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Preface

Over the last decade, combinatorial optimization is one of the most active topics in applied

mathematics and theoretical computer science. Many important applications have been

developed based on combinatorial algorithms in several areas, including transportation,

production management, artificial intelligence, and software engineering. Indeed, combi-

natorial optimization has its roots from combinatorics and operations research aiming to

solve real-life problems.

Combinatorial optimization can be viewed as a problem to search for the best element

combination out of a set of discrete items. Some of the classical problems in combinato-

rial optimization, such as spanning trees, shortest paths, matching, are polynomial-time

solvable, while still a variety of them, such as the traveling salesman problem, generalized

assignment problem, set covering problem, are known to be NP-hard.

Most problems in combinatorial optimization can be formulated naturally as linear

programs or integer programs, both of which can be represented by a matrix. However,

in many practical applications, the corresponding matrices become so large (sometimes

exponential in the size of the instance) that it is impractical to represent all rows or

columns of them. Row generation and column generation have proven to be two of the

most successful approaches for solving such kind of large-scale combinatorial optimization

problems effectively.

In this thesis, we describe basic ideas, theoretical results, and practical applications

related to row/column generation approaches. We also summarize major similarities and

differences between row generation and column generation approaches.

Benders decomposition, known as a typical row generation approach, was proposed by

Benders five decades ago. In Benders decomposition, the variables of the original problem

is separated into two sets for a two-stage iterated approach. In the first stage, a master

problem is solved on the first set of variables, and the obtained solution in the first stage is

treated as the input for a second stage problem, which we call a subproblem. In the second

stage, the subproblem determines the feasibility of the first stage solution, and it updates

the current master problem by adding new constraint (row) until no constraints (rows)
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can be generated. Logic-based Benders decomposition can be viewed as a generalization of

the classical Benders method, in which a master problem solves a relaxation problem with

some constraints removed from the original problem, and a subproblem aims to generate

a critical constraint (row). A variety of real-life applications are successfully solved via

classical or logic-based Benders decomposition, including robust optimization, planning

and scheduling, resource management, and network design.

Column generation approach was proposed almost at the same time as Benders decom-

position by Dantzig and Wolfe. This technique was first brought into real application by

Gilimore and Gomory for solving the cutting stock problem. Similar to the row generation

approach, in the first stage, a master problem in the column generation approach is solved

with a subset of all columns from the original problem. In the second stage, a subproblem

determines the optimality of the first stage solution, and it updates the current master

problem by adding new columns until no column can be generated. Numerous column gen-

eration applications are described in the literature, including airline crew pairing problem,

various vehicle routing problems, and bin packing and cutting-stock problems.

In most cases, warm-starts for initial master problems and designing algorithms for

subproblems have been considered as two main components to elaborate in solving real-life

problems. In this thesis, we apply the row and column generation techniques in solving

robust optimization and airline crew pairing problems, incorporating various ideas in these

two main components to improve the overall convergence speed.

For the case of robust optimization, we consider combinatorial optimization problems

under the min-max regret criteria with interval objective coefficients. We design a Logic-

based Benders decomposition approach and also proposed many state-of-the-art exact and

heuristic algorithms, some of which are partially based on Benders cuts. Moreover, we

propose a new heuristic approach based on a row generation approach, which we call an

iterated dual substitution algorithm. We analyze the performance of the developed Logic-

based Benders decomposition approach and compared it with other existing algorithms.

For the case of airline crew pairing problem, We propose a branch-and-cut method

based upon a resource constrained dynamic programming for a subproblem. Computa-

tional results are given for a number of large-scale instances with up to 10,000 flights.

We hope that the descriptions and ideas we discuss in this thesis will contribute to

providing fundamental motivation and designing generation approaches for some other

real-life applications.

March, 2016
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Chapter 1

Introduction

This chapter starts with the general background of the thesis in Section 1.1. We pro-

vide a technical review of topics relevant to row generation approaches in Section 1.1.1,

including Benders decomposition, logic-based Benders decomposition, and cutting plane

method. We review successful applications of column generation and provide some histor-

ical and recent contributions in Section 1.1.2. The Structure of this thesis is presented in

Section 1.2.

1.1 General Background

Over the last decade, combinatorial optimization is one of the most active topics in ap-

plied mathematics and theoretical computer science [59]. A diverse range of real world

problems can be naturally modeled as combinatorial optimization problems in different

areas. Indeed, combinatorial optimization has its roots from combinatorics and operations

research aiming to solve real-life problems.

Combinatorial optimization can be viewed as a problem to search for the best element

combination out of a set of discrete items. Some of the classical problems in combinatorial

optimization, such as the spanning trees, shortest paths, matching, are polynomial-time

solvable, while still many of them, such as the traveling salesman problem, generalized

assignment problem, set covering problem, are known to be NP-hard [80].

A large portion of the problems have their linear programming or integer programming

formulation, both of which can be represented by a matrix. However, in many practical

applications, the matrix becomes so large (sometimes exponential in the size of the in-

stance) that it is impractical to explicitly represent all rows or columns of it. Generation

approaches including row generation and column generation have proven to be successful

for solving such kind of large-scale combinatorial optimization problems effectively.
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1.1.1 Row Generation

The classical Benders decomposition, originally proposed by Benders in the 1960s [17], de-

vised a row generation approach for exploiting the structure of mixed integer programming

(MIP). The classical Benders decomposition divides the variables in an original problem

(MIP) into two sets, continuous variables and integer ones. The problem with integer vari-

ables temporarily fixed is significantly easier to solve than the original problem. A master

problem is defined to obtain a solution for the integer variables. Then, a subproblem

problem with only continuous variables is defined to generate constraints that are violated

by the obtained integer solution (i.e., constraints that cut from the feasible region, the

obtained integer solution), and the generated constraints are then added to the current

master problem. The procedure repeats until no valid constraint exists when solving the

current subproblem. Geoffrion, by using non-linear convex duality theory, generalized

Benders decomposition to a broader class of problems in which the subproblem need not

to be a linear program [42]. Hooker and Ottosson introduced another extension called

logic-based Benders decomposition [51]. The subproblem in the logic-based Benders de-

composition needs not to be a specific form: it can be a MIP [52] and a feasibility-checking

problem [100]. The classical and extended Benders decomposition have been widely used

in a large variety of applications, such as planning and scheduling [25, 20, 50, 65, 71],

routing [64, 71, 88] and supply chain optimization [33, 78, 98, 109]. For a state-of-the-art

analysis of the existing literature, we refer the interested reader to Rahmaniani et al. [87].

The cutting plane method can also be seen as a row generation approach. Gomory first

proposed this idea to solve MIP [45] (see [57] for convex programming problems). The

cutting plane method first solves the LP relaxation of a MIP problem. If the obtained

solution is not integral, the method generates constraints that cut the obtained solution

but do not cut any integral solution for the original problem. The procedure iterates

until an integral optimal solution is obtained. However, such a pure cutting plane method

is considered impractical for large-scale instances due to numerical instability, as well as

ineffective because an extremely large number of cuts are required for convergence [46, 79,

82, 102]. The situation turned around when Balas et al. [10] adapted this method into the

branch-and-bound framework in the 1990s. The basic idea involved can be traced back to

Padberg and Rinaldi [79]. Most recent commercial MIP solvers use Gomory cuts in one

way or another.

Sethi and Tompson introduced another row generation algorithm called pivot and probe

algorithm (PAPA) [96], based on the observation that in randomly generated LP problems,

only about 15 to 25% of all constraints are candidate constraints and about 70-90% of

them are tight at the optimum [95]. Ben-Ameur and Neto proposed a constraint generation
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algorithm for large-scale linear programs [16]. This kind of row generation algorithm has

been recently adopted to many combinatorial optimization problems, such as the two-

machine flow shop problem [26], and the sensor resource management problem [103].

1.1.2 Column Generation

Ford and Fulkerson first proposed a column-reduced approach in solving a multicommodity

flow problem almost six decades ago [39]. Two years later, Dantzig and Wolfe generalized

their idea to design a strategy for solving any linear program [27]. Dantzig-Wolfe decom-

position decompose the constraints into two types, master constraints and sub-problem

constraints. This method generates columns as needed by solving one or more subprob-

lems. Gilmore and Gomory first applied column generation in solving the cutting stock

problem [43, 44], which is known as the first application to an integer programming prob-

lem. They proposed a model in which each column represents a “pattern” to cut a roll.

Then each pattern is a solution of a subproblem (e.g., in their case a knapsack problem).

A master problem is the LP relaxation of the cutting stock problem based on the gen-

erated cutting patterns. In their approach, master problems interact with subproblems

to identify effective patterns. It terminates when subproblems cannot generate any effec-

tive pattern for the current master problem. Such a situation ensures that the obtained

solution is optimal to the original LP relaxation. In fact, this optimal solution value is

shown to be a highly tight bound on the IP problem [93]. Several works discussed the

absolute gap between LP and IP, and it is observed that there exist the instances with

the difference larger than one [69, 94]. However, it is still not known whether there exists

an instance with this difference not less than two. In the last step, Gilmore and Gomory

obtain an feasible solution by rounding up all the fractional variables in the optimal so-

lution to the master problem. Over the last decade, many successful applications have

been studied including the airline crew scheduling problem [47, 21], the operating room

planning problem [36], and the vehicle routing problem [5, 66].

Note that a tighter bound is available by solving IP with generated columns. However,

this IP can still be difficult to solve even without an exponential number of columns. On

the other hand, for large-scale optimization problems in practice, most columns have their

variable values equal zero in any optimal solution. Desrosiers et al. proposed a compatible

scheme for the vehicle routing problem that overcome these difficulties by incorporating

column generation algorithm in a branch-and-bound framework [32]. Barnhart et al.

introduced a general technique for column generation and named it branch-and-price [13].

At the start of a branch-and-price method, a number of columns are reduced from the LP

relaxation for saving computation time. Then, at each node of the search tree, columns
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may be added to the LP relaxation on demand. Cutting plane technique is considered to

strengthen the relaxation of branch-and-price, and this is called branch-price-and-cut (see

e.g., [12, 81]). Branch-and-price has many successful applications, such as the generalized

assignment problem [92], the crew scheduling problem [31], the bin packing problem with

conflicts [90], the vehicle routing problem [29, 48, 86], the nurse scheduling problem [15,

68], the multiple length cutting stock problem [3], and the capacitated facility location

problem [58].

For a detailed survey and technical implements, we refer the interested reader to

Lübbecke and Desrosiers [67], Desaulniers et al. [30], Wilhelm [101], and Nemhauser [76].

1.2 Thesis Structure

Following this introduction, the thesis is composed of seven chapters. In Chapter 2, we

show the theoretical basis of row generation and explain the most famous row gener-

ation, Benders decomposition, as well as one of its generalizations logic-based Benders

decomposition. In Chapter 3, we discuss column generation approaches and present two

mathematical models for solving linear programs including Dantzig-Wolfe decomposition.

In Chapter 4, we consider the generalized assignment problem (GAP) with min-max

regret criterion under interval costs. We propose exact algorithmic approaches, includ-

ing a logic-based Benders decomposition approach, and two Benders cut driven branch-

and-cut algorithms. Regarding these two branch-and-cut algorithms, we first examine a

basic branch-and-cut and further introduce a more sophisticated algorithm that incor-

porates various methodologies, including Lagrangian relaxation and variable fixing. The

resulting Lagrangian-based branch-and-cut algorithm performs satisfactorily on bench-

mark instances. We also computationally examine two heuristic methods: a fixed-scenario

approach and a dual substitution algorithm. For the fixed-scenario approach, we show

that solving the classical GAP under a median-cost scenario leads to a solution of the

min-max regret GAP whose objective function value is within twice the optimal value.

Chapter 5 describes another application of the row generation technique. We con-

sider the multidimensional knapsack problem (MKP) under min-max regret criterion. We

propose a new heuristic framework, which we call the iterated dual substitution (IDS) al-

gorithm. The IDS iteratively generates linear constraints (rows) based on a mixed integer

programming model. Computational experiments on a wide set of benchmark instances

are carried out, and the proposed iterated dual substitution algorithm performs best on

all of the tested instances.

In Chapter 6, we introduce a crew pairing problem, which is a well-known practical

use of column generation. We consider the crew pairing problem in airline scheduling
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that calls for assigning crew members in order to cover all flights with the minimum total

person-days under the constraints that the schedule of each crew member does not violate

given constraints on the total working time, flying time, and the number of landings. We

formulate the problem as a set covering problem and apply a column generation approach

to generate a candidate set of schedules. In the pricing step, we propose a branch-and-

bound method based upon a resource constrained dynamic programming. Computational

results are given for a number of large-scale instances with up to 10,000 flights.

Chapter 7 summarises our results in this thesis.





Chapter 2

Row Generation

In this chapter, we describe the basic idea of row generation or constraint generation ap-

proaches for combinatorial optimization problems. We outline a general framework of row

generation approach in Section 2.1. We explain in Section 2.2 the motivation, concept and

ideas of Benders decomposition, which is known as a typical row generation approach,

and in Section 2.3, we extend this strategy to a more general approach, logic-based Ben-

ders decomposition, which can solve a much larger class of combinatorial optimization

problems.

2.1 General Framework

The motivation of row generation is that many mathematical programming problems that

contain too many constraints may not be solvable in their original formulations. Row

generation approaches have been used in many well-known algorithms and have numerous

applications. In these algorithms, a relaxation of the original problem (master problem)

containing only a subset of the constraints is first solved. Then a separation procedure

(in which a subproblem or a separation problem is solved) is invoked, which adds to the

master problem a set of constraints that are violated by the current optimal solution. The

procedure iterates until no violated constraint can be generated in subproblems. The basic

framework of a row generation algorithm is shown in Algorithm 1.
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Algorithm 1 Basic framework of a row generation approach

1: Initialize a constraint set C := ∅.
2: Initialize an initial master problem (e.g., a relaxation of the original problem with a

subset of the constraints).

3: repeat

4: Add all constraints in C to the current master problem.

5: Solve the current master problem, and obtain an optimal solution x.

6: Generate a set of constraints C that separates x from the feasible region.

7: until C is empty

8: return x.

2.2 Benders Decomposition

We present the classical version of the Benders decomposition for solving MIP problems.

Let Z≥0 denote the set of nonnegative integer. We consider a basic MIP formulation:

min
m∑
i=1

aixi +
n∑
j=1

bjyj (2.2.1)

s.t.
m∑
i=1

cikxi +
n∑
j=1

djkyj ≥ fk ∀k ∈ K (2.2.2)

xi ∈ Z≥0 ∀i ∈ I (2.2.3)

yj ≥ 0 ∀j ∈ J, (2.2.4)

with m integer variables xi, ∀i ∈ I = {1, 2, . . . ,m}, and n continuous variable yj ,∀j ∈ J =

{1, 2, . . . , n}. In this form, there are |K| constraints, where K = {1, 2, . . . , l}. If all the

integer variables are fixed to x̄, the model can be optimized by solving the following linear

programming (LP) problem P (x̄):

min

n∑
j=1

bjyj (2.2.5)

s.t.
n∑
j=1

djkyj ≥ fk −
m∑
i=1

cikx̄i ∀k ∈ K (2.2.6)

yj ≥ 0 ∀j ∈ J. (2.2.7)
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Let P (x̄) also denote the optimal value of problem (2.2.5)–(2.2.7). Then, the problem

(2.2.1)–(2.2.4) can be reformulated as:

min
m∑
i=1

aixi + P (x) (2.2.8)

s.t. x is feasible to problem P (x) (2.2.9)

xi ∈ Z≥0 ∀i ∈ I. (2.2.10)

Let αk denote the dual variable associated with the constraint in (2.2.6) for all k ∈ K.

Then, the dual problem D(x̄) of P (x̄) can be expressed as

max
l∑

k=1

(
fk −

m∑
i=1

cikx̄i

)
· αk (2.2.11)

s.t.

l∑
k=1

djkαk ≤ bj ∀j ∈ J (2.2.12)

αk ≥ 0 ∀k ∈ K. (2.2.13)

We define D(x̄) also be the opmial value of problem (2.2.11)–(2.2.13). Based on strong

duality, D(x̄) = P (x̄). By replacing P (x̄) with D(x̄) in problem (2.2.8)–(2.2.8), problem

(2.2.5)–(2.2.7) can be reformulated again as:

min

m∑
i=1

aixi +D(x) (2.2.14)

s.t. x is feasible to problem P (x) (2.2.15)

xi ∈ Z≥0 ∀i ∈ I. (2.2.16)

Notice that the feasible region of D(x̄) is independent of the value x̄. Thus, If the

feasible region is not empty, this problem is either feasible or unbounded for any x̄. Let R

and Q be the set of extreme rays and extreme points of problem D(x̄), respectively. The

following inequalities must hold

l∑
k=1

(fk −
m∑
i=1

cikx̄i) · βk ≤ 0 ∀β ∈ R (2.2.17)

to satisfy the feasibility of problem P (x̄). Consequently, problem (2.2.14)–(2.2.16) can be

re-expressed as:

min
m∑
i=1

aixi + max
α∈Q

l∑
k=1

(fk −
m∑
i=1

cikxi) · αk (2.2.18)

s.t.
l∑

k=1

(fk −
m∑
i=1

cikxi) · βk ≤ 0 ∀β ∈ R (2.2.19)

xi ∈ Z≥0 ∀i ∈ I. (2.2.20)
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By introducing a new variable θ to (2.2.18)–(2.2.20), the Benders formulation of MIP

could be expressed as:

min
m∑
i=1

aixi + θ (2.2.21)

s.t.
l∑

k=1

(fk −
m∑
i=1

cikxi) · βk ≤ 0 ∀β ∈ R (2.2.22)

l∑
k=1

(fk −
m∑
i=1

cikxi) · αk ≤ θ ∀α ∈ Q (2.2.23)

xi ∈ Z≥0 ∀i ∈ I. (2.2.24)

Constraints (2.2.22) and (2.2.23) are called feasibility cuts and optimality cuts, respec-

tively. It is known that the polyhedron of any LP feasible region can be expressed by

finite sets of extreme rays and extreme points. Hence, the sizes of R and Q are finite.

However, it is not impractical in most cases to enumerate all the feasibility cuts and the

optimality cuts. A row generation approach is proposed by Benders to deal with this

difficulty.

A master problem in the classical Benders decomposition can be formulated as:

min

m∑
i=1

aixi + θ (2.2.25)

s.t.
l∑

k=1

(fk −
m∑
i=1

cikxi) · βk ≤ 0 ∀β ∈ R̄ (2.2.26)

l∑
k=1

(fk −
m∑
i=1

cikxi) · αk ≤ θ ∀α ∈ Q̄ (2.2.27)

xi ∈ Z≥0 ∀i ∈ I, (2.2.28)

where R̄ and Q̄ are subsets of R and Q, respectively. This formulation is a relaxation of the

original MIP problem only considering a subset of the feasibility cuts and the optimality

cuts. The classical Benders decomposition repeatedly solves the master problem, obtaining

a solution (x̄, θ̄). It then solves the subproblem D(x̄), obtaining an optimal solution ᾱ and

its objective value. If D(x̄) is bounded and its optimal value is greater than θ̄, ᾱ is added

to Q̄ (i.e., the optimality cut defined by ᾱ is added to (2.2.27)), obtaining an updated

master problem. If D(x̄) is unbounded, an extreme ray β̄ of D(x̄) is added to R̄ (i.e.,

a feasibility cut is added to (2.2.26)). On the other hand, if the optimal value of D(x̄)

is less than or equal to θ̄, no cut can be generated to separate the current solution x̄

from feasible region, (i.e., x̄ is valid for all the constraints in (2.2.26) and (2.2.27)). The

approach iterates until such a feasible solution is obtained.
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2.3 Logic-Based Benders Decomposition

Hooker and Ottosson described the idea of the logic-based Benders decomposition [51].

They introduced that each subproblem in this Benders-like decomposition can be a gen-

eralized dual, so-called inference dual, that aims to seek the tightest possible bound on

the optimal value of the master problem. In other words, a solution of the inference dual

problem is a proof of the optimality for the original problem. The inference dual satisfies

a trivial form of strong duality. However, in each non-final iteration of the logic-based

Benders decomposition, the following property holds for a minimization problem:

the optimal value of the master ≤ the optimal value of the original problem

≤ the optimal value of the subproblem (inference dual).

Based on this property, in each iteration a Benders cut is generated for the next iteration.

Different from the classical Benders decomposition, the subproblems are not needed

to be LP problems. In some cases, they can even be NP-hard problems, one of which is

shown in Chapter 4.





Chapter 3

Column Generation

Column generation has been known as one of the most successful methods for solving

combinatorial optimization problems. We explain the basic idea of column generation in

Section 3.1. Section 3.2 describes a general approach for solving linear programming prob-

lems. This approach is widely used as an efficient algorithm for a variety of combinational

optimization problems, such as airline crew scheduling and cutting stock problem. We

explain another type of column generation, Dantzig-Wolfe decomposition, in Section 3.3.

