
 

 

 

 

 

 

 

Analysis on Crash 
Types Frequency 

Models Considering 
Correlation 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mothafer Ghasak I. M. A. 

 

 

 

  



 

 



Analysis on Crash Types 

Frequency Models Considering 

Correlations 

 

Doctoral Dissertation 

 
 
 
 
 

Submitted in Partial Fulfillment of the  
Requirements for the Degree of  

Doctor of Engineering 

 
 
 
 
 

by: 

Mothafer, Ghasak Ibrahim Mohamed Amen 
 
 
 

Academic Adviser: 
Professor Yamamoto, Toshiyuki 

 
 
 
 
 
 
 

Department of Civil Engineering 
Nagoya University 

JAPAN 
December, 2016 



  



 

Acknowledgments 

I would like to express my sincere gratitude to everyone who have contributed 

and extended support during the completion of this thesis. Firstly and Foremost, 

I would like to express the deepest appreciation and thanks to my major advisor, 

Professor Yamamoto Toshiyuki, for his continued and untiring support towards 

my Ph.D. research. His excellent guidance, patience, enthusiasm, immense 

knowledge, and faith in me throughout this process have been extremely 

helpful to finish this work. Prof. Yamamoto is a truly an inspiration for me. 

Secondly I would like to thank our laboratory leader Professor Morikawa 

Takayuki, he has always been considered as a great asset in our laboratory, 

his charisma, knowledge, generous support and advice have been always 

immensely available to all of us equally, I can’t thank him enough for his 

patience and support during my work, and to his continuous endeavor to make 

me something in the academic world. Thirdly, I would like to thank Prof. Miwa, 

Tomio, without his tremendous effort I wouldn’t achieve the work here, since 

he was one of the reasons of me being accepted in NUTREND laboratory, I 

can’t find enough words to thank him, without his support on this issue I almost 

given it up and back to my country empty handed. I would like to thank 

associate Professor Kai Liu; associate professor Kato, Hirokazu for serving as 

my reviewed committee members. I want to thank you all for letting my defense 

be an enjoyable moment as well as for your brilliant comments and suggestions. 

My gratitude further extends to lecturer Dr.-Eng, Sato, Hitomi, for her 

great support during my graduate work, moreover, my deep thanks extend to 

all members of Morikawa Yamamoto and Miwa lab (NUTREND) laboratory, 

including my colleagues and friends, especially those who have been assenting, 

helping and sharing their joys and distresses with me during my staying in 

Nagoya University.  

Next on my list to thank is the Japanese Ministry of Education, Culture, 

Sports, Science and Technology for providing me the scholarship, which 

helped me to focus on my study. Moreover, I would like to express my gratitude 

to the staffs of Department of Civil Engineering, Nagoya University, especially 

Mrs. Kawahara, Hiroko. 

I really stand today on a solid ground of confidence because of all the 



 

support that I obtained from my beloved family, I can’t express my feelings of 

appreciation to thank enough my mother and father, for all the sacrifices, 

endless love and support throughout my life, especially they were the source 

of my inspiration as I hurdle all the obstacles in the completion of this graduate 

work. I would like to thank also my beloved brothers: Shafak, Rizq and Amen 

and my lovely sister Sarah, I am so lucky to have you all on myside.   

To my beloved wife Ito, Eriko, I would like to express my deepest 

appreciation and gratitude to your terrific, marvelous support. You are the one 

who makes me achieve my dream and finishing my PhD. Your words, 

compassion, love and encouragement were the energy that I needed to keep 

it forward. You have explained and still to me both, the beauty of the Japanese 

intricate philosophy and the sophisticated culture of Japan, this knowledge was 

so important for me to shape me of who am I today. I would like to thank also 

my mother-in-law, without her continuous support and help I wouldn’t achieve 

this work. 

Last but not least, I am indebted to my friend Al Nuaimi Ahmed. His 

remarkable insights and support were more than adequate to solve many 

problems I faced during modeling and programming. Also I would like to thank 

all my friends outside of the university, especially, Soma san, Yoshika family, 

and Watanabe san, you are the resort that I was relying on when I tried to relax 

myself and to destress myself from the piled works, to all of you, thank you very 

much.     

 

  



 

 





[I]  
 
 

Abstract 

Despite the evident unobserved heterogeneity correlation among the crash 

types that frequently occur on freeway segments, inadequate research has 

been devoted in safety analysis to accommodate such correlation. Furthermore, 

ignoring such correlation could possibly lead to an enormous misleading 

conclusions and judgments since the former affects the model parameter 

efficiency. The correlation components in dynamic states alter with the length 

of the observation time which makes even more difficult to trace. Modeling the 

unobserved heterogeneity can improve the predictions of the count outcomes 

of interest as well. Thus, these improvements can be achieved via introducing 

the multivariate count model concept. Recent advancements in multivariate 

count econometric models have allowed researchers to investigate the 

correlations using simulation based techniques which are not so tractable in a 

sense of time consuming and efficiency. Our main objective in this research is 

to find more flexible model and easy to be used by analysts, then apply the 

obtained knowledge to model the traffic crash types counts that frequently 

occur on freeway segments. We will investigate the correlations and 

covariances among the rear end, sideswipe, fixed object and other crash types 

on freeway sections using three-year crash data for 274 multilane freeway 

segments in the State of Washington, U.S.A. 

To comprehend correlations among different types of accidents and 

explanatory variables, while taking full benefit of the available crash count 

record, a multivariate Poisson gamma mixture (MVPGM) count model has been 

implemented. The model consents a restricted correlation pattern allowing for 

positive correlation among accident types. The model parameters are 

estimated using a maximum likelihood approach. Based on the empirical 

results presented in this study error correlations across accidents types are 

significantly presented. These significant error correlations occur due to 

common unobserved heterogeneity affecting the specific accident frequency 

type. The proposed model shows significant unobserved correlations among 

different types of accidents frequencies. It also provides a better 

representativeness for the variance and covariance structure of each accident 
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type Furthermore, the results reveal that rear end accident type is more likely 

to be affected by geometric and traffic characteristics of freeway. It is also found 

that considering the types of accidents is efficient and similar to modeling total 

number of accidents. 

 For the second part of this study we tried to contribute to methodology 

enhancement of the multivariate count data modeling by introducing a simple 

and practical formula. The formulation started from modifying the standard 

ordered response model to adopt the count outcomes nature. This modification 

is accomplished by introducing a non-linear asymmetric interdependence 

structure among the error terms using the copula-based model. To avoid using 

the simulation maximum-likelihood to solve the joint probability of multi-

integrations among the count outcomes dimensions in the joint probability 

function, we proposed to utilize the composite marginal likelihood (CML) 

approach. It is proven that this approach with the copula formulation works 

efficiently and easy to be implemented for the discrete data. The proposed 

model allows the positive and negative dependency among the count outcomes 

as well as a variety of dependent structures including radially asymmetric or tail 

dependency without a need for a simulation mechanism. 

We apply these techniques to study the interdependence structure for 

the same crash count dataset. The developed second model is applicable for 

parameter estimates using the maximum likelihood approach. The empirical 

results show a significant presence of the unobserved heterogeneity 

dependency across these types of crashes. The results also show that 

considering the unobserved heterogeneity are highly recommended to 

enhance the covariance and the variance structure estimation when they are 

compared to the observed ones. Another finding is that the characteristics of 

the horizontal curves on the designated freeway segment increase the 

likelihood of these types of crashes occurring, when compared to the 

characteristics of vertical curves. 

Later, we shifted our scope to the serial correlation problem using the 

same crash-count data set that we used before but this time considering the 

time of observation. The unobserved heterogeneity now is in dynamic status, 

thus, time invariant heterogeneity arising through multiple years of observation 
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(between 2005 and 2007) for each segment is viewed as a common 

unobserved effect at the segment level, and typically treated with panel models 

involving fixed or random effects. Random effects model unobserved 

heterogeneity through the error term, typically following a gamma or normal 

distributions. We exploited the fact that gamma heterogeneity in a multi-period 

Poisson count modeling framework is equivalent to a negative binomial 

distribution for a dependent variable which is the summation of crashes across 

years. The Poisson panel model is the random effects Poisson gamma (REPG). 

In the REPG model, the dependent variable is an annual count of crashes of a 

specific type. The multi-year crash sum model is a negative binomial (NB) 

model that is based on three consecutive years of crash data (2005-2007). In 

the multi-year crash sum model, the dependent variable is the sum of crashes 

of a specific type for the three-year period. Four categories (in addition to total 

crashes) of crash types are considered in this study including rear end, 

sideswipe, fixed objects and all-other types. The empirical results show that the 

three-year crash sum model is a computationally simpler alternative to a panel 

model for modeling time invariant heterogeneity while imposing fewer data 

requirements such as annual measurements. 

Within panel cash-count context, as our final target in this thesis, we 

utilized all the knowledge we gain through all the developed previous models 

to construct an econometric framework to model the multivariate panel crash 

count by type data. The point of emphasis is that modeling multivariate count 

panel data has more superior econometric benefits, which is clarified in 

producing more efficient parameter estimates compared to the ones arising 

from the multivariate cross-sectional models. Therefore, we considered the 

intertemporal (serial) correlations of a given crash type among the years of 

observations. Moreover, we have considered the inter-type correlations 

formulated by jointing the probabilities among different crash types. Both of 

these correlation components added a higher intricacy to seek a conceivable 

inference. We developed two flexible models to overcome this problem: 

Multivariate Panel Poisson Gamma Copula (MVPPGC) and Multivariate Panel 

Copula-Copula (MVPCC) model. These two models are in no need for a 

simulation mechanism, which is a common issue to model the multivariate 
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count outcomes. The source of flexibility of these models is demonstrated 

through allowing a non-linear asymmetric shape of these correlation 

components generated among the unobserved heterogeneity of each crash 

type and across the years of observations. The empirical results suggest that 

Frank copula statistically outperforms other copula types to fit the serial 

correlation among the years of observations of each crash type. Moreover, 

MVPCC model offers a better prediction of the crash-type count, since it more 

accurately represents the variance-covariance structure. 
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Chapter 1  

 

 

 

Introduction 

 

1.1 BACKGROUND 

One of the most imperative duties of highway safety consultants is the 

identification of locations in need of engineering improvements to reduce the 

number of crashes on a traffic facility. The definition of the traffic crash consists 

a collisions between two vehicles or vehicle with pedestrian, animal, road 

debris or other stationary obstruction. A distinctive study by Rumar (1985), 

using British and American crash reports as data, found that 57% of crashes 

were due solely to driver factors, 27% to combined roadway and driver factors, 

6% to combined vehicle and driver factors, 3% solely to roadway factors, 3% 

to combined roadway, driver, and vehicle factors, 2% solely to vehicle factors, 

and 1% to combined roadway and vehicle factors (see Lum and Reagan, 

1995).Our motive in this study has been embraced through an attempt to 

answer the following questions: 

 Are we being able in our current of crash models to capture enough 

the traffic crash phenomenon intricacy? 

 Which element of the data that we are unable to represent in our 

model? 

 How to obtain greater insight into traffic crashes and their causes. 

 Which road entity (segment) can be called ‘safe’? And why? 

 Which part of crashes we are being able to reduce through 

engineering versus the ones reduced through behavioral 

investments? 

The fundamental key is to connect based on a robust statistical model 
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some explanatory variables that can reflect (the real traffic; geometric; weather; 

driver characteristics) conditions to the crash occurrence in order to provide 

better guidance for policies and countermeasures that will help at reducing the 

number of crashes. In order to do that we need to thoroughly understand the 

mechanism of the crash and the correlation among different types of crashes 

that dominate the high percentage of crash numbers. 

There have been a number of papers in the literature to cast the light on 

the crash types (see Mannering and Bhat, 2014 and Lord and Mannering, 

2010). Such types include, rear-end, sideswipe, fixed objects, same direction, 

opposite direction, head-on, and many other types. Each crash type is uniquely 

different in its nature and mechanism that distinguishes it from other types. 

Many of these studies efforts that originally connect crash types with factors 

(explanatory variables) that reflect the increasing likelihood of crash occurrence 

have since been already developed. A broad-spectrum of these factors are 

mainly classified into the following groups: a) human b) vehicle c) geometric d) 

weather and e) traffic characteristics. A successful econometric model is the 

one that can predict the number of a specific crash while reflecting these 

variables in a systematic scheme. Kim et al. (2006) have stated that there are 

at least three imperative thoughts to develop a crash model by type as a 

function of these explanatory variables: The first reason is to investigate sites 

that are considered a high risk for a specific crash type, such information is 

usually concealed if the total crash count number is used. A second reason is 

to gain a better understanding on performing suitable countermeasures 

through knowing the differences in the effects of geometric, traffic, and 

environmental factors on crash type. Finally, and related to the second, a prior 

knowledge that we can draw a comparison among these different types. For 

the all mentioned reasons above, the crash type estimation models provoke 

intuitions and clear ambiguity regarding crash occurrence, with an insights on 

providing necessary counteract remedies. Ye et al. (2013) modeled crash 

frequency by severity at freeway using a simultaneous equations Poisson-

lognormal model with error components that are normally distributed. Chiou 

and Fu (2013) implemented multinomial-generalized Poisson model with error 

components. In both of these two studies, the maximum simulated likelihood 
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estimation approach has been used. Park and Lord (2007); El-Basyouny and 

Sayed (2009); Lee et al. (2014); Lee et al. (2015); Li et al. (2015); Ma et al. 

(2006); Ma et al. (2008); Aguero et al. (2009) and Imprialou et al. (2016) have 

utilized the Bayesian approach instead. Regardless which approach is used, 

there is some doubt whether these models could be computationally tractable 

and less time consumption to obtain solution when applied to high-dimensional 

multivariate data (Winkelmann, 2008). Other studies considered crash types as 

an explanatory variable (see Chiou and Fu, 2013; Shaheed et al., 2013; Gkritza 

et al., 2010; Yan et al., 2011; Yang et al., 2011; Shankar and Mannering, 1996), 

while other comprehensively studied one type of crashes at a specific facility 

(Das and Abdel-Aty, 2011; Dissanayake and Lu, 2002). 

Count data models stand on the base of a discrete probability 

distribution theory, the mean of the discrete distribution is parameterized as a 

function of explanatory variables (Castro et.al, 2012). Evolution of frequency 

and severity of crashes modeling is still developing. In particular, the effect of 

geometrics on the crashes. The problem of loss of “efficiency” of parameters 

when correlation among unobserved factors are considered as associated 

burden to the empirical models development (Mannering and Bhat, 2014). 

