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Chapter 1

Introduction

This thesis is devoted to development of the thermodynamic aspects of the
glass transition of multi-component mixtures. In a most broad sense, the
glasses are amorphous materials which are frozen without any crystalline
order and do not flow at least on the experimental time scale [1-6]. The
glasses are ubiquitous in our daily life and very common material in indus-
tries. However, the nature of the glasses is still not yet fully understood.
In this chapter, we explain the physics of the glass transition and introduce
several important quantities to characterize the glass transition.

1.1 Viscosity and relaxation time

When the temperature of liquids changes sufficiently slow, liquids turn into
crystals at the melting point. However, when the temperature is changed so
fast to avoid the crystallization, the system becomes the supercooled liquid
state. As the temperature is decreased further, the viscosity of the super-
cooled liquids increases very rapidly and eventually the system is frozen in
amorphous configuration at some temperature. This is the so-called glass
transition [1,2,4,5].

1.1.1 Angel plot

The glass transition is observed for many kinds of liquids including the molec-
ular liquids, polymer, and colloids [1,2]. In Fig. 1.1, we show the temperature
dependence of the viscosity of the various glass forming liquids [1,7,8]. Since



the temperature range within which the dramatic slowing down is observed
differ significantly for different materials, we have introduced the re-scaled
temperature, 7,/7. Conventionally, T is selected as the temperature at
which viscosity reaches n(7,) = 10" poise since the relaxation time of the
supercooled liquids becomes compatible with the experimental time scale,
102 — 10? sec, at this temperature. The plot with the re-scaled temperature
T,/T is referred to as the Angel plot [1,8,9]. In Fig. 1.1, some glassy material
such as SiOy and GeOs exhibit the well-known Arrhenius law like growth of
the viscosity:

logn o< 1/T. (1.1)

This means that the activation energy for rearrangement of the constituent
particles is temperature independent and the viscosity becomes zero only at
T = 0. There is no signature of the phase transition at finite temperature.
The supercooled liquid whose viscosity is well fitted by eq. (1.1) is referred
to as the strong glass. Much interesting cases are such as m, o-Xylene and
o-Terphenyl whose viscosity exhibit much stronger temperature dependence
than that expected by eq. (1.1). Those glassy materials are referred to as
the fragile glass former [1,2,4]. The rapid increase of the viscosity of fragile
glasses implies the underlying phase transition. The viscosity of the fragile
glasses is well fitted by the Voger-Fulcher-Tammann (VEFT) equation [10]:

logn o (1.2)

T-Ty,

The VF'T law means that the viscosity diverges at the finite temperature and
suggests the existence of the genuine phase transition at T = Tj.

1.1.2 Dynamical correlation functions and relaxation
time
As the viscosity increases, the motion of constituent particles of supercooled

liquids dramatically slows down. To characterize this phenomenon, one
would observe the density-density correlation function [11]:

N
Pk, t) = %Z (@ )-a:(0)) (1.3)

1<j
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Figure 1.1: The viscosity of various supercooled liquids (Angel plot): The
picture has been taken from Ref. [1].



where N denotes the number of the particles and @;(¢) denotes the position
of the i-th particle at time t. about As the temperature is decreased, the
relaxation time of F'(k,t), 7,, dramatically increases. n and 7, are connected
by the Maxwell relation [2,11]:

N = GooTa, (1.4)

where G, is the infinite frequency shear modulus. In many cases, the tem-
perature dependence of (G, is much weaker than that of 7,. One can consider
that 7 is proportional to 7, and the two quantities have qualitatively the same
temperature dependence. In particular, 7, can be well approximated by the
same functional form of the viscosity, eq. (1.2):

log 7, o (1.5)

T-Ty
Hereafter, we mainly discuss 7, instead of 1 since it is more convenient to
treat than that of n from the theoretical point of view.

1.2 Experimental glass transition point and
Kauzman transition point

As mentioned in the previous section, the relaxation time, 7, dramatically
increases in the proximity of Ty (see eq. (1.5)) and 7, exceeds the observation
time at a certain temperature, T, higher than 7j, and constituent particles
freeze within the observation time scale. This is the experimental glass tran-
sition and T}, is referred to as the experimental glass transition point [1,5].
The observed specific heat changes discontinuously at 7} since the transla-
tional degree of freedoms of the constituent particles are not observed below
T,. Concomitantly, the entropy, which is the integral of the specific heat,
exhibits a kink at 7T}.

As it is clear from this definition, T, depends on the observation time. If
one waits longer time, the transition point may shift to lower temperature.
This is schematically shown in Fig. 1.2, where T;; and T} denote the exper-
imental glass transition temperatures with shorter and longer observation
time, respectively. The longer observation time, the lower glass transition
point one obtains. The question is what would happen if the observation
time is infinity. Does T} keep decreasing down to zero temperature? Or
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is there any terminal point below which T, stops decreasing? There is an
interesting argument by Kauzman [1,2]; In general, the specific heat of the
supercooled liquid is larger than that of the crystal due to the contribution
from the translational degree of freedom of constituent particles. It means
that the entropy of the supercooled liquid decreases faster than that of the
crystal as shown in Fig. 1.2. In other words, the entropy of the supercooled
liquid becomes lower than that of the crystal below a certain temperature.
However, it is unlikely that disordered configurations like liquids have the
lower entropy than that of the ordered configurations like crystals. This is
the so-called Kauzman’s paradox and the temperature at which the entropy
of supercooled liquid coincides with that of the crystal is referred to as the
Kauzman point, Tk [1,2]. To avoid this paradoxical situation, the trans-
lational degree of freedom of the supercooled liquid must be frozen at or
above Ty since it is the origin of the steeper temperature dependence of the
supercooled liquid. In other words, the particles must be frozen in an amor-
phous configuration. This phenomenon is the so-called ideal glass transition
or Kauzman transition.

The existence of the Kauzman transition is still actively debated. First of
all, no one can reach the Kauzman point since the relaxation time increases
very rapidly and overcomes the observation time before reach the Kauzman
point. Second, it is possible that the temperature dependence of the super-
cooled liquids becomes gradually milder with decreasing the temperature. In
this case, there is, at best, just a crossover from the supercooled liquid state
to the glass state. Last but not least, there is no guarantee that disordered
configurations like liquid have the higher entropy than that of ordered con-
figurations like crystals. Note, only the fact that the ground state of the
one-component hard spheres is the face-centered cubic (FCC) structure has
been proved very recently [12-14]. Besides this simplest case, we do not know
the exact ground state and cannot exclude the possibility that the disordered
configuration might be the grand state.

Aside from such a subtle problem, if one accepts the existence of the
Kauzman transition, an interesting question is whether or not Tk coincides
with the dynamically defined glass transition point, Tj, in eq. (1.5). We will
discuss this point in detail in the next section.
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Figure 1.2: The schematic picture of the temperature dependence of the
entropy of supercooled liquids: Tj; and T,s denote the glass transition point
obtained by the fast and slow quench, respectively. Tk denotes the Kauzman
transition point at which the entropy of the supercooled liquids coincides with
that of the crystal.
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Figure 1.3: The configurational entropy of O-terphenyl: The filled circles
denote the experimental data. The solid line is the result of fitting. The
date has been taken from Ref. [15].

1.3 The configurational entropy and the Kauz-
man transition

Here, we shall continue to discuss the Kauzman transition in more detail. As
explained in the previous section, the Kauzman transition is defined as the
temperature where the entropy of the supercooled liquid coincides with that
of the crystal. The difference between the entropy of the supercooled liquid,
Stig, and the entropy of the crystal, S, is referred to as the configurational
entropy:

SC = Sliq - Scry- (16)

As an example, in Fig. 1.3, we show the temperature dependence of S, of
O-terphenyl [15], which is a typical fragile glass former as shown in Fig. 1.1.
S. can be well fitted by the following function:

Se(T) = Soo(1 = Tk T), (1.7)

where So, = 137.4 J K™' mol™! and Tx = 242 K. Note that at T = T, ~
246 K, the relaxation time exceeds the observation time (~ 10? s) and thus
the data below T, not be equilibrated. Interestingly, the Kauzman transi-
tion temperature, Ty, obtained by the fitting, eq. (1.7), is very close to the
glass transition point obtained by the VFT fitting of the relaxation time,

11
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Figure 1.4: The fragility dependence of Tk /Tj for various glassy materials:
Tk is the Kauzman temperature where the configurational entropy vanishes.
Ty is the putative (dynamical) glass transition point where the relaxation time
diverges. m is the fragility index. The data has been taken from Ref. [15].

To = 202.4 K [15], at which the relaxation time becomes infinite. In Fig. 1.4,
we have plotted Tk /Ty for various glassy materials as a function of the

dlogipn
0(Ty/T)

ture dependence of 7. The more fragile glasses have the large value of m.
The figure demonstrates that

fragility index m = < > , namely, the steepness of the tempera-
T=T,

Ty = Ty (1.8)

holds at least approximately for the fragile liquid, say, m > 80. Note, T} is
deduced from the dynamical quantity like the viscosity and relaxation time
while T is deduced from the thermodynamic quantity like the configura-
tional entropy. Eq. (1.8) claims that those apparently different temperatures
are coincides. This is a highly nontrivial relation and this open the way to
construct the thermodynamic theory of the glass transition which we shall
discuss in the next chapter.
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Figure 1.5: Static structure factor of the Lennerd-Joned mixtures. The solid
line denotes the data at T' = 0.446 where the relaxation time is 7 = 25000.
The dotted line denotes the data at T = 0.6 where the relaxation time is
7 = 106. The dashed line denotes the data at T" = 1.0 where the relaxation
time is 7 = 9.2. The plot has been taken from Ref. [16]

1.4 Static correlation function of the glass
transition

As mentioned before, the supercooled liquids exhibit dramatic slowing down
while those configurations are almost indistinguishable from the high tem-
perature normal liquids. Here we explain this point more detail.

One of the most commonly observed quantities to characterize the con-
figuration of the liquid is the density-density correlation function. Its Fourier
transformation is called the static structure factor, S(k) [11]. S(k) is defined
as

S(R) = 5 D (e, (1.9)

where N denotes the number of constituent particles, k denotes the wave
vector and x; denotes the position of the i-th particle. For isotropic systems,
S(k) does not depend on the direction of k and is a function of k = |k|.
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It is well established that the fluctuation of the order parameter is sig-
nificantly enhanced near the critical point. In usual critical phenomena like
gas-liquid transition, this fluctuation also appears on S(k). The pronounced
peak at small k grows with approaching the critical point. However, this is
not the case of the glass transition [17,18]. In Fig. 1.5, we show that S(k) for
several temperatures. 7’s in the legends are the relaxation times evaluated
by the time dependent density-density correlation function. One observes
that S(k) is almost temperature independent whereas the relaxation time
increases over several orders of magnitude [16]. This is because the super-
cooled liquids have the almost same structure and symmetry that of high
temperature liquids. This is in marked contrast to the conventional critical
phenomena where the transition is accompanied with the structure change
and is well characterized by S(k).

1.5 Cage effect

Although the static properties of the supercooled liquid are insensitive to
the temperature change, its dynamical properties significantly change with
decreasing the temperature. The low temperature supercooled liquid exhibits
solid like behavior in the time scale shorter than the relaxation time. This is
the so-called cage effect. Here, we briefly review this.

As mentioned before, one of the most commonly used quantities to charac-
terize the dynamics of the supercooled liquid is the time dependence density-
density correlation function, F'(k,t), which is defined by eq. (1.3) [1,11]. In
Fig. 1.6, we show the typical behavior of F(k,t) [1]. The vertical axis is
normalized so as to become unity at t = 0. At the sufficiently high temper-
ature, F'(k,t) quickly decays to zero as usual liquids. As the temperature
decreases, the relaxation time of F'(k,t) dramatically increases. Furthermore,
F(k,t) develops intermediate plateau and shows two step decay. The plateau
of F(k,t) implies that the particle does not move very much for long time.
This is because the particle motion is hindered by the particles surrounding
the particle. This is the cage-effect. The situation is similar to that of the
lattice vibration of crystals where the constituent particles oscillate around
their equilibrium positions [20].

14
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Figure 1.6: The normalized dynamical structure factor of the Lenard-Jones
mixtures: The wave number is chosen as kK = 7.1. The temperature decreases
from left to right from 7' = 3.0 to 0.8975. The data has been taken from
Ref. [19].

1.6 The glass transition of binary mixtures of
disparate size ratio

So far, most theoretical studies have been focused on the glass transition of
one-component systems consisting of spherical particles [21,22]. However,
in many cases, the systems are multi-component mixtures and consists of
non-spherical particles, and exhibit much richer behavior than that of the
idealized one-component system consisting of spherical particles. In partic-
ular, we would like to focus on the decoupling of the glass transition points.
In Fig. 1.7, we show the examples of the decoupling phenomena. Fig. 1.7 (a)
describes the binary mixtures consisting of large and small particles. When
the size ratio between large and small particles is much larger than unity,
the glass transition points of large and small particles are decoupled [23-26].
In other words, there arises the phase where only large particles are vitrified
while small particles remain liquid. Fig. 1.7 (b) describes the system con-
sisting of elliptical particles (or, in general, non-spherical particles). In this
case, one should take into account the degrees of freedom of the rotational
and translational degree of freedoms. When the aspect ratio is much larger
than unity, the glass transition points of the translational and rotational de-
gree of freedoms can be decoupled [27,28]. Fig. 1.7 (c¢) denotes the ionic

15



Figure 1.7: Examples of the decoupling phenomena: (a) The binary mixture
consisting of large and small particles. When the size ratio between the large
and small particles is much larger than unity, the glass transition points of
large and small particles can be decoupled. (b) The system consisting of
elliptical particles. When the aspect ratio is much large than unity, the glass
transition points of the rotational and translational degree of freedoms can
be decoupled. (c¢) The ionic system. The glass transition points of anions
and cations can be decoupled.

system. The glass transition points of anions and cations can be decoupled
depending on the atomic numbers of those atoms [29-32].

In this thesis, we will focus on the glass transition of binary mixtures
of the disparate size ratio since we believe that this is the simplest system
to study the decoupling phenomenon. In Fig. 1.8, we show the phase dia-
gram obtained by the experiment of the system consisting of large and small
colloidal particles. Since colloidal particles approximately behave as hard
spheres, the relevant control parameter is the packing fraction rather than
the temperature [11]. In Fig. 1.8, the horizontal axis denotes the packing
fraction of large colloids, ¢, and the vertical axis denotes the packing frac-
tion of small colloids, ¢g. There are two kinds of district glass phases on the
phase diagram. In the glass phase indicated by the blue unfilled squares in
Fig. 1.8, both large and small particles are vitrified. The other glass phase is
denoted by the black unfilled squares in Fig. 1.8 where only large particles are
vitrified while small particles remain as liquid. The glass transition points
of large and small particles are decoupled. We construct a thermodynamic
theory to describe this decoupling phenomena.