3.1 General Framework

Column generation, analogous to row generation, has been proven to be an efficient ap-

proach for large-scale combinatorial optimization problems. This approach is mostly ap-

plied to the problems that contain a huge (in many cases exponential) number of variables

compared to the number of constraints. For each variable, the corresponding coefficients

in the objective function and in the constraint matrix are called columns. In a basic col-

umn generation approach, we consider a master problem by reducing a number of columns

from the original problem rather than explicitly enumerating all the columns. Note that,

different from row generation, any feasible solution to a master problem is also feasible for

the original problem. A subproblem aims to find a column set from the original column

set to improve the incumbent value. Then we add such obtained column(s) to the current

master problem, and solve it again. This procedure iterates until no column can improve

the incumbent value. Thus, the obtained optimal solution is an optimal solution to the

original problem. Let Call be the column set of the original problem. The basic framework

of a column generation approach is described in Algorithm 2.
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Algorithm 2 Basic framework of a column generation approach

1: Initialize an initial master problem with a column set C(⊆ Call), for which a feasible

solution exists.

2: repeat

3: Add all columns in C to the current master problem.

4: Solve the current master problem, and obtain an optimal value and its solution x.

5: Generate a set of columns C from Call to improve the incumbent value.

6: until C is empty

7: return x.

3.2 Basic Column Generation for Linear Program

Let us consider the following linear program, called the master problem

min
∑
j∈J

cjxj

s.t.
∑
j∈J

aijxj ≥ bi ∀i ∈ I

xj ≥ 0 ∀j ∈ J,

where J = {1, 2, . . . , n} and I = {1, 2, . . . ,m}. Column generation starts with a restricted

master problem, which contains only a subset J ′ ⊆ J of columns:

min
∑
j∈J ′

cjxj

s.t.
∑
j∈J ′

aijxj ≥ bi ∀i ∈ I

xj ≥ 0 ∀j ∈ J ′.

We consider the dual problem of the restricted master problem with dual valuable π:

max
∑
i∈I

biπi

s.t.
∑
i∈I

aijπi ≤ cj ∀j ∈ J ′

πi ≥ 0 ∀i ∈ I.

Denote by x∗ and π∗ optimal solutions to the primal and dual of the restricted master

problem, respectively. A subproblem, also called a pricing problem, aims to search for a

new column j with negative reduced cost to enter the column set J ′:

min
j∈J\J ′

{
cj −

∑
i∈I

aijπ
∗
i

}
(3.2.1)
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Note that aij is the variable in this pricing problem. Denote by j′ the column corresponding

to an optimal solution. If the optimal solution value of problem (3.2.1) is is less than zero,

we add j′ into J ′ and solve the restricted master problem with the updated column set

J ′; otherwise, the current optimal solution x∗ is a feasible solution to the master problem.

By using the LP duality theorem, this feasible solution x∗ can be proven to be an optimal

solution to the master problem. Observe that the total number of iterations is bounded

by |J |, so convergence is assured.

3.3 Dantzig-Wolfe Decomposition

Dantzig-Wolfe Decomposition was known as a classical case using a column generation

approach. Dantzig and Wolfe initially proposed Dantzig-Wolfe decomposition algorithm

in 1960 for solving linear programming (LP) problems [27]. A significant set of practical

problems in combinatorial optimization can be expressed as (integer) linear programming

problems with sparse matrices, i.e., matrices such that a greater proportion of the elements

are zero (see for example [54]). In modeling stage, many variables are defined but used

only in a limited part of constraints. Thus, it is natural that we can formulate many

problems in real-world applications with a block structure.

Given a constraint matrix

A = {aij | ∀i ∈ I, ∀j ∈ J},

we consider a pair of (l+1)-size partitions both on rows and columns denoted by {I0, I1, . . . , Il}
and {J0, J1, . . . , Jl}, respectively, i.e.,

I =
⋃

k∈K∪{0}

Ik (3.3.2)

Ik ∩ Ik′ = ∅ ∀k, k′ ∈ K ∪ {0} and k 6= k′ (3.3.3)

J =
⋃

k∈∪{0}

Jk (3.3.4)

Jk ∩ Jk′ = ∅ ∀k, k′ ∈ K ∪ {0} and k 6= k′, (3.3.5)
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where K = {1, 2, . . . , l}. We can formulate a linear programming problem as

min
∑
j∈J

cjxj (3.3.6)

s.t.
∑
j∈J

aijxj ≥ bi ∀i ∈ I0 (3.3.7)

∑
j∈Jk

aijxj ≥ bi ∀i ∈ Ik, k ∈ K (3.3.8)

xj ≥ 0 ∀j ∈ J. (3.3.9)

Thus, the given constraint matrix are partitioned into blocks Akk′ = {aij | i ∈ Ik, j ∈ Jk′}
as visualized in Figure 3.1 without loss of generality. We call constraints (3.3.7) the linking

J0 J1 J2 · · · Jl−1 Jl

I0 A00 A01 A02 · · · A0,l−1 A0l

I1 A11

I2 A22

...
. . .

Il−1 Al−1,l−1

Il All

Figure 3.1: Block structure in Dantzig-Wolfe for LP

constraints. Notice that if we remove constraints (3.3.7) from the model (3.3.6)–(3.3.9),
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the problem is decomposed into l independent problems, i.e.,

min
∑
j∈Jk

cjxj (3.3.10)

∑
j∈Jk

aijxj ≥ bi ∀i ∈ Ik, k ∈ K (3.3.11)

xj ≥ 0 ∀j ∈ Jk (3.3.12)

for each k ∈ {1, 2, . . . , l}. Let F be the feasible region (polyhedron) expressed by linear

constraints (3.3.8). Denote by Q and R the set of extreme points and extreme rays of

polyhedron F , respectively. Because of the convexity property [18], we know that any

point x ∈ F can be represented by a convex combination (Minkowski’s representation)

xj =
∑

t:xt∈Q

λtx
t
j +

∑
t:xt∈R

µtx
t
j ∀j ∈ J (3.3.13)

with

∑
t:xt∈Q

λt = 1 (3.3.14)

λt ≥ 0 ∀xt ∈ Q (3.3.15)

µt ≥ 0 ∀xt ∈ R. (3.3.16)

Using (3.3.13), we can reformulate (3.3.6)–(3.3.9) as

min
∑
j∈J

cj

 ∑
t:xt∈Q

λtx
t
j +

∑
t:xt∈R

µtx
t
j

 (3.3.17)

s.t.
∑
j∈J

aij

 ∑
t:xt∈Q

λtx
t
j +

∑
t:xt∈R

µtx
t
j

 ≥ bi ∀i ∈ I0 (3.3.18)

∑
t:xt∈Q

λt = 1 (3.3.19)

λt ≥ 0 ∀xt ∈ Q (3.3.20)

µt ≥ 0 ∀xt ∈ R. (3.3.21)

Note that the variables in (3.3.17)–(3.3.21) are λ and µ. Thus, we can rearrange it as
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follows:

min
∑

t:xt∈Q

∑
j∈J

cjx
t
j

λt +
∑

t:xt∈R

∑
j∈J

cjx
t
j

µt (3.3.22)

s.t.
∑

t:xt∈Q

∑
j∈J

aijx
t
j

λt +
∑

t:xt∈R

∑
j∈J

aijx
t
j

µt ≥ bi ∀i ∈ I0 (3.3.23)

∑
t:xt∈Q

λt = 1 (3.3.24)

λt ≥ 0 ∀xt ∈ Q (3.3.25)

µt ≥ 0 ∀xt ∈ R. (3.3.26)

Compared with (3.3.6)–(3.3.9), this reformulation reduced the number of constraints from

|I| to |I0|, while the column size increased from |J | to |Q|+ |R| which may be exponential

to |J |. We call the form (3.3.22)–(3.3.22) the master problem, and consider a restricted

master problem with a subset Q′ ⊆ Q and a subset R′ ⊆ R instead:

min
∑

t:xt∈Q′

∑
j∈J

cjx
t
j

λt +
∑

t:xt∈R′

∑
j∈J

cjx
t
j

µt (3.3.27)

s.t.
∑

t:xt∈Q′

∑
j∈J

aijx
t
j

λt +
∑

t:xt∈R′

∑
j∈J

aijx
t
j

µt ≥ bi ∀i ∈ I0 (3.3.28)

∑
t:xt∈Q′

λt = 1 (3.3.29)

λt ≥ 0 ∀xt ∈ Q′ (3.3.30)

µt ≥ 0 ∀xt ∈ R′. (3.3.31)

Let π and ρ be the dual variables for (3.3.28) and (3.3.29), respectively. The dual problem

to this restricted master problem can be expressed as follows:

max
∑
i∈I0

πibi + ρ (3.3.32)

s.t.
∑
i∈I0

∑
j∈J

aijx
t
j

πi + ρ ≤
∑
j∈J

cjx
t
j ∀xt ∈ Q′ (3.3.33)

∑
i∈I0

∑
j∈J

aijx
t
j

πi ≤
∑
j∈J

cjx
t
j ∀xt ∈ R′ (3.3.34)

πi ≥ 0 ∀i ∈ I0. (3.3.35)
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Let us define (π∗, ρ∗) as an optimal solution to the problem (3.3.32)–(3.3.35). The pricing

problems based on π∗ and ρ∗ are defined as

ξQ = min
∑
j∈J

cj −∑
i∈I0

aijπ
∗
i

xj − ρ∗ (3.3.36)

s.t. x ∈ Q, (3.3.37)

and

ξR = min
∑
j∈J

cj −∑
i∈I0

aijπ
∗
i

xj (3.3.38)

s.t. x ∈ R. (3.3.39)

Using the block structure defined in (3.3.2)–(3.3.5), the resulting pricing problems are

composed of l independent LP problems, i.e.,

min
∑
j∈Jk

cj −∑
i∈I0

aijπ
∗
i

xj (3.3.40)

∑
j∈Jk

aijxj ≥ bi ∀i ∈ Ik, k ∈ K (3.3.41)

xj ≥ 0 ∀j ∈ Jk (3.3.42)

for k ∈ {1, 2, . . . , l}. Due to the strong duality theorem [18], we then generate a new column

based on the following cases. If one of the problems in (3.3.40)–(3.3.42) is unbounded,

there exists an extreme ray xt
′
(∈ R) with

∑
j∈J

cj −∑
i∈I0

aijπ
∗
i

xt
′
j < 0 (3.3.43)

(i.e., ξR < 0). In this case, we add xt
′

to R′ and solve the updated restricted master

problem. If all the problems (3.3.40)–(3.3.42) are bounded and

ξQ < 0, (3.3.44)

we add to Q′ an extreme point xt
′
, an optimal solution to the problems in (3.3.36)–(3.3.37),

and solved the updated restricted master problem. Otherwise, no extreme rays or extreme

points can be a variable entering the basis, i.e., Dantzig-Wolfe decomposition is proved to

solve the problem to optimality.

By reviewing Chapter 2, Dantzig-Wolfe decomposition can be viewed as a dual coun-

terpart of the classical Benders decomposition [62]. Indeed, corresponding to the block
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structure depicted in Figure 3.1 for Dantzig-Wolfe Decomposition, Figure 3.2 shows the

constraint matrix in the Benders decomposition for linear programming. However, this

observation does not hold for logic-based Benders decomposition in Section 2.3.

J0 J1 J2 · · · Jl−1 Jl

I0 A00

I1 A01 A11

I2 A02 A22

...
...

. . .

Il−1 A0,l−1 Al−1,l−1

Il A0l All

Figure 3.2: Block structure in Benders decomposition for LP



Chapter 4

Min-Max Regret Generalized

Assignment Problem

Row generation using in robust optimization has attracted significant research efforts. In

this chapter, we study a variant of the generalized assignment problem with uncertainty in

input data. We propose a logic-based Benders decomposition approach, as well as several

heuristic and exact algorithms.

Many optimization problems arising in real-world applications do not have accurate

estimates of the problem parameters when the optimization decision is taken. Stochastic

programming and robust optimization are two common approaches for the solution of

optimization problems under uncertainty. The min-max regret criterion is one of the

typical approaches for robust optimization. The regret is defined as the difference between

the actual cost and the optimal cost that would have been obtained if a different solution

had been chosen. The min-max regret approach is to minimize the worst-case regret. This

criterion is not as pessimistic as the ordinary min-max approach, which looks for a solution

with the best worst-case value across all scenarios.

The min-max regret version of a number of important combinatorial optimization

problems has been recently studied, such as the traveling salesman problem [73], the

assignment problem [83], the minimum spanning tree problem [24, 108, 110], the scheduling

problems [8, 56], the shortest path problem [53], the facility location problem [6], the

resource allocation problem [7, 110], the set covering problem [84], and the 0-1 knapsack

problem [40]. Most of these problems are known to be NP-hard in the strong sense (see,

e.g., [1] and [9]). In the literature, the solution of this kind of problems has been tackled

with a number of exact and heuristic techniques. Concerning exact algorithms, logic-based

Benders decomposition methods iteratively solve a relaxed master problem in which only

a subset of scenarios is considered. Cuts corresponding to violated scenarios are computed
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by the solution of a slave problem and possibly added to the master problem, until a

solution satisfying all scenarios is found (see, e.g., Montemanni [72]). Branch-and-cut

methods extend the Logic-based Benders decomposition by including the solution of the

slave problem at all nodes of the enumeration tree, and have been applied to several min-

max regret problems (see Pereira and Averbakh [84]). Other authors used instead the

structure of the min-max regret problem at hand to devise tailored combinatorial branch-

and-bound algorithms, such as the one by Montemanni and Gambardella [74]. Concerning

heuristic methods, several attempts have been made, including constructive heuristics

based on the solution of a fixed scenario (Kasperski and Zielinski [56]) or on the inclusion of

a dual relaxation component (Furini et al. [40]), as well as more elaborated metaheuristics

such as genetic algorithms and filter-and-fan methods (Pereira and Averbakh [84]). For

a deeper analysis of the existing literature, we refer the interested reader to Kouvelis and

Yu [60], Kasperski [55], Aissi, Bazgan and Vanderpooten [2], and Candia-Véjar, Álvarez-

Miranda, and Maculan [19].

In this chapter we consider the generalized assignment problem (GAP) with min-max

regret criterion under interval costs. The classical GAP is an NP-hard combinatorial op-

timization problem [91] having many applications (see [38], [70], and [89]). The interval

min-max regret generalized assignment problem (MMR-GAP) is a generalization of the

GAP to the case where the cost coefficients are uncertain. We assume that every cost

coefficient can take any value in a corresponding given interval, regardless of the values

taken by the other cost coefficients. The problem requires to find a robust solution that

minimizes the maximum regret. We prove that the decision version of the problem is

Σp
2-complete. We computationally evaluate a heuristic algorithm for the MMR-GAP that

solves the underlying GAP to optimality under a fixed scenario. We consider three sce-

narios: lowest cost, highest cost, and median cost. The median cost scenario leads to

a solution of the MMR-GAP whose objective function value is within twice the optimal

value. We also computationally evaluate a dual substitution heuristic based on a mixed

integer programming (MIP) model obtained by replacing some constraints with the dual

of their continuous relaxation.

We also examine three exact algorithmic approaches that iteratively solve the prob-

lem by only including a subset of scenarios. The first approach is based on logic-based

Benders decomposition: it solves a MIP with incomplete scenarios and iteratively supple-

ments the scenarios corresponding to violated constraints. The second approach is a basic

branch-and-cut algorithm, in which the violated constraints are added at the nodes of a

MIP enumeration tree. We then introduce a new Lagrangean-based branch-and-cut algo-

rithm and enhance it through: (i) effective Lagrangian relaxations, to provide tighter lower

bounds than those produced by the linear programming relaxation; (ii) an efficient vari-
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able fixing technique; (iii) a two-direction dynamic programming approach to effectively

solve the Lagrangian subproblems. We evaluate the algorithms through computational

experiments on different benchmarks.

4.1 Problem Description

4.1.1 Generalized Assignment Problem

The generalized assignment problem (GAP) is defined as follows. Given a set of n jobs

J = {1, . . . , n} and a set of m agents I = {1, . . . ,m}, we look for a minimum cost

assignment, subject to assigning each job to exactly one agent and satisfying a resource

constraint for each agent. Assigning job j to agent i incurs a cost cij and consumes an

amount aij of a resource, whereas the total amount of the resource available at agent i

(agent capacity) is bi.

A natural formulation of the GAP is defined over a two-dimensional binary variable

xij indicating that job j is assigned to agent i if and only if xij = 1:

min
m∑
i=1

n∑
j=1

cijxij (4.1.1)

s.t.
n∑
j=1

aijxij ≤ bi ∀i ∈ I (4.1.2)

m∑
i=1

xij = 1 ∀j ∈ J (4.1.3)

xij ∈ {0, 1} ∀i ∈ I, ∀j ∈ J. (4.1.4)

For convenience, we define X0 to be the set of all feasible solutions of the GAP, i.e.,

X0 = {x | x satisfies constraints (4.1.2)–(4.1.4)}. (4.1.5)

4.1.2 Interval Min-Max Regret Generalized Assignment Problem

In this chapter we assume that the cost cij can take any value within a given range [c−ij , c
+
ij ].

An array of costs csij satisfying csij ∈ [c−ij , c
+
ij ] ∀i ∈ I, j ∈ J , is called a scenario and is

denoted by s. We define zs(x) to be the objective function value of solution x ∈ X0 under

scenario s:

zs(x) =

m∑
i=1

n∑
j=1

csijxij . (4.1.6)
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We denote by zs∗ the optimal solution value under scenario s, i.e., zs∗ = miny∈X0 z
s(y).

The regret rs(x) associated with solution x under scenario s is then the difference between

these two values:

rs(x) = zs(x)− zs∗. (4.1.7)

Let S denote the set of all possible scenarios, i.e.,

S = {s | csij ∈ [c−ij , c
+
ij ] ∀i ∈ I, j ∈ J}.

The maximum regret of a solution x is then the maximum rs(x) value over all scenarios:

rmax(x) = max
s∈S

rs(x). (4.1.8)

The MMR-GAP is to find a feasible solution x such that the maximum regret is minimized:

min
x∈X0

rmax(x) = min
x∈X0

max
s∈S

rs(x) = min
x∈X0

max
y∈X0
s∈S


m∑
i=1

n∑
j=1

csijxij −
m∑
i=1

n∑
j=1

csijyij

 . (4.1.9)

This formulation can be rewritten using the following classical general result that was

proposed by Aissi et al. [2] (whose roots are in Yaman et al. [108]), which also applies to

many other interval min-max problems.

Lemma 4.1.1. The regret of a solution x ∈ X0 is maximized under the following scenario

σ(x):

c
σ(x)
ij =

c
+
ij if xij = 1

c−ij otherwise
∀i ∈ I, ∀j ∈ J. (4.1.10)

In other words, the value rmax(x) is achieved by the scenario that gives the worst costs

to the job-agent pairs selected by the assignment x, and the best costs to the non-selected

job-agent pairs. Since xij is a binary variable, c
σ(x)
ij can also be written as

c
σ(x)
ij = c−ij + (c+

ij − c
−
ij)xij ∀i ∈ I, ∀j ∈ J. (4.1.11)

From Lemma 4.1.1, the maximum regret is achieved if we apply the worst scenario

σ(x) to s, and, from (4.1.9), the MMR-GAP can be rewritten as

min
x∈X0

rmax(x) = min
x∈X0

max
y∈X0
s∈S


m∑
i=1

n∑
j=1

csijxij −
m∑
i=1

n∑
j=1

csijyij


= min
x∈X0


m∑
i=1

n∑
j=1

c
σ(x)
ij xij − min

y∈X0

m∑
i=1

n∑
j=1

c
σ(x)
ij yij


= min
x∈X0


m∑
i=1

n∑
j=1

c+
ijxij − min

y∈X0

m∑
i=1

n∑
j=1

c
σ(x)
ij yij

 . (4.1.12)

We assume in the following that all input data are integers.
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4.1.3 Complexity of the MMR-GAP

The decision version of the MMR-GAP is the problem of deciding whether there exists a

feasible solution x such that the maximum regret of x is less than a given constant. In

this section we consider complexity issues of the MMR-GAP and show that the decision

version of the MMR-GAP is Σp
2-complete, where the class Σp

2 is defined as follows. We

have Σp
0 = P; for k ≥ 0, Σp

k+1 = NPΣp
k , where NPX is the set of decision problems that

are solvable in polynomial time by a non-deterministic Turing machine with an oracle for

a problem of class X. Hence Σp
1 = NP, and Σp

2 is the class of decision problems that are

solvable in non-deterministic polynomial time with an oracle for a problem of class NP.

It is not hard to see that the MMR-GAP(0), a special case of the MMR-GAP that re-

quires to find a solution whose maximum regret equals 0, is at least as hard as the classical

GAP. Indeed a solution to a special case of the MMR-GAP(0) with c+
ij = c−ij = cij for all i ∈

I and j ∈ J gives an optimal solution to the GAP, implying that GAP ≤P MMR-GAP(0),

where “A ≤P B” signifies that problem A is polynomial time reducible to B. It is easy to

show that the problem of finding a feasible solution to the GAP is NP-hard in the strong

sense, as it can model (as mentioned in [104]), without introducing large numbers, the

bin packing problem, which is known to be NP-hard in the strong sense [41]. The same

holds for the MMR-GAP, because it has exactly the same feasible region X0 as the GAP.

Moreover, it is not hard to see by a similar reduction from bin packing that even if we

restrict our attention to feasible instances, the GAP is still NP-hard in the strong sense,

and so is the MMR-GAP(0). Accordingly, we have the following lemma.

Lemma 4.1.2. The problem of finding a feasible solution to the MMR-GAP is NP-hard in

the strong sense, and even if it is assumed that only feasible instances are given as input,

the MMR-GAP(0) is still NP-hard in the strong sense.