Such factors can mainly classified into three sources based on where they are 

triggered from. These sources are: A) Driver factors (such as age, gender, 

marital status, socioeconomic status, risk taking, driving experience, driving 

behavior, driving adjustment in situational responses). B) Vehicle factors (such 

vehicle type, engine type, safety features (airbags, anti-lock, brakes, etc)). C) 

Road factors (such as local pavement condition, local distractions (billboards, 

glare, signs…etc)). Engineering efforts lie on including these factors in a form 

of stochastic error term and include it into a statistical model.  

1.2 PROBLEM STATEMENT  

On a specific freeway segment several accident types occur due to various 

factors. Some of these types are likely to be correlated to each other.  The need 

for modeling crash frequencies by accident types has been distinguished. 

Development of such model to consider these correlations systems are 

associated with intricacy in formulation/computational aspects. Since crash 

related outcomes like the Rear-end crash type, Sideswipe or overturn type 
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exhibit interdependencies (correlations), their simultaneous analysis requires 

that these interdependencies to be taken into consideration. In view of the fact 

that these interdependencies among different crash types are related to how to 

formulate the variance-covariance structure of the unobserved factors, a more 

investigation on that field need to be carried out. 

1.3 OBJECTIVES 

The purpose of this study is to develop an empirical statistical system of models 

that can forecast the frequency of crashes on a specified free highway 

segments. Then to assess the factors that maximize the likelihood of accident 

occurrence. Furthermore, to investigate the relationship among crash types in 

order to get better understand of the latent factors that correlated them together. 

In more details, we can summarize our objectives into: 

1. Demonstrate (as theorized) there are several ways of associated 

exogenous variables to interact in different way with the designated 

crash types. 

2. Investigate the source of associated problems arise from unobserved 

heterogeneity (such as overdispersion and the serial correlation 

(intertemporal effect) problems). 

3. Investigate on whether the unobserved heterogeneities are correlated 

among crash types and getting more efficient predictors. 

4. Seeking for a better representation of the variance-covariance structure 

in order to get better predication. 

 

1.4 RESEARCH OUTLINE 

This dissertation comprises an eight chapters. Here we briefly presents the 

outline of this dissertation which consists our main focus in each chapter. We 

will give the references among all these chapters under a separated section 

called 'bibliography' in the end. 

In chapter two we will present the main methodological/data associated 

issues which appear in modeling the crash-count data. These issues are 

explained shortly into different sections. After that, crash-count available 

models were discussed to understand the state-of-the-art of the available 
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developed models in the literature, with their advantages and disadvantages. 

This point will accompany each chapter in a separate section under the name 

'background' which extensively discuss these models and their features. The 

merits/types of the copula function (mainly the bivariate ones) is explained after, 

given a reasonable justification of its usage in our developed crash-count 

models context. 

Chapter three presents the our crash-count data, including the site, 

basic counts tables, crash count type selection, their empirical distributions and 

a descriptive static of the observed crashes with their associated explanatory 

variables.  

Our crash-count modeling efforts started from chapter four and 

continued until chapter seven. Each chapter represents an independent work 

but complements each other in a way of seeking better model performance and 

efficient parameter estimates. In precise order, chapter four and chapter five 

deal with cross-sectional count data, while chapter six and chapter seven deal 

with panel count data. All the developed models are multivariate models type, 

thus accordingly. 

Chapter four, the multivariate Poisson gamma mixture model is 

developed. This work has yielded as our first journal paper which the crash type 

covariances and roadway geometric marginals effects have been investigated 

thoroughly. This model was extended later and presented in chapter five were 

the bivariate copula function is incorporated in the CML technique. The model 

shows many beneficial features in modeling our crash count data. In the next 

chapter, namely chapter six, we have introduced the time of observation effect 

for first time, thus the random effect Poisson model is used for this purpose. 

The results were compared to a cross sectional crash sum model and both the 

advantages and disadvantages between these two models are discussed. We 

finished our modeling efforts with chapter seven, many concepts from chapter 

four five and six are incorporated in this chapter. The presented framework is 

used later to explain the correlation structure among both the crash types and 

the time of observations. Chapter eight gives a brief conclusions and future 

work of each chapter in this study (see Figure (1-1).  
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Ch. I: Introduction 

Background Problem Statement Objectives Research Flowchart 

Ch. II: Literature Review 

-Data and Methodological Issues: 
 Fundamental and features of associated crash 

count problems. 

 Most popular problems that will be consider 

 Effect of each problem. 

Ch. III: Empirical Crash Data Profiles 

Ch. IV: Multivariate Poisson-
Gamma Mixture Model  
[Cross sectional count model] 

Ch. VI: Random Effect 
Poisson Gamma Mixture 

Model 
[Panel count model] 

Chapter V: Multivariate Copula -based Count Model 
[Cross sectional count model]  

Chapter VII: Multivariate Panel Copula-Based 

Model 

-Avaible Methodologies: 
 Crash count models and unobserved 

heterogeneity. 

 Model limitations 

 Bivariate/multivariate models. 

 Why copula 

-Study Site: 
 Traffic crash data  

 -Types of crashes 

 Traffic Characteristic data 

Physical Characteristics 
 Geometry of freeway segments 

 (Length, radius, slope. Etc) 

 Number of H/V curves per seg.  

 Investigate the source of unobserved heterogeneity 

correlation among crash types. 

 Investigate for each crash type the associated  

explanatory variables  

 Estimate the variance-covariance matrix. 

 Explain the geometric effect on each type. 

 Investigate mainly the serial correlation 

among crash types.  

 Develop a crash sum model and compare to 

the REPG model. 

 Investigate the efficiency of the parameter 

estimates 

 Introduce more flexible dependency correlation among the unobserved heterogeneity using the 

copula function.  

 Getting more efficient parameter estimates and enhance the varaince-covaraince matrix. 

 Estimate the variance-covariance matrix among the crash types of the unobserved 

heterogeneity 

 Introduce more flexible way to investigate the correlation among crash types and the serial correlation 

together.  

 Estimate the variance-covariance matrix among the years of observation for a given crash type of the 

unobserved heterogeneity 

Chapter VIII: Conclusion and future work 

 Main finding of each chapter and direction to future work.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (1-1) Research flowchart 
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Chapter 2  

 

 

 

Literature Review 

2.1 INTRODUCTION 

Crash count modeling is broadly well-known in the literature see Lord and 

Mannering, (2010). Most of developed crash count models are used to cover 

wide range of crashes data and methodological issues. This chapter will first 

navigate elaborately and shortly all the current data and methodological issues 

in crash count context, then moves to explore all related developed crash count 

models that appear in the recent literature.  

2.2 DATA AND METHODOLOGICAL ISSUES 

Here, we will discuss the major associated problems with crash-frequency 

(count) that have been recognized over the years in the literature. These 

problems are considered as a crucial source of error that usually leads to select 

incorrect statistical model. Thus, this error affects crash-frequency prediction 

and interpretation of the associated parameter estimates. We will explore these 

actuarial issues first, then later we will extensively explain the problems in their 

context in this study. These problems are can be classified as (see for more 

details (Lord and Mannering 2010) and Mannering, Shankar et al. (2016)): 

2.2.1 Over-dispersion 

This common problem occurs when the variance value excesses the mean 

value of the crash counts data. In that case overdispersion will cause violation 

the equality assumption between these two values which is one of most 

important assumptions in the existed approaches of count-data modeling 

(especially if Poisson regression model is used). The estimation of the 

parameters in that regard will be bias and misleading the inference on the 
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significant level. The Over-dispersion is generated when there is an 

unobserved heterogeneity (unobserved factors) that affects the crash-count 

outcome. Over-dispersion usually a term used in the cross-sectional data 

reference (which we will discuss later). 

2.2.2 Under-dispersion 

This problem is not so common in crash-count data especially when the sample 

size is low. This problem occur when the variance value less than the mean of 

the crash-counts on the designated roadway segment. 

2.2.3 Dynamic explanatory variables (changing with time) 

Collecting crash-count data usually involve counting process over specific time 

period. Most of the explanatory (exogenous) variables are considered a time 

invariant variables over time. The lack of information on how these variables 

changing with time is still dominating the crash-count data. In our study we have 

only the traffic dynamic (represented by the variable (AADT)) that is considered 

as time-varying variable. This problem are also known in the literature as a 

serial correlation, autoregressive, intertemporal correlation effect problem. 

2.2.4 Temporal and spatial correlation 

When a roadway individual entities (segments) is observed over short time 

periods to evade from lacking of information on the explanatory variables 

changing with time (the 2.2.3 problem), there is high possibility that these 

observations are statistically correlated.  The source of correlation is generated 

from the associations of same unobserved heterogeneity of same roadway 

individual over time/space. This problem is in similar to the over-dispersion 

problem which leads usually to violate the equality property in Poisson model 

that we mentioned before.      

2.2.5 Small sample size and low sample-mean. 

Collecting crash-count data is associated with large cost/time in general. 

Therefore, these data are collected over a short time span usually. It’s an 

evident that if the sample size small, it will affect highly the safety judgment in 

general. For example if an analyst prefers to use the zero-inflated count model 

on an individual roadway with high risk property, it’s inevitable to reach to a 

false judgment. Same goes for small sample size.   
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2.2.6 Crash-type and injury-severity correlation 

If the crash-count data classified into different categories in injury severity level 

or different crash-type and then modeled in separate forms, it’s highly possible 

to get inefficient parameter estimates of the explanatory variables due to 

neglecting the correlation among these categories. 

2.2.7 Under-reporting 

Under report problem appears in lack of recording less sever crashes which 

leads to an estimate bias usually. For each severity level, rate of underreporting 

crashes is still unknown in general. 

2.2.8 Omitted-variables bias 

Developing a model with less explanatory variables in the crash-count 

estimation function is persuasive (for simplicity and lack of information 

purposes). Therefore, omitting variables is a common problem in crash-count 

modeling which leads usually to get biased parameter estimates. Omitting 

variables causes both the over-dispersion/serial correlation problems. 

2.2.9 Endogenous variables 

Endogeneity occurs when one of the explanatory or more is related to another 

explanatory variable in the functional form. Ignoring the endogeneity results a 

parameter estimate biased usually. Accounting the endogeneity problem in 

crash-count data adds more complexity in molding 

2.2.10 Functional form 

Establishing a crash-count model is involved an extra cautious to represent the 

number of crashes as a cardinal positive, integer number. A non-linear function 

is preferable in that aspect which adds more complexity especially it may 

require numerical solutions. Misspecification of the functional form can lead 

also to over-dispersion/serial correlation problems. 

2.2.11 Fixed parameters 

In the traditional crash-count modeling, the explanatory variables are treated 

as fixed-status variables across all the roadway individual entities. In some 

cases this will lead to erroneous inference unless a dynamic status is 

introduced which is adds more complexity in molding. 
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2.3 CRASH-COUNT AVAILABLE MODELS 

In context of previous prevailing issues in crash count data, there have been 

many models that accommodate these problems with advantage/disadvantage 

that can be found extensively in Lord and Mannering (2010). Various statistical 

models have been developed that identify factor contributing to crash frequency 

or severity. The crash count models in the literature can be classified into two 

classes based on the number of crash count outcomes that can be handled 

when construct the model. These classes are: a) univariate crash count models 

and b) multivariate crash count models. It worth to mention that both of these 

classes can be classified into two classes, which are based on how we are 

looking into the data. These two classes are cross-sectional crash count 

models and panel crash count models. We will list here all the available crash 

count models that dominate the literature.  

2.3.1 Poisson model 

This model is the most basic of crash count data analysis. Most desirable 

feature of this model is: it is easy to estimate. The disadvantage of this model 

lies in lacking of representing the over/under dispersion of the unobserved 

heterogeneity, it’s also affected by the low sample mean and low sample size 

of the data  e.g., Jovanis and Chang (1986), Joshua and Garber (1990), Jones 

et al. (1991), Miaou and Lum (1993), and Miaou (1994).  

2.3.2 Negative binomial (Poisson gamma mixture model) 

Negative binomial model is the second basic model and easy to estimate, offers 

a closed-form of probability density function and can address the 

overdispersion problem. This model cannot handle the under dispersion 

problem also it’s also affected by the low sample mean and low sample size of 

the data e.g., Maycock and Hall (1984), Hauer et al. (1988), Brüde and Larsson 

(1993), Bonneson and McCoy (1993), Miaou (1994), Persaud (1994), Kumala 

(1995), Shankar et al. (1995). 

2.3.3  Poisson-lognormal Model 

This model in similar shape to the negative binomial model but rather than 

using the gamma distribution of the unobserved heterogeneity in the model 

structure, the lognormal distribution is used instead. Since this model doesn’t 
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offer a closed-form of the probability density function, this model needs a 

creative technique to obtain solution. In similar to previous models, it’s also 

affected by the low sample mean and low sample size of the data e.g., Miaou 

et al. (2005), Lord and Miranda-Moreno (2008), and Aguero-Valverde and 

Jovanis (1989). 

2.3.4 Zero-Inflated Poisson and Negative binomial models 

This model is used to compensate the lacking of representing zero count in 

previous models. The zero-inflated model should be used with caution which is 

necessary not to reach to a wrong conclusion, especially zero count 

interpretation can reflect the specified roadway entity (segment in our data) how 

safe it is. The proper observation time unit is vital in that case to give valid 

conclusion on safety level of the specified entity e.g., Miaou (1994), Shankar et 

al. (1997), Carson and Mannering (2001), Lee and Mannering (2002), 

Kumara and Chin (2003), Shankar et al. (1997). 

2.3.5 Conway-Maxwell-Poisson model 

This model is used to overcome both over and under dispersion problem in the 

crash count data. In similar to previous models, it’s also affected by the low 

sample mean and low sample size of the data e.g., Lord et al. (2008) and Lord 

et al. (2010). 

2.3.6 Gamma model 

This model can handle both over and under dispersion problem in the crash 

count data. This model has a limited use since it is constructed in duel-state of 

zero crash count and non-zero e.g., Oh et al. (2006) and Daniels et al. (2010). 

2.3.7 Generalized estimating equation model 

This model is used to represent the temporal correlation in the panel crash 

count data context. This model may need an extra information on specifying 

the types of the temporal correlation e.g., Lord and Persaud (2000), Lord et al. 

(2005), Halekoh et al. (2006).  

2.3.8 Generalized additive models 

These models are more flexible to address the non-linearity of variable 

interactions. The complexity and not easy to transfer to other datasets are 

considered the main disadvantages of utilizing such models e.g., Xie and 
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Zhang (2008) and Li et al. (2009). 

2.3.9 Random-effects models 

These models can be used to represent both the spatial and temporal effect in 

the dataset. It may not be easy to transfer to other datasets e.g., Johansson 

(1996), Shankar et al. (1998), Miaou and Lord (2003).  