The contents of rest of the chapters are following. In Chapter 2, we first
explain the current mean-field theory of the glass transition which has been
developed to describe the glass transition of the one-component or nearly
one-component systems. In Chapter 3, we investigate the binary extension
of the p-spin spherical model (PSM). The PSM is one of the paradigmatic

16



Glass(Full)
Glass(Large) ]
Crystal(Large) 4
Crystal(Full)
Binodal

Figure 1.8: The phase diagram of the colloidal system consisting of large and
small particles. The blue unfilled squares denote the phase where both large
and small particles are vitrified. The black unfilled diamonds denote the
phase where only the large particle are vitrified while the small particles are
liquid. The red filled triangles denote the phase where only the large particles
are crystallized while small particle are fluid. The gray filled diamonds denote
the perfect crystal. The black solid line denotes the binodal curve of the liquid
and crystal. The dotted line indicates the glass transition line. The plot is
taken from Ref. [23].

mean-field model of the glass transition and can be solved analytically. The
investigation of the binary PSM reveals that the free energy landscape of
the binary mixtures of the disparate size ratio has more complex free energy
landscape than that of the one component system. With above observation in
mind, in Chapter 4, we investigate the more realistic particle system which
mimics the binary colloidal system consisting of large and small particles.
We calculate the phase diagram of the model in the high dimensional limit
where analytical treatment is available and show that the resultant phase
diagram is qualitatively the same with the result obtained by the colloidal
experiment (Fig. 1.8). Along the way to investigate the binary mixtures, we
found that the theory of binary mixture is inconsistent with the theory of
one-component system. In Chapter 5, we discuss how this inconsistency is
resolved.

17



Chapter 2

Mode-coupling theory and
replica liquid theory

In this chapter, we review the two theoretical frameworks of the glass tran-
sition of one-component systems. One is the mode-coupling theory (MCT)
3,33]. The MCT predicts the dynamics of the density correlation function
from the first principles calculation and well reproduces the experimental
and simulation results at moderately high temperature. However, it is un-
likely that the MCT gives the complete understanding of the glass transition
since it has several crucial problems. The MCT relies on the uncontrollable
and unjustified approximations. Furthermore, the MCT predicts the spuri-
ous non-ergodic transition at higher than the experimental glass transition
temperature. Thus, the MCT breaks down at low temperature. An alterna-
tive framework that resolves above problems has been proposed, which is the
so-called replica liquid theory (RLT) [21,22]. The advantages of the RLT are
followings. (1) There exist several controllable approximation schemes. In
particular, it is known that the theory becomes exact in the high dimensional
limit (mean-field limit). (2) The theory predicts the genuine thermodynamic
transition point where the relaxation time diverges. (3) The theory gives a
physical interpretation of the MCT transition point. In the rest of sections,
we first briefly describe the MC'T and then, give a rather detailed explanation
of the RLT.

18



2.1 The mode-coupling theory (MCT)

The MCT predicts the time evolution of the density correlation function,

1SN o (e
Flk,t) = 5 3 (e @mei0), (2.1)

1<j

where N denotes the number of the particles and the three dimensional vector
x;(t) denotes the position of the i-th particles at time ¢. According to the
MCT, F'(k,t) is determined by the following self-consistent integrodifferential
equation:

O?F (k,t)

gz T lw

F ¢ F(k,t
M+QiF(k’t) = _/ dt’QiM(k,t—t’)M,
ot 0 ot

(2.2)

where Q2 = kpTk?/mS(k) and T, is a constant related to the short time
dynamics and not related to the long time dynamics. The memory kernel is
given by

M) =2 [ v k- P - e0F@o, (3

where the vertex function is defined as

Vilai,@2) = p{k-qC(q1) + k- C(q)} . (2.4)

S(k) is the static structure factor and C'(k) is the direct correlation function
[11]. The MCT equation, eq. (2.2), reproduces some important properties of
the glass transition such as the two step relaxation of the density correlation
function and the rapid increase of the relaxation time. In particular, the
MCT predicts that the relaxation time diverges toward the MCT transition
temperature Th;or as

Ta X (T — TMCT)_V, (25)

where 7 is the material dependent constant. This power law increase of 7, is
indeed observed for the supercooled liquids at moderately high temperature.
In Fig. 2.1, we show the relaxation time of the o-terphenyl with the MCT fit,
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Figure 2.1: The relaxation time of o-terphenyl: The filled circles denote
the relaxation time of the o-terphenyl obtained by the experiment. The red
dashed line denotes the MCT fit. The blue solid line denotes the VFT fit.
The data has been taken from Ref. [6].

eq. (2.5) [6,34]. One observes that MCT fit works well at higher temperature
than Tyor =~ 285K.

Despite of the success of the MCT at high temperature, the MCT breaks
down at low temperature as shown in Fig. 2.1. The relaxation time of the
supercooled liquids remains finite even below Th;cr whereas the MCT pre-
dicts that it becomes infinite. Below T),c7, the relaxation time is well fitted
by the Voger-Fulcher-Tammann (VFT) law:

(2.6)

log 7 X ———,
0g T, OCT—TO

see the blue solid line in Fig. 2.1. Describing the supercooled liquids below
Trier is clearly out of range of the MCT. The replica liquid theory resolves
this problem.

2.2 A mean-field scenario of the glass transi-
tion

The replica liquid theory is constructed based on the mean-field scenario
(MFS) of the glass transition. Before explain the replica liquid theory, we
first describe the MFS in this section. The MFS is the scenario inspired
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Figure 2.2: The schematic picture of the free-energy landscape: (a) The free-
energy landscape above the Kauzman transition temperature, T . There are
exponentially many minima on the free-energy. The system can earn the
entropy by traveling around different minima. (b) The free-energy landscape
below Tk. The number of minima is sub-exponentially and does not con-
tribute to the entropy in the thermodynamic limit. Since, the system cannot
earn the entropy by traveling around different minima, the system is trapped
in a minimum.

by the similarity between the supercooled liquid and some mean-field spin
glass models [35-37]. The MFS gives the physical interpretation of the two
important temperatures of the glass transition mentioned before, the mode-
coupling transition temperature, Th;cr, and the Kauzman transition point,
Tk . In the framework of the MFS, the Kauzman transition at T is identified
with the one-step replica symmetry breaking (1RSB) transition which is first
discovered in a class of the mean-field spin-glass models [35,36]. Contrary,
the MCT transition at Tyor is identified with the spinodal point at which
the metastable-states of the glass disappear [35]. In this section, we first
describe the physical meaning of T and then, describe how the crossover at
Trior is interpreted in the framework of the MFS.

2.2.1 Configurational entropy and Kauzman transition

The basic assumption is that the slow dynamics of supercooled liquids is
caused by the complex structure of the free-energy landscape, see Fig. 2.2
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[35-37]. For the intermediate time scale, the system might be trapped in a
minimum of the free-energy. The driving force to escape from the minimum
is the configurational entropy:

Y= Sliq — va, (27)

where Sj;, is the entropy of the liquid and .S,;, is the vibrational entropy in the
minima. At sufficiently high temperature, ¥ > 0 and the system can obtain
the entropy by visiting the many metastable states, see Fig. 2.2 (a). With
decreasing the temperature, X decreases and eventually vanishes at a certain
temperature, Tx. The driving force to escape from a minimum vanishes and
the system would be trapped in the minimum forever, see Fig. 2.2 (b). This
is the Kauzman transition.

To evaluate X, we rely following two assumptions. (i) The vibrational
entropy is compatible with the entropy of the crystal. With this assumption,
eq. (2.7) can be written as

PO Sliq - Scryv (28)

where S, is the entropy of the crystal. Eq. (2.8) is the same with that has
been introduced in the introduction, see eq. (1.6). (ii) We neglect the correla-
tion between the different minima of the free-energy. With this assumption,
Y} is interpreted as the logarithm of the number of minima of the free-energy
landscape,

PO k’B IOgNC, (29)

where N, is the number of the minima and kg is the Boltman’s constant.
In the next few sections, we examine the connection between the relaxation
time and >, and how to theoretically calculate N, and .

2.2.2 Adam-Gibbs theory

The Adam-Gibbs theory (AGT) is a phenomenological theory which success-
fully relates the relaxation time to the configurational entropy [2,37,38]. The
main assumption of the AGT is that the system is divided into N/n number
of sub-systems containing n particles. The sub-system, which is referred to
as the corporative rearranging region (CRR), can take small number of con-
figurations, say, {2. The total number of rearrangements of the entire system
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is N, = QN which might be corresponds to the number of minima of the
free-energy in Fig. 2.2. The configurational entropy is the logarithm of the
number of the minima (see eq. (2.9)):

S(T) = kglog QV/™, (2.10)

To discuss the behavior of the relaxation time, we rely on the Arrenius
formula:

To = Toe kBT (2.11)

where 73 is a temperature independent constant and AF is the free-energy
cost to change the configuration of the CRR. It is natural to guess that AF
is proportional to the size of the CRR, AF « n. Using eq. (2.10), n can be
expressed in terms of X(7') as

kplog
= —. 2.12
With those assumptions, the relaxation time can be calculated as
C'log ()
= Z oo 2.13
Ta = Tp €XP [TZ(T)} (2.13)

where C' is a constant. This equation is the main consequence of the AGT,
which relates the relaxation time, 7,, to the configurational entropy, (7).

In the next sub-section, we will discuss the theoretical framework to evaluate
2.

2.2.3 The Monasson’s method

It is believed that the free-energy landscape of the supercooled liquids at
sufficiently low temperature has exponentially many number of metastable
states separated by the high energy barriers [2,4,22,37]. We assume that the
partition function is expressed by the summation of the contribution from
each metastable states:

7= e / dfe=BNIE) (2.14)
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where X(f) = > ., 6(f — fo) is nothing but the configurational entropy.
Monasson has invented an elegant way to calculate the configurational en-
tropy [39]. The main idea is to introduce the m replicas of the original
system. The partition function of the replicated system is

Z, = Z e BNmfa
«

_ / dfe-BNmIHE()
o e BN D+R( (D)) (2.15)

where f*(T') is determined by the saddle point condition:
0

w(—ﬁNmf—i—E(f)) = 0. (2.16)
From eq. (2.15), one can show that
0
5108 Zy = —BN f(T) (2.17)
and
S(f(T)) =log Zp, —ma%lome. (2.18)

Thus, once the partition function of the m replica system is obtained, one
can evaluate the configurational entropy by eq. (2.18).

2.2.4 Benchmark test of the Manasson’s method: Static
properties of the p-spin spherical model

Here we review the p-spin spherical model (PSM) which is a fully connected

spin-glass model and shows the glass like slow dynamics [40-43]. Since the

model can be solved analytically, it is an ideal model to benchmark the

Monasson’s method. We shall consider the spin model which interact with
the following p-body potential:

N
H = Z Jijkaiajak7 (219)

11 <t <--<ip
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where 0; € (—00,00) with a spherical constraint, S~ 02 = N. N is the
number of spins and J;j; is the random variable whose distribution function
is

P(J) o< exp {—JZ—'QJZ} (2.20)

Following the Manasson’s method, we shall introduce m replicas. The par-
tition function of the replicated system for the given set of the quenched
randomness, J = {J;jx hi<i<j<k<n, 18

m N
=TT (T o) 3~ St esn |93 5 gt
a=1 i=1 a=1i<j<k
(2.21)
The self-averaging property allows one to estimate the free-energy as

log Z,,,[J]| ~ log Z,,[J], (2.22)

where the overline denotes the average over the quenched randomness J. To
evaluate eq.(2.22), we replace the quenched average by the annealed one:

log Z,,[J]| =~ log Z,,[J]. (2.23)
Then, the partition function can be calculated as

Zp|J] =Trexp [NﬁQ i ( ZO’ )

ab=1

= /DQabD)\abeXp [TZQ&) + Z/\ab (NQab - ZU?O?>]
ab ab 7

~ NS@

Y

(2.24)

)

where we have introduced the effective action:

52 Z Qv log det Qgp. (2.25)

Qab is the saddle point value of Y, 0¢0?/N. The remaining task is to optimize
eq. (2.25) for Qu. However, the full optimization for completely general Qg
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is extremely difficult and one should assume some ansatz. The standard one
is

Qay = (1 = q)dap + ¢, (2.26)

where d4 is the Kronecker delta. This is the so-called one-step replica sym-
metry breaking (1RSB) ansatz. Substituting eq. (2.26) into the free-energy,
eq. (2.25), one obtains

B3? m—1

S(Qab) - m(m — 1)qu +

q is determined so as to optimize S. This saddle point condition, 9,5 = 0,
can be explicitly written as

log(1 — q) + % log(1 — (1—m)q). (2.27)

q _pl?,
— =—q". 2.28
.- 1! (2.28)
Substituting eq. (2.27) into eq. (2.18), one finally obtains the configurational
entropy. The direct calculation leads to
g1 1
(T)=——¢" — =log(l —q) — =q. 2.2
(T) 7@ 5los(l—q)— 54 (2.29)

The temperature dependence of the configurational entropy calculated by
eq. (2.29) is plotted in Fig. 2.3. Note that at T > T; = 1/3/8 ~ 0.612, %(T)
becomes imaginary and cannot be defined. It means that at T > T, the
free-energy minima are not well defined and one cannot count the number
of the minima. We discuss this point in more detail in the next subsection.
Below T}, ¥(T') monotonically decreases with decreasing the temperature,
and eventually vanishes at T ~ 0.585. This is the signature of the Kauzman
transition. Near Tk, X(7T) can be expanded as

X(T) = C(T)(T — Tk), (2.30)

where C'(Tk) is the specific heat at Tx. Remarkably, substituting eq. (2.30)
into the AG equation, eq. (2.13), one can reproduce the VFT low, eq. (1.2).

2.2.5 Dynamic properties of the p-spin spherical model
and the MCT transition temperature

As well as the static properties, there are lots of works have been done to
investigate the dynamical property of the PSM [42,43]. Here we briefly sketch
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Figure 2.3: The configurational entropy of the PSM: The configurational
entropy decreases with the temperature and vanishes at T ~ 0.585 at which
the thermodynamic glass transition takes place.

the results which give us the physical interpretation of the MCT transition
temperature, Thyor.

It is known that the dynamics of the supercooled liquids at sufficiently
long time scale is independent from the detailed of the rule of the time
evolution. For instance, the newtonian dynamics, Langevin dynamics, and
Monte carlo algorithm give the same result [44,45]. This allows us to select
a suitable rule for the theoretical treatment. Here, we consider the Langevin
dynamics:

2 — —ptoule) — T+ o), 231

where p(t) is the Lagrange multiplier to enforce the spherical constraint,
SV, 0i(t)? = N. We assume that the thermal noise, 7;(¢) is the white
Gaussian noise whose variance is

(mi(t)n; (') = 2T0556(t = t'). (2.32)

The model can be analyzed by the Martin-Siggia-Rose formalism [46]. After
some manipulations, one reaches the closed equation of the equilibrium time
correlation function, C(t) = S, (o,(t)a4(0)) /N [42,43]:

oC(t) = —TC(t) — P /t dt'CPHt —t)

aC(t')
ot oT '

ot

(2.33)
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Figure 2.4: The temperature dependence of Cy;: C,; changes discontinuously
at Ty = /3/8 ~ 0.61 from zero to a finite value.

Quite interestingly, the mathematical structure of the above equation is the
same with that of the mode coupling theory (MCT), see eq.(2.2) [11,33].

Eq. (2.33) can be investigated though the Laplace transformation. In
particular, the value of the correlation function in the long time limit can be
calculated by solving following self-consistent equation:

C’d p p—1

= —C 2.34
1-Cy, 2127 7 (2:34)

where we have defined
;= }E& C(t). (2.35)

The temperature dependence of C,; obtained by solving eq. (2.34) for p =3
is shown in Fig. 2.4. At sufficiently high temperature, C; = 0 meaning
that the correlation function C(¢) decays to zero in the long time limit. Cy
changes discontinuously at T; = \/% ~ 0.61 from zero to a finite value.
When T" < Ty, the correlation function does not decay to zero even in the
long time limit and the ergodicity is broken. Note, T} is higher than the
Kauzman transition point, Tk =~ 0.585 at which the genuine thermodynamic
glass transition takes place. Instead, Ty is the temperature above which ¥
becomes imaginary number (see Fig. 2.3).

