 - ¢?), 1/2}8l < NEZ 80T v (1= op2), 3yl
& € — & &1
From the above inequality, we obtain
Sl 1€ =&l
r.h.s.of (4.24) 2 |c=— — 2 le—1].
UOR e~ Temar | Rt
Finally, we consider the case ¢ > 1. We have
Sl 1€ =&l
r.h.s.of (4.24) 2 ¢ — 2 c—1
U2l " el
since |(§ —&1)i| 2 N and |£o;| < |€14]- Therefore,
|0, (T £ cl&al £ A+ =&)) 2 [e—1]. (4.25)

Hence by (4.25) and the mean value theorem, we have

‘{51; ITEd&| € -4 SL&GeC |G ~ M, E—&] ~N,[¢] ~ LH

<le—1]"'m4
From m ~ L, we have
1B, T)Y2 < (le — 1Ym0 Y2 ~ | — 1[7Y2(Ly Ly) Y2 LED/2,
Thus, we obtain the result. O]

Proposition 4.19 implies the following.
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Proposition 4.20. Let L < M ~ N,¢> 0 and ¢ # 1. Foruy = Wy (t) Py, vy =
K. (t)Pne, it holds that

1P (unon) e, S D2 Pl szl Pyl ca-
From Proposition 4.7 and the above proposition, we have the following.
Proposition 4.21. Let L < M ~ N,c >0 and ¢ # 1. It holds that
1P (unon)llc, S L2 untllug,, lowllog,, -
The following proposion is in [18], Proposition 2.20.

Proposition 4.22. Let ¢ > 1, E be a Banach space, A = K+ or Wy, and T : U% —
E be a bounded, linear operator with || Tullp < Cyllullye for allu € U3. In addition,
assume that for some 1 < p < q there ezists C, € (0,C,] such that the estimate
[Tulle < Cpllullyzn holds true for all uw € U}. Then, T satisfies the estimate

ITulle < Cp(1+n(Cy/C)) ullvy, u e VE.

Proposition 4.23. Let L < M ~ N,N > 1,¢ > 0 and ¢ # 1. For sufficiently
small € > 0, it holds that

1PL(unon)llg, < L2 (ML) Jlurllvg,, llowllvz, -
Proof. By the Holder inequality, M ~ N, N > 1 and Proposition 4.18, we obtain
1 Pr(unrvn)llzz, S llunellzs llowlles, S M(d_l)m“uMHU(}Vic||UN||U;‘<i- (4.26)

Let Sv := PL(PMUPNU), where Py, = Pyr/2 4 Pr + Payg, such that Py Py = Py Py
is defined by the same manner as Py;. From (4.26) and U2, C Uy, , we have
ISy, ze S MO 2y, S MOl (4.2
From Proposition 4.21, we have
ISllug, 2 S L9 2l (4.25)
From (4.27), (4.28) and Proposition 4.22, for sufficiently small ¢’ > 0, we have
ISllva, 2 S L2 (/LY ullg, - (4.2
Let Tu := PL<pMUPNU). From Proposition 4.18, M ~ N and Vf(i C U}L(i, we have
HTHU;*ViC—w? S N(d_l)ﬂHUNHUgl(i S N(d_l)/QHUNHV,%i S N(d_l)/QHUHVgi- (4.30)
By (4.29), we have

ITlos,, —ore < L4720/ L) ol (431)
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Collecting (4.30), (4.31), M ~ N and Proposition 4.22, we obtain
ITllvg, e S LD (M/L)* lollvz, -

Taking e = 2¢’, the claim follows. OJ

4.3. Bilinear estimates.

Proposition 4.24. Let d > 5,s = s. = d/2 — 2 and ¢ > 0,¢ # 1. Then for all
0<T < o0, it holds that

Hr e (s 0)llzg, S lnllyy, Nvllvz, (4.32)

I wee ()2, S Nlullvg, Il

Yie, - (4.33)
Remark 4.4. In (4.32) and (4.33), the implicit constant does not depend on 7.