2.3.10 Negative multinomial model 

This model is in similar to the Poisson gamma mixture model which is used to 

investigate the temporal effect (the serial correlation problem). The 

overdispersion in the data is also represented in in this model which is caused 

by the temporal effect. This model cannot handle the under dispersion problem 

also it’s also affected by the low sample mean and low sample size of the data 

e.g., Ulfarsson and Shankar (2003), Shankar et al, 1998 and Sittikariya et al. 

(2005). 

2.3.11 Random-parameters models 

These models are more flexible and offer distributions to each explanatory 

variable rather than fixed values. These models are more complex to estimate 

and require more creative techniques to get solution since no closed-form 

available usually e.g., Anastasopoulos and Mannering (2009) and El-Basyouny 

and Sayed (2009).  

2.3.12 Bivariate and multivariate models. 

These models are used to model more than one crash outcome (crash types 

in this thesis) simultaneously. Most distinctive feature of formulating these 

model is that we need to construct the correlation matrix among these crash 

count outcomes. The formulated joint probability is in no closed-form, thus a 

creative technique is needed to obtain solution. These models also more 

complex to estimate rather the univariate models, but they often offer more 

insights on how these crash count outcomes interact to each other e.g., Miaou 

and Lord (2003), Miaou and Song (2005), N’Guessan and Langrand (2005a), 

N’Guessan and Langrand (2005b), Bijleveld (2005), Song et al. (2006).   

2.3.13 Finite Mixture and Markov switching models 

These models are used to analyze the source of dispersion in the crash count 

data but not easy to estimate and not be transferable to other datasets e.g., 
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Malyshkina et al. (2009), Park and Lord (2009). 

2.3.14 Duration models 

These models consider the time duration among crash occurring which offer 

more analysis depth, but require more details in the crash count data, such as 

the time-varying of the explanatory variables which is more difficult and 

expensive to obtain usually e.g., Jovanis and Chang (1989), Chang and 

Jovanis (1990). 

2.3.15 Hierarchical and multilevel models 

Classing the crash count outcomes into groups offered by these models give 

more capabilities to address temporal, spatial and other type of correlations 

among these groups, but often the correlation is not easy to interpret and not 

easy to transfer to other datasets e.g., Jones and Jørgensen (2003) and Kim 

et al. (2007). 

2.3.16 Neural, Bayesian neural network, support vector machine models 

 These models are non-parametric and in no need to any assumption on the 

data distributions, more flexible to achieve perfect fitting usually but complex to 

estimate, not easy to interpret the results and may not be transferable to other 

datasets e.g., Abdelwahab and Abdel-Aty (2002), Chang (2005). 

2.4 KEY FEATURES OF OUR APPROACH 

Most of these studies mentioned above have neglected the potential source of 

correlation that may exist across different crash types that will cause “loss of 

efficiency, thus our contribution in this study will be mainly directed toward this 

point. Since we considered crash-type correlation and time temporal problems, 

which both are involved with multivariate-base modeling, we will focus on 

construct in shape of bivariate/multivariate models. These models are 

necessary in crash-count modeling when, the joint-probability among different 

crash count outcomes are the point of interest rather than the ones from total 

number of crashes. Basically, the correlation among the unobserved factors of 

each individual crash-count outcome plays a vital role on how to construct 

these models. As we stated before, Multivariate models are more valuable 

since they offer more information on how different crash-count outcomes 

correlated. Multivariate models are better in representing the error term 
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structure which leads to a better predication usually. Multivariate models are 

more complex to be estimated especially when several crash-count outcomes 

are involved in estimation (larger than 6, see Bhat et al. (2014b)). From the 

analysis complexity and the computational challenges of the multivariate 

models we concern on offering a better solution since most of the current 

models are: a) too restricted and allowing only positive correlation b) set to be 

a linear-symmetric correlation usually. c) Most of the available solutions are 

computationally extensive, thus the maximum simulated likelihood is often 

used to obtain solution. Finally, d) the multivariate panel count model is still 

considered as a big challenge that is not so much considered regardless to its 

importance in the literature. We will discuss thoroughly in Chapter 4, Chapter 

5, Chapter 6 and Chapter 7 all these available models in their context with their 

advantages and disadvantages. 
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Empirical Crash Data Profiles 

 

 

3.1 CRASH DATA SOURCE 

The crash dataset is obtained for interstate 5 in the State of Washington, USA 

(see Figure (3-1)). The interstate no.5 is a multi-lane divided highway that 

established in august 7th, 1947 by FHWA and entered in operational service 

from 1956 until today. It is the only interstate highway to traverse the whole 

north-south length of State of Washington, serving the major cities like 

Vancouver Olympia, Tacoma and Seattle. 

Three years of crash data were collected from 2005 to 2007. Data 

contained three different categories: (1) the crash count of the total number of 

crashes and each type of crashes data; (2) the geometrical characteristics of 

these highways; and (3) the traffic information associated for each year. The 

economic importance of these highways which is a part of the National Highway 

System makes these routes more critical with more possibility of crashes to 

occur every year (Ye et al., 2013). 

To facilitate the crash data collection, the freeway has been divided into 

274 roadway segments. These segments vary in lengths with roughly 0.87 

miles mean segment length and 0.60 mile standard deviation. These segments 

were interchange segments, with interchange segments defined as segments 

bounded by the farthest ramp terminal on either side of an interchange 

overpass. A noteworthy point to be consider is that all the analyzed segments 

in this thesis are interchange segments. Interstate (5) has some complex 

interchanges but on average, the definition of interchange only segment means 
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the length between farthest ramp points on either side of overpass. Thus, the 

lengths of these segments would be far less. These interchange segments that 

we considered here, come with many different geometric layouts e.g., 

directional ramps, semi directional, cloverleaf, diamond, single-point, clove-part, 

part-diamond and others.  For each segment, crashes were recorded by year 

and aggregated under each individual type of crash category. Hence, crash 

frequency counts by types were obtained for each freeway segment. The 

crashes sample size produces 822 (=274x3) segment-year observations. 

 

In total, 13,359 individual crashes were included in this study. Crash 

frequencies by type and year are shown in Table (3-1).  

Table (3-1) Crash frequencies by type and year 

Year 
Total 

accidents 

Crash type 

Rear-End Sideswipe 
Fixed 

objects 

Other types 

Overturn 
Same 

Direction 
Head-on Others 

2005 4,550 2,578 775 684 79 228 6 199 
2006 4,519 2,543 785 683 82 265 1 160 

2007 4,290 2,391 817 637 81 192 5 166 

∑ 13,359 7,512 2,377 2,004 242 685 12 525 

  56.2% 17.8% 15.0% 1.8% 5.1% 0.1% 3.9% 

 

On state highways, the major collision types usually are: same direction 

Figure (3-1) Interstate highway (no. 5) in Washington state USA. 
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collisions resulting in rear end or sideswipe crashes, as well as fixed objects 

and entering at angle.  The proportion of entering at angle collisions on 

interstates, especially on the mainline is virtually negligible, with the result that 

three major collision types dominate the frequency distribution.  This is 

confirmed by Table (3-1), which shows that rear-end, sideswipe, and fixed 

objects crash types comprise a large proportion of the frequency distribution of 

crash types, with the remaining category classified as “all other,” and inclusive 

of same direction collisions not resulting in rear end or sideswipe crashes; 

head-on; crashes involving vehicle fire, pedestrians, parked vehicles, wrong 

way crashes, etc.  

 

3.2 CRASH DATA DISTRIBUTIONS AND DESCRIPTIVE 
STATISTICS 

The distribution of crash frequencies among segments per year by each crash 

type is shown in Figure (3-2). (Zero counts are 30%, 12%; 11%; and 19% for 

rear end, sideswipe, fixed objects and all-other respectively.)  Zero-inflated 

count models were not considered in this study.  For traffic and geometric 

characteristics, a data from Washington State Department of Transportation 

(WSDOT, http://www.wsdot.wa.gov/) databases were used related to each 

segment on the roadway. Geometric data include percentage of lanes cross 

section proportion by length of segment, maximum and minimum radii of 

horizontal curves, central angle of horizontal curves, maximum grade, 

minimum grade, grade differential, tangent length, and number of changes in 

grade for vertical curves, number of horizontal curves per segment, number of 

vertical curves per segment, presence of interchanges and presence of exit 

and entrance ramps. Traffic operations data include average annual daily traffic. 

It should be noted that since the sample size is limited to three observations 

from the same segment (number of crashes per year) are treated as 

independent in this study although significant serial correlations are anticipated. 

The consideration of this correlation remains as a future research task.      

Table (3-2) provides information on the mean and standard deviation of 

selected variables in the dataset. There are basically twelve exogenous 

variables representing the explanatory variables for traffic volume and 
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geometrics of each segment on the freeway, and logarithmic conversions of 

annual average daily traffic volume and length in miles are used in the model. 

Four endogenous variables represent the crash types are considered in this 

study. 
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Figure (3-2) Distribution of crash frequency by type 

 
(a) Total crash count 

  
 

 
 
 
 

(b) Rear end 

 
 
 
 

(c) Sideswipe 
  

 
 
 
 

(d) Fixed object 

 
 
 
 

(e) All-other 
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 Table (3-2) Descriptive statistic of observed crash count and explanatory 
variables 

  

 Explanatory Variables Mean St. dev. Max Min 

C
ra

s
h
 ty

p
e
s
 

Number of rear-end accidents per year 9.14 20.44 212.00 0.00 

Number of sideswipe accidents per 
year 

2.89 5.71 65.00 0.00 

Number of fixed object accidents per 
year 

2.44 3.32 33.00 0.00 

Other Types [Same direction, overturn, 
head-on, others] 

1.78 2.42 21.00 0.00 

 
Total number of accident count per 
year (sum of all types of accidents 
record) 

16.25 29.70 305.00 0.00 

E
x
p
la

n
a
to

ry
 v

a
ria

b
le

s
 

Annual average daily traffic volume in 
vehicles per hour (AADT) 

17207.80 7151.08 42214.18 1079.49 

Logarithm of AADT 9.65 0.51 10.65 6.98 

Length in miles 0.87 0.60 4.13 0.13 

Logarithm of segment length -0.30 0.55 1.42 -2.04 

Urban rural dummy, 1 if rural, 0 if 
urban 

0.27 0.44 1.00 0.00 

Percentage of three lanes or larger {up 
to 5 lanes} cross section proportion by 
length of segment. 

0.66 0.47 1.00 0.00 

Number of horizontal alignments per 
segment. 

1.57 1.51 13.00 0.00 

Interchange type dummy for diamond 
ramps 

0.49 0.50 1.00 0.00 

Largest vertical curve rate of vertical 
curvature in segment 

1.20 1.23 5.79 0.00 

Shortest vertical curve length in 
segment in miles 

0.08 0.07 0.45 0.00 

Smallest vertical curve rate of vertical 
curvature in segment 

847.75 1,836.61 20,000.00 0.00 

Largest beginning vertical curve 
elevation in segment 

-1.75 142.47 194.72 -333.71 

Largest horizontal curve central angle 
in segment 

15.22 15.21 9.24 0.00 

Number of vertical curves in segment 2.59 2.00 13.00 0.00 
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Finally, the presence of crash type dependency is shown in Figure (3-3), 

were each pair exhibits a heavy scattered left tail. 
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Figure (3-3) Crash type scatter plots 
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Chapter 4  

 

 

 

Multivariate Poisson Gamma Mixture Model 

4.1 INTRODUCTION 

This Chapter investigates the correlations and covariances among the rear end, 

sideswipe, fixed object and other crash types on freeway sections using three-

year crash data for 274 multilane freeway segments in the State of Washington, 

U.S.A. A multivariate Poisson gamma mixture count model (MVPGM) is 

developed assuming positive correlation among crash types. The model 

parameters are estimated using a maximum likelihood approach. The objective 

of the proposed model is to investigate if the unobserved heterogeneity 

correlations among different types of crash frequencies are significant or not.  

In addition to evaluating crash type correlations and covariances by crash type, 

the model also allows for evaluation of roadway geometric marginal effects and 

how they compare with crash type-specific effects.  

4.2 BACKGROUND 

An enormous body of literature has been devoted to modeling crash and safety 

considerations. The concept of multivariate frequency modeling that 

considering the error term correlations has been incorporated for multiple aims 

in the field of transportation. This concept is exploited to address the crash 

modeling with error components that represent the unobserved heterogeneity 

by jointing the probability of more than one crash type could occur on a specific 

segment of the freeway. 

Basically, there are five multivariate count models to estimate the 

correlation among frequencies by crash types or severity: multivariate Poisson 

model; multivariate negative binomial model; multivariate Poisson-gamma 
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mixture model; multivariate Poisson-log-normal model and latent Poisson-

normal model. Multivariate Poisson-log-normal models have been used 

extensively in the literature for both crash types and severity (see for more 

details, Winkelmann, 2008). Ye et al. (2013) modeled crash frequency by 

severity at freeway using simultaneous equations Poisson log normal model 

with an error component structure that are normally distributed. Chiou and Fu 

(2013) also modeled the crash frequency by severity using multinomial-

generalized Poisson model with error components. In these two studies, the 

maximum simulated likelihood approach has been adopted in order to solve 

the integral of the conditional joint probability. Both of these studies also have 

used the normal distribution to model the error component structure for each 

individual event. Park and Lord (2007), Basyouny and Sayed (2009), Ma et al. 

(2008) and Ma et al. (2006) have used the Bayesian approach. Nevertheless, 

“there is some doubt whether these models could be time consuming when 

applied to high dimensional multivariate data” (Winkleman, 2008). Beside this 

fact, Bayesian approach doesn't tell a correct way to select a distribution of the 

prior; the posterior is heavily influenced by this selection and finally the 

simulations provide slightly different answers unless the same random seed is 

used (Winkelman, 2008). The other model is multivariate latent Poisson-normal 

that proposed the non-linear parameterization of the thresholds as a function 

of exogenous variables (Castro et al., 2013; Castro et al., 2012). Complexity 

and non-closed-form for the joint probability are considered as the main 

hindrance to estimate parameters of these models. 

The Poisson gamma mixture model was first introduced by Hausman et 

al. (1984) with further explanation of its use by Dey and Chung (1992).  In the 

Hausman-et al/Miles models, correlation is generated by an individual specific 

multiplicative error term. Miles (2001) provides an application of this model to 

individual consumer data on the number of purchases of bread and cookies in 

one-week period, using maximum likelihood estimation (MLE) of the Poisson 

gamma mixture probability. Kockelman (2001) conducted a time and budget 

constrained activity demand analysis utilizing the same model as Miles (2001). 

This model offers a closed form and is easy to estimate by using the maximum 

likelihood method. Thus, this chapter develops a multivariate Poisson gamma 
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mixture (MVPGM) model to simultaneously model crash frequencies by type 

considering the effects of various roadway, geometric and traffic volume factors 

on crash frequencies. Moreover, the proposed model considers the covariance 

matrix through error components specified under an integrated model 

framework among crashes types. Model estimation is achieved through the use 

of maximum likelihood estimation (MLE) method that provide consistent and 

efficient parameter estimates, and test statistics for hypotheses testing.  