The above strange result is now interpreted as an artifact of the mean-
field model. It has been shown that Ty is the spinodal point of the metastable
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Figure 2.5: Schematic pictures of the free-energy landscape: (a) The free-
energy landscape above Th;cr. The free-energy has only one minimum and
the system can travel around the entire phase space without crossing the
energy barrier. (b) The free-energy landscape below Ty;or. There are many
number of minima on the free-energy separated by the high energy barriers.
The system must overcome the energy barrier to move from a minimum to
another minimum.

glass states [43]. When T < Ty, there are many minima on the free-energy
each of which corresponds to a metastable glass state, while when T > Ty,
there are no minima on the free-energy, see Fig. 2.5. Since the PSM is a
mean-field model, the free-energy barriers between the minima are infinitely
large in the thermodynamic limit, N — oco. The system is trapped in a
minimum and the relaxation time diverges at T' = T;. Note that the state
that the system is trapped in a minimum is just a metastable state and the
thermodynamic quantities does not show any singularities.

Since the MCT equation, eq. (2.2), and the dynamical equation of the
PSM, eq. (2.33), are very similar, we expect that the phenomenology of
the supercooled liquids at Tyor is similar to that of the PSM at T,. This
conjecture has been proved quite recently for the mean-field model: one-
component hard spheres in the high dimensional limit [47,48]. To justify this
conjecture for more realistic models in finite dimensions, we shall observe the
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eigen values of the Hessian matrix [49, 50:

Hyn = Vo Vao(z; — ), (2.36)

1<j

where v(x; — x;) denotes the interaction potential between the i-th and j-
th particles and x; denotes the position of the i-th particle. Diagonalizaing
the Hessian matrix at the saddle point !, one can count the number of the
negative modes of the eigenvalues, ng, and calculate the fraction of the neg-
ative saddles, ny/3N. The result for the Lennard-Jones mixtures, which is
a typical model system of the glass transition, is shown in Fig. 2.6. When
T > Tycer, the fraction of the negative modes is finite. The system can
travel around the phase space through the negative directions without cross-
ing the free-energy barrier. This is the same situation of that described in
Fig. 2.5 (a). With decreasing the temperature, the fraction of the negative
modes decreases and becomes zero at Thy;cr. Below Thcr, all modes of the
Hessian matrix is positive meaning that there are many number of minima
on the free-energy separated by the high energy barriers. The system should
overcome the free-energy barrier to travel around the phase space. Again,
this is the same situation of that described in Fig. 2.5 (b). Unlike the PSM,
the free-energy barrier between the minima of the supercooled liquid (at fi-
nite dimension) is finite. Thus, the system can escape from a minimum in
a finite amount of time. The driving force within this temperature range is
the configurational entropy and the relaxation time is described by the VFT
law, eq. (2.6).

2.3 Replica liquid theory

Based on the mean-field scenario described in the previous section, Mezard et
al. have constructed the first principle theory of the glass transition which al-
lows to calculate the quantitative values of several thermodynamics quantities
such as the configurational entropy and the Kauzman transition point [21,22].
The theory is referred to as the replica liquid theory (RLT). There are several
approximation schemes are proposed. Among them, we explain the effective
potential method (EPM) since it is the quantitatively most successful theory
and shown to be exact at the high dimensional limit [22].

!The saddle point is the configuration, {@;};—1 ... n, where > icj Viv(xi — ;) = 0.
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Figure 2.6: The fraction of the negative saddles of the Lennard-Jones mix-
ture: The fraction of the negative saddles vanishes at Th;or &~ 0.435. The
data have been taken from Ref. [50].

As for the spin-glass models, the staring point is the partition function
of the m replicated system:

00 m N m N
Zm:ZL'HH/dwgeXp [_6zzv(wz_m]>_ﬁz¢<ww 7wzm
N=0 a=1 =1 a=1 i<j =1

(2.37)

where the d-dimensional vector ¢ denotes the position of the i-th particle
of the a-th replica and v(r) denotes the pair interaction potential. We have
introduced the external potential, (2!, --- , &™), which reinforces that the
m replicas are trapped in a same basin?. v is conjugated to the density
distribution function of the replica space:

p@) = <H s - a:a>> - TR EL sy

where we introduced the abbreviated notation, £ = {zx!,--- ,2™}. Taking
the Legendre transformation from ¢ (Z) to p(Z), one obtains the free-energy
functional of p(x):

a=1

B [p(@)) = log Zunltf] — / 0E)(E)p(). (2.39)

2Note that because of this external potential, the m replicas are not independent, thus
the Gibbs factor is N! rather than N!™.
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Following the standard method of the liquid theory [11], F,, can be divided
as follow:

BF[p(@) = / (@)1 —logp(@) — BElp@)],  (2.40)

where the first term is the free-energy of the ideal gas and the second term
is the contribution of the particle interactions. Using the Mayer cluster
expansion, F,, can be expanded as

~OFLlp@) = 5 [ dwigp@p@)f@-5) 0, (@A)
where
f@—79) = ﬁ e Pty 1 (2.42)

is the Mayer function in the replica space. Once F}, is obtained, the config-
urational entropy is estimated by the following formula:

(T) = lim [m28im (%)] | (2.43)

m—1 m

Furthermore, the density distribution function, p(Z), allows us to calculate
the cage size:

A=y L () = ey X f @ )
(2.44)

The cage size, A, plays the role of the order parameter to distinguish the
glass and liquid. In the glass phase, A has a finite value while in the liquid
phase, A becomes infinite.

One of the advantages of the effective potential method EPM compared
to the MCT is that the approximation is under control: It is shown that the
EPM gives the exact result in the high dimensional limit, d — oo [22]. In
this limit, the higher order terms than the second order expansion become
negligible. Thus, the free-energy functional is reduced to

BFp(®) = / T ()(1 ~log () + / IEdGp(@)p(G) f( — ).
(2.45)

32



The free-energy is obtained by optimizing above equation. However, it is a
hard tasks to optimize for completely general density profile, p(Z). Thus, we
assume the following Gaussian Ansatz:

p@) =p [ X [[1aa" - X) (2.46)

a=1

with

1
/YA(T') = We /2A. (247)

Substituting eq. (2.46) into the free-energy functional, eq. (2.45), one obtains

—Bw —1—logp+ Su(A)+ g/dr (a(r) 1) (2.48)
with
Su(A) = 5(m — 1) log(2n4) — S(1 —m ~logm),
q(r) = / durypa(u +7)e 7, (2.49)

The cage size A is to be determined by the saddle point condition:

% ~an i‘m)a%/ drq(r)” (250

For the hard sphere system, the dynamical transition point, where eq. (2.50)
begins to have non-trivial solution, can be calculated as

g~ 4.8d27% (2.51)

The asymptotic form of the configurational entropy in the high dimensional
limit is

X(p) = % (dlogd — o). (2.52)

The Kauzman transition point is obtained by ¥(¢x) =0 as

vx = dlogd. (2.53)
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Apart from the mean-field limit (d — o), one should rely on the approx-
imation schemes of the liquid theory [11]. One of the most quantitatively
reliable approximation is the so-called Carnanhan-Starling approximation
(CS) [11]. For the one-component hard sphere system in three dimension,
for instance, the EPM with the CS approximation gives px ~ 0.62, which
is reasonably close to the glass transition point reported by the numerical
simulations and experiments [22].

2.4 Other theories of the glass transition

So far, we have mainly explained the mode-coupling theory (MCT) and the
replica liquid theory (RLT). O Those are, to our knowledge, only the first
principle theories of the glass transition and allow one to calculate several
physical quantities from the microscopic interactions between the constituent
particles. It is relatively transparent to extend those theory to binary mix-
tures.

However, the RLT and MCT are not only the theory of the glass transi-
tion. There are other phenomenological theories which explain the qualitative
natures of the glass transition. In this section, we shall briefly overview those
for reader’s convenience. But, we will not enter the detailed of the theories
since those lack the microscopic justifications and we do not know how to
extend those to binary mixtures.

2.4.1 Random-first order phase transition theory (RFOT)

The mode-coupling theory (MCT) and replica liquid theory (RLT) are mean-
field theories in nature in a sense that the theory assume spatially uniform
relaxation and do not take into account the fluctuations. However, the re-
laxation of supercooled liquids is far from uniform. In Fig. 2.7, we show the
spatial displacements of a two dimensional supercooled liquid near the glass
transition point [6]. One can observes that the displacement of particles are
distributed spatially heterogeneously. This is the so-called dynamical het-
erogeneity and observed for many fragile glasses [51-56]. Interestingly, the
typical length scale of the heterogeneous region increases with decreasing the
temperature [53,54,57].

The random-first order phase transition theory (RFOT), which was orig-
inally proposed by Kirkpatrick, Thirumalai and Wolyness [36], is the theory
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to take into account above heterogeneous nature of the low temperature su-
percooled liquids. The ROFT based on the very similar idea of that of the
nucleation theory of the first order phase transition theory. Consider there
is a droplet of the linear size R inside of which is liquid and outside of which
is glass. The free-energy difference between the before and after the creation
of the droplet is

AF(R) =TR’ — S.R*, (2.54)

where the first term represents the surface tension and the second term rep-
resents the configurational entropy of the droplet. The exponent 6 depends
on the shape of the droplet and cannot be determined by the ROFT. AF(R)

has the maximum at
or \ 77
R = ) 2.55
(dsc) (2:55)

If R < R*, AF(R) is a increasing function of R while if R > R*, AF(R) is a
decreasing function of R. Since the system evolves in the direction to lower
the free-energy, if R < R*, the droplet diminishes and vanishes. Contrary,
if R > R*, the droplet can spread throughout the entire system and the
system melts. In other words, the metastable glass state whose linear size is
smaller than R* is stable due to the surface tension, I' while the metastable
glass state whose liner size is larger than R* is unstable against the melting
induced by the configuration entropy. Thus, R* is the characteristic length
of the metastable glass state. One may expect that R* somehow relates to
the typical length scale of the dynamical heterogeneity shown in Fig. 2.7.
This is an interesting question, but, to be honest, the accessible temperature
range in present numerical simulation and experiment is too restricted and
we can not give any conclusive answer [58-61]. So, we will not discuss this
problem anymore.

2.4.2 Dynamical facilitation theory

The dynamical facilitation theory (DFT) claims that the glass transition is a
purely dynamical transition without any thermodynamic singularity [6,62]. In
the DF'T, one assumes that there are few number of “mobile particles” at low
temperature. A mobile particle facilitates surrounding particles. This leads
to a cascade process since some neighbours of the facilitated particles also

35



Figure 2.7: Dynamical heterogeneity obtained by the numerical simulation of
a two dimensional glass former: The particles are colored according to their
displacement during the time scale compatible with the relaxation time. The
particles of larger displacement are shown by red while the particles of smaller
displacement are shown by blue. The picture has been taken from Ref. [6].
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Figure 2.8: Summary of the random first order transition theory (MFS): (a)
The schematic picture of the phase space structure at T' > Th;cr. Accessible
region of the phase space is colored in white and inaccessible region is colored
in black. Note, the accessible regions are connected to each other. (b) The
phase space structure at T € (T, Tyer). The accessible region splits into
exponentially many metastable states. (c) The phase space structure at
T < Tk. The number of metastable states becomes sub-exponential.

facilitate another particles and so on and so forth. Following this scenario, the
DFT can explain qualitatively the dramatic increase of the relaxation time.
However, the theory is still phenomenological revel and lacks the microscopic
justification. For instance, there is not first principle theory to determine
the “mobile particles” and how those particles facilitate another particles.
In particular, we do not know how the theory is extended so as to describe
the binary mixtures of disparate size ratio. This is a fascinating question,
but, we left it for a future work.

2.5 Summary

In Fig. 2.8, we summarize the random-first order phase transition theory
(MFS) which we have explained through this chapter. When T' > Tycr,
all available areas of the phase space are connected, see Fig. 2.8 (a). The
system can travel around the phase space without crossing the free-energy
barriers. When T' < Ty;cor, there arise the exponentially many metastable
states on the free-energy and the phase space splits into many sub-spaces,
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see Fig. 2.8 (b). In case of the mean-field model such as the p-spin spherical
model (PSM), the relaxation time diverges at Th;or since the free-energy
barriers between the minima become infinite and the system cannot escape
from a metastable state. Contrary, in finite dimensions, the free-energy bar-
riers between the metastable states are finite and the system is trapped in
a metastable state only for a finite amount of time. The MCT transition
becomes just a crossover. The main driving force blow Ty;cr, is the configu-
rational entropy, namely, the logarithm of the number of the minima of the
free-energy. The configurational entropy decreases with decreasing the tem-
perature and eventually vanishes at the Kauzman transition temperature,
Tx. Combining the Adam-Gibbs theory and Monasson’s method, one can
predict log 7, o< (T — Tk )™, which is the well-known VFT.

So far, all results have been given for one-component systems. From next
chapter, we shall describe how the picture established in the one-component
systems can be extended into the many-component mixtures.
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Chapter 3

Spin glass model for the glass
transition of binary mixtures

In order to gain insights on the glass transition of the binary mixtures of the
desperate size ratio, we introduce and study a two-component version of the
p-spin spherical spin glass model. We employ the replica method to calculate
the free energy and the phase diagram. We show that when the strengths
of the interactions of each component are not widely separated, the model
has only one glass phase characterized by the conventional one-step replica
symmetry breaking. However when the strengths of the interactions are
well separated, the model has three glass phases depending on temperature
and component ratio. One is the "single” glass phase in which only the
spins of one component are frozen while the spins of the other component
remain mobile. This phase is characterized by the one-step replica symmetry
breaking. The second is the ”double” glass phase obtained by cooling further
the single glass phase, in which the spins of the remaining mobile component
are also frozen. This phase is characterized by the two-step replica symmetry
breaking. The third is also the ”double” glass phase, which however is formed
by the simultaneous freezing of the spins of both components at the same
temperatures and is characterized by the one-step replica symmetry breaking.
We discuss the implications of these results for the glass transitions of binary
mixtures.
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3.1 Introduction

The p-spin spherical model (PSM) has been playing important roles in the
study of the glass transition of liquids, because it shares many common prop-
erties in dynamics and thermodynamics with glass forming liquids [2,4,40,63].
The PSM is the infinite range spin glass model in which soft spins interact
through p-body interactions with random quenched couplings [43]. The dy-
namics of the PSM can be solved semi-analytically [40,42,43]. Particularly
at p = 3, the time correlation function is known to obey the dynamical
equation mathematically equivalent with the mode-coupling theory (MCT)
equation of the glass transition [3,40]. The system is ergodic at high tem-
perature, however as temperature is decreased, the time correlation function
exhibits the two step relaxation behavior and the relaxation becomes slower
and slower. Eventually the relaxation time diverges and the spins get frozen,
which is called the dynamical transition. Also the thermodynamics of the
PSM can be solved semi-analytically by the replica method with the one-
step replica symmetry breaking (1RSB) ansatz [41,43]. As temperature is
lowered from above, the phase space of the system in the paramagnetic state
splits into many metastable glassy states exactly at the dynamical transition
temperature. As the system is cooled further, the logarithm of the number of
these states or the complexity, which corresponds to the configurational en-
tropy in glass forming liquids, decreases and eventually becomes zero where
the thermodynamic glass transition takes place. In the glass phase, the free
energy of the model is dominated by the lower energy states. The similarity
between the PSM and glass forming liquids has many to believe that they
are in the same class of random glassy systems, at least in the mean-field
limit [2,4].