Since it is NP-hard to find a feasible solution, it is not possible (unless P = NP) for the

GAP or the MMR-GAP to design a polynomial time approximation algorithm (for which

it is required to find a feasible solution in polynomial time), and hence approximation

algorithms with performance guarantees have only been proposed for variants of the GAP

(see a survey in [104]). The fact that the MMR-GAP(0) is NP-hard for feasible instances

rules out (under the assumption of P 6= NP) the possibility of designing for the MMR-GAP,

a polynomial time k-factor approximation algorithm for any finite k (≥ 1) even if feasible

instances are assumed, where a k-factor approximation algorithm for the MMR-GAP

guarantees to find a solution x̂ that satisfies rmax(x̂) ≤ krmax(x) for all x ∈ X0. This

follows from the fact that if an optimal solution x∗ to the MMR-GAP has the maximum

regret of value 0, the solution x̂ obtained by a k-factor approximation algorithm is optimal,

because rmax(x̂) ≤ krmax(x∗) = 0 holds.
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In order to clarify the complexity of the MMR-GAP, consider an arbitrary instance of

the interval min-max regret knapsack problem (MMR-KP): given a set J̄ of n̄ items with

weights w1, . . . , wn̄, profit ranges [p−1 , p
+
1 ], . . . , [p−n̄ , p

+
n̄ ] and capacity d, find a solution that

minimizes the maximum regret. Let S̄ denote the set of all possible scenarios, i.e.,

S̄ = {s | psj ∈ [p−j , p
+
j ] ∀j ∈ J̄},

and x̄ denote binary variables

x̄j =

1 if item j is selected

0 otherwise
∀j ∈ J̄ . (4.1.13)

The MMR-KP can be formulated as

max
x̄∈X1

min
s∈S̄

max
ȳ∈X1

n̄∑
j=1

psj ȳj −
n̄∑
j=1

psj x̄j

 ,

where

X1 = {x̄ |
n̄∑
j=1

wj x̄j ≤ d and x̄ ∈ {0, 1}}. (4.1.14)

By using the worst-case lemma, MMR-KP can be written as

min
x̄∈X1

max
ȳ∈X1

n̄∑
j=1

(p+
j + (p−j − p

+
j )x̄j)ȳj −

n̄∑
j=1

p−j x̄j

 . (4.1.15)

Let p+
max denote maxj∈J̄ p

+
j . We construct an instance of the MMR-GAP as follows:

m = 2, n = n̄, (4.1.16)

a1j = wj , a2j = 1, ∀j ∈ J, (4.1.17)

b1 = d, b2 = n̄,

c+
1j = p+

max − p−j , c−1j = p+
max − p+

j , ∀j ∈ J, (4.1.18)

c+
2j = c−2j = p+

max, ∀j ∈ J. (4.1.19)

Any feasible solution x̄ of this MMR-KP instance can be transformed into a feasible

solution x of the corresponding the MMR-GAP instance by

x1j = x̄j , x2j = 1− x̄j , ∀j ∈ J, (4.1.20)
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and vice versa. From (4.1.16)–(4.1.19), for any solutions x and x̄, and y and ȳ that

respectively satisfy (4.1.20) and for each j, we have

2∑
i=1

(c−ij + (c+
ij − c

−
ij)xij)yij

= (p+
max − p+

j − (p−j − p
+
j )x1j)y1j + (p+

max + 0 · x2j)y2j

= (p+
max − p+

j − (p−j − p
+
j )x̄j)ȳj + p+

max(1− ȳj)

= p+
max − (p+

j + (p−j − p
+
j )x̄j)ȳj , (4.1.21)

2∑
i=1

c+
ijxij = (p+

max − p−j )x1j + p+
maxx2j

= (p+
max − p−j )x̄j + p+

max(1− x̄j)

= p+
max − p−j x̄j . (4.1.22)

Then, by applying (4.1.21) and (4.1.22) to (4.1.12), together with the fact that for any two

solutions x̄ and x that satisfy (4.1.20), x̄ is feasible to MMR-KP if and only if x is feasible

to the corresponding instance of MMR-GAP, the maximum regret of every solution x to

the above MMR-GAP instance is

m∑
i=1

n∑
j=1

c+
ijxij − min

y∈X0

m∑
i=1

n∑
j=1

(c−ij + (c+
ij − c

−
ij)xij)yij

= n̄p+
max −

n̄∑
j=1

p−j x̄j − min
ȳ∈X1

n̄∑
j=1

(p+
max − (p+

j + (p−j − p
+
j )x̄j)ȳj)

= max
ȳ∈X1

n̄∑
j=1

(p+
j + (p−j − p

+
j )x̄i)ȳj −

n̄∑
j=1

p−j x̄j , (4.1.23)

and the optimal value of this instance is

min
x∈X0


m∑
i=1

n∑
j=1

c+
ijxij − min

y∈X0

m∑
i=1

n∑
j=1

(c−ij + (c+
ij − c

−
ij)xij)yij


= min

x̄∈X1

max
ȳ∈X1

n̄∑
j=1

(p+
j + (p−j − p

+
j )x̄i)ȳj −

n̄∑
j=1

p−j x̄j

 . (4.1.24)

The formulation in the last line of (4.1.24) is exactly the form of MMR-KP (4.1.15).

This ensures that a solution of the MMR-GAP is optimal if and only if its correspond-

ing solution transformed by (4.1.20) is an optimal solution to MMR-KP, and hence

the MMR-GAP has the interval MMR-KP as special case. Using this reduction from

MMR-KP, which is known to be Σp
2-hard [28], we then obtain the following.
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Lemma 4.1.3. The MMR-GAP is Σp
2-hard.

The decision version of the MMR-GAP satisfies the condition of Theorem 7.4 in [41]

for k = 2, which implies the following.

Lemma 4.1.4. The decision version of the MMR-GAP lies in Σp
2.

By combining Lemma 4.1.3 and 4.1.4, we can conclude with the following property.

Property 4.1.1. The decision version of the MMR-GAP is Σp
2-complete.

4.2 Heuristic Algorithms

In this section we present heuristic algorithms that, in view of the considerations of the

previous section, are not guaranteed to run in polynomial time.

4.2.1 Fixed-Scenario Algorithm

We introduce a heuristic approach based on the observation that a feasible solution to

an MMR-GAP instance can be obtained by fixing a scenario, solving the resulting GAP

instance to optimality, and evaluating the maximum regret of the obtained solution using

(4.1.12). This approach was used for other interval min-max regret problems (see, e.g., [56]

and [84]).

We consider three scenarios: the lowest cost csij = c−ij , the highest cost csij = c+
ij , and

the median cost csij = (c−ij + c+
ij)/2.

For the median-cost scenario, the following result is a special case of a more general

result proved in [56].

Lemma 4.2.1. Let s̃ be the median-cost scenario, i.e., cs̃ij = (c−ij + c+
ij)/2 ∀i ∈ I, ∀j ∈ J ,

and let x̃ be an optimal solution to the GAP under s̃. Then, rmax(x̃) ≤ 2rmax(x) holds for

all x ∈ X0.

Proof. For any two solutions x, y ∈ X0 and scenario s ∈ S, we have

zs(x)− zs(y) =

m∑
i=1

n∑
j=1

csij(xij − yij) (4.2.25)

from definition (4.1.6). Using (4.2.25) and definitions (4.1.7) and (4.1.8), the following
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inequality holds:

rmax(y) = max
s∈S
{zs(y)− zs∗}

≥ max
s∈S
{zs(y)− zs(x)}

= max
s∈S

m∑
i=1

n∑
j=1

csij(yij − xij)

=
∑

(i,j): yij>xij

c+
ij(yij − xij) +

∑
(i,j): yij<xij

c−ij(yij − xij). (4.2.26)

From (4.2.25), we can also obtain

zσ(x)(x) = zσ(x)(y) +
m∑
i=1

n∑
j=1

c
σ(x)
ij (xij − yij) (4.2.27)

= zσ(x)(y) +
∑

(i,j):xij>yij

c+
ij(xij − yij) +

∑
(i,j):xij<yij

c−ij(xij − yij), (4.2.28)

where σ(x) is the worst-case scenario defined by Lemma 4.1.1. Then, by subtracting z
σ(x)
∗

from both sides of (4.2.27), we get

rmax(x) = zσ(x)(x)− zσ(x)
∗ (4.2.29)

= zσ(x)(y)− zσ(x)
∗ +

∑
(i,j):xij>yij

c+
ij(xij − yij) +

∑
(i,j):xij<yij

c−ij(xij − yij). (4.2.30)

By combining this with rmax(y) ≥ zσ(x)(y)− zσ(x)
∗ , we get

rmax(x) ≤ rmax(y) +
∑

(i,j):xij>yij

c+
ij(xij − yij) +

∑
(i,j):xij<yij

c−ij(xij − yij). (4.2.31)

Now we consider the median-cost scenario s̃. Since x̃ is an optimal solution under s̃, we

have zs̃(x̃) ≤ zs̃(y), and according to (4.2.25),

m∑
i=1

n∑
j=1

1

2
(c+
ij + c−ij)(x̃ij − yij) = zs̃(x̃)− zs̃(y) ≤ 0 (4.2.32)

holds, which is is equivalent to∑
(i,j): yij>x̃ij

c+
ij(yij − x̃ij) +

∑
(i,j): yij<x̃ij

c−ij(yij − x̃ij) (4.2.33)

≥
∑

(i,j): x̃ij>yij

c+
ij(x̃ij − yij) +

∑
(i,j): x̃ij<yij

c−ij(x̃ij − yij). (4.2.34)

Then, by applying this to (4.2.26), we obtain

rmax(y) ≥
∑

(i,j): x̃ij>yij

c+
ij(x̃ij − yij) +

∑
(i,j): x̃ij<yij

c−ij(x̃ij − yij). (4.2.35)
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By combining (4.2.31) and (4.2.35), we finally obtain

rmax(x̃) ≤ 2rmax(y) ∀y ∈ X0. (4.2.36)

We next provide a tight example for the approximation ratio of Lemma 4.2.1.

Lemma 4.2.2. There is an instance of the MMR-GAP for which an optimal solution to

GAP under the median-cost scenario s̃ has a regret twice as large as the optimal regret.

Proof. Let m = 3, n = 1, a11 = a21 = a31, b1 = 1 with interval costs c11 ∈ [1, 1],

c21 ∈ [0, 2], c31 ∈ [0, 2]. Assigning the unique job to any agent gives an optimal solution to

GAP under the median-cost scenario, because all median costs have value 1. The optimal

MMR-GAP solution assigns the job to agent 1, attaining the maximum regret of value 1,

while assigning the job to agent 2 (or 3) gives the maximum regret of value 2.

Recall that in Section 4.1.3 we derived Lemma 4.1.2 from the observation that GAP

≤P MMR-GAP(0). It might be interesting to note that we can also show the opposite

direction MMR-GAP(0) ≤P GAP, because Lemma 4.2.1 implies that by solving the GAP

under the median-cost scenario, we can obtain an optimal solution to the MMR-GAP(0)

(for the reason discussed in the paragraph after Lemma 4.1.2).

4.2.2 Dual Substitution Heuristic

The dual substitution heuristic introduced in this section is based on a mixed integer

programming (MIP) formulation in which some of the constraints are replaced by their

dual counterpart in the linear relaxation of the problem. Kasperski provided a general

technique in [55], and similar ideas of using MIP models have been used a number of

times to produce exact algorithms for other min-max regret problems having zero duality

gap, such as the min-max regret shortest problem [53], the min-max regret spanning tree

problem [108]. To our knowledge, it is relatively new to use such ideas to design heuristic

algorithms for problems with possibly non-zero duality gaps [40], and not much has been

done to apply such ideas to various problems and computationally evaluate the resulting

heuristics. In our research, we use it as a heuristic for the MMR-GAP.

The minimization problem over y in (4.1.12),

min
y∈X0

m∑
i=1

n∑
j=1

c
σ(x)
ij yij , (4.2.37)
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for every fixed x is an instance of the GAP. We consider the linear program obtained by

replacing the integrality constraint yij ∈ {0, 1} with the weaker requirement yij ≥ 0 for

all i ∈ I and j ∈ J , i.e.,

min
m∑
i=1

n∑
j=1

c
σ(x)
ij yij (4.2.38)

s.t.

n∑
j=1

aijyij ≤ bi ∀i ∈ I (4.2.39)

m∑
i=1

yij = 1 ∀j ∈ J (4.2.40)

yij ≥ 0 ∀i ∈ I, ∀j ∈ J. (4.2.41)

We introduce two types of dual variables: λi (i ∈ I) for constraints (4.2.39) and

µj (j ∈ J) for constraints (4.2.40). The dual of (4.2.38)–(4.2.41) is then

max −
m∑
i=1

biλi +
n∑
j=1

µj (4.2.42)

s.t. −aijλi + µj ≤ cσ(x)
ij ∀i ∈ I, ∀j ∈ J (4.2.43)

λi ≥ 0 ∀i ∈ I. (4.2.44)

By using (4.1.11) and embedding (4.2.42)–(4.2.44) into (4.1.12), we obtain the following

dual substitution model (D-MMR-GAP):

min
m∑
i=1

n∑
j=1

c+
ijxij +

m∑
i=1

biλi −
n∑
j=1

µj (4.2.45)

s.t. −aijλi + µj ≤ c−ij + (c+
ij − c

−
ij)xij ∀i ∈ I, ∀j ∈ J (4.2.46)

λi ≥ 0 ∀i ∈ I (4.2.47)

x ∈ X0. (4.2.48)

Intuitively, the D-MMR-GAP is not easier than the GAP, since it contains all the GAP

constraints. In fact, the D-MMR-GAP has the following complexity:

Property 4.2.1. Problem D-MMR-GAP is NP-hard in the strong sense.

Proof. Given an instance of the classical GAP, we transform it to an instance of the

D-MMR-GAP by considering intervals with no gap c+
ij = c−ij = cij . Then, because the

right-hand side of (4.2.46) becomes a constant value cij , the resulting D-MMR-GAP de-
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composes into two problems:

(i) min
m∑
i=1

n∑
j=1

cijxij (4.2.49)

s.t. x ∈ X0; (4.2.50)

(ii) min

m∑
i=1

biλi −
n∑
j=1

µj (4.2.51)

s.t. −aijλi + µj ≤ cij ∀i ∈ I, ∀j ∈ J (4.2.52)

λi ≥ 0 ∀i ∈ I. (4.2.53)

Note that these two problems are totally separated and the former problem is exactly the

same as the given GAP instance. This implies that the GAP is polynomial-time reducible

to the D-MMR-GAP, and in this reduction it is not necessary to introduce large numbers

(i.e., the maximum among the absolute values of the coefficients c+
ij , c

−
ij , aij , and bi of

the D-MMR-GAP instance is the same as that of the GAP instance). Since the GAP is

known to be NP-hard in the strong sense, the same hods for the D-MMR-GAP.

Property 4.2.2. The optimal solution value of the D-MMR-GAP is an upper bound for

the MMR-GAP.

Proof. Let X̂ denote the set of feasible solutions for the continuous relaxation of the GAP:

X̂ = {y | y satisfies constraints (4.2.39)–(4.2.41)}.

From (4.1.5), we have X0 ⊆ X̂, and hence

min
x∈X0


m∑
i=1

n∑
j=1

c+
ijxij − min

y∈X0

m∑
i=1

n∑
j=1

c
σ(x)
ij yij

 (4.2.54)

≤ min
x∈X0


m∑
i=1

n∑
j=1

c+
ijxij −min

y∈X̂

m∑
i=1

n∑
j=1

c
σ(x)
ij yij

 . (4.2.55)

Note that, according to (4.1.12), the left side of the above inequality is the optimal value

of the MMR-GAP.

Let D(x) denote the set of feasible solutions of the dual problem in (4.2.42)–(4.2.44):

D(x) = {(u, v) | (u, v) satisfies constraints (4.2.43)–(4.2.44)}.

Due to the strong duality theorem, the optimal values of the two problems (4.2.38)–(4.2.41)
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and (4.2.42)–(4.2.44) are the same, and hence

min
x∈X0


m∑
i=1

n∑
j=1

c+
ijxij −min

y∈X̂

m∑
i=1

n∑
j=1

c
σ(x)
ij yij

 (4.2.56)

= min
x∈X0


m∑
i=1

n∑
j=1

c+
ijxij − max

(u,v)∈D(x)

−
m∑
i=1

biλi +
n∑
j=1

µj


 . (4.2.57)

It is not hard to see that the D-MMR-GAP is equivalent to the right-hand side of equality

(4.2.56). The thesis follows from (4.2.54) and (4.2.56).

In addition, it easily follows that a tighter upper bound can be obtained as follows.

Property 4.2.3. The upper bound obtained by evaluating the maximum regret of any

optimal solution of the D-MMR-GAP is at least as good as the optimal value of the

D-MMR-GAP.

We observed in our experiments that the dual substitution heuristic tends to obtain

better solutions compared to the fixed-scenario heuristic. However, unlike the fixed-

scenario algorithm with the median-cost scenario, this algorithm cannot have a guarantee

on its solution quality.

Property 4.2.4. For any positive K, there exists an instance of the MMR-GAP for which

the dual substitution heuristic obtains a solution whose maximum regret is at least K times

the optimal value.

Proof. Let m = 2, n = 3, a11 = a21 = 1, a12 = a22 = 4, a13 = a23 = 2, b1 = 5, b2 = 3

with interval costs c11 ∈ [1,K1], c21 ∈ [1, 2], c12 ∈ [K2,K2], c22 = c13 = c23 ∈ [1, 1], where

K1 and K2 satisfy K2 � K1 � 1 and K1 ≥ K + 1. Obviously, jobs 2 and 3 have to be

assigned to agents 1 and 2, respectively, while job 1 can be assigned to either agent. There

are only two feasible solutions: solution x assigning job 1 to agent 1 with maximum regret

K1 − 1, and the optimal solution y assigning job 1 to agent 2 with maximum regret 1.

On the other hand, since we applied LP relaxation in the D-MMR-GAP, solution x with

maximum regret (3/4)(K2 − 1) is better than y with maximum regret (3/4)(K2 − 1) + 1

under the formulation (4.2.45)–(4.2.48), and hence the dual substitution heuristic outputs

solution x. Therefore, the ratio of the obtained objective value to the optimal value is

K1 − 1 ≥ K, which can be arbitrarily large.

4.3 Exact Algorithms

The two exact algorithms examined in this section are both rooted from a MIP model of

the MMR-GAP. By using Lemma 4.1.1, and introducing a new continuous variable ϕ,
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along with a constraint that forces ϕ to satisfy ϕ ≤ zs∗ ∀s ∈ S, the MMR-GAP can be

expressed by the following MIP model (MIP-MMR-GAP):

min

m∑
i=1

n∑
j=1

c+
ijxij − ϕ (4.3.58)

s.t. ϕ ≤
m∑
i=1

n∑
j=1

(c−ij + (c+
ij − c

−
ij)xij)yij ∀y ∈ X0 (4.3.59)

x ∈ X0. (4.3.60)

4.3.1 Logic-Based Benders Decomposition

Benders’ decomposition was originally proposed in [17]. Logic-based Benders decompo-

sitions are standard techniques that have been frequently used for the exact solution of

min-max regret problems [40, 37, 72, 75, 73, 84, 97]. We discussed this technique in

Section 2.3

Model (4.3.58)–(4.3.60) is hard to handle due to the exponential number of constraints

(4.3.59). Let us define a master problem P (X) as the relaxation of the MIP-MMR-GAP

in which set X0 in constraints (4.3.59) is replaced by a subset X of X0:

ϕ ≤
m∑
i=1

n∑
j=1

(c−ij + (c+
ij − c

−
ij)xij)yij ∀y ∈ X. (4.3.61)

We name the constraints (4.3.61) Benders’ cuts. For an optimal solution (x∗, ϕ∗) to the

current master problem P (X), we define a slave problem Q(x∗) as:

min
y∈X0

m∑
i=1

n∑
j=1

(c−ij + (c+
ij − c

−
ij)x

∗
ij)yij . (4.3.62)

Let q(y) be the objective value of a solution y and let y∗ be an optimal solution to Q(x∗).

If q(y∗) < ϕ∗ holds, then the specific constraint (4.3.59) induced by y∗ is violated by the

current optimal solution (x∗, ϕ∗) of P (X), and it is called a Benders’ cut. Whenever such

a cut is found, the proposed algorithm adds the solution y∗ to X, and solves the updated

P (X). The process is iterated until the algorithm finds a solution (x∗, ϕ∗) for which no

violated constraint exists.

Since P (X) is a relaxation of the MIP-MMR-GAP, the optimal solution value at each

iteration is a valid lower bound on the optimal solution value of the original MMR-GAP,

and hence the final solution, which does not violate any constraint (4.3.59), is an optimal

solution to the MMR-GAP.

The choice of the Benders’ cuts added to X at each iteration can have a strong in-

fluence on the overall performance. We start with set X = {x̃}, where x̃ is the optimal
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solution obtained by the fixed-scenario heuristic under the median-cost scenario. When

set X contains exactly one Benders’ cut, the optimal solution of P (X) has the following

properties.

Property 4.3.1. If X = {y} for any y ∈ X0, then the optimal value of P (X) cannot be

positive.

Proof. In P (X), ϕ only appears in constraint (4.3.59) and in the objective function, where

its value has to be maximized. Hence we have

ϕ =

m∑
i=1

n∑
j=1

(c−ij + (c+
ij − c

−
ij)xij)yij .