Proof. We denote ty, := Xjo,7)Pn,u, On, = X[o,1) PNy, g := Xjo,7)Pnyn. To prove

(4.32), we need to estimate the following.

3
||]TKj: n, U ZSC ZJZ

=0

where

Y

o= | [ v Ko = ) Patater )

Uf(i
t
Jl = Z N128° / [OT)( K:t t—t Z Z PN1 7’LN3 (,dl UNQ))(t/) 5
Ny >1 0 Na~Ni N3 < N ks
JQ = Z Nfsc / [0T)< K:t t—t/ Z Z PN1 nN3 wl UNQ))(t,) 5
Ny>1 0 No< Ny N3~y Uiy
J3 = Z Nfsc / [OT)( K:t t—t Z Z PN1 nN3 wl UN2))(t/) )
Ni>1 0 Ny>>Nj N3~Ny Uies
By Corollary 4.6 and Lemma 4.16 (ii), we have
JI? < su (w;')(Poytt
0 S p n(wy 0)(Pot)dedt
lully2 =1"JR1+d
Ky
S lnllyge, Mvllvie - (4.34)
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We apply Corollary 4.6, N1 ~ Na, Lemma 4.16 (ii7) and ||dn, [[vz < lluflyz2 , then
+ +

VIS Z N sup ’ Z Z /1+an3 wy UN2)uN1dxdt2

N >1 |“”v2 =1 No~ N1 N3 < No
S D) Nl vie, HUNQHvz’
Ny > 1
S Il ol (1.5)

For the estimate of J5, we take M = eN; for sufficiently small € > 0. Then, from

Lemma 4.15, we have

PN1 (( gﬂﬂ}cﬁN3)(Q<Mw_lﬁN2>)
= PN1Q1<{]T4 |:]:_1 </7-1:7-2+73,£1:§2+£3 ( I;Vj\i/lcﬁf\@)(7_?” 53)(625?\2(,01_117]\]2)(7'2,52))} =0

when Ny > (N,). Therefore,

Py, (v, (wi ' 0n,)) E Pn, Fi,
where

Fy = Ql((Q;VJ\izrcﬁNa)(Q2w1_lf’Nz>)a Iy = Ql((Q3nN3)(Q>MW_1@N2))
Fy = Q%5 ((Qsiin, ) (Qowy By, ) ).

Here, Q1,Q; € {Q<M, Igjﬁ\}} and Q3 € {szj\ij, Wic} For the estimate of F}, we ap-

ply Corollary 4.6, Lemma 4.13, Lemma 4.16 (iv), N3 ~ N1 > Land [[an, [lv2 = < [lullvz
+ +

then we have

t
> N /X[ n(Ke(t—t) Y > PyF(t
0

U2
N121 N2< N1 N3~Ny Kt
2

S SN sw /'Ew%@memmm

Ni1>1 ”u”V2 _1 N2<<N1 N3~N1 Ri+d
S Z N??SCH”Ns,HVV%ﬂHUHYI?i

N3 > 1
< nf ?@ﬂ”ﬂ 3’21' (4.36)



LOW REGULARITY WELL-POSEDNESS FOR NONLINEAR DISPERSIVE EQUATIONS 71

For the estimate of F,, we apply Corollary 4.6, Lemma 4.13 and the triangle in-
equality, we have

> NP /0 Xory () Ke(t—1) > > Py, F(t)dt’

Ni1>1 N2 Ny N3~N;

S DN su ’ >, > (Qsﬁwg)(Qgﬁwflﬁm)(@ﬂm)dwtr

Ni>1 H“”v2 =L Ny Ny N3~N; YR

U2
K4

SN s S S (@) Qe o, (@ui, |

N1>1 HuHVQ =1 N2 N; N3~Nj Ri+d
(4.37)
By Proposition 4.23, Ny < Ny ~ N3, N; > 1 and Proposition 4.14, we have