However, real glass formers often exhibit richer and more anomalous dy-
namical behaviors, all of which can not be captured by the PSM. In this
work, we particularly focus on the “decoupling” phenomenon often observed
in multi-component glass formers. This is the phenomenon in which the
slowing down of the dynamics of each component occurs separately at dif-
ferent regions of the densities and the temperatures, hence some compo-
nents are frozen into a glass state while the others remain mobile. There
is a wide variety of materials showing the decoupling phenomenon, such as
ionic glasses and metallic glasses [32]. The simplest example among them
is presumably a binary mixture of large and small particles with disparate
size ratio [23-26,64-72]. When the size ratio is sufficiently large, it is ob-
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served in experiments [23,24] and simulations [25,26,69] that there are two
distinct glass phases in this model: the “single” glass where only large par-
ticles are arrested while small particles are left mobile, and the “double”
glass where both small and large particles are arrested. Despite of simplicity
of the model, this decoupling phenomenon of binary mixtures is not fully
understood theoretically. It is encouraging that the MCT can predict this
behavior qualitatively [70-72]. However the MCT is derived using numer-
ous uncontrorable approximations, which are not guaranteed to be valid for
binary mixtures with disparate size ratio. Even for monodisperse systems,
there is an argument whether or not the MCT is a true “mean-field theory”
to describe the dynamics of the glass transition [47,73-75]. Moreover the
transition predicted by the MCT only exists in the mean-field limit and is
washed away in finite dimensions [2,4].

Can any of spin glass models qualitatively capture these rich behaviors of
the glass transitions of binary mixtures? If so, analysis of such models should
facilitate the study of binary mixtures because spin models can be analyzed
rigorously at least in the mean-field limit. Related to this point, Crisanti
and Leuzzi generalized the PSM to include two distinct energy scales of the
interactions [76-79]. They considered the s + p-spin spherical model, where
all spins interact through both s-body and p-body interactions. This model is
potentially related to the glass forming liquids in which molecules are subject
to two different types of interactions. They found that there is a variety of
glass phases characterized by the series of replica symmetry breaking [78§]
and that the model exhibits rich dynamical behaviors such as three-step
relaxation of the time correlation function [79]. However to the best of our
knowledge, there exists no study on the spin glass model which exhibits the
single and double glass transitions and the decoupling of dynamics of one of
the components from the other, as observed for binary mixtures.

In this work, we extend the PSM so as to mimic binary mixtures of
particles with disparate size ratio. Our model is a two component version
of the PSM, which is composed of weakly interacting spins (weak spins) and
strongly interacting spins (strong spins). We employ the replica theory to
study the thermodynamics of the model. We found that the model has the
glass phases characterized by either conventional 1RSB and the two-step
replica symmetry breaking (2RSB). We show that the interplay between the
1RSB and the 2RSB solutions results in the decoupling of the glass transitions
of weak spins from that of strong spins. We also show that our two component
PSM is directly related to the randomly pinned PSM, which has been studied
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recently [80]. Finally based on the results, we discuss the validity of the
predictions of the MCT for the multiple glass phases of binary mixtures.

The organization of the paper is as follows. In Section II, we introduce the
model. In Section III, we use the replica theory to express the free energy
in terms of the spin glass order parameters. In Section IV, by numerical
minimization of the free energy, we obtain the temperature evolutions of the
order parameters, the phase diagrams, and the thermodynamic quantities of
the model. In Sections V and VI, we discuss the results and conclude the
work.

3.2 Model

We consider a two component version of the PSM with p = 3. The model
is composed of N7 spins of the component 1 and N, spins of the component
2, with N = N; + Ny. The spin variables for each component are denoted
as o1, (1 =1,---,Ny) and 09, (i =1,---, Na), respectively. They obey the
spherical constraints Ny = ), 07, and No = 3,03, The Hamiltonian of

the model is
(aB7)
Z Z ijﬁcﬁ, o,ia 08,3307 k> (3.1)

7B Y= 1 21&7.757]‘:’)/

where the greek indices are used to indicate components, the roman indices
are for spins, and JZO;B Wk is the coupling constant among the three spins,
which is the Gaussian random variables with zero mean. In order to render
the analysis tractable, we consider the case where Jz’(j]i Vk)v is characterized by

only the two values, i.e.

3J2
= ) (o B,7) =(1,1,1),
R F 3.2
( | {?EVL% (o, B,7) # (1,1,1). (3.2)

Here J; and J; are the typical energy scales of the interactions of the compo-
nent 1 and 2, respectively. We set J; > Js, hence the component 1 is “strong”
spins and 2 is “weak” spins. The control parameters of the model are the
ratio of the strengths of the interactions J = Jy/Ji, the fraction of strong
spins ¢ = N;/N, and the temperature T. We use J;, J1/kp and kg for the
units of the energy, temperature, and the entropy, respectively, where kg is
the Boltzmann constant. All the results are obtained in the thermodynamic
limit.
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3.3 Free energy calculation

We calculate the free energy of the model using the standard replica method.
In the method, the free energy of the original model is obtained by taking the
limit n — 0 of the free energy of n replicas. The procedure of this calculation
for the one-component PSM is well documented in Ref. [41,43]. Following
the same procedure, we write down the free energy of the two-component
PSM as

.1
—F/T = lelg(l) 5, max Gn(Q, P) (3.3)

with

G, = Z 2_;2 [(CQab)g +3J%(cQub)* (1 = ¢) Pap) + 3J(cQup) (1 — ¢) Pap)’

+ J2((1 - c)Pab)3] + clogdet @ + (1 — ¢) logdet P + n(1 4 log 27),
(3.4)

where () and P denote the overlap matrices for the component 1 and 2,
each component of which is defined by Q. = N%Zz a% afi) and P, =
N% > ogfi)aé?i) . max G, (@, P) means that the function G,, is maximized with

respect to the matrices ) and P.

3.3.1 1RSB ansatz

In the case of the one-component PSM, it is known that the 1RSB ansatz
gives the correct solution. The 1RSB ansatz assumes that the overlap ma-
trices have a one-step hierarchical structure. In our model, this ansatz reads
explicitly

Qab = (1 — q1)0a + (1 — qo)ery' + qo, (3.5)
Py = (1 = p1)dap + (p1 — po)eny' + Do,

where d,;, is the Kronecker delta and

(3.7)

i {1 if a and b are in a diagnal block of m; x my
€abp =

0 otherwise.
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1RSB ansatz 2RSB ansatz

Figure 3.1: Sketch of the free energy landscapes corresponding to the 1RSB
solution (left) and the 2RSB solution (right). There is the intermediate level
of the hierarchy of states in the 2RSB solution.

Here, ¢; and p; are called the self overlaps, which are the overlaps within the
same glassy states, and qo and py are the overlaps between different glassy
states (Figure 3.1 left). We can assume gy = po = 0 that is valid for the
PSM without external fields. Substituting equations (3.5) and (3.6) into
equation (3.4), and taking the limit n — 0 in equation (3.3), we obtain

1 .
—F/T = 5(1 +log2m) + a1 + 2o+ 23+ x4+ min Gigsp (3.8)
mi,q1,P1

with

Girsp = (m1 — D)[21¢; + 224701 + T3q:107 + 4p}]
1+ (my — 1)q1}
l—aq
1+ (my — 1)191]
IL—m

c 1
~log(1 — ]
+2[0g( ql)+m1 0g
1—c¢

1
+ [log(l —p1) + —log
my

(3.9)

where xy = A/4T? 1y = 32(1 — ¢)J?/4T?, z3 = 3c(1 — ¢)?J?/AT?, and
ry = (1 — ¢)3J?/4T?. The breaking parameter m; should be limited to
0 < my <1 in the limit n — 0. When m; = 1, this 1RSB free energy
reduces to that of the paramagnetic state. When G1gsp is extremized with
respect to g1, p1, and mq, the 1RSB solution of the model is obtained. The
1RSB dynamical transition is defined as the transition where the overlaps
¢1 and p; change discontinuously, and the 1RSB thermodynamic transition
is defined as the transition where the 1RSB solution with m; # 1 becomes
stable.
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3.3.2 2RSB ansatz

Our model is the two component PSM with the two distinct energy scales .J;
and Jy, which make the thermodynamic phase diagram more complex. Es-
pecially there is no guarantee that the 1RSB ansatz gives the stable solution.
Therefore, we have to allow the two-step hierarchical structure of the overlap
matrices:

Qar = (1 — q2)dap + (¢2 — Q1)EZZ2 + (1 — QO)GZ;} + qo, (3.10)
Py = (1 = p2)dap + (p2 — p1)en? + (p1 — o)yt + po, (3.11)

which are called the 2RSB ansatz. This ansatz corresponds to the two-step
hierarchical structure of the free energy landscape as depicted schematically
in Figure 3.1 right. Here, ¢o and p, are the self overlaps, ¢; and p; are
the overlaps between the different glassy states in the same group in the
intermediate level of the hierarchy, and gy and pg are the overlaps between the
different glassy states in the different groups. Substituting equations (3.10)
and (3.11) into equation (3.4) and taking the limit n — 0 in equation (3.3),
we obtain

1 .
—F/T = 5(1+log27r)+x1+x2+:c3+x4+ min Gorsp  (3.12)

mi,m2,491,92,P1,P2

with

+ (my — mg)[ﬂﬁq:f + xzfﬁpl + I3Q1P% + mp‘i’]

c 14 (mg —1)g2 + (m1 — ma)qu
4+ & [10 1— )+ —1
2 8 2) my L+ (mg —1)ga — maq
1 1 —1 —
g + (ma2 — 1)ge m2Q1]
my I —q
1—c 1 L+ (mg — 1)pa + (my — ma)p
+ [log 1 —po) + —log
( 2) my 1+ (mg — 1)p2 — map
1 1 —1 —
+ = log + (m2 )p2 m2p1} .
My I —po

(3.13)

The breaking parameters m; and ms should be limited to 0 < m; < my < 1.
When my = 1, the 2RSB free energy Gogsp, equation (3.13), reduces to
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the 1RSB free energy G1rsp, equation (3.9). By minimizing Gogsp in equa-
tion (3.13) with respect to the order parameters ¢y, p1, ga, p2, M1 and ma, the
free energy and the order parameters of the original system is obtained within
the 2RSB ansatz. The 2RSB dynamical transition is defined as the transition
where the overlaps ¢o and py change discontinuously, and the 2RSB thermo-
dynamic transition is defined as the transition where the 2RSB solution with
msy # 1 becomes stable L.

3.3.3 Numerical minimization of Gyrgp

We focus on the minimization of Gorsg. We do not need to analyze Gigsp
separately, because Girsp is included in Gogrsp as discussed above. We
employ the following numerical method to minimize Gogsp. For a given c,
we first focus on a low enough temperature (in practice, we set T = J/3)
and minimize Gyrsp by the steepest descent method. We take a special
care in this procedure because the calculation easily gets stuck in locally
stable solutions. In order to avoid this unwanted effect, we first slice the
(mq, my) space to 50 grid points and minimize Gorsp with respect to ¢,
p1, ¢2 and pe at each grid point. We seek for the set of (mj,ms) which
minimizes Gopsp. Using this (m,ms) as an initial guess, we perform the
full steepest descent optimization of all the order parameters. After obtaining
the optimized solution at the lowest temperature, we gradually increase the
temperature and employ the steepest descent method to minimize Goggp at
each temperature, using the optimal values of the order parameters at the
lower temperature as an initial guess.

3.4 Phase diagrams and thermodynamic quan-
tities

In this section, we show the phase diagrams and the thermodynamic quanti-
ties of the two-component PSM obtained by the minimization of Gorsg. We
find that the model has a variety of glass phases including the “single” and
the “double” glasses when J is very different from 1.

'We did not explore the possibilities of RSB of the higher order than 2RSB. Note that
the 2RSB is guaranteed to be sufficient at least in the limit J — 0 because this limit
corresponds to the randomly pinned PSM where the solution corresponding to the 2RSB
is verified to be stable [80].
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Figure 3.2: The phase diagram of the two-component PSM at J = 0.3. T
(dashed line) is the 1RSB dynamical transition temperatures; Tk (solid line)
is the 1RSB thermodynamic transition temperatures. There is only one glass
phase characterized by the 1RSB solution at J = 0.3.

3.4.1 Order parameters and phase diagrams
J =0.3.

We start with J = 0.3, which is not very different from 1. We show the phase
diagram in Figure 3.2. There are only the paramagnetic phase and the 1RSB
glass phase. The two phases are separated by the 1RSB thermodynamic
transition line Tk (c). The 1RSB dynamical transition line Ty(c) is located
at slightly higher temperatures. Note that Ty(c) and Tk (c) for ¢ = 1 match
with the results of the one-component PSM of the strong spins. They are
Ta(c = 1) = 0.612 and Tk(c = 1) = 0.586. Ty(c) and Tk (c) for ¢ = 0 are
identical to those for ¢ = 1 aside from the obvious factor of J, which defines
the unit of the energy, i.e., Ty(c = 0) = 0.612J = 0.184 and Tk(c = 0) =
0.586J = 0.176. The transition lines smoothly connect these two limiting
cases.

In order to gain more insights, in Figure 3.3, we plot the temperature
dependence of the optimized overlaps ¢; and p; and the breaking parameter
my at two representative values of ¢ = 0.2 and 0.9. At ¢ = 0.2 (Figure 3.3
left), as temperature is decreased, the overlaps ¢; and p; jump from zero while
the breaking parameter remains constant m; = 1 at the 1RSB dynamical
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Figure 3.3: Temperature dependence of the overlaps ¢; and p; and the break-
ing parameter m; at ¢ = 0.2 (left) and 0.9 (right) at J = 0.3. The short red
and long black arrows indicate the 1RSB dynamical and thermodynamic
transition temperatures Ty and Tk, respectively.

transition temperature 7;. m; suddenly starts decreasing from 1 at the
1RSB thermodynamic transition temperature Tx. The 1RSB dynamical and
thermodynamic transition temperatures (Ty(c = 0.2) = 0.192 and Tk (c =
0.2) = 0.184) are close to those of the one-component PSM of weak spins
(Tu(c = 0) = 0.184 and Tk(c = 0) = 0.176), indicating that the 1RSB
transition at ¢ = 0.2 is driven mainly by the freezing of the weak spins. Note
that both the values of ¢; and p; just below the transition temperatures are
larger than 0.5 and are close to each other, which can be interpreted that
both the strong and weak spins are frozen equally strongly at this transition.

Behaviors at ¢ = 0.9 (Figure 3.3 right) are qualitatively similar to those
at ¢ = 0.2. The only differences are that (i) the 1IRSB dynamical and ther-
modynamic transition temperatures (7;(c = 0.9) = 0.552 and Tk (c = 0.9) =
0.528) are close to those of the one-component PSM of the strong spins
(Tu(c = 1) = 0.612 and Tx(c = 1) = 0.586) and that (ii) the value of ¢; is
larger than 0.5 while the value of p; is much smaller just below the transition
temperatures. These results can be interpreted that the 1RSB transition at
¢ = 0.9 is driven mainly by the freezing of the strong spins, and the weak
spins are not strongly frozen at this transition. However we emphasize that
this difference is only quantitative and the overlaps of the weak and strong
spins vary continuously as ¢ changes. Namely there is no clear signature of
the decoupling of the glass transitions of the weak and strong spins.
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Figure 3.4: The phase diagram at J = 0.03. (left) Overall view. There
are the paramagnetic phase and the three glass phases, the 1RSB(1), the

1RSB(2), and the 2RSB. TCEI) and Tj;((1 ) are the 1RSB dynamical and ther-

modynamic transition temperatures, respectively. T’ [((2 ) is the 2RSB thermo-
dynamic transition temperature. (right) Zoom on the the 2RSB glass re-
gion. TI((2 ) is composed of the discontinuous and continuous 2RSB transition
temperatures, TI((2 ) and T1(<2 9, Tf) is the 2RSB dynamical transition tem-
perature, which terminates at the critical point (7., c.) ~ (0.022,0.17). Tx
is the phase boundary between the 1RSB(1) and the 2RSB glass phases.
The three thermodynamic transition lines, T}(l), T[(?d), and T, meet at
(T*,c¢*) ~ (0.018,0.03). The four downwards arrows indicate the four rep-
resentative values of ¢, for which the temperature evolutions of the overlaps
and the thermodynamic quantities are presented in Figures 3.5 and 3.7.