Accordingly, P (X) can be written as

min
x∈X0


m∑
i=1

n∑
j=1

c+
ijxij −

m∑
i=1

n∑
j=1

(c−ij + (c+
ij − c

−
ij)xij)yij

 (4.3.63)

= min
x∈X0

 ∑
(i,j): yij=0

c+
ijxij +

∑
(i,j): yij=1

c−ij(xij − 1)

 . (4.3.64)

Then, the optimal value cannot be positive, because the objective value becomes zero

when x = y.

On the other hand, if set X consists of an optimal solution y to the GAP instance with

a fixed scenario, we have the following property.

Property 4.3.2. If X = {y} for an optimal solution y to the GAP instance obtained by

fixing the scenario to any s ∈ S, then the optimal value of P (X) cannot be negative.

Proof. We prove the thesis by contradiction. Assume that the optimal value is negative,

and let x∗ be an optimal solution of P (X). Then, from (4.3.63), we get∑
(i,j): yij=0,

x∗
ij

=1

c+
ij <

∑
(i,j): yij=1,

x∗
ij

=0

c−ij . (4.3.65)

Since c−ij ≤ csij ≤ c
+
ij for any i, j and s, we have∑
(i,j): yij=0,

x∗
ij

=1

csij <
∑

(i,j): yij=1,

x∗
ij

=0

csij ∀s ∈ S. (4.3.66)

This inequality indicates that the objective value zs(x∗) of x∗ is strictly better than

that of y for the GAP instance with scenario s. This contradicts the assumption that y is

an optimal solution to this GAP instance, which completes the proof.
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In our logic-based Benders decomposition approach, we start with a set X consisting

of the solution x̃ obtained by the fixed-scenario heuristic with the median-cost scenario.

From Properties 4.3.1 and 4.3.2, the optimal value of P (X) is zero when X = {x̃}. The

approach is outlined in Algorithm 3.

Algorithm 3 Logic-based Benders Decomposition

1: Solve the GAP under the median-cost scenario s̃, and let x̃ be the obtained optimal

solution.

2: X ← {x̃}.
3: repeat

4: Solve P (X) and let (x∗, ϕ∗) be its optimal solution.

5: Solve Q(x∗) and let y∗ be its optimal solution.

6: X ← X ∪ {y∗}.
7: until q(y∗) ≥ ϕ∗

8: return x∗.

4.3.2 A Branch-and-Cut Algorithm

Branch-and-cut is another basic approach widely applied as an exact algorithm for interval

min-max regret problems [40, 73, 84]. Our second exact algorithm uses Benders’ cuts in

the context of a basic branch-and-cut framework. We define P̄ (X) as the linear relaxation

of P (X):

P̄ (X) min
m∑
i=1

n∑
j=1

c+
ijxij − φ (4.3.67)

s.t. φ ≤
m∑
i=1

n∑
j=1

(c−ij + (c+
ij − c

−
ij)xij)yij , ∀y ∈ X (4.3.68)

n∑
j=1

aijxij ≤ bi, ∀i ∈ I (4.3.69)

m∑
i=1

xij = 1, ∀j ∈ J (4.3.70)

xij ≥ 0, ∀i ∈ I, ∀j ∈ J. (4.3.71)

We solve it (with respect to the free variables) at each node of the search tree. Its optimal

value is a lower bound for the corresponding partial problem. Since the boundaries of the

cost intervals c− and c+ for all the instances are integral, we strengthen this bound by

rounding it up. If it is not smaller than the incumbent solution value, then we prune the

current node. Otherwise, we look for a violated constraint (4.3.59) by solving the slave
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problem Q(x∗) for an optimal solution x∗ of the current P̄ (X). If such a violation is found,

we add an optimal solution y∗ for Q(x∗) to the current set X, and solve the updated P̄ (X).

The process continues until no violated constraint (4.3.59) exists. When this occurs, if the

current optimal solution x∗ to P̄ (X) is integral, we update the incumbent solution and

terminate the current node. If instead it is fractional, a branching follows.

The general framework of branch-and-cut can be implemented in various ways. We

maintain the set X for constraints (4.3.61) as follows. The search starts with the set X that

only contains an optimal solution x̃ to the GAP instance with the median-cost scenario s̃.

The cuts added to X at each active node are used throughout the entire computation of

the branch-and-cut algorithm, i.e., they contribute to all other active nodes.

In the branching step, we branch on the most fractional variable, i.e., the one closest

to 0.5, and we adopt a depth-first search strategy that chooses, as the next node to search,

an active node at the maximum depth in the search tree. This tends to allow the upper

bound to be improved quickly in the early phases of the algorithm.

This method is outlined in Algorithm 4, where U denotes the incumbent solution value.

The logic-based Benders decomposition approach of the previous section cannot pro-

vide a feasible solution until it terminates, while the branch-and-cut algorithm usually

obtains feasible solutions before reaching optimality. Hence, branch-and-cut algorithms

can also serve as heuristics by prematurely halting them.

4.4 Lagrangian-Based Branch-and-Cut Algorithm

To improve the performance of the basic branch-and-cut algorithm of the previous section,

we introduce a Lagrangian-based branch-and-cut algorithm. A similar approach has been

used in [40], but we make use of many new techniques tailored for the MMR-GAP. In

particular, we propose a stronger lower bound, an efficient variable fixing method, and an

effective solution of the Lagrangian subproblems through dynamic programming.

4.4.1 Best-First Search

The algorithm adopts a best-first search strategy. It is known that such strategy, which

chooses for the next search an active node with the smallest lower bound, tends to minimize

the number of partial problems generated during the search, and to quickly improve the

lower bound. However, this often comes at the price of sacrificing a quick improvement of

the upper bound. The lack of a good upper bound can also influence the overall efficiency

as it may reduce the chance of terminating nodes due to a large optimality gap. In order to

overcome this we can compute a good initial upper bound, e.g., by applying the heuristic
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Algorithm 4 Basic Branch-and-Cut Algorithm

1: Initialize the global upper bound U ← +∞.

2: Solve the GAP under scenario s̃ and obtain an optimal solution x̃.

3: X ← {x̃}.
4: Initialize the set A of active nodes (i.e., partial problems) with the root node that

corresponds to the original problem.

5: while the set A of active nodes is not empty do

6: Select as the current node the active node that was most recently added to A, and

remove it from A.

7: repeat

8: Solve the LP relaxation P̄ (X) for the partial problem corresponding to the current

node, and obtain an optimal solution (x∗, ϕ∗).

9: if the optimal value of P̄ (X) ≥ U then

10: go to 5 (the current node is terminated).

11: end if

12: Solve Q(x∗) to obtain its optimal solution y∗.

13: if q(y∗) < ϕ∗ then X ← X ∪ {y∗}.
14: until q(y∗) ≥ ϕ∗

15: if x∗ is integral then

16: U ← optimal value of P̄ (X).

17: go to 5 (the current node is terminated).

18: end if

19: From the partial problem corresponding to the current node, generate two nodes

corresponding to the partial problems obtained by fixing the most fractional free

variable xij to 0 or to 1, respectively, and add them to A.

20: end while

21: return U
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...
...

...

x1j2 = 1

...
...

...

x2j2 = 1

x3j2 = 1

x1j1 = 1

x2j1 = 1

...
...

...

x1j3 = 1

...
...

...

x2j3 = 1

...
...

...

x3j3 = 1

x3j1 = 1

Figure 4.1: A branching tree for the MMR-GAP with m = 3

algorithms of Sections 4.2.1 and 4.2.2, which can provide good upper bounds for most of

the instances, as it will be seen from the computational results in Section 4.5. Our branch-

and-cut algorithm incorporates both the dual substitution heuristic and the fixed-scenario

algorithm under the median-cost scenario. Each heuristic had a time limit of 300 seconds,

and the best solution value was selected as the initial upper bound at the root node.

4.4.2 Branching Strategy Based on Semi-Assignment Constraints

In this section, we consider a branching strategy that exploits the structure of semi-

assignment constraints (4.1.3). In the MMR-GAP, fixing a variable xij to one requires

job j to be assigned to agent i and forbids xkj to take the value one for all agents k 6= i.

Based on this, we adopted the following branching rule: a partial problem branches to

at most m partial problems by fixing the assignment of an unfixed job j to each possible

agent i ∈ I, except for those agents i whose remaining capacity is less than aij or those for

which xij has already been fixed by the variable fixing rules described in Section 4.4.4. A

branching tree for the case with m = 3 is illustrated in Figure 4.1, in which the branches

in dashed lines represent the nodes that are not generated due to earlier variable fixing or

violation of capacity constraint.

We choose a job j for branching by utilizing the information from the lower bound

computation. Let µ∗j denote the optimal value of the dual variable associated with the

semi-assignment constraints (4.1.3), which is obtained by solving P̄ (X), the linear relax-

ation of the master problem P (X), with respect to the free variables. Indeed, solving
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P̄ (X) also provides an optimal solution to its dual D̄(X):

max
n∑
j=1

µj −
m∑
i=1

biλi −
∑
ys∈X

νs m∑
i=1

n∑
j=1

c−ijy
s
ij

 (4.4.72)

s.t.
∑
ys∈X

(
c+
ij − c

−
ij

)
ysijν

s − aijλi + µj ≤ c+
ij ∀i ∈ I, ∀j ∈ J (4.4.73)

∑
ys∈X

νs = 1 (4.4.74)

λi ≥ 0 ∀i ∈ I (4.4.75)

νs ≥ 0 ∀ys ∈ X, (4.4.76)

where λ, µ, and ν are the dual variables associated with the capacity constraints (4.1.2),

the semi-assignment constraints (4.1.3), and the Benders’ constraints (4.3.59), respectively.

For branching, we select the job j ∈ J with the highest |µ∗j | among those whose assign-

ment has not been fixed yet. For this job j, a branch is considered for each agent that

has sufficient remaining capacity to receive it, thus creating up to m child nodes. The

highest |µ∗j | value intuitively indicates that the corresponding semi-assignment constraint

is critical, and hence it is expected that the LP lower bound of the current node can be

strengthened after such fixing.

It is not hard to see that the resulting branching scheme reduces the number of nodes

in the entire enumeration tree from O(2mn) of the basic 0-1 branching to O(mn). (Note

however that, in our case, the number of nodes that can actually be generated will not

be that different, because the rule to choose the most fractional variable prevents the

0-1 branching from generating those nodes in which the semi-assignment constraints are

violated.)

4.4.3 Lagrangian-Based Lower Bound

In this section we propose an improved lower bound computation based on Lagrangian

relaxation. Other studies on min-max regret problems also applied Lagrangian methods

(see [34] and [40]). By embedding constraints (4.1.3) and (4.3.61) in the objective func-

tion (4.3.58) through Lagrangian multipliers µj and νs, respectively, we get the following



4.4 Lagrangian-Based Branch-and-Cut Algorithm 41

Lagrangian relaxation L(X,µ, ν):

L(X,µ, ν) = min


m∑
i=1

n∑
j=1

c+
ijxij − ϕ+

n∑
j=1

µj

(
1−

m∑
i=1

xij

)

+
∑
ys∈X

νs

ϕ− m∑
i=1

n∑
j=1

(c−ij + (c+
ij − c

−
ij)xij)y

s
ij

 (4.4.77)

s.t. (4.1.2) and (4.1.4).

We use the values of µ and ν in an optimal solution to D̄(X) as the Lagrangian

multipliers for (4.4.77). Then we have
∑

ys∈X ν
s = 1 according to (4.4.74), and hence the

objective function (4.4.77) of L(X,µ, ν) can be rewritten as follows:

min

m∑
i=1

n∑
j=1

ĉijxij +

n∑
j=1

µj −
∑
ys∈X

νs m∑
i=1

n∑
j=1

c−ijy
s
ij

 (4.4.78)

where

ĉij = c+
ij − µj −

∑
ys∈X

(
c+
ij − c

−
ij

)
ysijν

s. (4.4.79)

Note that L(X,µ, ν) is independent from ϕ, and its optimal solution can be obtained

by solving m 0-1 knapsack problems in the x variables. To solve such knapsack problems,

we use a dynamic programming algorithm, introduced in Section 4.4.5.

It is not hard to show that L(X,µ, ν) provides a lower bound at least as good as the

LP lower bound of Section 4.3.2 when we use the values of µ and ν in an optimal solution

to the dual D̄(X) of problem P̄ (X).

At each active node, we first obtain a lower bound by solving P̄ (X). If it is lower than

the incumbent solution value, then a round of Benders’ cut additions is performed. When

no violated constraint (4.3.59) exists, we solve L(X,µ, ν) by setting µ and ν to the values

they have in an optimal solution to D̄(X). If the resulting lower bound is not smaller than

the incumbent solution value, the node is fathomed.

4.4.4 Variable Fixing

An advantage of Lagrangian relaxation is that the obtained information can also be used

for variable fixing in an efficient way. Let U be the incumbent solution value and l∗(X,µ, ν)

the optimal solution value of L(X,µ, ν). We denote by ∆, the optimality gap at the current

node:

∆ = U − l∗(X,µ, ν). (4.4.80)
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For obtaining l∗(X,µ, ν), recall that the Lagrangian relaxation decomposes into m

independent 0-1 knapsack problems, one for each agent i ∈ I:

Li(X,µ, ν) min

n∑
j=1

ĉijxij (4.4.81)

s.t.

n∑
j=1

aijxij ≤ bi (4.4.82)

xij ∈ {0, 1} ∀j ∈ J. (4.4.83)

For a given set of multipliers µ, ν and Benders’ cut set X, let l∗i (X,µ, ν) denote the optimal

solution value of Li(X,µ, ν). Using (4.4.81)–(4.4.83), the Lagrangian function (4.4.78) can

be rewritten as

l∗(X,µ, ν) =

n∑
j=1

µj −
∑
ys∈X

νs m∑
i=1

n∑
j=1

c−ijy
s
ij

+

m∑
i=1

l∗i (X,µ, ν). (4.4.84)

Now, let x̆ be an optimal solution of L(X,µ, ν) and l∗i (X,µ, ν)xij=1−x̆ij be the optimal

value of the knapsack problem for agent i in which we force xij to take value 1− x̆ij . The

increase Ξij on lower bound l∗(X,µ, ν) can be written as follows when we force xij to take

value 1− x̆ij :

Ξij =

l∗i (X,µ, ν)xij=0 − l∗i (X,µ, ν) if x̆ij = 1

l∗i (X,µ, ν)xij=1 − l∗i (X,µ, ν) if x̆ij = 0
∀i ∈ I, ∀j ∈ J. (4.4.85)

With the definitions above, we can consider many variable fixing rules:

• Rule 1: If x̆ij = 0 and Ξij ≥ ∆, then xij can be fixed to 0.

• Rule 2: If x̆ij = 1 and Ξij ≥ ∆, then xij can be fixed to 1 and xkj to 0 for all k 6= i.

• Rule 3: This is a rule strengthened from Rule 1. Suppose that x̆ij = 0. If xij took

the value 1 in a feasible solution, then all other xkj would have to take the value 0;

therefore if

Ξij +
∑

k: x̆kj=1

Ξkj ≥ ∆,

then xij can be fixed to 0.

• Rule 4: Suppose that x̆ij = 1 and x̆kj = 0 for all k 6= i. If xij took the value 0 in a

feasible solution, then some xkj with k 6= i would have to take value 1; therefore if

Ξij + min {Ξkj | k 6= i} ≥ ∆,

then xij can be fixed to 1 and xkj can be fixed to 0 for all k 6= i.
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• Rule 5: If xkj is fixed to 0 for all k 6= i then xij must be fixed to 1. Moreover, if

x̆ij = 0 and Ξij ≥ ∆, then the current node can be pruned.

• Rule 6: Suppose that
∑m

i=1 x̆ij = 0. At least one unfixed variable xij for some i ∈ I
must take the value 1; therefore if

min {Ξij | i ∈ I} ≥ ∆,

then the current node can be pruned.

• Rule 7: If xij is fixed to 0 for all i ∈ I then the current node can be pruned.

• Rule 8: Suppose that x̆ij = 1 for more than one i ∈ I. As only one of them can

take the value 1, if ∑
k: x̆kj=1

Ξkj −max {Ξkj | x̆kj = 1, k ∈ I} ≥ ∆,

then the current node can be pruned.

Rules 1–7 have been proposed by Posta et al. [85] for the classical GAP. Preliminary

computational experiments confirmed that they are also effective for the MMR-GAP, and

hence they were incorporated in our variable fixing step.

4.4.5 Dynamic Programming Approach

As all input data are integers, the knapsack problems (4.4.81)–(4.4.83), which are needed

to compute l∗(X,µ, ν) as in (4.4.84), can be solved through the following two-direction

dynamic programming approach, which was first proposed for the classical GAP by Posta

et al. [85].

For each agent i, we introduce a quantity fi(j, k) for j = 0, 1, . . . , n and k = 0, 1, . . . , bi,

where j is the number of jobs and k is an amount of resource. The value fi(j, k) gives the

minimum cost when only jobs from 1 to j are available, and the resource limit is k instead

of bi in (4.1.2). We can compute fi(j, k) through the classical dynamic programming

recursion

fi(j, k) =


0 if j = 0;

fi(j − 1, k) if j ≥ 1 and k < aij ;

min {fi(j − 1, k), fi(j − 1, k − aij) + ĉij} otherwise.

The computation can be implemented using an (n+1)×(bi+1) array whose (j, k)-element

contains the value of fi(j, k), and computing their values by increasing j. The value of
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fi(n, bi) gives the optimal value l∗i (X,µ, ν). We call this dynamic programing a head-to-tail

approach.

In order to efficiently determine on variable fixing, we additionally use a tail-to-head

approach for each knapsack problem. For each agent i, we define gi(j, k) as the minimum

cost when we are only allowed to use jobs from j to n, and we have a resource restriction

of bi − k. Values gi(j, k) are computed in a symmetric way, by decreasing j:

gi(j, k) =


0 if j = n+ 1;

gi(j + 1, k) ifj ≤ n and k > bi − aij ;

min {gi(j + 1, k), gi(j + 1, k + aij) + ĉij} otherwise.

Next, we show how this DP approach also provides l∗i (X,µ, ν)xij=1−x̆ij from the two

DP tables, i.e., the table of fi(j, k) and that of gi(j, k). We compute l∗i (X,µ, ν)xij=1−x̆ij

by considering the combination of two partial knapsack problems for each k: a knapsack

problem on jobs from 1 to j − 1 with capacity k and another one on jobs from j + 1 to

n with capacity bi − aij(1 − x̆ij) − k. Formally, when n ≥ 2, l∗i (X,µ, ν)xij=1−x̆ij can be

obtained by

l∗i (X,µ, ν)xij=0 = min
0≤k≤bi


gi(j + 1, k) if j = 1;

fi(j − 1, k) if j = n;

fi(j − 1, k) + gi(j + 1, k) otherwise

(4.4.86)

or

l∗i (X,µ, ν)xij=1 = min
0≤k≤bi−aij


ĉij + gi(j + 1, k + aij) if j = 1;

ĉij + fi(j − 1, k) if j = n;

ĉij + fi(j − 1, k) + gi(j + 1, k + aij) otherwise.

(4.4.87)

The computation of (4.4.86) and (4.4.87) can be done in O(bi) time for each pair (i, j), and

hence, this two-direction dynamic programming approach has time complexity O(nbi) for

each i, i.e., O(n
∑m

i=1 bi) in total to compute Ξij for all i and j. Figure 4.2 illustrates the

case in which we fix xij to 1 and the value of aij is 1. The upper and lower parts represent

the tables for fi(j, k) and gi(j, k), and the lines in the jth column connect the two elements

in the table corresponding to the two terms in the last line of (4.4.87). Then, the value

of l∗i (X,µ, ν)xij=1 can be obtained by searching for the minimum among the sums of the

values at the two ends.

4.4.6 Benders’ Cuts Management

In our Lagrangian-based branch-and-cut approach, it takes only polynomial or pseudo-polynomial

time to solve the LP relaxation P̄ (X) or the Lagrangian relaxation problems, while the
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0 1 · · · · · · bi − 1 bi

1 f(1, 0) f(1, 1) · · · · · · f(1, bi − 1) f(1, bi)

2 f(2, 0) f(2, 1) · · · · · · f(2, bi − 1) f(2, bi)

...
...

...
...

...
...

...

j − 1 f(j − 1, 0) f(j − 1, 1) · · · · · · f(j − 1, bi − 1) f(j − 1, bi)

j

j + 1 g(j + 1, 0) g(j + 1, 1) · · · · · · g(j + 1, bi − 1) g(j + 1, bi)

...
...

...
...

...
...

...

n − 1 g(n − 1, 0) g(n − 1, 1) · · · · · · g(n − 1, bi − 1) g(n− 1, bi)

n g(n, 0) g(n, 1) · · · · · · g(n, bi − 1) g(n, bi)

Figure 4.2: Two-direction dynamic programing for fixing xij = 1, where aij = 1

slave problem Q(·) is NP-hard in the strong sense. We handle such difficulty by reducing

the computation time needed to solve each Q(·), and by limiting the number of times we

solve it. We consider the following methods.

Full-cut

This approach generates, at every node, as many Benders’ cuts as possible, and adds them

to X.