<Q3ﬁN3><Q§aw;m><—@lam>dxdt\

’ R1+d

~ ||Q>Mw1 UN2HL%YZHPNQ((Q3ﬁN3)<Q1aN1>)HL%I
< N—1/2 N\~ N(d—l)/2 Na/No)E
< Ny H(No) Hlowallvg, No™ 7 (Ns/Na)F I llve, llumy v,

< N3 (Na/Ng)' 2 [lowy vz llnvs v,

uni vz, (4.38)

By (4.38) and the Cauchy-Schwarz inequality, the right-hand side of (4.37) is bounded
by

1/2— 2
Z N3 nN3||%/V2Vi ( Z (N2/Ns) 17 Ny UN2||V}2<i>
N3 > 1 ¢ Na<N3
S [Inf f/wi [v] 2yKi (4.39)

For the estimate for F3, we apply Corollary 4.6, Lemma 4.13, Lemma 4.16 (iv), N3 ~
N; > 1 and ||11N1||V13 < HUHVIQ&’ then we obtain

ZN%C/ Yo VKLt —1) S 3 Py Byt dtH

N1>1 N2 Ny N3~Nip
_ 2
S YN sw [ 3N <@3ﬁN3><Q2w;%N2><@§mm>dwdt
Ni1>1 HUHV2 =1 No< N1 N3~N1 Ri+d
S Z ]\T§SC||”N3HVV%,i ”U|Y§it
N3 > 1 ¢

S ||7”L||§/stci oIl - (4.40)

Collecting (4.36), (4.39) and (4.40), we have

J2 S Inli Il

%’i‘%l : (4.41)
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By Corollary 4.6 and the triangle inequality to have

J3 < Z N2Sc su ‘ Z Z /Rler NN, W1 UNQ)UNldxdt

Ni>1 |“||v2 =1 Ny > N1 N3~ s

< ZN2SC( Z Z sup

Ni>1 No>N1 N3N, lully 2,

2

)2. (4.42)

/ ﬁN3 (wl_lf)NQ)ﬁ,_Nld.Idt
R1+d

-1
By the same manner as the estimate for Lemma 4.16 (4i7), we obtain
[ e o o] S N5l o Nl - (443
From (4.43), the right-hand side of (4.42) is bounded by
2
S Y NNzl lowlvz, )
N1>1 N2>Nj N3~Na
From s, > 0, - |lizn S| - Iz and the Cauchy-Schwarz inequality, we have

J1/2 Z Z ( Z lescN??sc

Ny 2 1 N3~Na Ni<KN2

Sc NTSe

< > D NeN;
No Z 1 N3~N>

S lInllyge Mvllvis - (4.44)

vl owallye )

nN3||VV2V ||UN2”V[2<
+ec +

Collecting (4.34), (4.35), (4.41) and (4.44), we obtain (4.32). We prove (4.33) below.
By Corollary 4.6, we only need to estimate K; (i = 1,2, 3):

K= oM s [0S [t o o) @)
N3

Hn\lvgvi =1 Ny N3 N1 N3

c

2

2

o= e |35 [ ) o) )

H"HV‘%} =1 Ny N3 Ni~N3

*c
Ks = E N3%  sup g E / (wi N, ) (wy UNQ)(wnNS)dxdt‘
— 1+d
N3 HnHVavic 1 No Z N3 N1~N2

First, we estimate K;. Put K| = K; 1 + K2 where

K= 3N s [ Y5 [t )

N3 51 ”n”V2 ._1 Na~N3 N1<N3

2
X (wﬁN3 )dl’dt

_ 2
KLQ = Z N??SC ’ Z Z /1+d wl uNl (,Ul UNZ)(WnN3)dIdt

N3>1 ”"”v2 L' Ny~ Ng N1 < N3

(4.45)
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By the same manner as the proof for Lemma (4.16) (i), we see

’/Rlﬂi wl_laf\h) (m) (wn, )dxdt
N1 <N

3

2 3/2
< (o) 2Nl low, vz, il (4.46)