The rest of the chapter is structured as follows. The next section provides 

the empirical crash types and the associated explanatory variables. Section 

three offers the methodology of the proposed count model while section four is 

the application of this model to our crash count data. Finally, the fifth section is 

the conclusions that we draw from this application with a direction of the future  

4.3 EMPIRICAL CRASH DATA SETTING 

As we mentioned in Chapter 3, the crash dataset is obtained for interstate 5 in 

the State of Washington, USA. Three years of crash data were collected from 

2005 to 2007. Data contained three different categories: The crash-record here 

is considered as a cross-sectional count data, which means the observation 

period is not considered here. Thus, the crash-count sample size produces 822 

( 3×273= ) segment-year observations. Four crash types we will considered in 

developing our model in this chapter. Rear-end, Sideswipe, fixed object and 

‘all-other’ types. The crash-count type distributions are presented in Figure 

(3-2) while the descriptive statistic of the main explanatory variables in this 

study is shown in Table (3-2). Selection of the explanatory variables for each 

crash type was a results of conducting several univariate NBII model regression. 

We will allow for each crash type to have a different set of configurations for 

the associated parameters, even-though we will maintain almost same 

explanatory variables among these crash types.  
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4.4 MODEL SPECIFICATIONS  

4.4.1 Selection of the count model 

As already stated, this chapter deals with constructing a multivariate Poisson-

gamma mixture (MVPGM) model to analyze the crash types where rear-end, 

sideswipe, fixed objects and other types are considered. Meanwhile, the 

correlations among these types are taken into account. 

At first, the univariate negative binomial (NB) regression model is utilized. 

This model is widely used in counts data applications due to its simplicity and 

commonly used for modeling crash frequencies (Cameron and Trivedi, 1986). 

Notwithstanding the purpose of this paper is to develop a multivariate type of 

crash frequencies model, the univariate NB model is presented for three 

purposes, first is to investigate the overdispersion problem when the expected 

variance is larger than the expected mean which is the most common issue for 

crash data (Mannering and Bhat, 2014). Second is to assist our selection of the 

most significant explanatory variables related to each crash type. Finally, it 

would be used as a reference to compare with the proposed model. 

4.4.2 Univariate NB model 

Univariate NB model can be derived as Poisson-gamma mixture and given as 
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                                                (4-1)  

where yji is the number of type j crash on the segment i, g(uji) is the gamma 

mixture function of the dispersion parameter, j is dispersion parameter, and ji 

is the expectation of number of type j crash on segment i and given as 

 
jijji u  xexp                                                                                  (4-2)  

where xi is a vector of explanatory variables, and j is a weight vector of each 

explanatory variable. The univariate NB model for total crash number is 

similarly given (by substituting j to T in Eq.(4-1) and Eq. (4-2) where T is used 

as an index for total crash). 
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4.4.3 MVPGM model specification 

The modeling of the correlation structure in multivariate count data is vigorously 

urgent in enhancement the parameter estimates efficiency which patronizes 

the correction of the standard errors computations (Winkelmann, 2008). The 

Poisson-gamma mixture model (Cameron and Trivedi, 1986; Mannering and 

Bhat 2014) can be generalized and extended to allow for unobserved 

heterogeneity and overdispersion in the respective marginal distributions. The 

proposed model for here (see Hausman et al. 1984 for details) incorporates a 

mixture multivariate density for expected crash yji (the dimensions can vary 

depending on number of different crash types) which is obtained after 

integrating out the segment specific heterogeneity, which is assumed to be 

common across crash types due to unobserved effects that are cross sectional 

for segment i. The mixture multivariate density of expected crash (yji , …, yJi) 

for J dimensions is obtained after taking integral.  
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where g(ui) is the mixture function of the error term ui . Let ui follows a gamma 

distribution with E(ui) =1 and Var(ui) =  property, at this instant, constructing 

the joint distribution function of yi ( among crash types) is given as a solution of 

the mixture function above, which leads to obtain the negative binomial 

distribution function (Winkleman, 2008) as 
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                    (4-4)  

where yTi is the sum of the number of crashes of different types, and equal to 

the number of total crashes. 

It is worth mentioning that the univariate Poisson-gamma count model is 

mathematically similar to the proposed model. The difference is only in the 

aspects of how to deal with the unobserved heterogeneity that lead to drive 

these two models. As for the Poisson-gamma model the ui is used rather than 
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uji as suggested in the MVPG model (Winkleman, 2008). The covariance 

among the crash types for a given segment i is given by 
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where j, k: index of the type of crash, E(.): expected value; and Cov(.): 

Covariance for the selected pair of crash types 

One of the distinct features of this model is that the covariance is not equal 

across the count outcomes. Rather, it is totally reliant on the product of the 

expected values of jiki. This feature is useful for modeling the nonnegative 

random variables. The restriction in the upper bound will be eliminated in that 

case which is a common deficiency associated with the other types of 

multivariate count models. We can write the unconditional correlation between 

two count variables as follows 
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One might think of a possible disadvantage of the MVPGM model is that the 

covariance and the dispersion are not estimated separately. Thus, it might 

mislead to judge whether a significant theta could be either a sign of over-

dispersion occurrence or due to the correlation among the count outcomes (or 

both) (Winkleman, 2008). Rewriting the joint probability in Eq.(4-4):  
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The log-likelihood function across all segments i would be,  
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The Log Likelihood function was coded using GAUSS programming language 

(Aptech 1999). We utilized the BFGS algorithm which is offered by the maxlik 

library to maximize this function. As we mentioned before, the count crash data 

were assumed to be a cross-sectional data where the time is irrelevant  

4.5 MODEL ESTIMATION AND PERFORMANCE 

4.5.1 Estimation Results of Univariate NB Model 

To begin with, a univariate NB model of the total number of crashes was 

estimated as a function of exogenous variables. With the same specification, 

four separated univariate negative binomial models for each crash type were 

estimated, the results of which are shown in Table (4-1). The value of θ is 

estimated to be 3.672 in the NB model for total number of crashes. This 

parameter is statistically significant as evidenced by the larger t-value. The 

value of θ for each crash type are 1.690 for rear end, 4.560 for sideswipe, 3.528 

for fixed object and 4.759 for the all-other types. The univariate models were 

also tested for the plausibility of zero-inflated specifications (Shankar et al., 

1997). The Vuong statistics for these models were strong negative values (<-

4.00) suggesting that the preferred models were the baseline negative binomial 

specification. The Vuong statistics were tested for zero-inflated specifications 

where the zero-state had the same vector of covariates as the count state. The 

univariate NB model variables were used as the specification set for the 

estimation of the multivariate Poisson-gamma model discussed below. 

4.5.2 Estimation Results of MVPGM Model 

Estimation results of the MVPGM regression model with correlation are 

presented in Table (4-2). The estimation results provide parameter estimates 

for four types of crashes. The estimated dispersion parameter is estimated to 
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be 3.654, which implies an overdispersion magnitude of 0.274. This parameter 

is statistically significant as evidenced by the larger t-value. The log-likelihood 

is -6,310.50 while AIC and BIC are 12,681.10 and 12,822.40 respectively. The 

combined log-likelihood value of the univariate crash type models (from Table 

(4-1)) is found to be -6,079.20. The result indicates the separate univariate 

crash type models fit better than the proposed model. The possible reason is 

that the differing magnitudes of overdispersion in the univariate models are 

ignored in the multivariate model. In the multivariate model, the overdispersion 

parameter is assumed dot be the common for the four crash types. Compared 

to the value of 3.654 for the MVPGM model, the univariate model values of θ 

are 1.690, 4.560, 3.528 and 4.759 for rear end, sideswipe, fixed object and all-

other types respectively. The value is statistically different form one another, 

implying the different magnitudes of unobserved heterogeneity for different 

crash types. 

The three variables commonly significant in all crash type functions 

include: ADT, segment length and lane cross section proportion (3 lanes or 

grater). The number of horizontal curves variable and the diamond interchange 

dummy are significant in the rear end, sideswipe and fixed object models. The 

effect of the horizontal curves parameters is positive indicating that as the 

number of curves increases, the expected number of rear end, sideswipe and 

fixed object crashes will increase as well. The contributing factors arising from 

horizontal curvature appear to be multifaceted – from speed differentials and 

their associations with rear ends, to, lane offsetting and sideswipes, and 

potential loss of control and roadside encroachments resulting in fixed object 

collisions. The diamond interchange dummy has a negative effect due to the 

fact that diamond interchange Footprints are typically larger and provide for 

adequate merge and weave distances, thereby decreasing the likelihood for 

rear end, sideswipe or fixed object crashes. The urban-rural dummy is 

significant in rear-end and sideswipe crah functions indicating that in rural 

contexts, the expected number of rear-end and sidewise collisions is not as 

high as it would be in urban contexts- an outcome of congesting related effects. 

The urban/rural classification is not based on crash reports. Crash report 

classification of crash location as rural or urban is inconsistent. So, if we were 



Chapter Four                                 Multivariate Poisson Gamma Mixture Model 

 

[30]  
 
 

to use crash reports as a basis, we would get an inconsistent aggregation of 

counts. For this reason, we used the urban/rural classification based on the 

State Highway Log provided by the Washington State Department of 

Transportation. This definition is based on population levels (urban and 

urbanized areas with populations exceeding at least 50,000; or rural). Vertical 

curvature variables are sporadically significant – with the minimum vertical 

grade variable being significant in the sideswipe model, while the maximum 

vertical curve elevation variable is also significant in the same model. The 

horizontal curve central angle variable appears to be significant in the fixed 

object model. 

It is found that the smallest absolute vertical curve gradient in segment is 

associated positively with sideswipe crash type frequency. Three likely 

scenarios can occur where the smallest absolute value vertical curve gradient 

can become influential. In the first scenario, if all curve gradients in a segment 

are positive, the smallest positive gradient represents the smallest upgrade in 

the segment. In the second scenario, if all curve gradients in a segment are 

negative, then, the smallest curve gradient represents the smallest downgrade 

in the segment. In the final scenario, if there is a mixture of positive and 

negative gradients in the segment, then, the smallest absolute gradient 

represents either the smallest upgrade or smallest downgrade in the segment. 

In all three cases, the effect reflects the impact of the smallest grade whether 

it is an upgrade or downgrade. Segments where vertical curves are not present 

were categorized as flat segments and therefore implicitly serve as the baseline 

or the smallest absolute vertical gradient parameter. Our finding notes that as 

the smallest grade increases, its effect likely results in greater speed 

differentials, compared to segments with no vertical grades. One would have 

expected the steepest absolute gradient to be influential, but it turns out the 

smallest grade is statistically significant. This in turn is likely to result in 

increased lane changing frequencies which can increase the likelihood of 

sideswipe crashes. Another variable associated with the sideswipe crash type 

is the largest beginning vertical curve elevation in segment. This variable is 

found to be statistically significant at the 1 percent level and of significant 

magnitude (0.743). When a leading vehicle reduces its own speed due to a 
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high elevation of the vertical curve, the following vehicle tries to pass the 

leading vehicle raising the likelihood of lane changing due to speed differentials. 

Similar to the above-mentioned effect of curve gradient, the likelihood of 

sideswipe crashes can increase as the maximum curve elevation in segment 

increases.    

Table (4-3) shows the correlations among crash types for a given 

segment as calculated using Eq.(4-6). A restriction of MVPGM is given by the 

fact that it constrains the correlation among counts to be positive (Gurmu and 

Elder, 2000). The correlations range between 0.399 and 0.299, which 

demonstrate the presence of common unobserved factors that affect crash type 

frequency. These common unobserved factors that influence crash frequencies 

by crash type include pavement condition, environmental and weather 

conditions, driver population factors, adjacent land use characteristics, traffic 

composition variables (trucks, buses, etc.), sight distance and others (Ye et.al., 

2009).  
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Table (4-1) Univariate NB models of total and type specific crashes 

Explanatory Variables 
Total crashes Rear End Sideswipe Fixed Object All-other 

Coefficient t-stat. Coefficient t-stat. Coefficient t-stat. Coefficient t-stat. Coefficient t-stat. 

Constant -12.957** -11.50 -23.380** -10.60 -16.327** -13.67 -6.998** -4.87 -11.140** -11.77 
LnAADT 1.545** 13.37 2.488** 10.95 1.705** 13.92 0.800** 5.62 1.180** 11.98 
LnLength 0.759** 10.40 0.559** 5.45 0.708** 7.79 0.885** 9.15 0.997** 16.97 
Urban rural dummy, 1 if rural, 0 if urban -0.326** -4.25 -0.665** -4.54 -0.717** -5.51 -0.199* -1.72 -  

Proportion of three or more lanes cross 
section by length of segment 

0.750** 12.58 0.961** 9.58 0.611** 6.16 0.360** 4.02 0.457** 5.05 

Number of horizontal curves per 
segment 

0. 102** 4.14 0.154** 4.34 0.118** 4.57 0.070* 2.51 -  

Diamond interchange type dummy -0.286** -5.01 -0.269** -3.02 -0.281** -3.71 -0.241** -2.83 -  

Smallest vertical gradient in segment 0.113** 3.88 -  0.072** 2.74 -  -  

Shortest vertical curve length in segment 
in miles 

-2.123** -3.17 -  -  -  -  

Largest vertical curvature rate in 
segment 

-0.028** -3.23 -  -  -  -  

Largest beginning vertical curve 
elevation in segment 

-  -  0.884** 2.66 -  -  

Largest horizontal curve central angle in 
segment* 

-  -  -  0.496* 2.55 -  

Number of vertical curves in segment -  -  -  -0.049* -1.98 -  

θj 3.672** 14.34 1.690** 13.74 4.560** 7.83 3.528** 6.77 4.759** 5.31 

Sample size 822 822 822 822 822 
Log-likelihood at convergence -2,505.50 -1,976.10 -1,350.80 -1,474.20 -1,278.10 
AIC 5,033.00 3,968.10 2,721.60 2,968.30 2,566.20 
BIC 5,084.90 4,005.80 2,768.70 3,015.40 2,589.80 

- Not relevant; ** Significant at 1% level; * Significant at 5% level.  Significance of the actual overdispersion parameter (1/θ) is estimated using the delta method.  
Significance of the overdispersion effect is very strong for all crash types, at or better than the 99.5% level. 
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Table (4-2) MVPGM model of four types of crashes 

Explanatory Variables 

Rear End Sideswipe Fixed Object Other Types 

Coefficient t-stat. Coefficient t-stat. Coefficient t-stat. Coefficient t-stat. 