Cut-and-branch

At the root node we repeat the process of adding Benders’ cuts to X until no such cut

can be found. For the other nodes, we solve the LP relaxation P̄ (X) first, and continue

our Benders’ cut generation only if in the optimal solution (x∗, ϕ∗) to P̄ (X), x∗ is inte-

gral. Whenever a new Benders’ cut is found, we add it to X and we solve the updated

P̄ (X) again. This process is repeated until the obtained x∗ becomes fractional or we find

a solution (x∗, ϕ∗) for which no constraint is violated. Note that we can terminate an

active node if we find an optimal solution (x∗, ϕ∗) to P̄ (X) such that x∗ is integral and no

violated constraint exists, because such a solution is also optimal to problem P (X0) (with

respect to the free variables at the node). The rule for non-root nodes is adopted for this

reason. In this approach, the number of solved Q(·) is drastically reduced with respect to

the full-cut approach.

Adaptive generation

We now introduce two techniques to improve the performance of the cut-and-branch

method. The cut-and-branch strategy concentrates on lowering the number of times cuts
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are generated, which is shown to be more effective than the full-cut approach by the com-

putational experiments of Section 4.5. However, this comes at the expense of sacrificing

the quality of lower bounds due to the lack of effective Benders’ cuts. That is, there is a

trade-off between the quality of lower bounds and the time to generate Benders’ cuts. A

simple idea to reduce the time for generating Benders’ cuts without sacrificing the qual-

ity of the lower bound (i.e., without reducing the number of Benders’ cuts) is to shorten

the time for solving Q(·) by using heuristic approaches instead of exact ones. Note that

even if we use heuristics to solve Q(·), the lower bounds are valid and hence the resulting

branch-and-cut algorithm remains exact. It should also be noted, however, that when

integral solutions of P̄ (X) are obtained, they are not necessarily feasible with respect to

the MIP-MMR-GAP (4.3.58)–(4.3.60) unless Q(·) is solved to optimality. Thus, we solve

Q(·) exactly only if integral solutions of P̄ (X) are obtained, and use heuristics otherwise.

We tested two heuristics, originally developed for the classical GAP: an ejection chain

approach [105] and a path relinking approach with ejection chains [106], with a limit T

(a parameter) on the number of calls to EC probe, which is the basic local search com-

ponent of these heuristic algorithms. If no violated Benders’ constraint is found within T

iterations, a branching follows. On the basis of preliminary computational experiments,

we adopted the ejection chain approach.

The second improvement is the method we use for adding Benders’ cuts at non-root

nodes. For this approach, we impose an upper limit on the total number of Benders’ cuts

generated at non-root nodes, and we skip the cut generation once this number was been

reached (except for the case where x∗ is integral). The upper limit was set to W times

the number of Benders’ cuts generated at the root (W a parameter). Moreover, for each

non-root node, we stop the Benders’ cut generation process when the ratio

α =
ϕ∗ − q(y∗)
q(y∗)

× 100

becomes smaller than or equal to a parameter Υ (except for the case where x∗ is integral),

where (x∗, ϕ∗) is an optimal solution to P̄ (X) and y∗ is a (not necessarily optimal) solution

to the slave problem Q(x∗) defined by (4.3.62). This rule is motivated by the phenomena

observed in Figure 4.3, in which the y-axis represents the percentage increase ∆LB in the

LP lower bound after adding every Benders’ cut, and the x-axis represents the percentage

gap between the value of φ∗ and the optimal value q(y∗) of the corresponding slave problem.

Figure 4.3 shows how ∆LB changes as Benders’ cuts are added at an active node of some

representative instances, where points corresponding to two consecutive iterations are

connected. We can observe that high increments in the lower bound mostly occur at early

iterations, when α > 2%, while most cuts with α ≤ 1% only produce a tiny increase of the

node lower bound. This suggests that it is possible to save computational effort by halting
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the generation of Benders’ cuts when α becomes small. It turned out that the adaptive

generation of Benders’ cuts performs well with parameter setting T = 100, W = 8, and

Υ = 1%.
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Figure 4.3: Increase in lower bound against α

4.4.7 Overall Algorithmic Framework

In this section we provide the resulting framework of the Lagrangian-based branch-and-cut

algorithm under the adaptive cut generation strategy.

Let U denote the global upper bound, and X the current set of global Benders’ cuts.
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We first present the processing of a non-root active node. The process starts by solving

the LP relaxation P̄ (X): we obtain an optimal solution (x∗, ϕ∗), and an optimal solution

(λ, µ, ν) to the dual. If this LP lower bound is not less than U , we terminate the node

processing. Otherwise, Benders’ cut generation follows if x∗ is integral or if the condition

for adaptive cut addition is satisfied. Whenever a new Benders’ cut is found, we add it to

X and solve the updated P̄ (X) again. This process is repeated until one of the following

conditions holds:

(i) the LP lower bound becomes not less than U ; or

(ii) no violated constraint is found for (x∗, ϕ∗); or

(iii) x∗ is fractional and the condition for adaptive cut addition is not satisfied.

After the above Benders’ cut generation, if x∗ is integral, we terminate the node processing

because the obtained solution x∗ is optimal for the partial problem corresponding to the

current node.

The second part of the node processing is based on Lagrangian relaxation. For each

agent i, we solve the 0-1 knapsack problem Li(X,µ, ν), obtaining an optimal solution x̆i

through the algorithm of Section 4.4.5. Then, the Lagrangian lower bound l∗(X,µ, ν) is

computed according to (4.4.84). If it is not less than U , we terminate the node processing.

Otherwise, we compute the values of Ξij through the two-direction DP tables, and apply

the variable fixing rules of Section 4.4.4.

The above node processing procedure is summarized in Algorithm 5.

The overall framework of the Lagrangian-based branch-and-cut algorithm is as follows.

We initialize the global upper bound U with the lowest maximum regret between the

solution given by the fixed-scenario heuristic under the median-cost scenario and the one

given by the dual substitution heuristic. Let A denote the set of active nodes (i.e., partial

problems). We initialize A with the root node that corresponds to the original problem.

The processing for the root node is the same as that for the other nodes except for the

Benders’ cut generation, which is applied until condition (ii) above is satisfied. Let lRoot

denote the Lagrangian lower bound at the root node. Let L denote the global lower bound,

and initialize L with lRoot. Then we start the branch-and-cut process. We select as the

current node an active node η whose corresponding partial problem has the lowest lower

bound, i.e., lη ≤ lζ for all nodes ζ ∈ A, and we remove η from A. We apply a branching

operation to the current node η, i.e., we generate the children of η by using the rule given

in Section 4.4.2. For each child node N , we invoke Algorithm 5. If N was not terminated

by Algorithm 5, we add it to the set A of active nodes. The process is iterated until the
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Algorithm 5 Processing at a non-root active node N
1: comment U denotes the global upper bound, and X denotes the set of global Benders’

cuts.

2: repeat

3: Solve the LP relaxation P̄ (X) with respect to free variables at N , obtaining an

optimal solution (x∗, ϕ∗) and an optimal solution (λ, µ, ν) to the dual.

4: if the optimal value of P̄ (X) ≥ U then

5: terminate node N and return.

6: if x∗ is integral then

7: Solve Q(x∗) exactly and obtain an optimal solution y∗.

8: else

9: if the condition for adaptive cut addition of Section 4.4.6 is not satisfied then

goto 19

10: Solve Q(x∗) by heuristics and obtain a solution y∗.

11: end if

12: if q(y∗) < ϕ∗ then X ← X ∪ {y∗}.
13: until q(y∗) ≥ ϕ∗

14: if x∗ is integral then

15: U ← optimal value of P̄ (X).

16: Terminate node N .

17: return

18: end if

19: for each agent i do

20: solve the 0-1 knapsack problem Li(X,µ, ν), obtaining an optimal solution x̆i.

21: end for

22: Compute l∗(X,µ, ν) according to (4.4.84).

23: if l∗(X,µ, ν) ≥ U then terminate node N and return.

24: for each agent i and each job j do

25: compute l∗i (X,µ, ν)xij=1−x̆ij using the algorithm of Section 4.4.5, and then compute

Ξij through (4.4.85).

26: end for

27: Apply the variable fixing rules of Section 4.4.4 using the values of Ξij .

28: return
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set A of active nodes becomes empty or the global lower bound L meets the global upper

bound U .

The overall framework of our Lagrangian-based branch-and-cut is provided in Algo-

rithm 6.

Algorithm 6 Lagrangian-Based Branch-and-Cut Approach

1: Solve: (i) the classical GAP under the median-cost scenario, and (ii) the

D-MMR-GAP. Initialize the global upper bound U to the lower maximum regret

obtained.

2: Initialize the set A of active nodes to the root node.

3: For the root node, apply Benders’ cut generation as much as possible, compute the

Lagrangian lower bound lRoot and apply the variable fixing.

4: Initialize the global lower bound as L← lRoot.

5: while set A is not empty and L < U do

6: select as the current node an active node η whose corresponding partial problem

has the lowest lower bound among the nodes of A, and remove η from A.

7: Generate the children of η using the rule of Section 4.4.2.

8: for each child node N created from node η do

9: invoke Algorithm 5 to process node N .

10: if N was not terminated then add N to A.

11: end for

12: L← min{lζ | ζ ∈ A}.
13: end while

14: return U

4.5 Computational Experiments

4.5.1 Instance Generation

To the best of our knowledge, this is the first research on the MMR-GAP. In order to

test our approaches, we generated MMR-GAP instances from the following well-known

(see [23] and [61]) GAP benchmark instances known as Types A, B, C, D, and E (u.d.
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stands for “uniformly distributed”):

A: ∀i, j, aij is a random integer u.d. in [5, 25], cij is a random integer u.d.

in [10, 50]; bi = 0.6(n/m)15 + 0.4γ, where γ = maxi∈I
∑

j∈J, θj=i aij

and θj = min{i | cij ≤ ckj ,∀k ∈ I}.
B: aij and cij as for Type A; bi is set to 70% of the value in Type A.

C: aij and cij as for Type A; bi = 0.8
∑n

j=1 aij/m.

D: ∀i, j, aij is a random integer u.d. in [1, 100] and cij = 111 − aij + e1

(e1 a random integer u.d. in [−10, 10]); bi = 0.8
∑n

j=1 aij/m.

E: ∀i, j, aij = 1 − 10 ln e2 (e2 a random number u.d. in (0, 1]),

cij = 1000/aij − 10e3 (e3 a random number u.d. in [0, 1]); bi =

0.8
∑n

j=1 aij/m.

For each type, we generated GAP instances with m ∈ {5, 10} and n ∈ {40, 80}. We

then obtained MMR-GAP instances by setting the extremes of the cost intervals, c−ij

and c+
ij , to random integers u.d. in [(1 − δ)cij , cij ] and [cij , (1 + δ)cij ], respectively,

with δ ∈ {0.10, 0.25, 0.50}. We randomly generated 5 instances for each δ, thus ob-

taining 15 MMR-GAP instances by using each original GAP instance as a seed. As a

result, we generated 300 MMR-GAP instances in total, which are available at http:

//www.co.cm.is.nagoya-u.ac.jp/~goi/mmr-gap/.

4.5.2 Implementation Details

The heuristic algorithms proposed for the GAP in [105] and [106] were coded in C, while

the algorithms proposed in this chapter were all coded in C++. All codes were built

and compiled under Microsoft Visual Studio 2010. We used IBM ILOG CPLEX, version

12.4, for solving linear programming and mixed integer linear programming problems.

The CPLEX solver was also used to exactly solve the classical GAP, the Benders’ master

problems P (X) and P̄ (X), and problem D-MMR-GAP for the dual substitution heuristic.

All experiments were carried out on a PC with two cores i7-5820K at 3.30 GHz and 32 GB

RAM memory under Windows 10 operating system, where the computation was always

conducted on a single core.

4.5.3 Heuristic Algorithms

We compared two heuristic algorithms, the fixed-scenario algorithm of Section 4.2.1 and

the dual substitution heuristic of Section 4.2.2.

Table 4.1 shows the upper bounds computed by these algorithms for all instances.

The GAP instances are denoted as Xyyzz, where X = type, yy = m and zz = n. For
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each GAP instance, we give the results for the three values of δ. For every 5 random

instances under the same δ, the entries give the average CPU time in seconds spent by the

algorithm (“time”), the average optimality gap (“gap”), and the total number of failures

(“#f”), i.e., the total number of instances not solved exactly within the time limit. Both

the average CPU times and the average optimality gaps were taken for those instances

whose optimal solutions were found within the time limit. The optimality gap of solution

x is the quantity (rmax(x)−OPT)/OPT, where OPT is the optimal value obtained by the

exact algorithms.

We used CPLEX to exactly solve the classical GAP for evaluating the maximum regret

of the obtained solutions through Lemma 4.1.1. A time limit of 3600 seconds was assigned

to each algorithm. Notation “t.l.” indicates that the algorithm was not able to exactly

solve even one of the five instances within the time and memory limit. Columns “DS”

refer to the dual substitution algorithm. An empty entry indicates that no optimal value

was available for calculating the optimality gap.

Among the fixed-scenario approaches, the median-cost scenario (c++c−)/2 obtains the

best solutions for most of the instances. The dual substitution algorithm provides better

solutions with objective values very close to the optimal values. However, for Types D

and E, the computation of the dual substitution algorithm becomes very expensive.

Table 4.1: Results of heuristic algorithms

Fixed Scenario

c− (c+ + c−)/2 c+ DS

instance δ time #f gap time #f gap time #f gap time #f gap

A0540 0.10 0.03 0 4.3% 0.08 0 1.5% 0.01 0 7.6% 0.06 0 0.0%

0.25 0.02 0 15.2% 0.22 0 1.4% 0.01 0 3.6% 0.50 0 0.7%

0.50 0.02 0 0.05 0 0.01 0 0.60 0

A0580 0.10 0.03 0 16.3% 0.02 0 1.7% 0.03 0 8.0% 0.19 0 1.0%

0.25 0.01 0 0.01 0 0.01 0 0.67 0

0.50 0.02 0 0.01 0 0.03 0 6.45 0

A1040 0.10 0.02 0 17.5% 0.02 0 4.9% 0.02 0 19.4% 0.21 0 0.0%

0.25 0.03 0 9.6% 0.03 0 1.7% 0.04 0 9.9% 0.42 0 0.5%

0.50 0.05 0 0.03 0 0.01 0 1.17 0

A1080 0.10 0.04 0 15.6% 0.03 0 1.1% 0.02 0 6.7% 0.68 0 0.0%

0.25 0.02 0 0.03 0 0.01 0 1.43 0

0.50 0.05 0 0.02 0 0.03 0 15.83 0

B0540 0.10 0.31 0 4.6% 0.15 0 9.7% 0.22 0 12.7% 0.42 0 8.0%

0.25 0.18 0 11.6% 0.34 0 3.1% 0.16 0 9.9% 1.05 0 0.6%

0.50 0.37 0 16.9% 0.20 0 1.2% 0.16 0 3.8% 1.89 0 0.0%

B0580 0.10 0.55 0 15.2% 0.41 0 2.1% 0.41 0 1.1% 2.70 0 0.0%

0.25 0.57 0 0.90 0 0.28 0 19.35 0

0.50 0.57 0 0.35 0 0.73 0 80.03 0
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Table 4.1: continued from previous page

Fixed Scenario

c− (c+ + c−)/2 c+ DS

instance δ time #f gap time #f gap time #f gap time #f gap

B1040 0.10 0.34 0 11.6% 0.16 0 0.9% 0.12 0 2.5% 0.52 0 6.7%

0.25 0.22 0 5.6% 0.24 0 3.0% 0.17 0 11.3% 4.09 0 3.5%

0.50 0.23 0 24.4% 0.19 0 4.5% 0.14 0 8.7% 14.07 0 0.0%

B1080 0.10 0.90 0 18.0% 0.98 0 5.8% 0.58 0 13.2% 6.31 0 2.2%

0.25 0.63 0 0.56 0 0.45 0 168.19 0

0.50 1.16 0 0.78 0 0.87 0 2052.81 1

C0540 0.10 0.40 0 4.0% 0.26 0 0.0% 0.27 0 6.7% 0.55 0 0.0%

0.25 0.48 0 11.0% 0.22 0 1.7% 0.38 0 6.4% 1.26 0 0.0%

0.50 0.38 0 12.8% 0.45 0 3.2% 0.24 0 4.2% 5.82 0 0.0%

C0580 0.10 0.42 0 11.2% 0.69 0 0.0% 0.58 0 7.1% 3.11 0 0.0%

0.25 0.74 0 0.70 0 0.38 0 13.24 0

0.50 0.51 0 0.44 0 0.53 0 677.74 0

C1040 0.10 0.44 0 8.3% 0.47 0 7.1% 0.28 0 7.4% 1.08 0 3.8%

0.25 0.40 0 16.6% 0.31 0 5.7% 0.24 0 7.0% 1.68 0 2.1%

0.50 0.85 0 21.4% 0.28 0 0.0% 0.40 0 0.0% 14.00 0 0.0%

C1080 0.10 2.09 0 20.0% 0.88 0 3.5% 0.63 0 7.5% 12.38 0 3.9%

0.25 0.93 0 1.48 0 1.00 0 75.95 0

0.50 1.66 0 1.24 0 0.70 0 1033.34 1

D0540 0.10 10.83 0 11.89 0 21.71 0 121.95 0

0.25 7.77 0 4.89 0 7.53 0 931.42 0

0.50 2.46 0 6.74 0 9.30 0 574.27 0

D0580 0.10 169.32 0 166.96 0 89.29 0 t.l. 5

0.25 98.41 0 178.03 0 214.99 0 t.l. 5

0.50 26.71 0 136.86 0 60.81 0 t.l. 5

D1040 0.10 26.89 0 37.98 0 37.59 0 518.40 0

0.25 6.94 0 58.14 0 19.59 0 1301.18 0

0.50 3.14 0 16.02 0 4.09 0 387.35 0

D1080 0.10 1652.03 4 739.86 3 t.l. 5 t.l. 5

0.25 1422.67 0 t.l. 5 1927.13 4 t.l. 5

0.50 260.87 0 849.46 3 1668.17 3 t.l. 5

E0540 0.10 0.64 0 9.5% 0.51 0 2.5% 0.48 0 5.5% 3.05 0 0.4%

0.25 0.26 0 10.8% 0.68 0 2.5% 0.61 0 4.6% 16.31 0 0.0%

0.50 0.63 0 0.68 0 0.44 0 47.27 0

E0580 0.10 1.06 0 9.9% 1.73 0 2.6% 0.99 0 4.3% 94.13 0 0.0%

0.25 1.84 0 1.02 0 1.18 0 246.46 0

0.50 0.95 0 1.59 0 1.09 0 502.27 1

E1040 0.10 4.03 0 10.6% 2.98 0 5.6% 3.31 0 11.6% 64.45 0 9.1%

0.25 2.46 0 2.25 0 2.62 0 436.48 0

0.50 2.65 0 2.44 0 1.65 0 1185.87 0

E1080 0.10 8.72 0 7.11 0 5.43 0 1477.02 4

0.25 8.76 0 5.14 0 7.70 0 5
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Table 4.1: continued from previous page

Fixed Scenario

c− (c+ + c−)/2 c+ DS

instance δ time #f gap time #f gap time #f gap time #f gap

0.50 3.69 0 9.87 0 8.57 0 5

The average gaps from the known optimal values for Types A, B, C, and E are reported

in Table 4.2. The dual substitution heuristic obtained better upper bounds than the fixed-

scenario heuristic for the instances of all types.

Table 4.2: Average optimality gap of heuristic algorithms

Fixed-Scenario

Type c− (c+ + c−)/2 c+ DS

A 13.0% 2.1% 9.3% 0.4%

B 12.5% 3.7% 7.7% 2.9%

C 12.5% 2.9% 6.3% 1.4%

E 10.2% 3.2% 6.4% 2.1%

4.5.4 Exact Algorithms

We tested the exact algorithms of Section 4.3 on all instances. Recall that, for the logic-

based Benders decomposition, when it is halted with a time limit, the objective value of

the obtained solution is a valid lower bound, although it is usually an infeasible solution

(see Section 4.3.1). On the other hand, the solution value obtained by the branch-and-cut

framework provides a valid upper bound on the optimal regret when it terminates with

a time limit. Each pair of entries in Table 4.3 shows the average CPU time in seconds

spent by the algorithm (computed for those instances whose optimal solutions were found

within the time limit), the average optimality gap from the optimal value or from a lower

bound (taken for those instances whose optimal solutions or valid lower bounds were found

within the time limit), and the number of instances where an optimal solution was found

(in column “#opt”) within the time limit. We calculated the optimality gap of solution x in

the same way as described in Section 4.5.3, where for those instances whose optimal values

are not known, the valid lower bounds obtained by logic-based Benders decomposition are

used instead. An instance was not included into the average calculation if no feasible

solution was obtained by the corresponding algorithm. We use B&C and C&B to denote

branch-and-cut and cut-and-branch, respectively. “Benders” is the logic-based Benders

decomposition approach of Section 4.3.1, while “basic B&C” is the basic branch-and-
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cut algorithm discussed in Section 4.3.2. Columns “Lagrangian-based B&C” refer to the

approach proposed in Section 4.4: “full-cut,” “C&B” and “adaptive” represent the three

cut management approaches discussed in Section 4.4.6. A time limit of 3600 seconds was

assigned to each algorithm. For the Lagrangian-based branch-and-cut algorithms, the

time limit for solving the D-MMR-GAP to obtain an initial upper bound was set to 300

seconds. Notation “t.l.,” has the same meaning as in Table 4.1.

The adaptive cut generation introduced in Section 4.4.6 is the most efficient among

Lagrangian-based branch-and-cut algorithms.