J = 0.03.

Next we focus on J = 0.03, which is much smaller than 1. In Figure 3.4
left, we show the phase diagram, which is qualitatively different from that
at J = 0.3. One finds that there are three glass phases. We refer to them as
the 1RSB(1), the 1RSB(2), and the 2RSB glass phases. The paramagnetic
phase is separated from the 1RSB(1) and the 1RSB(2) glass phases by the
1RSB thermodynamic transition line T1(<1 ) (¢). The associated 1RSB dynam-
ical transition line Tél)(c) is located at slightly above TI({I)(C). The 2RSB
glass phase is located below the 1IRSB(2) glass phase. The 1RSB(2) and the
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2RSB glass phases are separated by the 2RSB thermodynamic transition line
T1(<2 )(c). To present the details of the 2RSB glass phase region, we show the
zoom in Figure 3.4 right. The 2RSB thermodynamic transition line Tl,((2 ) (c) is

composed of two parts: Tl(f d)(c) at lower fraction of strong spins and T [((2 ) (¢)
at higher fraction of strong spins, depending on the discontinuous and contin-
uous nature of the transition across this temperature. The 2RSB dynamical
transition line 7T 52)(0) is located at slightly above T 1(<2 d)(c) and it terminates
at the critical point (7¢,¢.) ~ (0.022,0.17), at which the three transition
lines Td(Q)(c), TI((2 d)(c) and T[(f C)(c) meet. The thermodynamic transition line
which separates the 1IRSB(1) glass from the 2RSB glass is denoted as T'x(c).
The three thermodynamic transition lines, Tf({1 '(e), Tl(f D(c) and T (c), meet
at the point (7™, ¢*) ~ (0.018,0.03), which is the meeting point of all the
four phases. As c increases, the 1RSB thermodynamic transition line TI((1 )(c)
sharply bends upward at this point and the transition into the 1IRSB(1) glass
becomes the transition into the 1RSB(2) glass.

In order to understand the nature of these phases, we plot the temperature
dependence of the overlaps and the breaking parameters at four representa-
tive values of ¢ = 0.02, 0.08, 0.13, and 0.21, in Figure 3.5. These values of
c are indicated as arrows in the phase diagram, see Figure 3.4 right. We
first focus on ¢ = 0.02 (Figure 3.5 upper left). When the temperature is de-
creased from above, ¢; and p; change discontinuously from zero at the 1RSB
dynamical transition temperature 7T’ él). While my remains to be unity, m;
suddenly starts decreasing from 1 at TI((1 ), where the 1RSB thermodynamic
transition from the paramagnetic phase to the 1RSB(1) glass phase takes
place. Note that the 1RSB dynamical and thermodynamic transition tem-
peratures (Tél)(c = 0.02) = 0.0185 and TI((l)(C = 0.02) = 0.0177) are close to

those of the one-component PSM of the weak spins (Tél) (¢=0)=0.0184 and

TI((I)(C = 0) = 0.0176), which indicates that the transition into the 1RSB(1)
glass phase is driven mainly by the freezing of the weak spins. Both the
values of ¢; and p; are larger than 0.5 and are close to each other below T}Q ),
which can be interpreted that both the strong and weak spins are frozen
equally strongly in the 1RSB(1) glass phase.

The upper right panel of Figure 3.5 shows the results at ¢ = 0.08, where
there are the 1RSB transition from the paramagnetic to the 1IRSB(2) glass
phase, and the 2RSB transition from the 1RSB(2) to the 2RSB glass phase.

The 1RSB dynamical and thermodynamic transitions at Tél) and ng ) are
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Figure 3.5: Temperature dependence of the overlaps, ¢i, p1, ¢2, and ps, and
the breaking parameters, my, and ms, at ¢ = 0.02 (upper left), 0.08 (upper
right), 0.13 (lower left) and 0.21 (lower right) at J = 0.03. The bold short
red and long black arrows indicate the 1RSB dynamical and thermodynamic
transition temperatures T, and Tk, respectively; the thin short red and long
black arrows indicate the 2RSB dynamical and thermodynamic transition
temperatures T’ 52) and TI((2 %) (Tz(? ) for ¢ = 0.21), respectively,
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qualitatively the same as those for ¢ = 0.02. The only difference is that the
value of ¢ is larger than 0.5 while p; is very close to zero. This result can
be interpreted that the strong spins are frozen while the weak spins are not
frozen in the 1IRSB(2) glass phase. As we decrease temperature further, the
2RSB transition takes place. First at Td(2), the overlaps ¢ and p, change
discontinuously while the breaking parameter remains constant mo = 1. At
TI((2 d), ms suddenly starts decreasing from 1, where the 2RSB thermodynamic

transition takes place. Note that p, is larger than 0.5 just below TI((2 d), which
can be interpreted that the weak spins are also frozen in the 2RSB glass
phase.

Behaviors at ¢ = 0.13 (Figure 3.5 lower left) are qualitatively similar to
those at ¢ = 0.08. The only difference is that the discontinuities of ¢» and
py at the 2RSB dynamical transition are smaller than those for ¢ = 0.08.
As c increases, the discontinuities at the 2RSB dynamical transition become
smaller, and eventually the jump of ¢» and p, disappear at ¢ = 0.17. The
lower right panel of Figure 3.5 shows the results at ¢ = 0.21. The overlaps
g2 and ps change from ¢; and p; continuously at T[((2 C), where the continuous
2RSB thermodynamic transition takes place. Interestingly, the change of the
breaking parameter msy at Tl(f °) is not continuous as in the case at T1(<2 D but
discontinuous.

In summary, the 1RSB(2) glass corresponds to the “single” glass where
only the strong spins are frozen, and the 1RSB(1) and the 2RSB glasses
correspond to the “double” glass where both the weak and strong spins are
frozen simultaneously. We emphasize that there is a clear difference between
these two “double” glasses, the 1IRSB(1) and the 2RSB. The transition into
the 1IRSB(1) glass phase is the simultaneous arrest of the weak and the strong
spins. This transition is mainly driven by the freezing of the weak spins.
On the other hand, the transition into the 2RSB glass phase is the arrest
of the weak spins in the presence of the frozen strong spins which already
undergoes the glass transition at much higher temperature. The difference
becomes clearer when one considers the free energy landscape of these phases.
In the 1RSB(1) glass phase, the landscape can be characterized by the one-
step hierarchical structure (Figure 3.1 left). Only the self overlap ¢; and
p1 have large values, and gy and py are zero. This means that the different
glassy states have completely different configurations of spins. On the other
hand in the 2RSB glass phase, the landscape has the two-step hierarchical
structure (Figure 3.1 right). Not only the self overlaps ¢» and ps, but also
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the overlap ¢; have large values. This means that several glassy states in
the same group of the intermediate level of the hierarchy share almost the
same configuration of the strong spins. In other words, the phase space is
divided into a multi-valley structure corresponding to configurations of the
strong spins and each of the valley is divided into a subgroups of multi-valley
structure corresponding to configurations of the weak spins. Note that the
1RSB(1) and the 2RSB glasses are separated by the glass-glass transition
Tx as shown in Figure 3.4. As one crosses T, the overlaps discontinuously
change (not shown).

Finally we obtain a semi-analytical expression for the continuous 2RSB
transition temperature TI((2 ©). This is possible because ¢ — ¢; and ps — p;

are small just below TI((2 ) and thus the 2RSB solution can be expressed by
the perturbation around the 1RSB solution (see Appendix for details). In
Figure A.1, we compare T[({Qc) calculated by the perturbation theory with
those calculated by the minimization of Gogrsp. The two results are almost
identical, confirming that our numerical minimization of Gyrgp is reliable.

The decoupling of the glass transitions of the weak and the strong
spins.

We showed that there is only one glass phase at J = 0.3, whereas at J = 0.03
the decoupling of the glass transitions of the weak and the strong spins takes
place and, as a result, the three glass phases appear. In this subsection, we
estimate the value of J = J* at which this decoupling sets in.

First we evaluate the phase diagram at various J in the range of 0.03 <
J < 0.3 by the minimization of Gogrsp. We find that the three glass phases
exist at J < 0.1 while only one glass phase exists at J > 0.2. This means
0.1 < J* < 0.2. However we can not estimate J* more accurately by this
procedure. Our numerical minimization becomes unstable at 0.1 < J < 0.2
because the free energy differences between G'1gsp and Gogsp become small.

In the course of the evaluations of the phase diagrams described above,
we find that whenever there exist the three glass phases, there also exists the
glass-glass transition point (7%, ¢*) from the 1RSB(1) to the 1RSB(2) glass
phase on the line T1(<1 )(c), see Figure 3.4. Here, we estimate J* assuming that
J* is identical to the value of J just below which the glass-glass transition
point appears on the line T}(<1 )(c). We evaluate the overlaps along the line

T}Q )(c), and seek for the discontinuous jump of the overlaps as a function of
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0.8

Figure 3.6: The overla%) of weak spins p; against ¢ on the 1RSB thermody-
namic transition line TK1 )(c) at various values of J. The glass-glass transition
point appears at J = 0.15.

¢, which is the sign of the glass-glass transition. This analysis is numerically
easier than the full evaluation of the phase diagram because it requires the
numerical minimization only of G1rgp. In Figure 3.6, we show the ¢ depen-
dence of the overlap of weak spins p; on the line T1(<1 )(c), at several values
of J. At J = 0.3, p; decreases smoothly with ¢ and there is no glass-glass
transition point. The decrease of p; becomes sharper with decreasing J,
and becomes discontinuous just below J &~ 0.15. From this calculation, we
estimate J* ~ 0.15.

3.4.2 Thermodynamic quantities

In this subsection, we discuss the nature of the various glass phases of the
model in terms of the thermodynamic quantities.

Figure 3.7 shows the temperature dependence of the entropy S = —9F /0T
and the heat capacity C = —T9?F/0T? at J = 0.03 at the same values of
¢ in Figure 3.5. These quantities are evaluated by numerical differentiation
of the free energy obtained by the minimization of Gogsp. At ¢ = 0.02 (Fig-
ure 3.7 upper left), the entropy curve bends and the heat capacity jumps
discontinuously at the 1RSB thermodynamic transition temperature T[((1 ),

This is the typical behavior of the 1RSB glass transition. On the other hand
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at ¢ = 0.08 (Figure 3.7 upper right), the entropy curve bends and the heat
capacity jumps twice at the 1RSB and the 2RSB thermodynamic transition
temperatures, Tl((l) and TI((M). As can be seen from the results at ¢ = 0.13
(Figure 3.7 lower left) and 0.21 (Figure 3.7 lower right), the heat capacity
jump at T[(? ) hecomes weaker with increasing ¢ and eventually disappears
when the 2RSB transition becomes continuous. In order to characterize the
thermodynamics of the continuous 2RSB thermodynamic transition, we plot
the third order derivative of the free energy Cs = T?9F/0T? in the inset
of Figure 3.7 lower right. One finds that this quantity shows the discontin-
uous jump at the continuous 2RSB transition temperature TI(? ). Thus the
continuous 2RSB transition is the third-order thermodynamic transition in

nature. Note that the similar behavior has been observed for the continuous
1RSB transition [41].

3.5 Discussion

We found that the two-component PSM has three glass phases at J < 0.15:
the 1RSB(1) glass where both the strong and weak spins are frozen, the
1RSB(2) glass where only the strong spins are frozen, and the 2RSB glass
where both the strong and weak spins are frozen and the free energy land-
scape has the two-step hierarchical structure. In this section, we discuss
possible connections and implications of these results to other systems.

3.5.1 Connection to the randamly pinned PSM

In the randomly pinned PSM, a fraction of spins are pinned and the dynamics
and thermodynamics of remaining mobile spins are considered. This model
has recently attracted attention partly, because it enables us to probe the
true thermodynamic glass transition without waiting for the system to equili-
brate, which otherwise takes astronomically long time [80-82]. Interestingly,
the 2RSB dynamical and thermodynamic transition lines (see Figure 3.4
right) are analogous to the glass transition lines of the randomly pinned
glass [80]. In both cases, the overlap discontinuously jumps at the dynami-
cal transition lines when the density of the pinned spins (for the randomly
pinned PSM) or the strong spins (for the two-component PSM) is small. But
as the densities increase the discontinuities are weakened and eventually the
transitions become continuous at which the dynamical transition lines ter-
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minate. The similarity between these two models is natural because, in the
two-component PSM, the strong spins frozen at higher temperature behaves
as the “randomly pinned spins” in the sea of the mobile weak spins at lower
temperature. Indeed we can establish the precise relation between these two
models. To this end, we focus on the behaviors of weak spins in the limit
of J — 0 while keeping T'/J constant. In this limit, the overlaps of strong
spins become ¢, = 1, ¢; = 1 and the breaking parameter m; = 0. Plugging
these limiting values into Gagsp, equation (3.13), the relevant part for the
weak spins becomes

Gorsp ~ (Mg — 1)[zy + Tops + T3p3 + T4py) — o[y + Top1 + 3P5 + 24D

1—-c

+ log

14+ (mg—1)ps —maopr My 1—p
(3.14)

[log(l —p2) +

This free energy is essentially equivalent to the one of the randomly pinned
PSM 2. Thus the phase diagram of the two-component PSM converges to
that of the randomly pinned PSM in this limit.

3.5.2 Connection to the MCT of binary mixtures

We next discuss the implications of the two-component PSM for binary mix-
tures of large and small particles with disparate size ratio. The MCT was
recently used to analyze the decoupling of the glass transitions of large and
small particles in this model and predicted the existence of four distinct glass
phases [71]: (i) The “partially frozen cageing” glass in which only the large
particles are arrested due to the cageing effect amongst the large particles.
In this phase, the small particles are left mobile and do not qualitatively
affect the dynamics of large particles. (ii) The “partially frozen depletion-
driven” glass in which only the large particles are arrested by a short-ranged
but strong attractive interaction induced by the depletion effect caused by
small particles [?,83]. In both the phases (i) and (ii), only the large parti-
cles undergo the glass transition and the small particles play a role as the
background solvent. The phase (i) is often called the repulsive glass and (ii)
is the attractive glass [84-87]. (iii) The “fully frozen” glass in which both

2Equation (3.14) becomes equivalent to equation (16) in Ref. [80], after dividing equa-
tion (16) by n, taking carefully n — 0 limit and replacing ps, p; and my with ¢1, go and
m, respectively.
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Figure 3.8: Temperature dependence of the overlaps ¢; and p; and the break-
ing parameter m; at ¢ = 0.05 (left) and 0.13 (right) in the 1RSB solution at
J = 0.03. The bold and thin red arrows indicate the 1RSB and the 2RSB
dynamical transition temperatures, Tél) and T 52), respectively. The 1RSB
solution captures a trace of the 2RSB dynamical transition at ¢ = 0.05, while
does not at ¢ = 0.13.

the large and small particles are arrested simultaneously. Both the large and
small particles equally contribute to the formation of the frozen states. (iv)
The “torronchino” glass which is a subset of the “fully frozen” glass. In this
phase, however, the number of the small particles is much larger than that
of the large particles and the freezing is driven mainly by the small particles.
By comparing the glass phases in our model with those of the MCT, one
finds that the “partially frozen cageing” glass corresponds to the 1RSB(2)
glass, the “fully frozen” to the 2RSB, and the “torronchino” to the 1IRSB(1).
Because there is no depletion effect in the present model, there is no phase
corresponding to the “partially frozen depletion-driven” glass. At this stage
however, one should realize a subtle but important difference between the
descriptions of the MCT and the replica theory for these phases. Specifi-
cally, we revealed that the two-step replica symmetry breaking is needed to
describe the 2RSB glass or the “fully frozen” glass. However the MCT is
believed to be a theory of the 1RSB dynamical transition [2, 4], therefore it
cannot intrinsically describe this phase.