Constant -19.356** -11.84 -16.666** -12.12 -7.162** -4.27 -10.930** -9.74 

LnAADT 2.074** 12.43 1.743** 12.34 0.809** 4.78 1.160** 9.94 

LnLength 0.617** 6.23 0.673** 7.23 0.781** 9.09 0.904** 15.69 

Urban rural dummy, 1 if rural, 0 if urban -0.844** -5.21 -0.659** -5.05 -0.177 -1.48 -  

Proportion of three or more lanes cross section by length of 
segment 

1.137** 12.05 0.554** 5.64 0.338** 3.63 0.411** 4.48 

Number of horizontal curves per segment 0.153** 4.77 0.117** 4.20 0.068* 2.54 -  

Diamond interchange type dummy -0.347** -4.31 -0.248** -3.22 -0.174* -2.13 -  

Smallest vertical gradient in segment -  0.051* 2.37 -  -  

Shortest vertical curve length in segment in miles -  -  -  -  

Largest beginning vertical curve elevation in segment -  0.743* 2.43 -  -  

Largest horizontal curve central angle in segment* -  -  0.425* 2.17 -  

Number of vertical curves in segment -  -  -0.032 -1.38 -  

θM 3.654** (14.80†) 

Sample size 822 

Log-likelihood at convergence -6,310.50 

AIC 12,681.10 

BIC 12822.4 

- Not relevant; ** Significant at 1% level; * Significant at 5% level.  
†t-stat. of the θM. 
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Table (4-3) Estimated correlation matrix for a given segment 

† Covariance of the error term value are between parentheses 

Eq.(4-5) is further utilized for the comparison of covariances resulting from the 

MVPGM and univariate models. To make this comparison, the observed 

covariance of crash type frequencies is used as the benchmark. The MVPGM 

covariance is the sum of two components; the covariance between the 

expected numbers of crash types and the covariance resulting from the 

unobserved heterogeneity given by Eq.(4-5). The covariance between 

expected numbers of cash types is a measure of observed heterogeneity 

captured via explanatory variables in the cash type models. The covariance 

calculated by the univariate models does not include the unobserved 

heterogeneity effects from Eq.(4-5) because the unobserved heterogeneities 

are assumed to be independent. The results of the analysis of covariance are 

presented in Table (4-4). The table shows that the MVPGM covariances of 

crash type are closer to the observed covariances for the corresponding crash 

type pairs. The results suggest that the MVPGM is a plausible way to capture 

the composition of the total covariance among crash type, in spite of the fact 

that the dispersion parameter is restricted to be the same across crash types. 

Table (4-4) Covariance of the numbers of crashes between crashes types 

 

Since the sum of the crash types is equal to the number of total crashes, 

it is desirable that the variance structures of the type specific models be 

consistent with that of the total crash model. An evaluation of the variance 

 Rear-End Sideswipe 
Fixed 
Object 

Other Types 

Rear-End 1.000    

Sideswipe 0.388 (20.130†) 1.000   

Fixed Object 0.399 (12.086) 0.328 (8.799) 1.000  

Other Types 0.362 (3.595) 0.299 (2.617) 0.316 (1.860) 1.000 

Pair of crash types Observed MVPGM 
Univariate 

models 

Rear end and sideswipe 104.097 70.182 56.138 
Rear end and fixed object 46.118 35.897 27.001 
Rear end and other types 29.177 26.029 19.762 
Sideswipe and fixed objects 13.730 10.251 7.685 
Sideswipe and other types 8.885 7.430 5.562 
Fixed objects and other types 5.304 4.542 3.282 
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structure in terms of the variance of the expected number of crashes versus 

variance of the number of crashes for a given segment can also provide useful 

insights. The variances calculated using the total crash model can be compared 

against the variances form the MVPGM and univariate models using variance 

decomposition as described below. The variance of the expected number of 

crashes for a segment can be calculated from the estimated type specific crash 

models (using the variance of sum of random variables formula) by 
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The above formula will yield different values for MVPGM and univariate 

NB models depending on the estimate of the mean, which is likely to differ for 

univariate versus MVPGM models with the same specifications. 

The variance of the number of crashes for a given segment can be 

evaluated from the estimated MVPGM through the relationship 
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where θT: dispersion parameter of total crash model, and θM: dispersion 

parameter of the MVPGM model 

 Since the covariances of crash types do not factor into the univariate 

models, the variance of the number of crashes is given by 
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where θj: dispersion parameter of the designated univariate NB model for crash 

type j. 

Table (4-5) presents the results of the variance analysis based on the 

application of Eq.(4-9), Eq.(4-10), Eq.(4-11). Similar to the insights form Table 

(4-4), the table shows that both the variances of the MVPGM model are in 

closer agreement with those of the total crash model. This finding applies to the 

variance of the expected number, as well as variance of the count. Table (4-4) 

and Table (4-5). Combined indicate that the MVPGM model capture variance 
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and covariance structures in close agreement with those produced by total 

crash models. 

Table (4-5) Variance structure of total crashes 

4.5.3 Marginal effects 

The marginal effect of the lth explanatory variable x on dependent variable y 

can be expressed by taking the first derivative of the expected number of type 

specific crashes estimated by the MVPGM model, it can be expressed as, 
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The marginal effect calculated by the total crash model is shown in column 1 in 

Table (4-6) while the marginal effects for type specific crashes calculated by 

the MVPGM model are shown in columns 2-5. It is noticeable that the marginal 

effects of rear-end crashes are larger in the absolute value than any other crash 

types consistently for all explanatory variables. The results suggest that 

interstate rear-end crash likelihood is most sensitive to geometric and traffic 

conditions. In particular, the horizontal curve variable finding suggests that 

realignment of interstate segments might provide a larder rear-end reduction 

benefit than a fixed-object crash reduction benefit. 

The last column of Table (4-6) represents the sum of the marginal effects 

of the four types of crashes calculated by the MVPGM model. The sums of the 

crash type marginal effects for Ln(AADT), Ln(Length), three-plus lane 

proportion, number of horizontal curve and diamond interchange dummy 

variables are similar in magnitude to the corresponding value for the total crash 

marginal effect. 

 

 
Total 
crash 
model 

MVPGM 
Univariate 

Models 

Variance of the expected number of 
crashes among segments 

403.22 414.39 474.81 

Variance of the number of crashes for 
a given segment 

189.40 194.02 197.39 

Sum 592.62 608.42 672.20 
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Table (4-6) Marginal effects of total crash model and type specific crash models 

 

 

Explanatory variable 
Total No. of 

crashes 
Rear-End Sideswipe Fixed Object All-other Sum 

LnAADT 23.746 17.836 4.773 1.917 2.015 26.541 

LnLength 11.670 5.285 1.842 1.850 1.571 10.548 

Urban rural dummy, 1 if rural, 0 if urban -0.385 -1.326 -0.934 -0.194 - -2.453 

Proportion of three or more lanes cross section by 
length of segment 

11.532 9.782 1.516 0.801 0.714 12.814 

Number of horizontal curves per segment 1.574 1.319 0.322 0.162 - 1.802 

Diamond interchange type dummy  -4.397 -2.985 -0.678 -0.413 - -4.076 

Smallest vertical gradient in segment 1.738 - 0.141 - - 0.141 

Shortest vertical curve length in segment in miles -32.632 - - - - 0.000 

Largest vertical curvature rate in segment -0.429 - - - - 0.000 

Largest beginning vertical curve elevation in 
segment 

- - 2.034 - - 2.034 

Largest horizontal curve central angle in segment* - - - 1.007 - 1.007 
Number of vertical curves in segment - - - -0.075 - -0.075 
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The results suggest the marginal effect of the total crash frequency could be 

accurately divided in to the marginal effects of crash type via the MVPGM 

model for the various explanatory variables as described above. This pattern 

is not observed for the urban-rural dummy, minimum absolute vertical gradient, 

shorter vertical curve length, largest vertical curvature, largest vertical curve 

beginning elevation and number of vertical curve variables. This is quite clear 

for the vertical curvature variables, which appear to be significant in the crash 

type models versus the total crash model varying degrees of consistency. It is 

plausible that specification consistency for vertical curvature variables may not 

be achievable at the total crash level while decomposing into crash types. 

Vertical curvature effects may be playing a nonlinear role in the development 

of speed differentials thereby creating apparent discordance in specification at 

the crash type level. Perhaps, functional form for vertical curvature needs to be 

researched at greater depth in order to achieve consistency in specification for 

total crash versus crash type models. 

4.6 SUMMARY 

This chapter has shown via a comparative analysis of univariate and 

multivariate models of crash types that the multivariate Poisson-gamma model 

appears to capture covariances across crash types consistent with the 

covariance of the total crash model.  However, it also appears that the marginal 

effects of variables in their sum effect across crash types are not consistent 

with the marginal effect of the total crash model, especially for vertical curvature 

variables.  This indicates that vertical curvature in its studied form (as a linear 

untransformed predictor) may be a poorly specified effect – a factor that 

deserves further research.  Second, it appears that rear end crashes on 

interstates are most sensitive to geometrics and traffic volume, compared to 

other crash types, indicating the emphasis in the state of practice for active 

traffic management strategies.  Third, it appears that further analysis in to the 

decomposition of variances by crash severity might lend an additional 

dimension to the understanding of the behavior of the dispersion parameter in 

joint models.  While our model of crash types assumed a common dispersion 

parameter, the restriction that overdispersion be the same across crash types 
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manifested in poorer likelihoods in comparison to the univariate models which 

accommodated unrestricted dispersion parameters.  This is somewhat of a 

significant finding – it is unclear whether the overdispersion restriction is 

causing likelihood convergence issues in the joint model, where premature 

convergence is indicated via a more negative log likelihood; or, if indeed, the 

likelihood is correct, then the impact of a single restriction (the overdispersion 

parameter) on causing a significant drop in the joint likelihood warrants further 

investigation via other datasets.  A similar problem can also occur in the 

analysis of severities, where a similar likelihood discordance can occur 

between univariate versus multivariate analysis of severities.  Nevertheless, 

there work here underscores the importance of seeking a methodological 

consensus for analyzing crash decomposition by type (crash type and severity 

included.) 
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Chapter 5  

 

 

 

Multivariate Copula-Based Count Model  

5.1 INTRODUCTION 

Multivariate count model is developed by introducing a simple and practical 

formula in this chapter. The formulation begins with a modification of the 

standard ordered response model to adopt the count outcomes nature. This 

modification is accomplished by introducing a non-linear asymmetric 

interdependence structure among the error terms using the copula-based 

model. To avoid simulation maximum-likelihood for evaluating the multi-

outcome density, we utilize the composite marginal likelihood (CML) approach. 

Our objective here is to develop a model which allows both positive and 

negative dependency among the count outcomes as well as offers a variety of 

dependent structures including radially asymmetric or tail dependency without 

a need for a simulation mechanism. 

5.2 BACKGROUND 

The concept of multivariate count data modeling appears in many econometric 

applications. Multivariate count data modeling arises from the need for 

predicting the probability of several random integer non-negative outcomes 

simultaneously. This concept offers a better understanding of the 

interdependence of several random outcomes. The state of the art in estimating 

the interdependence of multiple traffic safety outcomes involves simulation 

based parameter estimation. One recent exception to this approach is the work 

of Bhat et al. (2014b) who have addressed three major types of multivariate 

count data approaches regarding the econometric formulation structure. The 

authors proposed a seminal perspective along three tracks of thought: a) via a 
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general multivariate count model for obtaining the joint probability (usually in 

non-closed form); b) via a combination of a discrete-continuous data model in 

which count data are treated as random outcomes; and c) via a joint discrete 

choice-count model that accounts for the utility of discrete events.   

In the first category, namely, multivariate count models, typically, there 

are five multivariate count models which offer a correlation structure among 

frequencies of the random outcomes: Multivariate Poisson model; multivariate 

negative binomial model; multivariate Poisson-gamma mixture model; 

multivariate Poisson-log-normal model and latent Poisson-normal model 

(Winkelmann, 2008). In the current chapter, this approach is adopted to 

address a joint probability distribution that ties the random count outcomes 

through structural error terms (random unobserved heterogeneity) using the 

latent Poisson-normal model. Correlated counts in this model are explained as 

a realization of an underlying (latent) continuous random variable. Van Ophem 

(1999) and other studies (Castro et al., 2012; Narayanamoorthy et al., 2013; 

Yamamoto and Morikawa, 2013 and Bhat et al., 2014a) utilized this model with 

the main assumption that the error term component is mapped from a normal 

distribution. The above-mentioned studies parameterized the threshold of a 

generalized ordered response (GOR) model as a function of a count distribution. 

The advantage of this model lies in its flexibility to handle both positive and 

negative dependency structure among the error terms. The flexibility in 

dependency is particularly useful in traffic crash analysis since the dependency 

might vary by context due to the nature of the unobserved heterogeneity (for 

example, rural versus urban interstates; environmental heterogeneous 

contexts such as high-rain versus high-snow segments; and recreational 

versus commuting corridors). Mannering et al. (2016) briefly describe 

approaches to account for multivariate outcome modeling in the presence of 

unobserved heterogeneity. The authors stress the need for flexible correlation 

models that are unrestrictive on the nature of the dependency among outcomes. 

To address this need, we take an approach to include a non-linear asymmetric 

distribution dependency structure by adopting a copula-based concept. A 

copula is a tool to generate a multivariate distribution from univariate marginals 

(see for example Bhat and Eluru, 2009). Therefore, two steps are usually 
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involved in the development of a copula: a) identifying the marginals, and b) 

determining the appropriate copula for accommodating the dependence 

structure. (So, the copula can be seen as a link between the marginals and the 

joint cumulative distribution. However, for discrete random variables, it must be 

noted that the associated copula representation may not be unique.)   

In the modeling of traffic crash count data, Poisson or negative binomial 

(NB) distributions are typically used as marginal distributions. However, as 

opposed to the usual bivariate case, accommodating the dependence structure 

in a multivariate case through the use of dependence parameters for each pair 

of marginals remains a challenge. The published literature suggests two 

approaches. The first approach involves the use of the mixture of powers 

concept (MOP) with some restrictions (see Zimmer and Trivedi, 2006; Shi and 

Valdex, 2014; and Nikoloulopoulos and Karlis, 2010).1 Lee (1983) provided a 

normal copula through a transformation of non-normal disturbances, so that 

trivariate marginals can accommodate three parameters of dependency; 

however, this occurred at the expense of a closed-form. Hüsler and Reiss 

(1989) and Joe (1999) employ multivariate copulas with adequate dependence 

parameters, but in their approach, they used a multivariate normal distribution 

only with a need for numerical integration. The second approach adopts the 

composite marginal likelihood (CML) technique. The CML approach has been 

used to overcome multi-dimensional complex dependencies without a need to 

evaluate the full likelihood function (see Bhat et al., 2014c; Castro et al., 2013; 

Castro et al., 2012; Yamamoto and Morikawa; 2013; Sener et al., 2010; 

Ferdous et al., 2010; Paleti and Bhat, 2013). The CML approach is rooted in a 

general class of composite likelihood approaches (Lindsay, 1988). Both the 

MOP and CML approaches avoid using the simulation maximum likelihood 

method to evaluate the multivariate density of the count outcomes problem. 