With respect to logic-based Benders decomposition, the Lagrangian-based branch-and-

cut algorithm with adaptive cut generation has on average shorter CPU times for Types

A and E, while for Types B and C there is no clear winner. For Type D (the most

difficult one), we omit the results since none of the algorithms was able to obtain optimal

solutions, and there is a large gap between the lower bound obtained by the logic-based

Benders decomposition approach and the upper bound obtained by the branch-and-cut

algorithms.
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Table 4.4 provides the overall results for the introduced exact algorithms. For each

algorithm and instance type, the entries provide the number of instances for which the

algorithm determined the optimal solution with the least computation time among the

three methods. The value in parentheses gives the number of instances solved to optimal-

ity within one hour. The Lagrangian-based branch-and-cut algorithm with adaptive cut

generation had the best results for the instances of Types A and E. In total, it solved to

optimality 102 out of 240 instances of Types A, B, C, and E, in 64 cases with the lowest

CPU time.

Table 4.4: Results of exact algorithms

Type Benders basic B&C Lagrangian-based B&C

A 0 (26) 7 (28) 22 (28)

B 15 (34) 0 (27) 20 (32)

C 21 (34) 0 (23) 13 (32)

E 3 (8) 0(5) 9 (10)

4.6 Conclusion of the MMR-GAP

In this chapter, we studied the min-max regret GAP, a robust version of the GAP. We

showed that the decision version of this problem is Σp
2-complete. Problems of this class

are much more difficult than NP-hard problems; indeed it is considered very unlikely that

they even belong to NP.

We presented and compared heuristic and exact methods. We computationally ex-

amined a fixed-scenario heuristic, for which three scenarios were considered. We also

presented a dual substitution heuristic that uses a mixed integer programming formula-

tion obtained by replacing a subproblem with its dual. We observed that this heuristic

method in most cases provides better upper bounds than the fixed-scenario heuristic.

We also examined three exact methods: a logic-based Benders decomposition approach,

a basic branch-and-cut algorithm, and a Lagrangian-based branch-and-cut algorithm that

incorporates several ideas. We used a Lagrangian lower bound that is stronger than the

LP lower bound and is obtained by solving m 0-1 knapsack problems through dynamic

programming. This computation was further exploited for variable fixing. Compared

with logic-based Benders decomposition, the Lagrangian-based branch-and-cut had better

performance for instances of Types A and E, and it exactly solved 102 out of 240 instances

of Types A, B, C, and E with m up to 10 and n up to 80.





Chapter 5

Min-Max Regret Multidimensional

Knapsack Problem

In this chapter, we continue to study another combinatorial optimization problem with

uncertainty. We consider the multidimensional knapsack problem (MKP) with min-max

regret criterion under interval profits. The classical MKP is a strongly NP-hard combi-

natorial optimization problem [41] and has been widely studied over many decades due

to both theoretical interests and its broad applications in several engineering fields, such

as cargo loading, cutting stock, bin-packing, financial and other management issues [99].

The interval min-max regret multidimensional knapsack problem (MMR-MKP) is a gen-

eralization of the MKP under the interval profit coefficients, in which all profit coefficients

can take any value from a corresponding given interval independently. The MMR-MKP

aims to find a robust solution that minimizes the maximum regret.

We examine several heuristic and exact algorithms, such as the fixed-scenario algo-

rithm, the logic-based approach and the basic branch-and-cut for the MMR-MKP, which

we introduced in Chapter 4. We further propose an iterative heuristic based on a mixed

integer programming (MIP) model obtained by replacing a subproblem with the dual of

its continuous relaxation, which we call the iterated dual substitution (IDS) algorithm.

We evaluate the algorithms through computational experiments on a wide set bench-

mark instances. The proposed IDS algorithm performs best for all of the tested instances.

5.1 Problem Description

The multidimensional knapsack problem (MKP) is defined as follows. Given a set of n

items J = {1, . . . , n} and a set of m types of resource I = {1, . . . ,m}, we want to select a

subset of items with maximum total profit, subject to satisfying all resource constraints.
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Selecting item j with profit pj consumes an amount aij of the resource in dimension i,

whereas the total amount of the resource available at dimension i (capacity) is bi. The

MKP can be formulated over binary variables xj indicating that item j is chosen if and

only if xj = 1:

max
n∑
j=1

pjxj (5.1.1)

s.t.
n∑
j=1

aijxj ≤ bi, ∀i ∈ I (5.1.2)

xj ∈ {0, 1}, ∀j ∈ J. (5.1.3)

For convenience, we define X0 to be the set of all feasible solutions of MKP: X0 = {x |
x satisfies constraints (5.1.2)–(5.1.3)}.

In many real-world applications the profit pj is affected by a number of factors and

may not be an accurate value. In this chapter we assume that every profit pj can take

any value within a given range [p−j , p
+
j ]. A scenario s is defined as an array of profits

psj satisfying psj ∈ [p−j , p
+
j ],∀j ∈ J . We denote by zs(x) the objective function value of

solution x under scenario s:

zs(x) =

n∑
j=1

psjxj . (5.1.4)

Let zs∗ be the optimal solution value under scenario s, i.e.,

zs∗ = max
y∈X0

zs(y). (5.1.5)

The regret rs(x) corresponding to solution x under scenario s is then the difference between

these two values:

rs(x) = zs∗ − zs(x). (5.1.6)

We define S to be the set of all possible scenarios, i.e., S = {s | psj ∈ [p−j , p
+
j ]}. The

maximum regret of a solution x is then the maximum rs(x) value over all scenarios:

rmax(x) = max
s∈S

rs(x). (5.1.7)

The MMR-MKP requires to find a feasible solution x such that the maximum regret is

minimized:

min
x∈X0

rmax(x) = min
x∈X0

max
s∈S

rs(x)

= min
x∈X0

max
y∈X0
s∈S


n∑
j=1

psjyj −
n∑
j=1

psjxj

 . (5.1.8)
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The following lemma is a classical general result that was proposed by Aissi et al. [2]

(whose roots are in Yaman et al. [108]).

Lemma 5.1.1. The regret of a solution x ∈ X0 is maximized under the following scenario

σ(x):

p
σ(x)
j =

p
−
j if xj = 1

p+
j otherwise

∀j ∈ J. (5.1.9)

This worst case lemma implies that the value rmax(x) is achieved by the scenario that

gives the worst profits to the selected items, and the best profits to the non-selected items.

From Lemma 5.1.1, the MMR-MKP (5.1.8) can be rewritten as

min
x∈X0

rmax(x) =

min
x∈X0

max
y∈X0

n∑
j=1

(p+
j + (p−j − p

+
j )xj)yj −

n∑
j=1

p−j xj

 . (5.1.10)

5.2 Standard Techniques

5.2.1 Fixed-Scenario Algorithm

We described the same idea in Section 4.2.1, and we now applied it to MMR-MKP.

This fixed-scenario algorithm is based on the observation that the feasible region of the

MMR-MKP is the same as that of the classical MKP. This implies that we can obtain

a feasible solution to an MMR-MKP instance by fixing a scenario, solving the resulting

MKP instance to optimality, and evaluating the maximum regret of the obtained solution

using (5.1.10).

Among the three types of commonly used scenarios, namely, the lowest profit psj = p−j ,

the highest profit psj = p+
j , and the median profit psj = (p−j + p+

j )/2, in this chapter

we consider the median-profit scenario for which the following general result showed in

Lemma 4.2.1 can also be directly applied to the case of MMR-MKP.

Lemma 5.2.1. Let s̃ be the median-profit scenario, i.e., ps̃j = (p−j + p+
j )/2, ∀j ∈ J , and

let x̃ be an optimal solution to the MKP under s̃. Then, rmax(x̃) ≤ 2rmax(x) holds for all

x ∈ X0.

We next provide a tight example for the approximation ratio of Lemma 5.2.1.

Lemma 5.2.2. There is an instance of the MMR-MKP for which an optimal solution

to the MKP under the median-profit scenario s̃ has a regret twice as large as the optimal

regret.
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Proof. Let m = 1, n = 3, a11 = a12 = a13 = 1, b1 = 1 with interval profits p1 ∈ [1, 1],

p2 ∈ [0, 2], p3 ∈ [0, 2]. Choosing any item gives an optimal solution to MKP under the

median-profit scenario, because all median profits have value 1. The optimal MMR-MKP

solution chooses item 1, attaining the maximum regret of value 1, while choosing item 2

(or 3) gives the maximum regret of value 2.

5.2.2 Logic-Based Benders Decomposition

We examine the logic-based Benders decomposition to MMR-MKP (see Section 2.3 for

details and 4.3.1). This technique is able to solve the MMR-MKP to optimality if sufficient

time and memory are available; otherwise, it will provide a lower bound on the optimal

solution value. We use this lower bound for calculating the optimality gap for our heuristic

algorithms.

This approach is based on a MIP model of the MMR-MKP. By introducing a new

continuous variable λ, along with constraints that force λ to satisfy λ ≥ zs∗, ∀s ∈ S, the

MMR-MKP can be formulated as the following MIP model (MIP-MMR-MKP):

min λ−
n∑
j=1

p−j xj (5.2.11)

s.t. λ ≥
n∑
j=1

(p+
j + (p−j − p

+
j )xj)yj , ∀y ∈ X0 (5.2.12)

x ∈ X0. (5.2.13)

This model is still hard due to the exponential number of constraints (5.2.12). We

define a master problem P (X) as the relaxation of the MIP-MMR-MKP in which set X0

in constraints (5.2.12) is replaced by a subset X ⊆ X0:

λ ≥
n∑
j=1

(p+
j + (p−j − p

+
j )xj)yj , ∀y ∈ X. (5.2.14)

We call the constraints (5.2.14) Benders’ cuts. For an optimal solution (x∗, λ∗) to the

current master problem P (X), we define a slave problem Q(x∗) as

max
y∈X0

n∑
j=1

(p+
j + (p−j − p

+
j )x∗j )yj . (5.2.15)

Let y∗ be an optimal solution to Q(x∗) and q(y∗) be the corresponding objective function

value. If q(y∗) > λ∗ holds, then the constraint (5.2.12) induced by y∗ is violated by the

current optimal solution (x∗, λ∗) of P (X). Whenever such a violated constraint is found,

we add the solution y∗ to X and solve the updated P (X). The process is iterated until

the algorithm finds a solution (x∗, λ∗) for which no violated constraints exist.
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When the algorithm terminates with this termination criterion, the obtained solution

does not violate any constraint (5.2.12) and is optimal to the original MMR-MKP. Note

that P (X) is a relaxation of the MIP-MMR-MKP, and its optimal solution value at each

iteration is a lower bound on the optimal value of the original MMR-MKP.

The iteration starts with set X = {x̃}, where x̃ is the optimal solution obtained by the

fixed-scenario heuristic under the median-profit scenario.

5.2.3 A Branch-and-Cut Algorithm

Branch-and-cut is another standard exact approach widely applied to interval min-max

regret problems (see [40, 73] and [84]). We implement this algorithm using Benders’ cuts

based on a basic branch-and-cut framework. We define P̄ (X) as the continuous relaxation

of P (X). We solve P̄ (X) (with respect to the free variables) at each node of the search

tree. Its optimal value is a lower bound for the corresponding partial problem. If this lower

bound is not smaller than the incumbent solution value, then we prune the current node.

When an integer-feasible solution candidate x∗ has been identified, we check a violated

constraint (5.2.12) by solving the slave problemQ(x∗). If such a Benders’ cut exists, we add

an optimal solution y∗ for Q(x∗) to the current set X, and solve the updated P̄ (X). Then,

if the updated lower bound exceeds the incumbent solution value, we prune the node. We

then check the integrality of the newly obtained x∗. If it becomes fractional, a branching

follows; otherwise, we repeat the above process to check a new violated constraint (5.2.12)

until no such constraint exists. When it occurs, we update the incumbent solution and

prune the node.

The general framework of branch-and-cut can be implemented in many ways. We

maintain the set X for constraints (5.2.14) as follows. To prevent the LP relaxation P̄ (X)

at the root node from being unbounded, we start with set X = {x̃}, where x̃ is the optimal

solution obtained by the fixed-scenario heuristic under the median-profit scenario. All cuts

added to X at any active node are used throughout the remaining computation, i.e., they

contribute to all other active nodes.

The branch-and-cut algorithm usually obtains feasible solutions during the search pro-

cess. Hence, the branch-and-cut algorithm can also be used as a heuristic by prematurely

terminating it.
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5.3 Iterated Dual Substitution Heuristic

5.3.1 Dual Substitution Heuristic

We introduce the dual substitution (DS) heuristic, an algorithm based on a MIP model

in which a subproblem is replaced by the dual counterpart of its linear relaxation.

By using (5.1.9), the maximization problem over y in (5.1.10),

max
y∈X0

n∑
j=1

(p+
j + (p−j − p

+
j )xj)yj ,

for every fixed x is an MKP that can be expressed as

max
y∈X0

n∑
j=1

p
σ(x)
j yj .

We consider the corresponding linear program obtained by replacing the integrality con-

straint yj ∈ {0, 1} with a weaker requirement: 0 ≤ yj ≤ 1.

We define two types of dual variables, ui (i ∈ I) for constraints (5.1.2) and vj (j ∈ J)

for constraints yj ≤ 1. By embedding the dual counterpart into (5.1.10), we obtain the

following dual substitution model (D-MMR-MKP):

min
m∑
i=1

biui +
n∑
j=1

vj −
n∑
j=1

p−j xj (5.3.16)

s.t.
m∑
i=1

aijui + vj ≥ p+
j + (p−j − p

+
j )xj , ∀j ∈ J (5.3.17)

ui ≥ 0, ∀i ∈ I (5.3.18)

vj ≥ 0, ∀j ∈ J (5.3.19)

x ∈ X0. (5.3.20)

The dual substitution heuristic exactly solves the D-MMR-MKP and outputs the ob-

tained solution. The D-MMR-MKP is not easier than the MKP, since it contains all the

MKP constraints.

Property 5.3.1. The optimal solution value of the D-MMR-MKP is an upper bound on

the optimal value the MMR-MKP.

In addition, for any instance, a tighter upper bound can be obtained as follows.

Property 5.3.2. The bound obtained by evaluating the maximum regret of any optimal

solution of the D-MMR-MKP is at least as good as the optimal value of the D-MMR-MKP.
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We observed through computational experiments that the dual substitution heuris-

tic obtains better solutions compared to the fixed-scenario heuristic for most instances.

However, we proved that this algorithm cannot have a guarantee on its solution quality.

Lemma 5.3.1. For any positive value ε < 1, there exists an instance such that the solution

value of the dual substitution heuristic is at least 1/ε times the optimal value.

Proof. Let m = 1, n = 2, a11 = 1, a12 = K1, b1 = K1 with interval profits p1 ∈ [1, 2 + ε],

p2 ∈ [2, 2], where 0 < ε < 1 and K1 � 1. Obviously, we can select at most one item for

any feasible solution due to the capacity constraint (5.1.2). The solution selecting item

2 has the maximum regret ε and is optimal to this instance, while selecting item 1 leads

to the maximum regret 1. However, under the formulation (5.3.16)–(5.3.20), the solution

selecting item 1 with the objective value 2(K1−1)/K1, is better than the solution selecting

item 2 with the objective value 2(K1 − 1)/K1 + ε. Therefore, the ratio of the obtained

objective value to the optimal value is 1/ε, which can be arbitrarily large.

5.3.2 Iterated Dual Substitution

The dual substitution heuristic performs well compared to the fixed scenario algorithm.

However, it can fail in obtaining good solutions as stated in Lemma 5.3.1. Below we

propose an iterative method to improve the performance of the dual substitution heuristic

by iteratively applying it, excluding from the search space the solutions already checked

in the previous iterations.

Recall that any feasible solution x̂ to the D-MMR-MKP is also feasible to the MMR-MKP.

For a set X̂ (⊆ X0) of feasible solutions, we consider the following constraint:∑
j:x̂j=0

xj +
∑
j:x̂j=1

(1− xj) ≥ d+ 1, ∀x̂ ∈ X̂, (5.3.21)

where d (≥0) is a parameter. Any solution x ∈ X0 that satisfies (5.3.21) for a solution x̂

has a Hamming distance larger than d from x̂. We denote by model D-MMR-MKP(X̂) the

problem obtained by adding constraints (5.3.21) to (5.3.16)–(5.3.20). This is the problem

of finding a best solution to D-MMR-MKP under the constraint that the solution must

have a distance greater than d to every solution in X̂. That is, solutions within distance

d from a solution in X̂ are removed from the feasible region.

The iterated dual substitution (IDS) algorithm starts with an empty set X̂ = ∅. It

solves the D-MMR-MKP(X̂), obtaining a solution x̂, and evaluates its maximum regret

rmax(x̂). It then adds x̂ to X̂, and solves the updated D-MMR-MKP(X̂). This process is

repeated until a termination condition (time limit in this chapter) is satisfied.
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Note that since the IDS algorithm does not use any problem specific knowledge of

the MKP, it is a general framework that can also be applicable to other min-max regret

problems with interval profits (costs).

5.3.3 Local Exact Subroutine

Note that if we set d to 0, the IDS approach at every iteration only excludes from the

search space, those x̂ that have been checked during the search by then. On the other

hand, when d ≥ 1, the IDS approach also removes unchecked solutions around x̂ from the

search space. Such an unchecked space around a solution x̂ can be defined by

1 ≤
∑
j:x̂j=0

xj +
∑
j:x̂j=1

(1− xj) ≤ d. (5.3.22)

When d ≥ 1, we consider an option that exactly solves the MMR-MKP with an ad-

ditional constraint of (5.3.22), which we call the MMR-MKP(x̂), whenever a solution x̂

is added to X̂. If we take this option for d ≥ 1 or if d is set to 0, the IDS algorithm

is guaranteed to find an exact optimal solution for the MMR-MKP when sufficient com-

putation time and memory space are available so that it runs until the search space of

D-MMR-MKP(X̂) becomes empty. Both Logic-based Benders decomposition and branch-

and-cut are applicable for solving MMR-MKP(x̂).

5.4 Computational Experiments

To the best of our knowledge, this is the first research on the MMR-MKP. We gener-

ated MMR-MKP instances from MKP benchmark instances (see [22]), with m ∈ {5, 10},
n = 100, and tightness ratio α = bi/

∑n
j=1 aij ∈ {0.25, 0.50, 0.75}. We then generated

MMR-MKP instances by randomly taking the profit intervals, p−j and p+
j , from ranges

[(1 − δ)pj , pj ] and [pj , (1 + δ)pj ], respectively, with δ ∈ {0.1, 0.3, 0.5}. As a result, we

generated 18 MMR-MKP instances in total.

The algorithms proposed in this chapter were all coded in C++. We used IBM ILOG

CPLEX, version 12.6, for solving linear programming and mixed integer linear program-

ming problems. The CPLEX solver was also used to exactly solve the classical MKP,

the Benders’ master problems P (X) and P̄ (X), and problem D-MMR-MKP for the dual

substitution heuristic. All experiments were carried out on a PC with two Core i7-5820K

at 3.30 GHz and 32 GB RAM memory under Windows 10 operating system, by using a

single core.

We report in Table 5.1 the results of all the algorithms described in Sections 5.2 and 5.3.

Concerning the fixed scenario algorithm, the branch-and-cut, and the dual substitution
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method, each pair of entries shows the CPU time in seconds spent by the algorithm

(“time”) and the optimality gap in % (“gap”), i.e., the gap between the solution value

from their optimal or lower bound values (“opt (LB)”). The values in the last column inside

parentheses mean that, for those instances whose optimal values were not obtained by the

proposed exact algorithms, we provide the best known lower bounds that were obtained

by running the Logic-based Benders decomposition algorithm for one hour. Concerning

Logic-based Benders decomposition, when it is terminated before an optimal solution is

found, optimality gap information is not available because a feasible solution cannot be

obtained in such cases. Concerning the iterated dual substitution (IDS) approach, we set

the value of parameter d to 0. We set a time limit of 1000 seconds for each iteration of IDS

to ensure that IDS can iterate at least 3–4 times within an hour; however, each iteration

of IDS usually terminates in much shorter time and this time limit is rarely reached. The

column “iteration” provides the iteration index during which the algorithm obtained the

best solution value along with the total iterations in parentheses. Notation “t.l.” indicates

that the algorithm was not able to exactly solve the corresponding instances within the

time limit (3600 seconds). An asterisk mark signifies that the algorithm(s) obtained the

best optimality gap among the tested algorithms.
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Concerning the exact algorithms, for both Logic-based Benders decomposition and

branch-and-cut approach, it becomes hard to obtain optimal solutions or even good lower

bounds for the instances with large δ values, which results in large values in “gap” columns

in Table 5.1. The branch-and-cut algorithm dominates the Logic-based Benders algorithm

for most instances. In total, these two exact algorithms only solved 7 out of 18 instances

to optimality.

Comparing the two constructive heuristics, both the dual substitution heuristic (DS

in the table) and the fixed scenario approach under the median-profit scenario provide

solutions with objective values quite close to the optimal values. However, for the instances

with δ = 0.5, the computation of the dual substitution algorithm becomes very expensive.

The proposed IDS algorithm obtained solutions with the best optimality gaps for

all of the tested instances. The IDS algorithm provides exact optimal solutions for all

the instances whose optimal values are known. We also observe that even when the

computation time is insufficient, the IDS algorithm obtains good solutions with a small

number of iterations. For the instances that the branch-and-cut algorithm cannot solve to

optimality, the IDS algorithm always obtained better upper bounds within the same time

limit.