Collecting (4.45), (4.46) and Ny ~ N3 < 1, we obtain

—1/243/2
KiiS ) NSSC(HUH;CZE (No) 12+ ||U1\/2||vf<i)2
Na <1
S vl fx;;i > Nz%cHUNz“%/;{i
Ny <1
< Hu|y58 |2y;1'

For the estimate for K o, we take M = N, for sufficiently small € > 0. Then, from

Lemma 4.15, we have

Pr, Q5507 (QE 507w, ) (QY i w i)

— P Qe [7 ([ Qw7 ) (72, &)( QU w i) (73, 65) ) |
T1=T2+73,{1=£2+E3

=0

when Ny > (Np). Therefore,

—1~
PN1<(w1 UN2 wnNS E PN1 iy
where

G = QL3 ((Qawr ') (Qswing)),  Ga o= Qu((Q2hw; ') (Qswiing ),
Gs = Ql((Q2w1_1@N2)<Q‘;V]t[cw ﬁNz&))'

Here, Q1,Qs € {Q<M, ;ﬁ} and Q3 € {szf\[, Wic} Hence, it follows that

3

K, < ZK1,2,i

=1

where

KLQ’,L‘ = Z N325¢ sup

Na>1 ||"||v2 L Ny~ N3 N1 < N3

(wi iy, )G dxdt 1 =1,2,3.

R1+d
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By Lemma 4.13, we have

Kian S ) N3 Sup LN ) (Qawy 0Ny

1+d

N3>1 ”n”VQ N2~N3 N1 < N3
x (ngﬁm)dasdt’ , (4.47)
Koo S Z N3 sup / QlwflaNl)(Q>Mw’1f)N2)
N3>1 Inllve, =1 NyNg Ny /R
x (ngﬁNg)d:pdt’ , (4.48)
Kips S Z N sup. (Quwr i, ) (Qawy ',
Na>1 Inllve, =1 NNy Ny 7RI
Wi
X (Qs 7 Wiy, dwdt‘ . (4.49)

By the same manner as the estimate for Fy, we apply Proposition 4.23, N; < Ny ~
N3, N3 > 1 and Proposition 4.14, then we obtain

[ (@S ) (@ o) Quoiin, dad
R
< 1Q%Hwr Y ||z 1P, (Qowr o, Yony ) (Qawng)) 1 2

S Ny ANl vz, NET (N /NG (N2) T o vz, Nallasllvg,

< N3 (N /N3) 25 () Nl vzl v, il 50

From (4.47), (4.50), N3 > 1, Ny ~ N3 and the Cauchy-Schwarz inequality, we have

2
Kip1 S ) Nz%c( > Nf°||UN1||v[2(i(N1/N2)1/2_6<N2> 1N2||Ul\f2||vf(i>

N2>1 N1<K N3
S lull?

2 ol

By Lemma 4.16 (iv),i = 5, we obtain

’/]RHd Z Quwr “N1>(M)(Q3wn]v3)dxdt

N1< N3

< (Vo) T N ]

vie lom vz o o (451)

From (4.48), (4.51), N3 > 1 and Ny ~ N3, we have

Kipa S ) N3

No>1

2 < |l ?/;(ci %/;;1-

vl

U||Y;<Ci UN2||V,2<i)
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By Lemma 4.16 (iv),i = 4, we obtain

‘ /R > Qui i, ) (Quwr o QU5 win )t

N1< N3

< (No) ™ Ny Jul

vee loma vz llm g, - (452)

From (4.49), (4.52), N3 > 1 and N, ~ N3, we have

Kias S Z N3 (

No>1

ullyg, llowllvg ) < lullde ol

By symmetry, the estimate for K5 is obtained by the same manner as the estimate

for K. Hence, we omit the estimate for K,. By the triangle inequality, Lemma 4.16

2}1/2

(1) and the Cauchy-Schwarz inequality, we have

Y YT M

No Ni~Nsg N3 5 No ”n”\/‘%/

K3/

[ ) ) @)