With regard to applications of count models in traffic crash analysis, a 

substantial body of literature exists (see Mannering et al., 2016; Mannering and 

                                            
 

1 In the case of quadrivariate count outcomes the MOP approach produces three dependence 
parameters, so there are (I-1) parameter estimates of (I) count outcomes. 
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Bhat, 2014; Lord and Mannering, 2010 for an exhaustive review). While some 

of the studies simultaneously considered crash frequency and severity (Chiou 

et al., 2013; Ye et al., 2013) the literature on the simultaneous treatment of 

multiple crash types dates back to Ma et al. (2008) and Park and Lord (2007). 

Other recent examples employing a Bayesian multivariate approach include 

Aguero et al. (2009), El-Basyouny and Sayed (2009); Imprialou et al. (2015); 

Lee et al. (2015) and Li et al. (2015). Dong et al. (2014) have used a multivariate 

random-parameters zero-inflated negative binomial regression model to 

estimate crash frequencies of different types at intersections. Anastasopoulos 

et al. (2014) evaluated crash rates instead of crash frequencies by using the 

multivariate Tobit model to analyze the severity level on the freeway. In the 

injury analysis domain, in particular, Rana et al. (2010) used copula-based 

approach for addressing endogeneity in models of severity of traffic crash 

injuries while Yasmin et al. (2014) have used the same approach to examine 

driver injury severity in two vehicle crashes. A characteristic of these studies is 

that discrete ordered response approach was used. Given the questions that 

remain from these studies, namely the practicality of estimation of 

multidimensional outcomes under the presence of flexible dependencies, we 

apply a simple and practical approach. This approach involves a copula-based 

formulation with CML estimation technique to model dependence across the 

observational unit. This approach provides flexibility in handling multiple 

marginals while taking advantage of the CML technique. Our contribution to the 

literature is to provide rigorous investigation methods on unobserved 

heterogeneous dependency across the types of crashes by copula-based 

approach including empirical copula diagnosis and investigations on the 

variance and covariance structure calculated from the estimation results of the 

multivariate count model. 

The rest of this chapter is structured as follows. The next section provides 

the building blocks of the model in terms of formulation and inference. 

Section 5.5 describes the dataset including the selection of the crash types and 

the explanatory variables. Section 5.6 illustrates an application of the proposed 

model for analyzing the interstate crash types. The final section summarizes 

the important findings and conclusions from the study. 
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5.3 WHY COPULA? 

The copula function is one of the available ways to construct the joint probability 

among different outcomes (continuous/discrete). From its basic definition, it 

can be considered as a multivariate cumulative function that leads usually to a 

tractable solution (see (Sklar (1959)). Precisely, the copula function binds 

together different outcomes and generate a multivariate distribution. The 

copula function merits lay in: 

 Offer parametric distribution: in our multivariate crash-type counts 

context, negative binomial model is suitable to overcome the 

overdispersion problem. 

 Offer non-parametric distribution:  this point will be seen extensively in 

our study as a tool to determine which parametric copula should be used 

to model our crash-count data in Chapter 5 and Chapter 7 (empirical 

copula). 

 Flexibility: most of available copula functions allow more flexible way to 

join different crash outcomes in a way to represent asymmetric-

nonlinear correlations among the unobserved heterogeneity. 

  Different way in parameterizing: for each marginal distribution selection 

there are several ways to parametrize the crash-count outcome. We will 

parameterize the expected crash-count (mean) parameter as a function 

of the explanatory variables, other possible way is to parameterize the 

correlation parameter of the copula itself. 

 Time correlation representation: this feature can be seen in how the 

copula parameters based on the marginals can be pooled or allowed to 

vary across margins. This feature was the base for the model in Chapter 

7. 

These substantial features of the copula function will be exploited to cover 

each actuarial problem that we mentioned before. Table (5-1) shows the most 

popular copulas which are widely used in transportation engineering (see Bhat 

and Eluru, (2009) for more details). 
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Table (5-1) Most Popular parametric copula functions and their properties 

Copula type Function C(u1,u2) Theta-Domain Kendall’s tau Spearman’s rho 
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5.4 METHODOLOGY 

We begin with the formulation of a multivariate copula-based generalized 

ordered response count (MCORC) model of crash types. The basis is 

generalized ordered response (GOR) model in which symmetrical 

interdependence among the error terms of crash count types is assumed. This 

is extended later using the copula function to accommodate non-linear 

asymmetrical correlation.  

5.4.1 Ordered Response Model with Count Data 

Following the generalized ordered model representation in Castro et al. (2012), 

we assume q ),...,2,1( Qq   to represent the number of segments (or 

observation units), and i ),...,2,1( Ii  to be the index of the crash type. Assume 

a count crash type variable 
iqy  can take the values 

iqk , where ,...2,1,0iqk  is a 

stochastic count crash number of a specific type of crash i on a specific 

interstate segment q. Assuming a latent variable *

iqy corresponding to the latent 

propensity underlying the observed count variable of
iqy , we can write: 

iqiq k

iiq

k

iiqiqiqiqiiq ykyy  
 *1* if,xβ                                (5-1) 

where 
iqx  is a ( 1L ) vector of non-intercept explanatory variables which are 

associated with a crash type, β  is a ( 1L ) column-vector of parameters. The 

latent variable *

iqy  is drawn from a univariate continuous distribution which is a 

normal distribution in the case of the ordered response probit model; *

iqy is 

bounded by the thresholds
1iqk

i and iqk

i (thresholds follow the usual ordered 

response model cutpoint definitions); and
iq  is an identically distributed error 

term across segments representing the unobserved heterogeneity influencing 

the latent propensity of a crash type. Since we deal with count data, let’s 

assume that 
iqy follows a discrete-count distribution like Poisson, negative 

binomial (NB), Poisson-lognormal or zero-inflated distribution. If we assume 

that 0 , then we can write iqiqy * , which lead to, 
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     iqiq k

iiq

k

iiqiqiqiqiq kykky  
1

Pr1PrPr                            (5-2) 

This relationship is essential to connect the continuous to the count 

distributions together. We can write Eq.(5-2) in terms of the cumulative 

density functions, as: 

   
   iq

iq

k

iiiqi

k

iiqiqiq

HkF

ky







 PrPr
                                                                (5-3) 

where iF  is a univariate cumulative density function (e.g. normal or t-student) 

of a count crash type variable 
iqy ; and iH  is a univariate cumulative density 

function of a latent propensity of a crash type i 
iq . Then we can write,  

  










 ,....1,0Pr

1

1

iqiqiqi

iqk

i
kkyH

k
iq                                          (5-4) 

where 1

iH , is a univariate cumulative density inverse function. This 

relationship defines the threshold value iqk

i uniquely for any selected 

parametric marginal distribution  
iqiq ky Pr  for a continuous marginal 

distribution, but not unique in case of the discrete-count distributions (see 

Nelson, 2013; Joe, 2014). The threshold now is not a linear relationship as in 

the GOR model, instead, it follows the marginal distribution form congruously. 

Now we can write the multivariate cumulative probability density function

 IH ,...,2,1
 for a given segment q as: 

   

  
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  







Θ

         (5-5) 

where 
 If ,...,2,1

is the multivariate probability density function of the I-dimensions, 

Θ is the matrix of correlation among the error terms 
iq . In similar way now we 

can write the multivariate joint probability distribution function for a given 

segment q as: 
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Eq. (5-6) has no closed form instead we have to evaluate the integral formula 

for each dimension i simultaneously either using the numerical integral solution 

or using the simulation process as we will demonstrate later. At first, we will try 

to write Eq. (5-6) in terms of copula, which allows us to solve the integral of the 

joint distribution and to seek for a non-linear and asymmetric pattern of 

relationships among the error terms which give more flexibility in modeling.    

5.4.2 Copula with Count Data 

Sklar’s theorem (1959) states that there exists a class of distribution function 

that the n-dimensional cumulative distribution can be expressed in terms of the 

copula and the marginal. Copulas allow for a wide range of marginal 

distributions, it allows for the use of dependence using negative binomial 

models for overdispersed data, and as we mentioned previously, it allows for 

non-linear and asymmetric patterns of relationships among the marginals.  

When 
iqy are discrete (count) variables and iF are discrete cdf’s, the 

multivariate cumulative probability density function
 IH ,...,2,1

 for a given segment 

q (as shown in Eq.(5-5)) can be constructed from

            IIqIqq FRanFRanFRanyFyFyF  ....,....,, 212211
, where Ran(Fi) 

denotes the range of the marginals  .iF . Using the inverse cumulative density 

function approach via the multivariate copula
qIC ),...,2,1(
, we can write: 
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For all         IIqIqq yFyFyF 1,0,....,, 2211  ; θ is the matrix of correlation among the 

marginal distributions for a specified copula 





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By taking the derivative of both sides of Eq. (6) we can get: 
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where 
 Ic ,..,2,1

 is the multivariate copula density function,  iqi yf  is the univariate 

density function of the marginal distribution ith, now we can substitute Eq. (5-8) 

into Eq. (5-6) to get: 
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Eq. (5-9) is the joint probability distribution of the multivariate crash count 

types written in terms of the copula density function. The copula approach 

offers an extensive range of parametric and non-parametric functions, but in 

general, it can be classified into two families. First, the elliptical copula, which 

offers a non-closed form for Eq. (5-9) and the integral should be evaluated 

either numerically or by simulation. Second, the Archimedean copula, which 

offers the closed-form and by taking differences of the copula function C for the 

same boundaries of Eq. (5-9). The model estimation is carried out after 

specifying a suitable marginal distribution F for the count outcome and an 

appropriate copula C.  

The copula constructed from such a formulation is not unique like its 

analogy resulting from continuous outcomes and continuous marginal 

distributions. Albeit this fact, it has been proven that such non-uniqueness is 

not a problem and the discrete count copula still inherits the dependency 

feature corresponding to the continuous one. More details regarding this issue 

are presented by Zimmer and Trividi (2006), Denuit and Lambert (2005) and 

Genest and Nešlehová (2007). 

5.4.3 Marginal Distribution Selection 

One of the main problems in modeling the count data usually is presence of 

greater variability (statistical overdispersion) in the count dataset. This problem 
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occurs when the observed variance is larger than the variance of a theoretical 

model. Utilizing copula concept permits to specify the marginal distribution in a 

more flexible way to accommodate this problem. For this purpose, the crash 

count type 
iqy  is assumed to follow a negative binomial type-II distribution 

(NBII). Each marginal for each crash type is determined conditionally on a 

vector of explanatory variables 
iqx  (not a mandatory to be a same set). 

iqx  

affects a certain type of crash i with corresponding to set of parameter vectors

iβ . For each observation, the NBII cdf is obtained by summing the crash 

numbers from 0 to kiq as: 
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where  
iqiiq xβ exp ; 

iq  is the conditional mean and 1/ i  is overdispersion 

parameter in the conditional variance    21

iqiiqiqi y    (overdispersion 

occurs when 1/ i  > 0).  

5.4.4 Choosing a Copula Function  

As previously stated, several types of parametric copula functions 

(Archimedean and Elliptical) are available for model development. The issue of 

choosing which best copula function for fitting data has been an attention-

grabbing topic in the literature. So far, there is no robust formula that assess 

the goodness-of-fit of a copula without the need to investigate all the other 

types of copulas. This can be done through graphical techniques (four 

available) to assess our selection of the parametric copula based on rank of 

the observation and use a scatter plot concept. These techniques are not used 

for goodness-of-fit rather than they give an initial insight of the tendencies of 

the dependency structure of the outcomes regardless of the marginal effect. 

These techniques are: a) The PP-plot which is most general, least effective. b) 

Tail dependence plot – general and more effective than PP-plot. c) K-plot which 

is used for Archimedean copulas only and finally, d) t-plot which is most 
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restrictive - good for elliptical copulas but only for model diagnostic checking. 

We will select the first two graphical methods, the PP-plot and the tail 

dependence plot due to their generality for both Archimedean and Elliptical 

copulas. The PP-plot for copula also known as “Copula PP-plot” is introduced 

by Sun, Frees and Rosenberg (2008) inspired by the univariate PP-plot. Copula 

PP-plot evaluates the probability values at each observation point 

corresponding to the theoretical copula function (parametric copula) and the 

empirical copula (non-parametric). The tail dependence-plot (Joe, 1997) 

focuses on visualizing the dependence of each parametric copula compared to 

the empirical copula for the upper and lower tails using the tail concentration 

function. The tail concentration function separates the dependencies into two 

parts (for two-dimension copula) which are upper and lower tails (Boucher et 

al., 2008). Suppose Z  1,0 , then we can write the tail concentration function 

as: 

 
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given both, the lower  ZL  and the upper  ZR  tail functions as: 
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As implied above, we need to construct the empirical copula at first to conduct 

these graphical techniques. Let  jqiq mm ,  a pair of observed crash count for 

type i and j on segment q. The bivariate empirical copula function  
n

jiC ,

~
 

(Deheuvels, 1979) is a function with a domain  2
,.....,1,0:/ QaQa  and 

marginals aU and bV  1,0  consequently, it can be formulated as: 
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where     Qbamm bjai  ,1 , and  are order statistics from the sample, 

   iqif

Q

f

iq

n

i mm
Q

mF  
1

1~
 and    jqjf

Q

f

jq

n

j mm
Q

mF  
1

1~
 are the empirical 

cumulative distribution functions of the observations,  
iqi mR  and  jqj mR  are 

the rank functions2 of the observed crash count in the dataset.  .  denotes the 

indicator function that can take a value equal to 0 whenever its argument is 

false, and 1 otherwise. Types of available empirical copulas are shown in Table 

(5-2), in which 1/Q type is used in this study (see Asquith (2016) and 

Hernandez-Maldonado et al., (2012) for more details). The tail dependence of 

the empirical copula is constructed using Eq.(5-12).  

Table (5-2) Types of the avaible empirical copulas 

                                            
 

2 It is straight forward to see that the rank function is expressed as    



Q

f

iqifiqi mmmR
1

, 

given that     QmRmF iqiiq

n

i 
~

, therefore, the empirical copula can be seen as the empirical 

distribution of the rank transformed data as shown in the last part of Eq. (5-13) 
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5.4.5 Composite Marginal Likelihood CML 

The CML approach has been used to overcome the multi-dimensionality of 

dependencies of Eq. (5-9) without a need to evaluate the full likelihood function. 