In order to consider the validity of the prediction of the MCT for the
2RSB glass phase, it is useful to see how the 1RSB solution behaves in the
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2RSB glass phase ®. In Figure 3.8, we plot the temperature dependence of
the overlaps of the 1RSB solution at J = 0.03. At ¢ = 0.05 (Figure 3.8
left), p; and ¢; jump not only at the IRSB dynamical transition temperature
T d(l) but also at around the 2RSB dynamical transition temperature Td(2).
This means that though the 1RSB solution is incorrect in the 2RSB glass
region, it captures a signature of the transition into the 2RSB glass phase
to a certain extent. At ¢ > 0.08, however, we do not find any signature of
the 2RSB dynamical transition in the 1RSB solution. Indeed at ¢ = 0.13
(Figure 3.8 right), ¢; and p; increase only smoothly with decreasing temper-
ature in the glass phase, while the 2RSB solution predicts the discontinuous
2RSB dynamical transition at TCEQ) (Figure 3.5 lower left). In summary, the
1RSB solution can not correctly describe the 2RSB glass phase although it
can capture a trace of the 2RSB transition for a certain range of parameters.
This suggests that the applicability of the MCT to describe the decoupling
of the glass transitions in binary mixtures with disparate size ratio may be
questioned.

3.6 Conclusions

In this work, we have introduced and studied a two-component version of
the p-spin spherical model. The model is composed of strongly interacting
spins (strong spins) and weakly interacting spins (weak spins), which mimic
the glass forming binary mixtures of large and small particles with disparate
size ratio. We have found that when the strengths of the interactions of the
weak and strong spins are not widely separated, the model has only one glass
phase. This glass phase is the frozen state of both the strong and weak spins
and is described by the conventional 1RSB solution. On the other hand when
the strengths of the interactions are well separated, the model exhibits the
decoupling of the glass transitions of the weak and strong spins and, as a
result, there appear the three distinct glass phases. We referred to them as
the 1IRSB(1), the 1RSB(2), and the 2RSB glass phases. The 1RSB(1) glass
phase appears in the region where the number fraction of the strong spins is
very small. This glass phase is the frozen state of both the strong and weak
spins, although the transition into this phase is driven mainly by the freezing

3More precisely, the MCT solution corresponds to the 1RSB solution optimized with
leaving my = 1. We also performed this calculation and verified that the results discussed
below are qualitatively unchanged.
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of the weak spins. The 1RSB(2) glass phase appears in the region where the
number fraction of the strong spins is large. In this glass phase, only the
strong spins are frozen while the weak spins are left mobile. By cooling the
1RSB(2) glass further, the 2RSB glass phase is obtained, in which the weak
spins are also frozen. The 2RSB glass phase is characterized by the two-step
hierarchical structure of the free energy landscape. The 2RSB glass transition
becomes ether discontinuous or continuous depending on the number fraction
of the strong spins. The discontinuous 2RSB thermodynamic transition is
accompanied with the jump of the second order derivative of the free energy,
namely the heat capacity. On the other hand, for the continuous 2RSB
thermodynamic transition, the heat capacity changes continuously while the
third order derivative of the free energy jumps discontinuously. Based on
the results, we have discussed the connection of the present model to the
randomly pinned PSM. The phase diagram of the present model appears
to be similar to that of the randomly pinned PSM. We have analytically
showed that the free energy of the two-component PSM becomes exactly
identical to that of the randomly pinned PSM in the small limit of the ratio
between the strengths of the interactions of the weak and strong spins. We
have also discussed the implications of the present results for the MCT for
binary mixtures of large and small particles with disparate size ratio. We
have found that the 1RSB solution can not correctly describe the 2RSB glass
phase although it can capture a trace of the 2RSB transitions for a certain
range of parameters, which may leave questionable the applicability of the
MCT to describe the decoupling of the glass transitions in binary mixtures
with disparate size ratio. Regarding this point, it is interesting to extend the
replicated liquid state theory [21,22] to allow the 2RSB ansatz [88] to describe
the decoupling of the glass transitions in binary mixtures with disparate size
ratio. Study along this direction is under way [89].
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Chapter 4

Replica liquid theory for binary
mixtures of disparate size ratio

We develop a new formalism of the replica liquid theory which predicts the
multiple glass phases of binary mixtures consists of large and small spherical
spheres with disparate size ratio. This is possible by taking into account
the two-step replica symmetry breaking, which is physically caused by the
emergence of the two-step hierarchical energy landscape. We apply the the-
ory to a harmonic potential fluid in the high dimensional limit and deter-
mine its phase diagram. We find that there exist three distinct glass phases
when the size ratio between large and small particles is disparate; the nor-
mal glass phase where both components freeze simultaneously, the partially
frozen phase where only large particles are frozen while small particles are
mobile, the 2RSB glass phase where both components freeze simultaneously.
The 2RSB glass phase, especially, is distinct from the normal glass phase in
the structures of the energy landscapes.

4.1 Introduction

Introduction of size dispersity to particulate systems is a common strategy
to obtain stable glass-forming systems. When the size ratio is close to unity,
many of phenomenologies of the glass transition is not strongly affected by
the size dispersity, except that the glass transition temperature and density
depends on the size and component ratio. However when the size ratio is
disparate, the decoupling phenomena is often observed, namely the dynamics
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of a part of species decouples from that of the others and form a glass phase
where only a part of species are frozen while the others remain mobile [32]. A
wide variety of glassy materials including ionic glasses [31], metallic glasses
[90], and polymeric glasses [91] exhibits this decoupling phenomena [32].
Among them, the simplest example is presumably the binary mixtures of
large and small particles with disparate size ratio. In colloidal experiments
23,24,68] and simulations [25,26,69], it is established that this system has, at
least, two glass phases depending on the component ratio: the “single” glass
in which only the large particles are frozen and the “double” glass in which
both types of particles are frozen. In the single glass, the small particles can
diffuse through the gap among frozen large particles, in the way similar to
the diffusion in a random media [92]. In the limit of the large size ratio,
the single glass becomes the random version of the celebrated Lorentz gas
model [93].

Currently, most of the theoretical approaches for the decoupling phe-
nomena is based on the mode-coupling theory (MCT) of the glass transi-
tion [3,33]. The naive extension of the MCT to the binary mixtures was
shown to predict qualitatively the decoupling of the dynamics of small and
large particles [70,94] and the emergence of multiple glass phases [71]. How-
ever, it is not clear if the MCT and its further extensions finally give the
full understanding of this phenomena because (1) the glass transition pre-
dicted by the MCT is known to be avoided due to the thermal activation,
thus fictive in finite dimension [4,95], (2) the MCT does not give a correct
transition density even at infinite dimension (a mean-field limit) [74,93], (3)
even within the MCT framework, the choice of the slow variables has some
arbitrariness and a different formulation gives a different result [96].

In this work, we propose a rather different approach, the thermodynamic
description of the decoupling phenomena which are free from the above prob-
lems. Our theory is based on the replica liquid theory (RLT) [22,39,97]. For
monodisperse particles, the RLT predicts two characteristic transition den-
sities, ¢qg and @x. When the density of the system is increased from the
liquid state, the dynamical transition firstly takes place at ¢,, at which the
phase space of the liquid state is divided into exponentially large number
of metastable states or minima in the free-energy landscape. The logarithm
of this number is the so-called configurational entropy ¥. The MCT is now
believed to be a dynamical counter part of the mean-field description of the
glass transition [35-37] which describes the slowing down of the dynamics at
around ¢4. With increasing the density further, the configurational entropy
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decreases and eventually becomes zero at px where the thermodynamic tran-
sition takes place [36,37]. An important feature of the RLT is that the theory
becomes exact in the limit of infinite dimension.

The conventional RLT was once extended to the binary mixtures [98-101].
However, it did not predict the decoupling phenomena irrespective of the size
ratio. To understand the reason of this failure, we recently introduced and
analyzed the spin-glass version of the binary mixtures [102]. We found that
the assumption of the one-step replica symmetry breaking (1RSB) ansatz,
which is commonly used in the RLT, is the origin of this failure and the
decoupling phenomena can be described when we allow the two-step replica
symmetry breaking (2RSB). In this work, we develop the RLT of the binary
mixtures of particles taking into account the 2RSB. We find that the new
RLT predicts the decoupling phenomena and explain the physical mechanism
of it in terms of the energy landscape picture [103,104]. Interestingly, the
new theory does not only explain the single and double glass phases but it
also predicts a new glass phase, which is characterized by the hierarchical
free energy landscape. This prediction would stimulate further experimental
and/or simulation investigations of binary mixtures.

4.2 Model

We investigate the binary mixture of Harmonic spheres [105]. The interaction
potential of the model is

U/W(T) = €¢(T/DMV)= W, v e {L>S}7
¢(r) = (L—7)%0(1 - ), (4.1)

where we set € = 1 for simplicity. vrr(r), vss(r) and vps(r) denote the
interaction potentials between large particles, small particles, and large and
small particles, respectively. Dy, and Dgg mean the diameter of large and
small particles, respectively. We use the additive potential i.e. Dyg = (Dpp+
Dgss)/2.

We study the model on the high dimensional limit. Here, we list several
physical quantities in a convenient form on this limit. To obtain the non-
trivial result on this limit, the potential should be rescaled as

o(h) = d?¢ (1 + g) : (4.2)
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Figure 4.1: Schematic pictures of the free-energy landscape

with h = d(r —1) [88,106]. The volume fractions of large and small particles
are ¢, = Npvg(Drr/2)/V and ps = Ngvg(Dgs/2)/V, respectively. wvg(r)
is the volume of the d-dimensional hyper-sphere, and N; and Ng denote
the number of large and small particles, respectively. We define the size
ratio between large particles and small particles as Dy /Dgs = 1 + r/d.
The factor 1/d is necessary to keep the value of the relative volume finite,
va(Drr/2)/va(Dss/2) = (1 4+ r/d)? ~ €". Another relevant quantity is the
fraction of small particles, x = pg/(vL + ©s).

4.3 1RSB Ansatz

A main idea of the RLT is to introduce the m copies of the original system
(replicas) to evaluate the free energies of the liquid and glass phases. The
overlap (similarity) between the configurations in different replicas plays the
role of the order parameter of the glass transition. The conventional assump-
tion in the RLT is the one-step replica symmetry breaking (1RSB) ansatz,
which assumes that there are no overlap between the different metastable
glassy states [22,39,97,100]. The landscape considered in the 1RSB for-
malism is schematically shown in the left hand side of FIG. 4.1. The RLT
with the 1IRSB assumption is fully developed [22], especially on the high di-
mensional limit, and the application of it to the binary mixtures is straight-
forward [22,100]. We outline the calculation in Appendix B. The thermody-
namic phase diagram predicted by this ansatz, however, only shows the RS
phase, in which all particles are mobile, and the 1RSB phase, in which all
particles are frozen, for all r (see Fig. B.1 in Appendix B). Thus, the 1RSB
ansatz does not explain the decoupling phenomenon at least for the thermo-
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Figure 4.2: Schematic picture of the molecular system for m = 6 and m; = 2:
The molecules composed of large particles are shown with the filled cycles. The
m/my = 3 kind of the molecules composed of small particles are shown by the
filled, solid and dotted cycles. The molecules composed of large particles interact
with all kinds of the molecules. On the contrary, the molecules composed of small
particles are only interact with the molecules of the same kind and molecules
composed of large particles, the others transparent each other.

dynamic glass transition point. Note that the decoupling of the dynamical
transition density can be captured even by this formalism since the dynamical
transition occurs in a replica symmetric (RS) phase, see Appendix D.

4.4 2RSB Ansatz

Recently, the similar polyamorphism as in the binary mixtures was studied in
a two-component version of the spin glass model, where the two-step replica
symmetry breaking (2RSB) is shown to be the key for its description [102].
This hints the following physical mechanism of the polyamorphism in binary
mixtures: the free-energy landscape of the binary mixtures is divided into
the multi-valley structure due to the configurations of large particles, and
each of valley is further divided into the multi-valley structure due to the
configurations of small particles as shown in FIG. 4.1 right. If this is the
case, there should appear two distinct glass states. (i) 1RSB state: The
system is trapped in a minimum in the intermediate level of the hierarchy
but still can travel between the minima in the lowest level of the hierarchy.
This corresponds to the state where only the large particles are frozen while
small particles are mobile. (ii) 2RSB state: The system is trapped in a
minimum in the lowest level of the hierarchy, where all particles are frozen.
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In order to consider this possibility, one should develop the corresponding
2RSB ansatz and judge if it gives a more stable solution than the conventional
1RSB does, or not. Note that the 2RSB ansatz required here is different
from the one introduced recently for the jamming transition [88] because in
the present case two hierarchies corresponds to the liquid and frozen states,
respectively. To this end, we introduce the following specific form of the
2RSB ansatz. We divide m replicas into m/m; sub-groups each of which
contains m; replicas. The my copies of small particles belonging in a same
sub-group are constrained around their center of mass, whereas the copies
of different sub-groups can move independently. For large particle, however,
we assume that all m copies are constrained around their center of mass. In
other words, the system contains 1 + m/m; kinds of “molecules”, namely,
the molecule composed of m large particles and m/m; kinds of molecules
composed of my small particles belonging into the same sub-group. The
m/m; kinds of small molecules only interact with the molecules of the same
kind and the molecules composed of large particles, the others transparent
each other. The schematic configuration of this “molecular system” is shown
in FIG. 4.2.

Having this ansatz, one can write down the virial expansion of the free
energy of the replica liquid starting from the standard definition of the grand
canonical partition function (see Appendix C for details):

B2 — [ dmpu()(1  1og pu(@)
m/m1
+ ) /dlkﬂsk (2")(1 = log ps, (")) + % /dfd@PL(f)PL@)fLL(T -7)
h=1
m/mi

1
+2.5 / dz*dy* ps, (") ps, (") fss (2" — y")
k=1

m/mi

+ Y [ dd ou(@)ps, (8 fus(e ~ o)
k=1
+O0(p1, p8,); (4.3)
where p; and pg, denote the density field of large particles and of small
particles belonging into k-th sub-group, respectively. T = {z!,--- 2™} and

2% = {2%|a € By} represent the sets of the configurations in the replica space,
where By = {(k — 1) x m; + 1,--- ,k x m;} denotes the set of the replicas
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belonging into k-th sub-group. The Mayer functions are defined as

m

fr(@—7) = He_m“(ma_ya) -1,
a=1

fLS(Ek . gk) _ H o Prrs(@®—y*) _ 1,

aEBk

fos(ah —y*) = [ e oo - 1. (4.4)

(lEBk

The first and second terms of eq. (4.3) represent the ideal gas terms, and 3-th,
4-th and 5-th terms are represent the interactions between large molecules,
small molecules, and large and small molecules, respectively [22]. We assume
that pr(Z) and pg, (z*) are following the Gauusian distribution as proposed
by G. Parisi and F. Zamponi [22].