+c

1/2
S 3 { X Mg levlvg, 7}

N3 Ni~Nz N3 < Na

SN Ny Ny lumi vz llows llve,
No Ni~Nsg
S [lul

~Y

AN

Yo v Yo

Therefore, we obtain (4.33). O

4.4. The proof of the main theorem. We define
Us = wiu i, ni=nxilcw) 'On

where w; 1= (1 — A)Y2 w := (=A)Y2. Then the wave equation in (4.1) is rewritten
into
10y Fwius = £(1/4)(ny +n_)(wy g +witul), (t,z) € [-T,T] x RY,
10+ F cwne = £ (4e) " wlwr tuy + witul |? (t,z) € [-T,T] x RY,
(Ui,ni)h:o = (uig,nio) c HS(Rd) X H5<Rd)
(4.53)

Hence by the Duhamel principle, we consider the following integral equation cor-
responding to (4.53) on the time interval [0,7") with 0 < 7' < 00 :

uy = Py(ug,n,n_), ng = dPy(ng,uy,u), (4.54)
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where

B ) = Ka(O)so & (L/A) T (m, 0 ) () + Trses () (1)
+ In ey (neyuy ) () + Iy (n—s us ) (8) 1

Oy(ns, up, u-) = Wae(t)nao £ (4) " {Irwe, (wy, uy ) (t) + Irw, (wy, us)(t)
+ Irwy.(ue, uy ) () + Irwe, (u—, u)(0)}.

Proposition 4.25. (i) Let d > 5,5 = s, = d/2 — 2 and 6 > 0 be sufficiently small.
For all (uso,n+o) € Bs(H*(RY) x H*(RY)) and for all 0 < T < oo, there exists a
unique solution of (4.54) on [0,T] such that

(us,ne) € Vi, ([0,7]) x Yyy., ([0, 7)) € C([0,T]; H*(RY)) x C([0,T): H*(RY)).

(i) The flow map obtained by (i):
Bs(H*(R%)) x Bs(H*(R%)) 3 (0, ns0) — (ug,ni) € Y, ([0,77) x Yﬁ,ﬂ([o,T]) is

Lipschitz continuous.

Remark 4.5. Due to the time reversibility of the Klein-Gordon-Zakharov equation,

Porpositions 4.25 also holds in corresponding time interval [—T, 0]

Remark 4.6. By (i) in Proposition 4.25 and Remark 4.5, for any 7' > 0, we have so-
lutions to (4.54) (ux(t),n+(t)) on [0,7] and [-7,0]. If initial data (uyo,n49) €
Bs(H*(R%) x H*(R?%)), then we can take T arbitrary large and by uniqueness,
(ug (t),ne(t)) € C((—00,00); H*(R?))xC((—00, o0); H¥(R%)) can be defined uniquely.

Proposition 4.26. Let the solution (us(t),ns(t)) to (4.54) on (—oo,00) obtained
by Proposirion 4.25, Remark 4.5 and Remark 4.6 with initial data (uso,nyo) €
Bs(H*(RY) x H*(R%). Then, there exist (U oo, Nt 100) aNd (Ut o0, Nt —o0g) in
H*(RY) x H*(RY) such that

i (e () = Ka(O)ua ool mymey + Ine(t) = Wae(t)ne 4ol 3 ay) = 0,

Jim (fJus(t) = K (t)us, ool gy + [n2:(8) = W)t ool 113 me)) = 0.

proof of Proposition 4.25. First, we prove (7). By Proposition 4.10, there exists
C > 0 such that

Hs» HW:I:c(t)

| K+ (t)uso

vi, < Clluol

We denote time interval I := [0, T]. If (uto,n40) € Bs(H*(RY) x H*(R?)) is small
and (ux,n+) € B,(Yg, (1) X Yﬁ,ic(])),s = d/2 — 2, then by Proposition 4.24 and
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Remark 4.4, we have