The CML approach works perfectly with copula due to the fact that there is a 

huge class of closed-form bivariate copula without a need to sacrifice any levels 

of dependency compared to other approaches. There are several methods, 

nested under the CML approach, for this type of model, we will use the pairwise 

marginal likelihood estimation method (see Castro et al., 2013; Castor et al., 

2012; Bhat et al., 2014c; Yamamoto and Morikawa, 2013; Sener et al., 2010; 

Paleti et al., 2013 and Ferdous et al., 2010). The features of bivariate copula 

can be obtained from Eq. (5-7) when I = 2 with the following properties

  0,11 qyFC  =   qyFC 22,0 = 0;   1,11 qyFC =  qyF 11
and   qyFC 22,1 =  

qyF 22
. Let 

 Iqqq mmm ,....,, 21
and  θ;,....,,;,....,, 2121 II    represent the actual 

observed crash count of type i on a specific segment q and a parameter vector 

of MCORC model, respectively. Let also  Ij ,....,2,1 , and Eq. (5-9) collapses 

into I (I-1)/2 pairs of bivariate probability computations and it takes the form: 

   

  

   
   

  





 



  
 



 






























1

1 1

1

1 1 1

)(

)1(

)(

)1(
,

1

1 1

|)1(),1(|)1(),(

|)(),1(|)(),(

)()()(.|)(),(

,Pr

I

i

I

ij ijjqjiqiijjqjiqi

ijjqjiqiijjqjiqi

I

i

I

ij

I

i

jqjiqiiqiijjqjiqi

mF

mF

mF

mF
ji

I

i

I

ij

jqjqiqiqCML

mFmFCmFmFC

mFmFCmFmFC

ydFydFyfyFyFc

mymyL

iqi

iqi

jqj

jqj

q







ζ

 (5-14) 

where 
ij  represents the level of dependency between the marginals 

)(),( jqjiqi mFmF  for a certain copula function C. The pairwise marginal likelihood 

estimation across all segments can be computed using    



Q

q

CMLCML
q

LL
1

ζζ . 

The pairwise likelihood function above is easy to maximize, where the pairwise 

estimator CMLζ̂  obtained by maximizing the logarithm of the  ζCMLL  function 

with respect to the vector ζ  which is consistent and asymptotically normal 

distributed with asymptotic mean ζ  and covariance matrix given by the inverse 
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of Godambe’s (1960) sandwich information matrix  ζG  (see Zhao and Joe, 

2005; Castro et al., 2012 and Ferdous et al. 2010). 
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where  ζH and  ζJ  are Hessian and Jacobean matrices, respectively. The 

Hessian and Jacobean matrices can be estimated in a straightforward manner 

at the CML estimate ( CMLζ̂ ): 
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comply with the results of the empirical copula, the bivariate parametric copula 

in Eq. (5-14) will be the same function among all the pairs of crash types in our 

proposed model, but also, we will try to investigate other copula functions to 

get the best fit as we will see later.     

5.4.6 Interdependence Interpretation 

The bivariate copula function includes usually one parameter which represents 

a measure of dependency between the marginal distributions. If the marginal 

distributions are independent the level of dependency 
ij  would be equal to 

zero and the estimation could be carried out individually for each marginal and 

no point of tie them together. In general, it’s not straightforward to interpret the 

level of dependency 
ij  like the case of Pearson product-moment correlation 

coefficient (except the case of the elliptical copula family), because of two 
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reasons. First, the bivariate copula functions represent a non-linear relationship 

between the marginal distributions. Second, most of these copula functions 

don’t require that  1,1: ij , therefore other non-parametric measures (like 

Kendall’s ‘τ’ or Spearman’s ‘ρ’) are commonly utilized instead (Cameron et al., 

2004). In case of continuous 
iqy  variable is used, 

ij  is transformed to these 

measures which are independent from the marginal distributions and bounded 

on the interval  1,1 . Bouyé et al. (2000) stated, however, it is not the case 

when 
iqy  is discrete-count variable. Marshall (1996) and Tajar et al. (2001) 

elucidated that these measures of dependence are not useful in the case of 

discrete variables because 
ij depends on the selection of marginal 

distributions, therefore an extra care is required when interpreting 
ij for count 

data. For this reason, we will maintain the same count marginal distribution for 

the same crash type along with the modeling processes to facilitate the 

comparison among the developed models. 

5.4.7 Model Estimation Selection 

There is no assent about a statistic criterion that selects the copula that 

provides the best fit to the data. Nikoloulopoulos and Karlis (2009); Winkelmann 

(2012); Cameron and Trivedi (2013) utilized the Akaike information criterion 

(AIC) while Yasmin et al. (2014) utilized Schwarz Information Criterion (BIC) to 

select the copula that provides the best fit. The BIC performed better in large 

samples, whereas the AIC tends to be superior in small samples (Shumway 

and Stoffer, 2010). AIC and BIC criteria were implemented and the copula that 

provides the best fit is the one that correspond with the lowest values of these 

measures. The AIC and the BIC can be defined as follows:

   QLLAIC  2log2 and      QLLBIC loglog2   , where   is the 

number of parameters of the copula model. The AIC and BIC criteria are used 

to assess which model fits better, but doesn’t tell which model is statistically 

significant when compared all competing models. Therefore, a non-nested 

likelihood ratio test is also used (more details on this test see Ben-Akiva and 

Lerman, 1985). The log likelihood function in Eq. (5-14) was coded in Gauss 

Aptech (1999) and the default BFGS algorithm provided by the maxlik 
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procedure in Gauss was used for maximizing the log-likelihood function.  

5.4.8 Variance Covariance Structure of MCORC Model 

The variance-covariance II ,V  formulated from the unobserved heterogeneity 

for a given segment q is a square matrix with dimensions IxI (I = total number 

or crash types [four in our crash data]), where the variances appear along the 

diagonal and covariances appear in the off-diagonal elements, as shown below, 
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The expected covariance between two independent random continuous 

variables is estimated directly from the data given by the sum of cross-products 

formula. This is not the case for the correlated variables where the data are not 

normally and identically distributed. Hoeffding’s formula exists to overcome this 

difficulty (more details on this formula, see D'Angelo et al., 2013 and Hoeffding, 

1940). Hoeffding’s formula for the expected covariance between two 

continuous dependent variables xi and xj states that  
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The identical formula for the expected covariance between two discrete 

count variables in our case is given as 
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More details on the above formula are given as a result of Eq. (B.1-7) 

in Appendix.B.) The average of the expected covariance  ji , of all segments 

is calculated using,  
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and, the total covariance of crash types i and j is calculated using, 

       .,
~

,, , jijijiji yyECovyyCov                                                 (5-21) 

In similar way, the variances element 
i  in the diagonal variance-covariance 

matrix is calculated for each crash type i for the NBII model as, 

   21

iqiiqiqi y    and   iqiqi y   for the Poisson marginal distributions. 

The average of the variance 
i of all segments is then calculated using,  

    iq

Q

q

iii y
Q

yE 



1

1
                                                                       (5-22) 

The total variance magnitude is the sum of two components calculated using, 

       TTTT yVEyEVyV                                                               (5-23) 

where the   TyEV  represents the variance of the expected number of total 

crash which is constructed from the observed heterogeneity while the second 

component is the expected variance formulated from the unobserved 

heterogeneity given in the II ,V matrix, both components are given by Eq. (5-24) 

and Eq. (5-25) respectively. 
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5.5 EMPIRICAL CRASH DATA SETTING 

The crash data used in the analysis are used in same configuration to the 

previous chapter. The crash-count type distributions are presented in Figure 

(3-2) while the descriptive statistic of the main explanatory variables in this 

study is shown in Table (3-2).   
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5.6 MODEL ESTIMATION AND PERFORMANCE 

In this section, we started formulating the empirical copula function for all the 

crash type pairs. The work was utilized to develop the graphical techniques, 

PP-plot and the tail-dependence as we explained earlier. Later, we applied the 

MCORC model to our dataset. It is an interest point to investigate whether 

these types of crashes are jointly determined. The benefit of getting the joint 

distribution probability of these types together lies in the enhancement of the 

parameter estimates; furthermore, it helps to predict the number of crashes of 

each type simultaneously rather than individually. Followed by more 

investigation on the variance covariance structure and the correlation among 

the unobserved heterogeneity that triggered from the joint these crash types. 

Finally, the marginal effect is also presented to explain the effect of each 

individual explanatory variable on the crash count by type. 

5.6.1 Empirical Copula Diagnosis 

The empirical copula is formulated using Eq. (5-13) for each pair of the 

designated crash types. The empirical copula3 of rear end and sideswipe crash 

types pair is given in Figure (5-1) (other pairs are reported in Appendix.A). We 

used the 1/Q empirical copula for our estimation and it was compared to a 

selected parametric copula (Frank) as an example (other types of empirical 

copula like Hazen; Weibull and Bernstein showed no much differences from 

our selected empirical copula for all other pairs). We investigated five different 

types of copula from two different families (elliptical: Independent; Gaussian, 

Archimedean: Frank; Gumbel; Clayton and Joe) using both the PP-plot and the 

tail dependence graphs. Figure (5-2) shows the PP-plot for the same pair we 

used for the empirical copula and repeated for each parametric copula that we 

assigned to our developed model later. With several competing parametric 

copulas, we prefer the one that is closest to the empirical in some sense. We 

can see that Gaussian; Frank and Gumbel are a good starting for our modeling 

                                            
 

3 The empirical copula is assumed that only the observations are involved and constructed 

from a random sample for both the empirical marginals    jq

n

jiq

n

i mFmF
~

 ,
~

 and no explanatory 

variables are included. 
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for this pair. We repeated this plot for other pairs and all shows same conclusion 

(Other pairs are not reported in this paper). The strength of the PP-plots is 

available regardless of the dimensions (number of the count outcomes I) while 

the weakness can be seen as the lack to distinguish among different PP-plots 

due to the cumulative process can conceal some important differences in the 

distributions (Gibbons and Chakraborti, 2011). Therefore, we conducted the tail 

dependence to investigate the tendency of the upper/lower tails of the crash 

count type’s distributions. The tail dependence plot depends only on the 

empirical copula and so it is not restricted to a specific class of copulae. The 

tail dependence of the rear end and the sideswipe crash types is shown in 

Figure (5-3) We can see that most of the observations given by the empirical 

copula are located in the upper tail (segments with low number of crash count) 

with a pattern almost similar to Frank; Gaussian copula. The same results can 

be deduced from other pairs (other pairs are reported in Appendix.A). 

 

  

Figure (5-1) The empirical copula using 1/Q type compared to a 
selected parametric copula 
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Figure (5-2) PP-plot of the parametric copula vs. the empirical copula. 

Figure (5-3) Tail dependence of the parametric copulas vs. the empirical 
copula 
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5.6.2 Model Specification and Crash Data Fitting 

Let 
iqy denote the observed crash count outcome of type i and segment q, 

where i takes the value of “rear-end” (i=1), “sideswipe” (i=2), “fixed object” (i=3) 

and “all-others” (i=4) respectively. Let also *

iqy denotes the unobserved latent 

tenancies for each crash type correspondingly. We assume that each crash 

type follows a NB-II marginal distribution with a specification  
iqi yF  and 

dispersion parameter i . The empirical model considers parameterizing the 

mean of the expected number of crashes for each type (denoted as
iq ) as a 

function of all the explanatory variables 
iqx with the corresponding parameters

iβ . Regardless the conclusion we got from the empirical copula we used the 

same copula are implemented to model the unobserved heterogeneity 
iq  that 

generated from each crash type latent variable. The normal distribution is 

selected to represent the continuous variable 
iq  and NBII margins are used for 

the count variable 
iqy  for both the independent and the Gaussian copula.  

Identifying the most significant explanatory variables
iqx for each crash 

type is a prerequisite since each crash type has its distinct mechanisms and 

characteristics. For this purpose, the independent copula is used where no 

correlation among crash types is assumed. The independent copula works as 

a reference to assess both our selection of these explanatory variables and 

also as a reference to compare when we select different types of copula 

functions. The preliminary estimation 4  of the independent copula suggests 

using NBII as a marginal for ‘all-others’ crash type category is not suitable since 

we got a non-significant dispersion parameter 
4 .The Poisson’s marginal was 

selected instead for the ‘all-others’ type and it will be kept the same when 

                                            
 

4 Many numerical difficulties arise from the presence of both the gamma function and the factorial function 

in the negative binomial marginal distribution. These difficulties are realized spontaneously in computing 
the probabilities if the latter are associated with large crash count number. Gauss reference manual 
(Aptech, 1998) states that maximum allowed number of both gamma/factorial function argument, should 
be set no more 170. Obviously, this is not the case in our crash count dataset (e.g., in one of observed 
segments of the freeway, rear end crash is recorded to 212. avoiding the overflow problem if the logarithm 
of both gamma/factorial function is used. Thus, to facilitate the speed of computation, a Strling's formula 
offers an approximation in this regard (see Winkelmann, (2008) for more details).  
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investigating different types of copula function. The estimation results of the 

independent copula are presented in Table (5-3). It is worth to mention that the 

independent copula can be obtained 5  also by setting all the correlation 

components 
ij of Gaussian copula to zero. 

Gaussian; Frank; Clayton; Gumbel and Joe copula are implemented to fit 

our crash types data using MCORC model, but only the best copula in a 

statistical point of view will be reported to conserve on space. The copula 

function facilitates the correlation between the pairs of the marginal 

distributions of the crash types. The nested-likelihood ratio test is conducted 

between the Gaussian and the independent copula, the Gaussian copula 

collapses to the independent copula by suppressing the dependency 

parameters among the crash types. The value of the test statistic can be 

calculated as    06.1786576.18271241.813  , which is much greater 

than the critical value of Chi-square distribution 16.81 at six degrees of freedom 

for a probability level of 0.999. The test value is statistically significant, which 

indicates that considering the correlation using Gaussian copula is more 

preferable rather than the independent model. Table (5-4) represents the 

performance measure of the log-likelihood; AIC and BIC of each copula 

function. It is clear that Frank copula is the most suitable to fit our data with the 

highest value of log-likelihood and lower values of AIC and BIC respectively. 

The non-nested likelihood ratio test is also carried out to assess this conclusion 

by comparing the Frank-copula to the closest competitor Gaussian-copula 

model. The difference in the adjusted rho square ( 2

i ) value is 0.02608. The 

probability that this difference could have occurred by chance is less than

     5.0
383802608.02  CLL . This value, with   50.45215CLL , is 

equal to 247578.4 E which is almost zero, indicating that the difference in 2

i  

between Frank and Gaussian models is statistically insignificant and that Frank 

copula is more suitable to fit our crash types count data.  