5.5 Conclusion of the MMR-MKP

In this chapter, we studied a robust version of the multidimensional knapsack problem

(MKP) called the min-max regret MKP.

We examined two exact methods: a Logic-based Benders decomposition approach and

a branch-and-cut algorithm. For the Logic-based Benders decomposition, when it is halted

with a time limit, the objective value of the obtained solution is a valid lower bound. On

the other hand, the solution value obtained by the branch-and-cut framework provides a

valid upper bound on the optimal regret when it terminates with a time limit. These two

exact algorithms solved to optimality 7 out of 18 instances that we proposed.

We also examined two constructive heuristics: a fixed-scenario heuristic with the

median-profit scenario, as well as a dual substitution (DS) heuristic that uses a mixed

integer programming formulation obtained by replacing a subproblem with its dual. To

improve the performance of the DS method, we proposed a row generation approach in

which we call the iterated dual substitution (IDS) heuristic. We observed that the IDS

method provided the best upper bounds over all the tested algorithms we examined, ob-

taining exact optimal solutions to all of the instances whose optimal values are known.

All of the best solutions obtained by the IDS algorithm were found at an early stage of

the iterations.





Chapter 6

Airline Crew Pairing Problem

6.1 Introduction

In this chapter, we solve a crew pairing problem by column generation approach.

The crew scheduling problem frequently appears in real-world applications, such as

those in bus and rail transit industry. In this chapter, we consider a crew pairing problem

in airline scheduling with a series of constraints and conditions particular to this industry.

The crew costs constitute a high proportion (up to 20%) of total airline operation costs,

and the number of airline flights increases with globalization. For this reason, a small

percentage saving amounts to substantial reduction in expenses as mentioned by Anbil et

al. [4] and Barutt and Hull [14].

Onodera and Mori raised an example that a Japanese airline company developed

a knowledge-based system for crew scheduling in 1990, which cost about $4 million to

build [77]. However, it got paid for itself in direct cost savings only in about 18 months.

Several approaches for the airline crew scheduling problem have been proposed in

the literature, including exact algorithms such as tree search by Beasley and Cao (1996),

branch-and-cut by Hoffman and Padberg [49], column generation by Barnhart et al. [11], as

well as heuristic methods such as simulated annealing by Emden-Weinert and Proksch [35]

and genetic algorithms by Levine [63].

In this chapter, we model the problem as a set covering problem with costs of columns

defined by the number of person-days, and then we present an efficient method to find

promising columns through a graph representation that describes connections between

flights, where the size of the graphs is kept small by using the cost structure. To solve the

problem of finding a promising column, we propose a branch-and-bound method based

upon a resource constrained dynamic programming, which enables the algorithm to solve

large-scale instances. Moreover, regularity is exploited to quickly generate many columns
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just by repeating itineraries. Such repeated itineraries are preferable so that crew members

will have a low risk of making mistakes in duty time.

The rest of this chapter is organized as follows: In Section 6.2, we describe the crew

scheduling problem in general, and we further present some requirements and constraints

that are particular to some specific airline companies. In Section 6.3, we discuss a set cov-

ering model for this problem. In Section 6.4, we propose a column generation approach,

which utilizes the branch-and-bound framework and dynamic programming. Section 6.4

also proposes some ideas for solving this set covering problem (SCP) efficiently. In Sec-

tion 6.6, we present our computational results, and finally, we give concluding remarks in

Section 6.7.

6.2 Problem Description

First we give a few definitions for later description. A flight leg (sometimes also called

segment) is a single nonstop flight. A pairing is a sequence of flight legs that begins and

ends at a crew base city, where the arrival airport of every flight leg in the sequence

coincides with the departure airport of the next flight leg. A deadhead (DH) is a special

flight leg such that the crew member assigned to it flies as a passenger to transport to the

departure airport of another flight leg or to return to the departure city (crew base) at

the end of a pairing.

Gopalakrishnan and Johnson described that airline scheduling usually consists of five

planning stages. The last two stages among them, crew pairing and rostering, are usually

referred to as crew scheduling problems [47].

As the input data of crew scheduling problem, a schedule consisting of all flight legs is

provided before the crew pairing stage. A number of constraints also have to be satisfied

for each pairing according to requirements from industrial applications. Each pairing has

a cost associated with it. In our problem, we define the value of person-days as the cost

of a pairing, where in our formulation, this value is defined to be q for a pairing if it

consists of flight legs from q consecutive working days. One unit of person-day represents

the amount of work done by one person in one working day. The objective of the crew

pairing stage is to find a subset of all feasible pairings with the minimum total cost such

that the subset contains every non-DH flight leg at least once (sometimes exactly once

depending on the model definition).

In the rostering stage, a monthly (or weekly) schedule that can be operated by the

crew is created by using the set of pairings generated at the crew pairing stage. Such a

monthly (or weekly) schedule for the crew is called a roster. Although the exact number

of crew members for the month (or week) becomes clear after crew rostering, this number
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is roughly determined after the pairing stage, and hence it is important to find a good

solution in the pairing stage.

In this chapter, we concentrate on the approach for the crew pairing stage.

6.2.1 Constraints for Pairing

Each airline company may have several basic and specific constraints for defining feasible

pairings. The basic constraints are listed as follows:

Basic Constraint 1: The first departure city in a pairing has to be the same as the

last arrival city. In our problem, we define such a city as Tokyo. It signifies that only

the flight legs departing from NRT or HND airport can be the first flight leg in a pairing.

Similarly, only the flight legs arriving at NRT or HND airport are allowed to be the last

flight leg.

Basic Constraint 2: A specified time is required for a crew member to transfer from

a flight leg to the next one. In our formulation, for any flight leg, its departure time has

to be at least 30 minutes later than the arrival time of its previous flight.

Basic Constraint 3: The duration of a pairing must not exceed a specified limit on

the value of person-days, which is usually 4–6 days. In our model, we assume that each

crew member is unable to work more than Npmax (a given input) days, which means that

the maximum value of person-days in a pairing is Npmax . Recall that in our formulation,

the cost of a pairing is defined to be the value of person-days, and hence each pairing has

a cost of at most Npmax . We set Npmax = 5 unless otherwise stated.

As in many papers in the literature, we also have constraints regarding the aircraft

types; we restrict our attention to a single aircraft type in our scheduling.

Before explaining specific constraints, we give several definitions. An interval time t is

defined as the time between the arrival and departure of two consecutive flight legs in a

pairing, and t has to be at least 30 minutes as discussed above. A break period is defined

as a short interval time satisfying 30 ≤ t < 870. If an interval time t is above or equals

to 870 minutes, it is regarded as a sleep period. A duty period consists of a sequence of

flight legs without sleep periods between them, i.e., sleep periods divide a pairing into duty

periods. The flying time of a duty period is the sum of actual flying times of the flights in

the duty period except for the flying times in deadhead flights. The maximum flying time

fkpath of a pairing k is the maximum flying time among all the flying times of the duty

periods in pairing k. The working time of a duty period is the total working minutes in

the duty period. A break period also contributes to the working time by the duration of

the break period when it is less than 330 minutes; otherwise, it is counted as a constant

working time of 90 minutes. The time for a crew member to board a deadhead flight is
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also counted as part of working time. The maximum working time wkpath of a pairing k is

the maximum working time among all the working times of the duty periods in pairing k.

A landing number of a duty period is the total number of landings in the duty period. The

maximum landing number lkpath of a pairing k is the maximum landing number among all

the landing numbers of the duty periods in a pairing k. For convenience, we define Pall to

be the set of all feasible pairings.

We define three additional constraints as follows:

Specific Constraint 1: fkpath ≤ Nfmax for all k ∈ Pall;

Specific Constraint 2: wkpath ≤ Nwmax for all k ∈ Pall;

Specific Constraint 3: lkpath ≤ Nlmax for all k ∈ Pall,

where Nfmax , Nwmax and Nlmax are the given upper bounds on the maximum flying time,

the maximum working time and the maximum number of landings, respectively, which are

set to Nfmax = 720, Nwmax = 810 and Nlmax = 5 in this chapter.

A solution to the crew scheduling problem is considered feasible only when all the

pairings selected by the solution satisfy all the above mentioned constraints, and all the

non-deadhead flight legs are covered by the selected pairings. Note that even though the

model in this section was formulated based on real-world data from a company and is

quite complicated, some of the constraints are simplified from real ones and the parameter

values are not necessarily the same as those in the real-world applications.

6.2.2 Instances and Experimental Environment

All the computational experiments in this chapter are conducted on four instances, named

I, II, III and IV, that were generated based on real-world flight data. For I, II and IV, we

aim to solve a weekly airline crew scheduling problem. For convenience, we assume that

the time horizon of every instance from I, II and IV consists of 17 days with all the flight

legs in the first and the last Ndummy days specified as deadhead. These deadheads at the

beginning and the end help to cover the target flights in the middle core days. Instance

III is a monthly flight data that is also sandwiched by Ndummy days with only deadheads

before and after the core period. Since every pairing in any optimal solution includes

at least one target flight, it is sufficient to set Ndummy to Npmax − 1, where Npmax is the

maximum value of person-days in a pairing. In this chapter, we set Ndummy to 5, because

the largest value of Npmax we tested in Section 6.6.2 is 6. The information of the instances

is shown in Table 6.1. The number of flights including deadhead flights for each instance

is shown in column “#Flight.”

All experiments in this chapter are carried out on a PC with 3.30 GHz CPU and 32

GB RAM memory, where the computation is executed on a single core. The algorithms
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Table 6.1: Instance information

Instance #Day #DummyDay #Flight #DH

I 17 10 918 540

II 17 10 2201 1295

III 41 10 2214 540

IV 17 10 11514 6777

proposed in this chapter are all coded in C++ unless otherwise stated. All of them were

built and compiled under Microsoft Visual Studio 2012.

6.3 Set Covering Model

Our algorithm solves the crew pairing problem in two steps: the first stage generates

feasible pairings, and the second stage selects a good subset of these pairings to cover

all the flight legs. In most cases, it is impractical to generate all the feasible pairings in

the first stage, since the number of such pairings grows exponentially with the number of

flight legs. To deal with this, we propose a column generation approach that is discussed

in Section 6.4. The second stage can be modeled as a set covering or set partitioning

problem. Since deadheads are allowed in our crew scheduling problem, our objective is to

find a set of pairings with minimum cost such that each flight leg is covered by at least

one pairing. Let aik be a binary value that equals 1 when pairing k covers flight leg i,

otherwise, aik = 0. The cost ck is the value of person-days of pairing k. This problem can

be formulated as a set covering problem SCP(P ) as follows:

minimize
∑
k∈P

ckxk

subject to
∑
k∈P

aikxk ≥ 1, ∀i ∈ Fall

xk ∈ {0, 1}, ∀k ∈ P,

where P is a subset of Pall and Fall is the set of all non-deadhead flight legs. The binary

decision variable xk is a 0-1 variable associated with the kth pairing. If the pairing k is

selected, then xk = 1, and otherwise xk = 0. When P = Pall holds, the problem SCP(Pall)

becomes the original problem of finding an optimal set of pairings.
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6.4 Column Generation Approach

Compared with the straightforward method of enumerating all the feasible pairings, a

column generation approach has an advantage that it provides an optimal solution to

the LP (linear programming) relaxation SCP∗(Pall) of SCP(Pall) by iteratively solving

SCP∗(P ) to optimality for subsets P whose sizes are relatively small. We call an SCP∗(P )

a master problem. For any subset P , the cost of an optimal solution to SCP∗(P ) can

be reduced further by adding good feasible pairings to P . Such pairings can be found by

solving a problem called the pricing problem that is defined based on an optimal solution to

the dual of SCP∗(P ) for the current subset P . The approach stops when no good pairing

can be found to improve the current solution. At this moment, the current solution is

proved to be optimal to SCP∗(Pall). Furthermore, in view of the experience over the past

researches, the solution obtained by solving SCP(P ) is known to be relatively good to

SCP(Pall). In this section, we propose an efficient algorithm for finding good pairings. We

also focus on the initial pairing generation and regularity.

6.4.1 Column Generation

We consider the LP relaxation problem SCP∗(P ):

minimize
∑
k∈P

ckxk (6.4.1)

subject to
∑
k∈P

aikxk ≥ 1, ∀i ∈ Fall (6.4.2)

0 ≤ xk ≤ 1, ∀k ∈ P. (6.4.3)

Its dual problem DSCP∗(P ) is formulated as follows:

maximum
∑
i∈Fall

ui (6.4.4)

subject to
∑
i∈Fall

aikui ≤ ck, ∀k ∈ P (6.4.5)

ui ≥ 0, ∀i ∈ Fall. (6.4.6)

We iteratively solve this LP problem with its dual problem. Denoting an optimal

solution to DSCP∗(P ) as u∗, the pricing problem PRICE(u∗) to find a pairing k from Pall

to be added to P can be defined as follows:

max
k∈Pall

1

ck

∑
i∈Fall

aiku
∗
i . (6.4.7)
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Let σ(u∗) be the optimal value of PRICE(u∗) and let k∗ be an optimal solution. If

σ(u∗) > 1 holds, then the optimal value of DSCP∗(P ) can be updated by adding pairing

k∗ to P . The process is iterated until σ(u∗) ≤ 1 holds.

6.4.2 Graph Description

The problem of finding a sequence of flight legs can be formulated as a routing problem

in digraphs, where the flight legs are associated to nodes. We link two nodes (i, j) with a

directed edge if the following two conditions are satisfied.

Condition 1: The arrival airport of flight leg i coincides with the departure airport

of j.

Condition 2: The departure time of flight leg j is at least 30 minutes later than the

arrival time of i.

For verifying the maximum person-day and reducing the computation time in column

generation, we generate several subgraphs for one instance. We define G(p, q) as the

subgraph corresponding to the period from the pth day to the (p − 1 + q)th day for

all p ∈ {1, 2, . . . , Nd − q + 1} and q ∈ {1, 2, . . . , Npmax}, where Nd is the total days of

the instance. Therefore, each instance has (2Nd − Npmax + 1)Npmax/2 subgraphs. For

example, for instance I whose number of days is 17, we first create 17 subgraphs for each

day involving only those flight legs whose departure and arrival times are both in this

day. Then, for every pair of consecutive two days, we apply a similar rule to generate 16

graphs. Similar rules are applied to the cases of 3, 4, . . . , Npmax consecutive days. As a

result, we obtain 75 subgraphs in total if Npmax = 5.

For each subgraph, we connect a source node s to the flight legs whose departure is on

the first day in Tokyo. A sink node t is linked from the flight legs whose arrival is on the

last day in Tokyo. Finally, we remove the nodes that are not reachable from s and those

not reachable to t, because such nodes are not necessary.

Note that all the subgraphs are directed acyclic graphs (DAG) and any path from s

to t represents a pairing with q person-days. Although such an s–t path generated from

these subgraphs is not necessarily feasible, it must satisfy all the basic constraints.

With these subgraphs, the pricing problem PRICE(u∗) can be decomposed into sub-

problems PRICE(u∗, p, q) for all the subgraphs G(p, q), where PRICE(u∗, p, q) is the pric-

ing problem to find a pairing that maximizes (1/ck)
∑

i∈Fall
aiku

∗
i among those that corre-

spond to s–t paths in G(p, q). Because ck is the same for all such pairings k (to be more

precise, ck = q holds for every pairing k that corresponds to an s–t path in G(p, q)), this

problem becomes a constrained longest path problem in directed acyclic digraphs G(p, q).

Let σ(u∗, p, q) be the optimal solution value of PRICE(u∗, p, q) and k∗(u∗, p, q) be an op-
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timal solution. If there is a graph G(p, q) that satisfies σ(u∗, p, q) > 1, then the optimal

value of DSCP∗(P ) can be updated by adding pairing k∗(u∗, p, q) to P . Otherwise, i.e.,

σ(u∗, p, q) ≤ 1 (6.4.8)

holds for all the subgraphs G(p, q), we terminate the column generation.

In the column generation phase, we adopt the following strategy. We examine sub-

graphs G(p, q) one by one for possible pairs of p and q, solving the corresponding pricing

problem, and whenever a pairing that violates (6.4.8) is found by solving the pricing prob-

lem PRICE(u∗) for a subgraph G(p, q), we add such a pairing to P and immediately start

a new iteration (i.e, we stop examining the remaining subgraphs and immediately move

to the phase of solving SCP∗(P ) for the updated P ).

6.4.3 Initial Pairing Set Generation

The set covering problem SCP(P ) is feasible only when the initial pairing set P can cover

all the non-DH flight legs. Our initial pairing set generation method to generate such a P

starts from P = ∅ and consists of two steps.

In the first step, we consider an iterative process based on depth first search (DFS).

For each subgraph, we define Q as the set of all the nodes directly connected from source

node s and execute a DFS from each node in Q. In choosing the next candidate node in

DFS, we divide the unvisited nodes that are connected from the current node into two sets:

currently uncovered nodes and covered nodes, where a node is covered if there is a pairing

in P containing the flight leg corresponding to the node and uncovered otherwise. If the

set of uncovered nodes is not empty, we choose from this set the node whose departure

time is closest to the arrival time of the current node; otherwise, we choose such a node

from the set of covered nodes. Whenever the DFS reaches a node that is connected to the

sink t, it checks if the current path from s to t satisfies the pairing constraints explained

in Section 6.2.1, and if it does, we add the obtained s–t path into P , terminate the current

DFS, and start a new DFS from another node in Q that has not been used as the starting

node of DFS. Whenever we start a DFS from a node in Q, all the nodes are labeled

unvisited, i.e., the new DFS can visit those nodes that have been visited by a former DFS.

A set of such calls to DFS for a subgraph, which we call a DFS probe, comes to an end

when DFS has been executed from every node in Q. We repeat the process of invoking

DFS probes to all subgraphs, where one round consists of DFS probes with a DFS probe to

every subgraph, and such rounds are repeated until no more uncovered nodes have become

covered in a round. In each round, the time complexity for one graph is O(|Q|EG(p,q)),

where EG(p,q) denotes the number of edges in graph G(p, q).
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Even this simple approach works effectively for the tested instances as shown in Ta-

ble 6.2. The first and the second columns express the instance name (“Instance”) and

the number of non-DH nodes (“#Non-DH”) for each instance. Each value in the third

column (“#Pairing”) shows the number of pairings in the obtained set P , and the fourth

column (“#Round”) shows the number of rounds executed in the first step. The last two

columns represent the number of uncovered nodes (“#Uncovered”) after the first step and

the coverage (i.e., the ratio of nodes that are covered by the obtained set P ) for each

instance.

Table 6.2: Node coverage by the path generation with DFS

Instance #Non-DH #Pairing #Round #Uncovered Coverage

I 378 66 3 0 100.00%

II 906 251 3 0 100.00%

III 1674 258 4 1 99.94%

IV 4737 1315 4 0 100.00%

For those non-DH nodes that remain uncovered, the second step follows. Assume that

node i is uncovered after the first step. Let V −i and V +
i denote the set of nodes reachable

to i and from i, respectively, in the entire graph. For every graph G(p, q) that contains

node i, we generate a subgraph Gi(p, q) induced by the node set V −i ∪{i}∪V
+
i . Then, we

modify Gi(p, q) by removing all the edges connecting from a node in V −i to a node in V +
i .

Recall that all nodes are reachable from s and to t in G(p, q), and the same also holds for

Gi(p, q). This ensures that any s–t path in Gi(p, q) must contain node i. Furthermore, it

is also clear that any s–t path in Gi(p, q) satisfies the basic constraints in Section 6.2.1.

Hence, our problem reduces to the problem of finding an s–t path that satisfies all the

specific pairing constraints.

We consider a dynamic programming (DP) for solving this problem. For each node

h in graph Gi(p, q), we maintain a matrix (wlf ) where the value whlf of the (l, f)-element

represents the minimum working time in a path among all feasible paths from source

node s to h such that (after the latest sleep period if such a period exists) the number of

landings is at most l and the total flying time is at most f . Note that the matrix size is

Nlmax ×Nfmax because of Specific Constraint 1 and 3. Denote by w(jh) the working time

during the period between flight leg j and h, and if j = s or h = t, let w(jh) = 0. Similarly,

we define wh as the working time of flight leg h, and if h = s or h = t, let wh = 0. Let all

the values wslf for node s be 0. Then the cells for all other nodes can be computed by a

forward programming:
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whlf =



min
j∈V −h

wj(l−lj),(f−fj) + w(jh) + wh if min
j∈V −h

wj(l−lj),(f−fj) ≤ Nwmax and

(j, h) is not a sleep period

wh if min
j∈V −h

wj(l−lj),(f−fj) ≤ Nwmax and

(j, h) is a sleep period

Nwmax + 1 otherwise.

The value of the (Nlmax , Nfmax)-element at the sink node t indicates whether a feasible

path exists in the current subgraph. If its value is lower than or equals to the maximum

working time Nwmax , a feasible path exists, and the target uncovered node i will be covered

by such a path. This feasible path can be obtained by tracking back the DP cells through

the path starting from the (Nlmax , Nfmax)-element at the sink node. The path generated

with this procedure must be feasible, since this DP approach respects all the constraints.

The time complexity of this DP is O(NlmaxNfmaxNGi(p,q)EGi(p,q)), where NGi(p,q) and

EGi(p,q) denote the number of nodes and edges in graph Gi(p, q). In practice, the com-

putation time can further be reduced if the input values are multiples of an integer. For

example, for the tested instances I to IV, all the time-related input, including flying time,

is divisible by 5, and Nfmax can be reduced from the original value 720 to 144, which

reduces the computational cost to one fifth.