4.5 Thermodynamic phase diagram

Taking the high dimensional limit, one can obtain the asymptotic expres-
sion of the free-energy and obtain the dynamical and thermodynamic glass
transition points, ¢4 and @y [22]. Here we focus on ¢y and the results for
g is presented in Appendix D. Near ¢g, we obtain an extremely simple
expression for the free-energy:

loﬁlim = g1(m) + ga(my) — dlogd + O(dloglogd),
- 22 0 ]
_ 2‘;90 e’ ifi(i;;)e” i ](ml)] , (4.5)

with

I(z) = / " dhe [1 - e*z%(m] . (4.6)

—00

Note that this free energy reduces to the one for the conventional RLT when
m = my (see Appendix A).
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The description of the state is obtained by optimizing the free energy
above with respect to m and m;. m = m; = 1 corresponds to the liquid
phase. In the glass phase, contrary, m and m; are smaller than unity. There
are two possibility, namely, m < m; < 1 and m = m; < 1. In case m <
my < 1, the glass phase is described by the 2RSB free-energy, eq. (4.3) and
the values of m and m; are determined by the saddle point equations:

h(m) 1
h(1)  p(l—x)
h(ml) 1

W) g2 —a)e (4.7)

with ¢ = /@R and h(r) = —220,(I(x)/z). oo = 274dlogd/h(1) is the
glass transition density of the one-component system. The glass transition
density for large particles is obtained by putting m = 1 into eq. (4.7) above
as

1RSB
~1RSB vr () 1
= = , 4.8
¢ (x) oo 1— = (4.8)

Similarly, putting m; = 1 into eq. (4.7) below, we obtain the glass transition
density for small particles as

2RSB
~2RSB YK (37) 1
p— p— . 4-9
i () praene r+2(1—x)e /2 (4.9)

On the contrary, in case m = my < 1, the glass phase is described by the
1RSB free-energy (see Appendix B). The 1RSB and 2RSB free-energy have
the same value if the relative density of small particle takes the critical value,

1—2e"/?

When =z < z., the 2RSB free-energy is more stable and when x > =z, the
1RSB free-energy is more stable. Note that if r < r. = 2log2, z.(r) is
negative and there is only 1RSB phase in the phase diagram, thus r > r. is
the necessary condition for arising 2RSB phase.

Combined above analysis, one can decide the full phase diagram. When
the size ratio is smaller than the critical value r < r. = 2log 2, the system is
described by the 1RSB ansatz and there exist only a single 1RSB glass phase.
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Figure 4.3: 2RSB phase diagram: The main panel is the phase diagram for r = 3
and the inset is for » = 2. The circles in the ballons represent the schematic
configuration of large and small particles.

When r > r., the phase diagram has the four different phase classified by
the values of m and m, see FIG. 4.3. For the sufficiently low density region,
the solution with m = m; = 1 is the most stable and the system is in the RS
phase in which all particles are mobile and the system is in the fluid phase.
For the high = and high ¢ region, the solution with m = m; < 1 is the most
stable and the system is in the 1RSB phase where all particles are frozen.
We refer to it as the 1RSB(1). In the 1RSB(1) phase. This glass phase is
stabilized mainly by the freezing of the small particles (see the right balloon
of the FIG. 4.3). For the low x and moderately high ¢, the another 1RSB
phase arises in which m < m; = 1 and only large particles are frozen wheres
the small particles are mobile. We refer to it as the 1IRSB(2). At low z and
high ¢, m < my < 1, the system is in the 2RSB phase in which all particles
are frozen.

4.6 Configurational entropy

To illustrate the nature of the transitions, we also calculate the configura-
tional entropy, . In the case of the 2RSB free-energy, ¥ is estimated by the
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Configurational entropy

Figure 4.4: The density dependence of the configurational entropy for » = 3 and
x = 0.2: The solid line represents the 2RSB result and the dashed line represents
the 1RSB result.

following formula [107]:
Yorsp = 21 + g,
0 (logZ
Y = —m?—— m
! " om ( mN ) ’

0? log Z
2 m
2 = dmi0m ( N ) ’ (4.11)

where ¥; represents the contribution from the number of the minima in the
intermediate level of hierarchy, namely the configurations of large particles
and 3, represents the contribution from the number of minima in the lowest
level of hierarchy, namely the configurations of small particles. Substituting
the asymptotic expression of the free-energy, eq. (4.5), into above expression
one can evaluate Yorgsg. In FIG. 4.4, we show the density dependence of the
normalized complexity, YoRrsp = Yorsp/dlogd, at (r,z) = (3,0.2) with the
solid line. For a reference, we also show the (metas-table) 1RSB result with
the dashed line. From this figure, one can see that there are two bending

points. The first bending occurs at G258, where the configurational entropy

due to large particles vanishes, ¥; = 0. The second bending occurs at G258,

where the configurational entropy due to small particles vanishes, 35 = 0.
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4.7 Summary and discussion

In summary, we developed the new 2RSB formalism of the RLT for the
binary mixtures of large and small Harmonic spheres which enabled to de-
termine the phase diagram consists of multiple glass phases. We found that
when the size ratio of large and small particles is larger than the critical
value, the hierarchical energy landscape emerges and the decoupling of the
glass transition of large and small particles takes place. As a consequence,
there arise three distinct glass phases, those are referred to as the 1RSB(1),
1RSB(2) and 2RSB phases. When the fraction of small particles, z, is rel-
atively high, there arises 1IRSB(1) in which both large and small particles
are frozen. The 1RSB(1) might be stabilized by the interaction with small
particles and those glasses are called as the “asymmetric glass” in terms
of colloidal experiments [68,91]. For the low = and moderately high den-
sity, there arises the 1RSB(2) phase in which only large particles are frozen
whereas small particles are still mobile. For the relatively low = and high
density, the 2RSB phase emerges in which both large and small particles
are frozen. The predicted phase behaviors are qualitatively consistent with
previous experimental and numarical results [23-26, 68] and has similarities
with the dynamical transition densities predicted by the MCT [69].

One of the most significant insight among our results is the emergence of
the 2RSB phase which is tantamount to the two-step hierarchical structure
of the free-energy landscape. It should be interesting to directly probe this
hierarchical structure in experiments and/or simulations. We guess that the
rheological measurement is a good candidate for this purpose [66,108-110];
Interestingly it is reported that the anomalous two-step yielding takes place
in binary mixtures in the parameter range corresponding to the 2RSB phase
[67].

The extension our results to finite dimension is the important future
research target. We also believe that our higher order replica symmetry
breaking picture are not restricted for the binary mixtures of disparate size
ratios, but can be adapted for other polyamorphism especially originated
from the decoupling of the glass transitions of the degrees of freedom. These
extensions of our results are left for the future work.
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Chapter 5

A paradox of the replica liquid
theory of binary mixtures in
the one-component limit

5.1 Introduction

As discussed in Ch. 2, the replica liquid theory (RLT) is a mean-field ther-
modynamic theory of the glass transition of supercooled liquids [22]. The
theory was first developed for one-component monatomic systems. The RLT
enables one to predict the ideal glass transition temperature, Tk, from a
first-principles calculation, by considering the m replicas of the original sys-
tem [22]. Thermodynamic properties near Tk are deduced by computing
the free energy of a liquid consisting of m-atomic replica molecules and then
taking the limit of m — 1 at the end of the calculation (see Fig. 5.1 (a)).
The RLT was later extended to binary systems [98,100]. However, it
has been known that the binary RLT is inconsistent with its one-component
counterpart. As discussed below,this contradiction originates from the as-
sumption that each replica molecule consists of m-atoms of the same species
(see Fig. 5.1 (b)) [98]. The molecules consisting of the atoms of the same
species are identical. Thus, the Gibbs factor of the molecular system is

GQcom = Nl!N2!a (51)

where N; = N¢; and Ny = Necy denote the number of atoms of the 1-th
and 2-th species, respectively. On the contrary, the Gibbs factor of the one-
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Figure 5.1: The schematic picture of the molecular system considered in the
RLT: The particles of different species are denoted by different colors (blue
or red). (a) The molecular system considered in the one-component RLT.
(b) The molecular system considered in the conventional binary RLT, where
each molecule consists of only red or blue particles. (c¢) The molecular system
considered in our binary RLT, where each molecule consists of both red and
blue particles in the weights proportional to the number fractions.

component system described in Fig.5.1 (a) is
G1eom = NV (5.2)
The difference between G; and G5 gives the mixing entropy:
Smiz = 108 Gocom — 10g Greom = ¢110g ¢1 + ¢ 1og o, (5.3)

where we chose the unit system so that the Boltzmann constant is one,
kg = 1. Note that S, sorely depends on the number fractions, ¢; and
Co, and remains finite even in the limit that the atoms of the 1-th and 2-th
species are identical. Accordingly, the configurational entropy and also the
glass transition point of the binary mixture are different from that of the
one-component system. The binary RLT is inconsistent with that of the
one-component one.

From the physical point of view, to consider the system as described
in Fig. 5.1 (b) is tantamount to assume that a permutation of atoms of
one species with atoms of the other species in a given glass configuration
is forbidden [98]. This is indeed the case if, say, the atomic radii of the
two species are very different. Clearly this assumption is inappropriate if
the two species are very similar or exactly identical because a permutation
of the atoms of different species are allowed. Concomitantly, one should
consider the molecular system where each molecule consists of the atoms of
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different species with the weight proportional to the number fractions, as
shown in Fig. 5.1 (c¢). In this chapter, we reformulate the RLT so as to
describe the molecular system described in Fig. 5.1 (c¢) and show that with
this reformulation, the inconsistency between the RLT of one-component
system and binary mixtures is resolved.

5.2 Theory

We consider a binary liquid composed of A and B atoms. The important
step is to rewrite the expression of the grand canonical partition function in
a form discussed by Morita and Hiroike [111] as

Z:gﬁﬁ Z /dwlexp

=1 1;€{A,B}

—BVx + 3 Z My,] . (54)

where [ is the inverse temperature, N is the total number of atoms, Vy is the
total potential energy. x;, v; € {A, B}, and p,, are the position, species, and
chemical potential of i-th atoms, respectively. Eq. (5.4) is mathematically
equivalent to the standard expression for Z [11]. This expression can be
readily generalized to the replicated liquid consisting of m-atomic replica
molecules as

=Y ST Y [

N=0 i=1 \a=1v2¢{A,B}

x exp | —f Z Vy+ 8 Z (1 (Ez)] ; (5.5)

where 5, (@;) Z P — (%) is the generalized chemical potential in

which the external potentlal uy,(T;) is included. Z; = (x},--- ,z™) and
1

v; = (v;,--- ,v") denote the set of the positions and components of m atoms
of the i-th molecule. The advantage to express Z,, a la Morita-Hiroike as
Eq. (5.5) is that assigning a label of the component 7; to each atom enables

one to describe replica molecules consisting of different set of species. The
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density field conjugated to 15(T) can be written as
N
=1

pol@) =Y <H 5(a® — wg)a,,g,yg> - %. (5.6)

Following the standard procedure [11], one can express the free energy, —F,
by the Legendre transformation from (%) to pz(Z), which can be written
as the sum of the ideal and the excess parts;

SFlps(@) = = / 0Zpy(®)(1 — log po(®)) + BFulpn(@)].  (5.7)

The equilibrium free energy is obtained by minimizing Eq. (5.7) with re-
spect to the density profile pz(x). For one-component systems, the standard
procedure is to assume that p;(Z) is Gaussian-shaped and use its width, or
the cage size, as the minimization parameter [22]. Once the equilibrium free
energy is obtained, S. is calculated by S. = lim,, ; mQa%%. The ideal
glass transition temperature, Tk, is identified as the point at which S, van-
ishes [22]. For binary liquids, however, the full computation is a challenging
task because the cage sizes vary depending on the components 7. But, at
least, one can demonstrate that the one-component result is correctly derived
in the limit that atoms of two components are identical or very similar. In

this limit, the density profile in the replica space can be written as

po(T) = p / ax ] (Z Cubuvaya, (@ — X )) : (5.8)

where y4(x — X) = e~ #=XI/22 /(47 A)¥/2 is the Gaussian function centered
at a reference position X with the cage size vA. p = N/V is the number
density, and ¢, = N, /N is the number fraction of the v € {A, B} species.
Eq. (5.8) expresses that atoms of different species constitute a single replica
molecules with the composition ratio of c4 : cg. This ansatz corresponds to
the limit where a permutation of the atoms of different species are allowed
in a given glass configuration. The difference of the free energy from that of
the one-component system F} is expressed by the difference in the ideal gas
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part (since the excess parts are identical in this limit) as

BAF = B{F[py] — Fi[p]}
S Z / dZpy(Z) (1 — log pr(T))

+ /dﬁp(i)(l —log p(T)), (5.9)

where p(Z) is the density profile of the one-component system. Because
pr(x) = p(®) x ([, cva) in the one-component limit, we arrive at SAF =
mN Zu culogc,. This implies that the S, of the binary RLT correctly
converges to that of the one-component S.;, because AS, = S, — S.1 =
m?20,, (BAF /mN) = 0.

In the opposite limit where the atoms of the two species are very different
and one replica molecule consists of atoms solely of the one species, one can
show that the previous results of binary RLT [100] are recovered. In this
case, the density profile should be written as

PoT) = p / dX ¢, (H Suvaya, (2% — X)) : (5.10)

Note the difference from Eq. (5.8); The order of the product over the atoms
a and the summation over the species y have been exchanged. Due to the
factor (], 0,e) in Eq. (5.10), pi(Z) vanishes unless each molecule consists
of a single species. The non-vanishing component of the density profile is
cp [dX T, va, (x* — X) (v= A or B), which is exactly the density field
employed in previous studies of the binary RLT [100]. Eq. (5.10) should not
be used in the one-component limit because it gives a solution which is less
stable than Eq. (5.8): Substituting Eq. (5.10) into Eq. (5.7) and optimizing
the parameter A,, one finds SAF = NZ“ ¢, logc,, which is larger than
BAF from Eq. (5.8)!. This solution also leads to a pathological result AS, =
— Zu ¢, loge, > 0; that is, S, calculated assuming Eq. (5.10) is larger than
the correct one-component configurational entropy by the mixing entropy
[112].