[®1(us, ny,n)| Vg (D)

< OO0+ (C/4)([In|

Vi, lluslve, o+ sl olle-llve o)

+ |In—| YVSV_C(I)||U+HYIS<+(I) + [In-| YVE{,_C(I)||U—||Y,‘§7(I))>
[ Po(ns, uy,u)l Yiv, (D
< O3+ (ClA)(llurllyy, (o + 2usllve, lle-lvi_ oy + llu-llvg_ -
Taking § = r? and r = min{1, ¢} /(4C), then we have
Hq)l(u:bn—i-?n—)’ Yféi(l) < r, ||(I)2(n:t7u+7u—)| YVSViC(I) <.

Hence, (®1,®5) is a map from B, (Y3, ([0,T7) x YV?/iC([O,T])) into itself. If we also

assume (v, m+) € Bp (Y, (I) x va,ﬂ([)), then we have

[Py (s, ny ) = Pa(ve, my,m)llve ()
< (/8)(luy = villvie, oy + e = v-llvz )
+ [Ing — my| Vi, (0T - —m_]| szv,c(f))’ (4.55)
[P2(ng, us, u—) — Po(m, vy, v ) Vi, (D
< (/) (lwy = vellve, oy + lue = oy m)- (4.56)

Thus, (®1, ®2) is a contraction mapping on B,(Y3, ([0,77]) x Yﬁ,ic([(), T])). Hence,
by the Banach fixed point theorem, we have a solution to (4.54) in it. We as-
sume that (u(0),n4(0)), (v+(0),m+(0)) are both small and s = d/2 — 2 for d >
5. Let (ux,n+), (ve,ms) € Y, ([0,T]) x Yﬁ/ic([O,T]) are two solutions satisfying
(ux(0), n+(0)) = (v£(0), m4(0)). Moreover,

T :=sup{0 < t < Tsus(t) = ve(t),ne(t) = me()} <T.

By a translation in ¢, it suffices to consider 7" = 0. Let 0 < 7 < T be fixed later.
From (4.55)—(4.56) and Proposition 4.11, we obtain

[ Ui”Yf(i([O,f])

< (1/7)(lIny —m4|

o)) +lIn- —m-| Vi (07)):

(4.57)

Vi, Vi (0,7]) + [Jus — v

e = meellyy, oy < (/4 (lus = viellvi, o) + llu- = v-llvi_qop)-  (4.58)
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From (4.57) and (4.58), we obtain
Uy = Vg, N4 = M4

on [0,7] if 0 < 7 < T be sufficiently small. This contradicts the definition of 7.
Therefore, the uniqueness of the solution (u4,n.) is showed. (ii) follows from the

standard argument, so we omit the proof. 0

Finally, we prove Proposition 4.26. The proof is the same manner as the proof

for Proposition 4.2 in [26].

Proof. There exists M > 0 such that for all 0 < T < oo,

[Ju] Vi, (0,17 + HniHYVsViC([o,T]) <M,

lutllyi, (—rop + Insllvy (moy <M

+c
holds since 7 in the proof of Proposition 4.25 does not depend on T'. Take {t;}£ ;€
Zyand 0 < T < oo such that —T < tg,tx < T. By L? orthogonality,

(Z (V)" (K (—te)us(ty) — Ki(—tp—1)us(te-1)) ||%g>1/2

S H<Vx>sui|’v§i([o,cr]) + H<Vx>sui”v§i([—:no1)

S Musllvi, oy + llusllvi, (-rop

< 2M.

Thus,

K

s s 1/2
sup (0 IVa) Kl —t)uslte) = (Vo) Ke(—tenus (b)) S A
{te} €20 “p=1

Hence, there exists fy 1= limy 1o (Vo) Ki(—t)us(t) in L2(RY). Then put tin, :=
(V) °fs, we obtain

(V) K (—t)us(t) = fillzz = llus(t) — K (t)usool

H;—)O

as t — +oo. The scattering result for the wave equation is obtained similarly.
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