We apply this scheme to every subgraph G(p, q) until a valid path is found. The

instance is proved to be infeasible, if no feasible path is found for a target node i.

6.4.4 Lower Bound

For large-scale instances, it becomes hard for the column generation approach to continue

the search until all the necessary columns are generated, i.e., until the termination condi-

tion (6.4.8) is satisfied for all subgraphs G(p, q). In this section, we consider a lower bound

on the optimal value of SCP∗(Pall) that can be obtained by solving the pricing problems

PRICE(u∗, p, q) for all p and q even if the termination condition (6.4.8) is not satisfied in

the current iteration.

Recall that P is a subset of Pall, and u∗ is an optimal solution to DSCP∗(P ), and

moreover, σ(u∗, p, q) denotes the optimal value of PRICE(u∗, p, q). If σ(u∗, p, q) ≤ 1

holds for all the subgraphs G(p, q), SCP∗(Pall) has been exactly solved and the optimal

value is
∑

i∈Fall
u∗i due to the duality theorem. Next we consider the situation where the

termination condition (6.4.8) is not satisfied, i.e.,

σ(u∗, p, q) > 1 (6.4.9)
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holds for some G(p, q). Recall that the flight legs are associated to nodes, and let i also

denote the node corresponding to flight i. Denote by V (p, q) the node set of G(p, q), and

define R(i) to be the set of subgraphs that contain flight leg i, i.e.,

R(i) = {G(p, q) | i ∈ V (p, q)}.

Let ∆i be defined as follows:

∆i = min
G(p,q)∈R(i)

1

σ(u∗, p, q)
∀i ∈ Fall.

We denote by P
(p,q)
all the set of all feasible pairings (s–t paths) in subgraph G(p, q) and

define ûi = ∆iu
∗
i for each flight leg i. Then û is a feasible solution of DSCP∗(Pall) because

the following inequality holds for all the subgraphs G(p, q):

σ(û, p, q) = max
k∈P (p,q)

all

1

ck

∑
i∈Fall

aik∆iu
∗
i (6.4.10)

= max
k∈P (p,q)

all

1

ck

∑
i∈Fall

min
G(p′,q′)∈R(i)

1

σ(u∗, p′, q′)
aiku

∗
i (6.4.11)

≤ max
k∈P (p,q)

all

1

ck

∑
i∈Fall

1

σ(u∗, p, q)
aiku

∗
i (6.4.12)

=
1

σ(u∗, p, q)
max

k∈P (p,q)
all

1

ck

∑
i∈Fall

aiku
∗
i = 1. (6.4.13)

The inequality from (6.4.11) to (6.4.12) holds for the following reason. For every i and

k, if aik equals zero, the term corresponding to i and k equals zero both in (6.4.11)

and (6.4.12). Otherwise (i.e, if aik equals one), it means that path k contains node i.

Accordingly, G(p, q) is in set R(i), which indicates that the term in (6.4.12) is a candidate

among the minimize function range in (6.4.11), and the corresponding term in (6.4.11) is

less than or equals to the one in (6.4.12).

As a result, the objective function value
∑

i∈Fall
ûi gives a lower bound on the optimal

value of SCP∗(Pall) as well as that of SCP(Pall).

6.4.5 DP-based Algorithm for Pricing Problem

We solve the pricing problem using a DP-based branch-and-bound algorithm. Before

devising this method, we considered a DP approach similar to the one discussed in Sec-

tion 6.4.3 by extending the matrix at each node to a 3-dimensional table. However, such

an additional dimension causes a great increase in both computation time and memory.

For this reason, and from preliminary experimental results, we decided to adopt a branch-

and-bound framework using a relaxation of the above DP for bounding operations. Our

method consists of two phases and can be outlined as follows.
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In the first phase, it creates three independent DP lists for each node corresponding to

the three constraints regarding working time, flying time and landings, respectively. In the

DP list of node j with respect to working time, the value uwj (r) of the rth cell represents

the maximum obtainable price along a path among all paths from node j to the sink node

such that the total working time (before the first sleep period if such a period exists) is at

most r, where the price of a path is the sum of u∗i for all nodes i on the path. Similarly,

we prepare the DP lists ufj (·) and ulj(·) for both flying time and landings, respectively.

Note that by reducing the 3-dimensional table into three independent lists, each value in

the DP list only indicates an upper bound, since only the constraint associated with the

list is guaranteed, and the path realizing the value in the list may violate one or both of

the other two constraints. These kind of DP list cannot provide us with a feasible pairing,

but with an upper bound on the price value, which is important for bounding operations.

In the second phase, we use a depth-first branch-and-bound search to generate an

optimal path. The algorithm generates partial paths from s by expanding the current

path along an edge from the last node of the path or by backtracking whenever the

current path becomes infeasible or it is concluded that it does not lead to a desirable

path (i.e., a bounding operation). Suppose that the current path k̂ is a partial path from

source node s to a node i in a graph G(p, q). Denote by F (k̂) the node set of path k̂, and

we define f∗
k̂
, w∗

k̂
and l∗

k̂
to be the flying time, working time and landing number of path

k̂ from the last sleep period to node i, or from s to i if k̂ contains no sleep period. In

expanding the current path k̂ by appending a node j at the end of k̂, we choose a node

whose departure time is earliest among those in V +
i that have not been examined yet as

a candidate to append to the current path k̂. If the path expanded by appending such a

node j is feasible, we examine the following three conditions:
∑

i∈F (k̂) u
∗
i + ufj (Nfmax) ≤ q if (i, j) is a sleep period∑

i∈F (k̂) u
∗
i + ufj (Nfmax − f∗k̂ ) ≤ q otherwise;

∑
i∈F (k̂) u

∗
i + uwj (Nwmax) ≤ q if (i, j) is a sleep period∑

i∈F (k̂) u
∗
i + uwj (Nwmax − w∗k̂ − w(ij)) ≤ q otherwise;

∑
i∈F (k̂) u

∗
i + ulj(Nlmax) ≤ q if (i, j) is a sleep period∑

i∈F (k̂) u
∗
i + ulj(Nlmax − l∗k̂) ≤ q otherwise.

Recall that our objective is to find a path in G(p, q) that satisfies the inequality (6.4.9),

which means that the total of prices u∗i on the nodes in the path has to be greater than

ck = q. If one of the above three conditions is satisfied, we can conclude that no path

with total price greater than q can be generated by further extending from node j the
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current partial path (k̂ → j), i.e., a bounding operation can be applied to node j and a

backtracking follows.

The computational results of a simple tree search (that backtracks only if the current

path becomes infeasible) and the proposed DP-based branch-and-bound method are shown

in Table 6.3. We set the time limit to 7200 seconds for both algorithms. The computation

time in seconds for solving the LP relaxation SCP∗(Pall) by column generation (“Time”)

and the objective values (“ObjectValue”) to SCP∗(P ) for the set P when the column

generation terminated are shown in Table 6.3, where “t.l.” signifies that the time limit

was reached before the column generation stopped with condition (6.4.8) satisfied for

all graphs. The column “#Iteration” expresses the number of LP relaxation problems

SCP∗(P ) that have been solved during the execution.

The branch-and-bound with DP has better performance for all instances.

Table 6.3: The results of simple tree search and DP-based branch-and-bound method

Simple tree search B&B with DP

Instance #Iteration ObjectValue Time #Iteration ObjectValue Time

I 151 228.0 t.l. 3135 92.8 56

II 342 749.0 t.l. 23309 247.4 t.l.

III 273 1115.0 t.l. 14688 382.4 t.l.

IV 53 5769.0 t.l. 3679 2433.3 t.l.

6.4.6 Regularity

Most flight legs are regularly scheduled, e.g., a flight from an airport to another is scheduled

with the same departure and arrival times for every weekday. This section considers a

method to exploit such regularity. We call two pairings twins if for every corresponding

pair of flight legs, the departure and arrival airports are the same, and the departure and

arrival times are the same but not on the same day, where the intervals between the two

corresponding flight legs are the same for all pairs. When the column generation obtains

a valid good pairing to be added to P , all of its twin pairings are also added to P .

We compared the computation time of the cases where the method of adding twins is

adopted or not. The results for the case without this idea are shown in Table 6.4, and

Table 6.5 shows the results when the idea is incorporated.

We can observe from the computational results that this idea improves the speed of

column generation for all the instances. This might be because the bottleneck of our
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Table 6.4: The results of the algorithm without twins

Instance #Iteration #Pairing ObjectValue Time

I 3135 3201 92.8 56

II 23309 23560 247.4 t.l.

III 14688 14947 382.4 t.l.

IV 3679 4994 2433.3 t.l.

Table 6.5: The results of the algorithm with twins

Instance #Iteration #Pairing ObjectValue Time

I 878 8228 92.8 37

II 10944 97582 247.2 5897

III 653 22064 380.8 1140

IV 821 9042 2238.1 t.l.

approach for these instances is the time to find a good pairing, and it is advantageous to

add more than one pairing at each iteration. Note however that more than 20,000 twin

pairings were generated only in 653 iterations for instance III, and a different conclusion

might be drawn for larger instances if the time horizon becomes much longer.

6.5 SCP Heuristic Approach

The column generation approach stops the iteration if no good pairing can be generated

to improve the SCP∗(P ), and if this stopping criterion is satisfied, the LP relaxation of the

original SCP, SCP∗(Pall), has been solved to optimality. However, the obtained solution

to SCP∗(P ) can have fractional elements.

As the last step, we solve the SCP in its integer programming (IP) formulation de-

scribed in Section 6.3. The SCP is known to be NP-hard, and many good exact and

heuristic algorithms have been proposed. In this chapter, we consider two approaches:

One is to solve this integer programming problem by using an IP solver, IBM ILOG

CPLEX, and the other is to solve it with a heuristic approach based on a 3-flip neigh-

borhood local search algorithm (3FNLS) proposed by Yagiura et al. [107]. If sufficient

time and memory were available, CPLEX would be able to solve SCP(P ) to optimality.

However, the 3FNLS obtained better results for all instances under a time limit of one

hour. Table 6.6 shows the results of solving SCP(P ) by CPLEX and 3FNLS, where P is
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obtained by the proposed column generation approach.

Table 6.6: The objective values of SCP(P ) obtained by CPLEX and 3FNLS in one hour

I II III IV

CPLEX 97 288 454 2533

3FNLS 96 255 406 2456

6.6 Computational Results

We now present computational results. The heuristic algorithms proposed for SCP by

Yagiura et al. [107] were coded in C, and we set a time limit of 3600 seconds.

6.6.1 Results of the Proposed Approach

Table 6.7 shows the results of the proposed column generation approach, where the

columns show the number of pairings generated by the algorithm (“#Pairing”), the com-

putation time in seconds for solving the LP relaxation by column generation (“Time (LP)”)

and the objective values (“Value (LP)”) to SCP∗(P ). The objective values obtained by

solving the resulting SCP(P ) by the 3FNLS are listed in the last column (“Value (SCP)”).

As discussed in Section 6.4, the rounded up value of the objective value of LP relaxation,

when the column generation stops normally with the termination condition (6.4.8), gives

a lower bound on the optimal value of SCP(Pall), which are shown in column “LB” in the

table. Note that for instance IV, the column generation was stopped with a time limit of

7200 seconds (denoted “t.l.” in the table), and the value in column “LB” shows a lower

bound obtained by the method proposed in Section 6.4.4. We can observe that the gap

between the objective value of SCP (as IP) and its lower bound is within 10% for all the

instances except IV.

Table 6.7: Computation times in seconds of our set covering approach

Instance #Pairing Time (LP) Value (LP) LB Value (SCP)

I 8228 37 92.8 93 96

II 97582 5897 247.2 248 255

III 22064 1140 380.8 381 406

IV 8899 t.l. 2267.5 837 2456
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We also tested an existing software module developed by a company and designed for

solving (almost) the same problem. We applied it to the same instances and analyzed

the two approaches from various aspects, including some criteria that are not explicitly

considered in our formulation. It was observed that solutions obtained by our approach

have less number of total person-days and lower hotel expenses for crew members. On the

other hand, the software obtained solutions with smaller number of deadheads and with

more regularity.

6.6.2 Maximum Person-Days

Recall that we defined the maximum value of person-days Npmax in Section 6.2.1. This

input parameter restricts the search space Pall of pricing problem PRICE(u∗). Let Pαall be

the set of all feasible pairings under the condition Npmax = α. We can easily prove the

following lemma from the fact that α > β implies P βall ⊆ P
α
all.

Lemma 6.6.1. If α > β holds, the optimal value of SCP∗(Pαall) is not more than that

of SCP∗(P βall).

The same result also holds for SCP(Pαall) and SCP(P βall).

The parameter Npmax is usually decided by practical reasons and is given as an input,

but from computational point of view, it gives a trade-off between the quality of obtained

solutions and computational cost in solving SCP∗(Pall) by our column generation approach.

Intuitively, we might consider that if we use greater Npmax , a better objective value of

SCP(P ) can be obtained by a set P generated by the proposed column generation provided

that it stops normally with the termination condition (6.4.8) (no good pairing can be added

to improve the SCP∗(P )). However, this is not always the case as observed through the

experiments.

Table 6.8: Results of Instance I

Npmax #Pairing Time (LP) Value (LP) LB Value (SCP)

1 - - - - -

2 1860 1 98.1 99 100

3 5567 11 93.2 94 95

4 8063 34 92.9 93 95

5 8228 37 92.8 93 96

6 11155 80 92.6 93 96
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Table 6.9: Results of Instance II

Npmax #Pairing Time (LP) Value (LP) LB Value (SCP)

1 - - - - -

2 - - - - -

3 33466 1390 251.1 252 260

4 69679 3670 247.7 248 256

5 97582 5897 247.2 248 255

6 98736 t.l. 247.2 248 254

Table 6.10: Results of Instance III

Npmax #Pairing Time (LP) Value (LP) LB Value (SCP)

1 - - - - -

2 7945 43 407.6 408 427

3 20892 535 382.6 383 395

4 29303 1161 381.9 382 398

5 22064 1140 380.8 381 406

6 27655 1712 380.6 381 408

Table 6.11: Results of Instance IV

Npmax #Pairing Time (LP) Value (LP) LB Value (SCP)

1 - - - - -

2 - - - - -

3 - - - - -

4 - - - - -

5 8899 t.l. 2267.5 837 2456

6 10134 t.l. 2350.9 809 2555

Table 6.8–6.11 show the computational results for each instance under different Npmax

values. The methods and parameter settings are the same as the experiments shown

in Table 6.7, as well as the meaning of each column. The mark “-” signifies that no

feasible solution exists under the corresponding value of Npmax . For all instances, when

we only consider crew pairings with up to 2 person-days (i.e., when Npmax ≤ 2), the
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problem becomes infeasible or the results are much worse than other cases. The values

in columns “Time (LP)” and “Value (LP)” in Table 6.8–6.10 show that there is a trade-

off between the quality of obtained solutions and computational costs during the column

generation process. However, the final results in “Value (SCP)” do not always decrease

as the values of Npmax increase for some instances such as Instance I and III, even though

its LP relaxation problem SCP∗(Pall) is solved to optimality by column generation. The

results in Table 6.8–6.11 suggest that our column generation heuristic can lead to a better

objective value of SCP(P ) by applying it with a smaller value of Npmax than its given

value. Moreover, although the number of all feasible pairings can exponentially increase

with Npmax , the total computation time does not grow with Npmax so drastically. Hence, it

might be worth trying to invoke the proposed algorithm iteratively with different values

of Npmax , e.g., from 2 to the given maximum value of person-days.

6.7 Conclusion of the Airline Crew Pairing Problem

We studied a crew pairing problem in which the objective is to minimize the total person-

days subject to some basic and specific constraints. We modeled it as a set covering

problem.

We presented a column generation approach that incorporates several ideas. We mod-

eled the problem of finding a desirable pairing, in both initial pairing generation and

pricing problem, as a problem of finding a longest path in a graph under some resource

constraints. We proposed a two-step method for generating initial pairings, which consists

of a depth first search, and a dynamic programming (DP) algorithm for covering target

flight legs. We then proposed a DP-based branch-and-bound method in solving the pric-

ing problem. This method outperformed a branch-and-bound algorithm without bounding

operations by DP. We also considered regularity based on the fact that most flight legs

are regularly scheduled. For large-scale instances, we presented a lower bound that can

be obtained even if the column generation approach is stopped before the termination

condition is satisfied.

Through computational experiments, we confirmed that the proposed approach suc-

cessfully obtained good solutions for most of the tested instances with up to 10,000 flights.



Chapter 7

Conclusion

Generation methods including row generation and column generation have been two of the

hottest topics for combinatorial optimization problems over the past sixty or more years.

In Chapter 2 and 3, we introduced row generation and column generation approaches,

respectively. We listed representative historical contributions, provided a standard under-

standing, and presented a survey with an emphasis on their use in combinatorial optimiza-

tion problems. For representative milestones of row generation, we described the classical

Benders decomposition algorithm for solving the mixed integer programming (MIP) prob-

lem, as well as a further extension, known as logic-based Benders decomposition. For

column generation, we described Dantzig-Wolfe decomposition. It focuses on utilizing

block structure, which can be naturally identified in many problems in real-world appli-

cations. The correctness and the convergence of both decomposition algorithms for linear

programming (LP) problems are guaranteed by the fact that there is a finite number of

extreme points in a convex set. The effectiveness is achieved by considering a restricted

problem with a relatively small subset of the rows (or columns), significantly easier to

solve. We also discussed the relationship between row and column generation. It should

be noted that both generation methods are constructed as iterative procedures to solve

combinatorial optimization problems with a huge number of rows or columns, and their

combinations with other well-known methods, such as branch-and-bound, often enhance

the overall performance of the resulting algorithms for many combinatorial optimization

problems.

Throughout this thesis, we discussed how to use the generation algorithms to develop

efficient exact and heuristic algorithms for NP-hard problems, for which the best algorith-

mic strategy may not be obvious. Three problems were studied in Chapter 4, 5 and 6, the

min-max regret generalized assignment problem (MMR-GAP), the min-max multidimen-

sional knapsack problem (MMR-GAP), and the crew pairing problem.
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For the MMR-GAP, we proved that the decision version of the MMR-GAP is Σp
2-complete.

We first examined two heuristics, including a fixed-scenario algorithm and a dual substi-

tute methods. We observed that the dual substitution method obtained better solutions

than the fixed-scenario heuristic for the instances in types A, B, and C. However, for the

instances in types D and E with a large number of jobs, the dual substitution becomes com-

putationally expensive compared to the fixed-scenario heuristic. Regarding the proposed

exact algorithms, we designed a logic-based Benders decomposition, and a branch-and-cut

approach with Benders cuts. We further proposed a Lagrangian-based branch-and-cut

algorithm, into which we incorporated several ideas. At each node, we used a Lagrangian

lower bound that is proven to be stronger than the LP bound. For computing this bound,

we considered a technique solving m 0-1 knapsack problems by dynamic programming.

This computation is further exploited for variable fixing, for which we showed that by

using a two-direction DP table, the time complexity was reduced from O(n2b) to O(nb),

where n is the number of jobs and b is the sum of capacities bi for all agents i. Moreover,

we discussed and computationally analysed an efficient cut selection criterion for Benders’

cuts in the Lagrangian-based branch-and-cut approach. The resulting Lagrangian-based

branch-and-cut algorithm performed satisfactorily on benchmark instances.

For the MMR-MKP, we considered a row generation heuristic by using the dual sub-

stitution, which we call the iterated dual substitution (IDS) algorithm. This method

showed strength in solving the MMR-MKP, and it seems that this strategy is suitable to

exploit the structure of the problem: solutions with good objective values are distributed

in a diverse area in the feasible region (i.e., they are not close together), which was ob-

served through computational experiments, and intensification approaches, often effective

for classical combinatorial optimization problems, will not work for this type of problems.

Another contribution is that we proposed a method to generate a linear constraint at every

iteration without solving any NP-hard subproblems. We also evaluated several classical

techniques that have been proposed for the MMR-GAP, such as a fixed-scenario heuris-

tic, a branch-and-cut approach, and a logic-based Benders decomposition. We observed

that the IDS performed best on all of the tested instances, and it exactly solved 7 out of

18 instances to optimality. Furthermore, IDS always found its best solutions at an early

iteration.

Finally, we considered a crew pairing problem to minimize the total person-days under

some some basic and specific constraints. We modeled it as a set covering problem and

applied a standard column generation framework. In the warm start process, we designed

a two-step method to generate the initial column set. The first step is a depth first

search for solving the problem of finding a longest path in a graph under some resource

constraints. It then invokes a dynamic programming (DP) algorithm to cover all the
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uncovered flight legs. For solving the subproblem, we proposed a DP-based branch-and-

bound method, which outperformed a branch-and-bound algorithm without bounding

operations by DP. Moreover, when solving pricing problems, we accelerate this algorithm

by considering regularity, exploiting the fact that most flight legs are regularly scheduled.

The computational experiments showed that the proposed algorithm had a good overall

performance for most of the tested instances and obtained good solutions even for the

instances with up to 10,000 flights.

In summary, we have demonstrated that row generation and column generation ap-

proaches are two important practical techniques in solving large-scale optimization prob-

lems. We hope that the techniques discussed in this thesis can be helpful for solving

large-scale combinatorial optimization problems.
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