!'Exchange “larger” with “smaller” for m < 1, see Ref. [22].
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5.3 Conclusion

In summary, we reformulate the RLT of binary, or multi-component mix-
tures, which correctly accounts for a permutation of the atoms in a glass
configuration and show that it resolves the inconsistency between the one-
component RLT and the binary RLT. The binary RLT in the previous studies
is valid only in the limit where the atoms of different species are so different
that a permutation of the atoms of different components is forbidden. In the
one-component limit, one has to consider all possible permutations of atoms
and adopts the density profile expressed as Eq. (5.8) to obtain the correct
configurational entropy. For general cases between these two extreme limits,
the density profile should be determined so as to minimize the free energy,
Eq. (5.7). Its implementation, however, may be challenging. The results dis-
cussed above imply a possibility, for example, that a binary liquid of small
and large hard spheres undergoes the glass-glass transition from the “disor-
dered” glass where the both types of spheres constitute a replica molecule to
the “ordered” glass where one replica molecule consists solely of one of the
component, as the size ratio between the two components is varied, much
the same way as the metallic alloys undergo the order-disorder phase transi-
tion as the interactions are varied [113]. Note that this possibility has also
been pointed out in Ref. [112] in the context of the numerical simulation of
the multi-component mixtures. Finally, we note that the generalization to
n-component system is straightforward by allowing v; in Eq. (5.4) to take
n-different states. Polydisperse case can be obtained in the n — oo limit
with a caveat about a subtlety to take the continuous limit (see Ref. [112]).
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Chapter 6

Conclusion

In this work, we have constructed a mean-field theory to describe the glass
transition of binary mixtures of desperate size ratio. Our study is based on
the replica liquid theory which combines the replica method used in the spin
glasses with the conventional liquid theory. The ordinal replica liquid theory
has been developed so as to describe the glass transition of one-component
systems or the two-component systems whose size ratio is close to unity.
In those cases, the glass transition is identified with the one-step replica
symmetry breaking transition (1RSB) which is the simplest case among the
replica symmetry breaking transitions. However, it is known that the replica
liquid theory based on the 1RSB cannot describe the decoupling of the glass
transitions of large and small particles. In this thesis, we have uncovered the
origin of this discrepancy and proposed the new framework to remove this
discrepancy.

As a fist step to this end, we have investigated the two-component version
of the p-spin spherical model (PSM). The PSM is a fully connected spin glass
model and since the model can be solved analytically, one can investigate the
model without relying uncontrollable approximations. It has been shown that
the one-component version of the PSM exhibits the 1RSB, which corresponds
to the glass transition of one-component systems. However, we found that the
two-component version of the PSM exhibits not only the 1RSB but also more
complex two step replica symmetry breaking (2RSB) transition when the
interaction strengths of the spins of the different species are well separated.
Notably, the decoupling of the glass transition of the different species is
concomitant with emerging of the 2RSB.

Next, we have constructed the replica liquid theory based on the 2RSB
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assumption and applied the theory to the particle system. We have inves-
tigated the binary harmonic system which is a typical model system of the
binary colloidal mixtures consisting of large and small particles. We obtained
the phase diagram in the high dimensional limit (a mean-field limit) where
the analytic calculation is available. The qualitative behavior of the phase
diagram is the same with that of the two-component version of the PSM.
When the size ratio between the different species is sufficiently large, the sys-
tem exhibits the decoupling of the glass transition points of large and small
particles. Concomitantly, the system exhibits the 2RSB transition. More
concretely, the phase diagram divides into three distinct parts. The 1RSB(1)
phase where both large and small particles are frozen. The 1RSB(2) phase
where only large particles are frozen while small particles are mobile. The
2RSB phase where both large and small particles are frozen. The qualitative
shape of the phase diagram obtained by our theoretical investigation is the
same with that obtained by the colloidal experiment, though the 2RSB phase
has never been discovered by the experiments yet.

Our investigation is mainly focused on the mean-field limit, namely, the
high dimensional limit. The important future work is to perform the 2RSB
calculation in finite dimensions and compare the quantitative value of the
glass transition point with the experiments and numerical simulations. This
is possible by relying the cage expansion and the hypernetted chain approx-
imation. The calculation is now going on. Another important future work
is to validate the existence of the 2RSB structure on the free-energy land-
scape. This may be most directly observed by calculating the dynamics of
the inherent structure by the numerical simulations.

In the final chapter, we have discussed about the discrepancy between
the one-component and two-component version of the replica liquid theory.
We found that the mixing entropy of the molecular system considering in the
one-component replica liquid theory and that of the two-component replica
liquid theory differs even in the limit that the particles of the two species
are identical. This implies that the glass transition point estimated by the
two-component replica liquid theory is different from that obtained by the
one-component counterpart even in the one-component limit. The origin of
the discrepancy is that the effects of the swapping of the particles of different
species are not included in the conventional two-component replica liquid
theory. We have reformulated the two-component replica liquid theory so as
to include this effect and showed that the reformed theory is surely consistent
with the one-component replica liquid theory. Apart from the limit that the
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particles of different species are identical, the effect of the swapping of the
particles of different species is non trivial and investigation of this case is left
for the future work.
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Appendix A

Perturbation analysis of the
continuous transition

In this appendix, we construct the perturbative theory around the 1RSB
ansatz which allows us to calculate the continuous 2RSB thermodynamic
transition temperature, TI(? o, Here, we expand the saddle point equations
about the differences between the 1RSB and 2RSB order parameters, ¢ — ¢1
and py — p1, and derive the convenient equations to evaluate TK2€ . To this
end, the most convenient staring point is

2 0Garsp 2 0G2rsp _0
(my —1)c Og (my —mo)(1—c) dq ’
2 OGarsp 2 0Garsp _o (A1)

(me — 1) Ogo (my —mso)(1—c¢) Oq
After the some manipulations, equations (A.1) can be rewritten as

1 ( 1 1
me \1—¢q% 1—(1—may)qgs — maqf

) =M,, o € {q,p}, (A.2)

where ¢ = ¢; and ¢ = p;. The kernels, M, and M,, are defined as

3
M, = o {6 — @) +2J%c(1 — ) (qop2 — qip1) + J*(1 = ¢)*(p3 — p7) }

3
M, = 575 {25 — &) +2J%c(1 — ) (qop2 — qupr) + J*(1 — ¢)*(p3 — p}) } -
(A.3)
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Substituting ¢$ = ¢, and ¢§ = g, — dq, into equations (A.1) and expanding
0qo = eqél) +&2qa @ 4 O(e?), one obtains the perturbative series for €. Below,
we show that the first order term of € decides the transition temperature and
the second order provides the value of msy at the transition temperature.

For the first order of the perturbative expansion of equation (A.2) about
€, we obtain

1
ZM ,BQB = _—qa)qu)a (A4)

where we have defined the auxiliary matrix as

oM,
oq;

M,pg=— (A.5)

{e3=q{=q"}

The necessary condition that the equation (A.4) has the non-zero solution is

This is the closed equation for g, p and the temperature 7'. Substituting the
1RSB result for ¢ and p, we can solve equation (A.6) for 7" and obtain T}f 9,
As shown in Figure 3.5, at T [((20), the my changes discontinuously from 1 to
some positive value smaller than 1. This value of my can be obtained by the

second order term of :

1
(2) 1 (1
4o’ — Maq—l- M, pvq5°q,", (AT
(1— qa)? (1—(1@ Z B4p Z Brdp Yy (A7)
where we have defined
1 0°M,

a A8
By — 2 aqlﬂaql ( )

{g3=q{=q"}

Note that equation (A.7) depends on gq % , the Value of which is undecided

at present. To remove the terms which contalns qa from equation (A.7),
inspired by the perturbative analysis of the MCT [3], we introduce the left
eigen vector, l,, which satisfies

1
S Magly = —1, (A.9)
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Figure A.1: The continuous 2RSB transition temperatures T [(f ?) calculated by
the minimization of Gorsp (symbols) and equation (A.6) (line) at J = 0.03.

Using this, q(()}) can be expressed as

¢V = gla, (A.10)

where ¢ is a constant. Also, we introduce the right eigen vector by

1
ZTaMa’ﬁ = mrﬁ (All)

«

Multiplying ) 7o from the left of equation (A.7) and using equation (A.10),
we finally reach the compact formula for ms:

Zaﬂ'y TaMa,pylsly
D aTald(l—qa)™

From this expression, it is clear that the value of my is independent from
the normalization constants of the eigen vectors, equation (A.9) and equa-
tion (A.11). The right hand side of equation (A.12) is the function of ¢, p,
and T'. Substituting the 1RSB results into ¢ and p and TI((QC) calculated by
equation (A.6) into T', we obtain the value of ms.

An advantage of the formalism constructed above is that one can evaluate
TI((2 “ and the value of mo at the transition point with only the information
about the 1RSB result. This enables a more precise investigation of the

(A.12)

mo = —
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Figure A.2: The value of my on the continuous 2RSB transition line T1(<2 ) at
J =0.03

phase behavior than that of the full numerical minimization of Gaorgp. In
Figure A.1, we compare T1(<2 °) calculated by equation (A.6) with that calcu-
lated by the minimization of Gorsp (as in Figure. 3.4). They are almost
identical.

To determine the critical point at which the continuous transition ceases
to exist and the transition becomes discontinuous, one should observe the
value of my(c). In Figure A.2, we show the ¢ dependence of ms(c) cal-
culated by equation (A.12) on TI((QC)(C). The value of my increases with
decreasing ¢ and reaches ms = 1 at the critical point c¢.= 0.17174, where
TI(?C)(CC) = T. = 0.021667. Note that mg = 1 is a signal of the discontinuous
transition, therefore it is natural to guess that at ¢ = ¢., the continuous
2RSB thermodynamic transition line, T[(?C)(c), is connected to the discon-

tinuous 2RSB thermodynamic and dynamical transition lines, Td(z) (c¢) and

T[(? 9 (c). This assumption is indeed correct, see Figure 3.4.
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Appendix B

1RSB thermodynamic phase
diagram

Here, we present the results with the conventional RLT based on the one-step
replica symmetric breaking (1RSB) assumption [22,39,97,100], and show that
the partially frozen phase can not be described by this theory. Following the
strategy of Ref. [22], we introduce the density distribution function in replica
space as

@) = ) <H6<x“—x?>> ps(@ = ) <H5x —af > (B.1)

i€Large \a=1 1€Small

where T = {z',--- 2™} represents the set of the particle positions in the
replica space. Expanding the free-energy of the replicated system by pr(T)
and pg(T), we obtain a series of perturbative expansion [22,100]:

log Z,,, = Sia + Sint,

Sa= Y [ dwpu@(1 - log p,(a))

pe{L,S}
Sw= 3 / A7 dgp, (@), @) (@ —T) + 0P p2),  (B2)
uve{L,S}

where the Mayer functions are defined as

m

fu(@ =) = [J e -1, (B.3)

a=1
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Note that the 1RSB free-energy, eq. (B.2), also obtained by substituting
m = my into the 2RSB free-energy, eq. (4.3).
Now, we assume the 1RSB Gussian ansatzs [22,100]:

pu@ =gy [ X T, 0" = ), (B.4)

a=1

where 74 (z) is the normal distribution function whose variance is A. Putting
eq. (B.4) into eq. (B.2), it is straight forward to show that

Sia = ZNN [1 —log p,, — g(l —m)log2mA, — g(l —m —logm)|,

m

Sint = %Z N‘{/NV /dr (ql’fy(r) — 1) , (B.5)

pv

Qu(r) = /dRWAHJFAV (r+ R)e_ﬁ”“”(R). (B.6)

It is known that in the high dimensional limit, the thermodynamic glass
transition density scales as px = O(27%dlog d) and the cage size scales as A =
O(1/d?1og d) [22]. Thus, one can see that v (x) ~ §(z) and g, (r) ~ e o)
since A shrinks to zero. Substituting this into eq. (B.5), we obtain the
asymptotic form of the free-energy near the thermodynamic glass transition
point,

d 0 (1 —z+ ze"/?

)2
2logd 5 12T 2o I(m)| — dlogd+ O(dloglogd),
(B.7)

where I(m) is defined as eq. (4.6). The value of m should be determined by
the saddle point equation, expressly,

log Z, 1
Nm  m

. )_goK(x) 1 —x+xe"

= B.8
@K(x (p?()no (1 - x + xe,,,/2>27 ( )

where pR°"° denotes the glass transition point for the one-component system

(x =0or x = 1). The decoupling of large and small particles is not captured
by the 1RSB ansatz, since there are only fluid phase (RS) and fully frozen
phase (1RSB). Typical phase diagrams /predicted by eq. B.8 are shown in
FIG. (77?).
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Appendix C

Derivation of eq. (4.3)

The grand canonical partition function of the molecular system as shown in
FIG. (4.2) is

T = (jio%ﬂﬁn/dx) mﬁ Ni:%

a=11i€L k=1

1
Ng,! H H/dm?

CLEBk ZGSk

Y

m/mi
H exXp [_B Z (V»;ksk + V[(,IS;C) - B\I’Sk
k=1

X exp [—5 > Vi - B
a=1 a€By,
(C.1)

where the subscripts L and Sj denote large particles and the small particles
belonging into k-th sub-group, respectively. By = {(k—1) xm;+1,--- kX
m1} denotes the set of the replicas belonging into k-th sub-group. V., denotes
the interaction potential between particles of u and v species. The ¥, and
Ug, are the intrinsic chemical potentials [11] for the molecules, which is

defined by

V=) ¢u(@) =) (60(T) - pr),

€L i€l
Vs, = D s (a) = ) (9s.(af) — psy), (C.2)
i€Sk 1€Sy
where T = {z!,--- 2™} and z* = {2%a € By} represent the sets of the

configurations in the replica space, and g and pg, represent the chemical
potentials. Here, we introduced the intra-molecular interaction potentials,
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¢1.(T) and ¢g, (z¥). The intrinsic chemical potentials, egs. (C.2), allow us to
calculate the one point density distribution functions for the molecules:

€L \a=1
e a 0log Z,,
ps,(2*) = ZEZSIC <agk o — xi)> = Sus @)’ (C.3)

One can see that the diagrams generated by this Mayer cluster expansion [11]
are the same as those of the 1+m/m; component non-molecular system after
the densities distributions, eqgs. (C.3), and the Mayer functions, eqgs. (4.4),
are replaced by the those of the non-molecular system [11,111]. Calculating
second order for p; and pg,, we obtain eq. (4.3).
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Appendix D

Dynamical phase diagram

In this section, we shall argue the dynamical glass transition point, ¢g4, at
which there arises the non-trivial solution for the cage sizes. The saddle
point equations for the cage sizes are obtained from the derivation of the
free-energy eq. (B.5) with respect to Ay and Ag:

12 pr 0O m 9 m

AL d(1—m) [TQAL /dquL(r) - P59 /dquS(r) } ’
12 ps O m 9 m

As  d(1—m) {7 0Ag /drqss(r) +p53As drgsi(r) ] - (D)

For simplicity, we will investigate the hard-sphere limit (7" = 0). The asymp-
totic analysis for the one-component hard sphere system on the high dimen-
sional limit [22] can be easily extended for this model and one obtain

1 [ ) A+ A
e (1= )M (AL + M [ 2228 |
AT 2
[ . AL+ A
i ~ @ laM(Ag)+ (1 —z)e 2 M (%) , (D.2)
S

where we defined A, = d*A,,/ D2, and ¢ = 2%p/d. The auxiliary functions

are defined as
@<y+AA> 3A@<y+AA>’
V4A )| 0A V4A

(1+erf(z)). (D.3)

M(A) = —/dyey log

O(z) =

N | —
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Figure D.1: Dynamic phase diagram for hard spheres: The filled cycles denote
the dynamical transition points for large particles. The filled squares denote the
dynamical transition points for small particles.

Solving egs. (D.2) numerically, one obtains the cage sizes and the dynamical
transition point. When the size ratio between large and small particles, r,
is small, the dynamical transition of large and small particles take place
simultaneously, see the LHS of FIG. D.2. Contrary, when r is sufficiently
large, dynamical transition point of large and small particles can be decoupled
and there arises the partially frozen phase in which only large particles are
frozen (Aj, < 0o) whereas small particles behaves as fluid (Ag = o), see the
RHS of FIG. D.1.
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