                                            
 

5 We can obtain the independent copula density function in a straightforward form by taking 
the difference of the copula between the two marginals F(y1) and F(y2) as c(F(y1), F(y2); θ) 
=[F(y1). F(y2)]- [F(y1-1). F(y2)]- [F(y1). F(y2-1)]- [F(y1-1). F(y2-1)], 
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Table (5-3) Multivariate Copula-Based Generalized Ordered Response Count Model of Crash Types: Independent Copula. 

S.E. standard error; - Not relevant; † Significant at 10% level; ‡ Significant at 15% level. All the other coefficients are significant at the level of 5%. 
Significance of the actual overdispersion parameter (1/ ψ) is estimated using the delta method.  Significance of the overdispersion effect is very strong for all 
crash types, at or better than the 99.5% level. 

  

Explanatory Variables 
Rear End Sideswipe Fixed Object All-others 

Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E. 

Constant -24.959 2.216 -16.505 1.220 -7.017 1.805 -11.040 1.021 
LnAADT 2.651 0.230 1.723 0.127 0.800 0.173 1.170 0.108 
LnLength 0.597 0.124 0.708 0.089 0.882 0.137 0.973 0.059 
Urban rural dummy, 1 if rural, 0 if urban -0.628 0.142 -0.710 0.134 -0.193 0.124‡   
Proportion of three or more lanes cross section by 
length of segment 0.937 0.099 0.606 0.111 0.363 0.090 0.418 0.102 
Number of horizontal curves per segment 0.141 0.055 0.116 0.030 0.068 0.035† - - 
Diamond interchange type dummy -0.239† 0.142 -0.275 0.079 -0.239 0.104 - - 
Smallest vertical gradient in segment - - 0.073 0.046‡ - - - - 

Largest beginning vertical curve elevation in segment 
- - 0.878 0.744‡ - - - - 

Largest horizontal curve central angle in segment - - - - 0.507 0.269† - - 
Number of vertical curves in segment - - - - -0.047 0.036‡  - - 

 1.720 0.134 4.606 0.759 3.601 0.673 - - 

Sample size 822 
LL(C) with constant parameters only -40,815.0 
LL(B) at convergence -18,271.8 

Adjusted rho square 
2

i  0.551 

AIC 36,607.5 
BIC 36,758.3 
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Table (5-4) Log-Likelihood, Akaike Information Criterion and Bayesian 
Information Criterion for Various Copulas. 

 

One of the possible reasons is that among all the features of bivariate 

Archimedean’s copula functions that have been used in empirical application, 

only Frank copula is a comprehensive one and support the range ij :   , . 

A comprehensive bivariate copula allows both the positive and negative 

interdependence structure among the pairs of marginal distributions. Frank 

copula function shares the same feature with Gaussian copula by offering a 

symmetrical dependency with near linear in the center, but flattens more in the 

tails compared to the Gaussian, no wonder why is the latter was the nearest 

competitor (see Winkelmann, 2012).   

5.6.3 Estimation Results 

Estimation results of MCORC-Frank regression model are presented in Table 

(5-5) while the interdependence parameters to explain the correlation among 

the marginal distributions of crash types are presented at the end of the same 

table and to be discussed later. The estimation results provide parameter 

estimates for four types of crashes. The dispersion parameter is estimated to 

be 1.827; 4.848 and 2.038 for rear end; sideswipe and other types respectively, 

which imply an overdispersion magnitude of 0.547; 0.206 and 0.490. These 

parameters are significantly significant as evidence by the large t-values. The 

MCORC-Frank model supports different sizes of overdispersion in order to 

represent the correlations of the unobserved heterogeneity for each frequency 

of crash type.  

 

Copula Type Log-Likelihood AIC BIC 

Independent -18,272 36,608 36,758 
Gaussian -17,865 35,805 35,986 
Clayton -17,871 35,817 35,996 
Frank -16,686 33,447 33,626 
Gumbel -17,882 35,840 36,019 

Joe -17,894 35,865 36,044 
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Table (5-5) Multivariate Copula-Based Generalized Ordered Response Count Model of Crash Types: Frank Copula. 

- Not relevant; † Significant at 10% level; ‡ Significant at 15% level. All the other coefficients are significant at the level of 5%. 

  

Explanatory Variables 
Rear End Sideswipe Fixed Object All-others 

Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E. 

Constant -24.589 1.845 -16.408 1.223 -8.223 2.183 -10.477 1.075 
LnAADT 2.614 0.187 1.712 0.127 0.896 0.217 1.108 0.112 
LnLength 0.576 0.101 0.697 0.099 0.904 0.101 0.951 0.067 
Urban rural dummy, 1 if rural, 0 if urban -0.623 0.155 -0.686 0.136 -0.168‡ 0.171   
Proportion of three or more lanes cross section by 
length of segment 

0.925 0.103 0.618 0.114 0.360 0.112 0.438 0.106 

Number of horizontal curves per segment 0.132 0.034 0.106 0.030 0.067 0.031 - - 
Diamond interchange type dummy -0.211† 0.109 -0.266 0.077 -0.214 0.091 - - 
Smallest vertical gradient in segment   0.071 0.027 - - - - 
Largest beginning vertical curve elevation in 
segment 

- - 0.733 0.344 - - - - 

Largest horizontal curve central angle in segment - - - - 0.490 0.168 - - 
Number of vertical curves in segment - - - - -0.047† 0.028 - - 

 1.827 0.145 4.848 0.748 2.038 0.303 - - 

Level of Dependency θij         

Sideswipe  2.323 0.341       
Fixed Object  0.782‡ 0.485 1.091 0.244     
All-others 0.609 0.274 0.975 0.243 0.985 0.197   

Sample size 822 
LL(C) with constant parameters only -45,215.5 
LL(B) at convergence -16,685.7 

Adjusted rho square 
2

i  0.630 

AIC 33,447.3 
BIC 33,626.4 



Chapter Five                                                  Multivariate Copula-Based Model 

 
 

[66]  
 

The MCORC-Frank copula of type specific expected crash frequency functions 

utilized almost same set of explanatory variables for each crash type. The 

results of the proposed model suggest that there are obvious significant 

relationships between traffic crash type and AADT; segment length and lane 

cross section proportion (3 lane or greater). The number of horizontal curves 

variable and the diamond interchange dummy are significant for both rear end; 

sideswipe and fixed object functions. The positive sign of the horizontal curves 

parameter indicates that as the number of curves increases, the expected 

crash count of rear end; sideswipe and fixed object crashes increases as well. 

The layout of the horizontal curve variables in general plays an influence factor 

to these crash types, this influence part ranged from speed differentials and 

their associations with rear end to lane offsetting and sideswipe, and potential 

loss of control and roadside encroachments resulting in fixed object crash type 

as we saw in Chapter Three. The location of the observed segment 

represented by the rural/urban dichotomous variable has a negative coefficient 

for both the rear end and sideswipe. The results are intuitive as expected from 

these two types of crashes that both are not as high as they would be in urban 

contexts due to for example the congestion related effects. The footprint of the 

diamond intersection shape provides usually a wide space for adequate merge 

and weave distances, thus reducing the probability of rear end; sideswipe or 

fixed objects crashes, no wonder we got a negative coefficient for this variable. 

The vertical curvature characteristics are intermittently significant represented 

by - minimum vertical grade variable being significant in the sideswipe function, 

while the maximum vertical curve elevation variable is also significant for same 

crash type.  

The smallest vertical curve gradient in segment is associated positively 

with sideswipe crash type (0.071) at 1% significance level. Another variable 

associated to sideswipe crash type is the largest beginning vertical curve 

elevation in segment. This variable (0.733) is found to be statistically significant 

at 1% level. Similar to the above-mentioned, the effect of curve gradient, the 

likelihood of sideswipe crashes can go up as the maximum curve elevation in 

segment increases. The horizontal curvature characteristics are represented 

by the largest horizontal curve central angle in segment (0.490) which is 
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significant at 1% level for fixed object crash type only. Miss-judging a horizontal 

curve by the drive is explained by this variable which is associated with vehicle 

run-off-road and cause the fixed object crash type usually 

5.6.4 Representativeness of Variance and Covariance Structure 

As mentioned earlier, the copula function in the MCORC model is used to tie 

the pairs of the marginal distributions of the crash types by permitting the error 

term to correlate for each pair. Each ij represents a level of dependency which 

demonstrates the presence of common unobserved factors in the latent 

variable functions. Parameter estimates ij of the MCORC-Frank copula model 

among type of crashes are presented in the end of Table (5-5). A significant 

positive value of ij indicates an association between the unobserved factors of 

each crash type in the corresponding pair. Rear end vs sideswipe; rear-end vs 

all-others; sideswipe vs fixed objects; sideswipe vs all- others and fixed object 

vs all-others are found to be statistically significant, except the rear end vs fixed 

object pair which is found to be not significant, indicates no correlation between 

these two crash types. The non-parametric Kendall’s ‘τ’ measure was utilized 

to interpret the level of dependency ij , and the results are presented in Table 

(5-6). 

Table (5-6) Parameter estimates of τij of multivariate copula-based 

generalized ordered response count model of crash types: Frank copula 
model 

† Using the Frank’s τij transformation formula,   ij

ij

ij D 


 11
4

1   where  ijkD  denotes 

to the Debye function given as 
  



ij

kdt
e

tk
t

k

k

ij



 0
.2,1 ,

1
 

The correlation ranges between 0.06 and 0.25, which demonstrates the 

presence of common unobserved factors association of the unobserved latent 

propensity for each crash type. These values are considered to be quite small 

due to the average numbers of each crash type are small as well. 

 Rear-End Sideswipe Fixed Object 

Sideswipe  0.247†   
Fixed Object  0.061 0.131  
Other Types 0.068 0.108 0.125 
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The II ,V matrix was calculated6 for MCORC Frank copula considering 

the average values among all segments using both Eq.      (5-19) and Eq.(5-22) 

it’s equal to, 





















71.132.272.490.18

15.596.543.22

41.784.64

68.191

4,4V                                                       (5-26) 

The total covariance of crash types i and j is a sum of two components, the 

covariance resulting from estimated expected number of crash specific type 

and the one from the association of the stochastic error terms generated from 

each marginal pair given in Eq.      (5-19). The total covariance of crash types 

is calculated for MCORC-Frank and independent copula models using 

Eq.(5-21) and presented in Table (5-7). The results suggest that Frank copula 

represents more accurately the covariance structure among the crash types. 

 

Table (5-7) Comparative Total Covariance from Frank and Independent Copulas. 

 

The total variance value is also a sum of two components, variance of the 

expected number of crashes and expected variance among the segments 

calculated using Eq.(5-24) and Eq.(5-25) respectively. Total variance 

                                            
 

6 It is worth to mention that evaluating the expected covariance elements in Eq. (5-19) can be 
also done by Eq. (B.1-1), but the amount of calculation time increases as the maximum number 
of crashes for a certain type of crash and a given segment increases. This is because Eq. (5-
19) requires to calculate the probability using the differences between the upper and lower 
bounds for each crash type pair as given in Eq. (5-14). Theoretically the maximum number of 
crashes should be set to (+∞) as given by Hoeffding’s formula, but we found that a 500 crashes 
count (upper bound) for each type are adequate to get stability in calculating the expected 
covariance value for each pair. 

Pair of crash types Observed Frank Independent 

Rear end and sideswipe 104.097 124.123 57.925 
Rear end and fixed object 46.118 46.081 27.481 
Rear end and other types 29.177 38.938 19.487 
Sideswipe and fixed objects 13.730 12.130 7.552 
Sideswipe and other types 8.885 9.883 5.272 
Fixed objects and other types 5.304 4.843 3.090 
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components of both Frank and independent copulas are presented in Table 

(5-8. The results suggest that Frank copula also represents the total variance 

structure more accurately compared to the independent copula. Finally, we 

have calculated the estimated correlation for a given segment using the 

following formula (Ophem, 1999). 

 
 

jqiq yy

jqiq

jqiq

yy
yy




,

,
,


                                                                       (5-27) 

Table (5-8) Variance Structure of Total Crashes. 

 

The results are shown in Table (5-9. It’s an interesting to compare the 

correlations value to our previous work (See Mothafer et al., 2016). It seems 

that the correlation values that produced by the MCORC-Frank and the one by 

the MVPGM (Multivariate Poisson Gamma Mixture) model are slightly same, 

expect for the heavily tailed relationship described by the rear end and the 

sideswipe pair. It’s the limitation of the MVPGM model since the correlation 

parameter is equally distributed among the pairs, this limitation was overcome 

by introducing the copula here.  

 

Table (5-9) Estimated correlation matrix for a given segment 

† Covariance of the error term value are between parentheses 

 

 

 

 Observed Crashes Frank Independent 

  TyEV   
 
 

881.92 

501.327 494.60 
  TyVE  444.383 204.64 

 T TV y
 

945.711 699.24 

 Rear-End Sideswipe Fixed Object 

Sideswipe  0.555 (64.84†)   

Fixed Object  0.330 (22.43) 0.382 (5.96)  

Other Types 0.314 (18.90) 0.342 (4.72) 0.289 (2.32) 
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5.6.5 Marginal Effects 

The marginal effect values of all the explanatory variables of MCROC-Frank 

copula model for each crash type are presented in Table (5-10). It is 

conspicuous to see the marginal effect values of rear end crash type are larger 

in the absolute value than any other crash types regardless of explanatory 

variables. The results suggest that interstate rear end crash likelihood is more 

sensitive to geometric and traffic conditions which match the finding of Chapter 

4. Another fact we found is that the characteristics of the horizontal curves on 

the designated freeway segment increase the likelihood of these types of 

crashes occurring, when compared to the characteristics of vertical curves.   

 

Table (5-10) Marginal Effects of Multivariate Copula-Based Generalized 
Ordered Response Count Model: Frank Copula 

 

  

Explanatory variable Rear-End Sideswipe 
Fixed 
Object 

Other 
Types 

LnAADT 22.62 4.64 1.66 1.85 

LnLength 4.98 1.89 1.68 1.58 

Urban rural dummy, 1 if rural, 0 if urban -0.86 -0.99 -0.18  

Proportion of three or more lanes cross 
section by length of segment 

8.00 1.67 0.67 0.73 

Number of horizontal curves per 
segment 

1.14 0.29 0.12 - 

Diamond interchange type dummy -1.82 -0.72 -0.40 - 

Smallest vertical gradient in segment - 0.19 - - 

Largest beginning vertical curve 
elevation in segment 

- 1.98 - - 

Largest horizontal curve central angle 
in segment 

- - 0.91 - 

Number of vertical curves in segment -  -0.09 - 
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5.7 SUMMARY 

This chapter presents a multivariate copula-based ordered response model for 

non-negative integer counts outcomes. The points of interest in the multivariate 

modeling are to investigate whether these outcomes are jointly determined and 

to enhance the parameter estimate efficiency. The advantages of the proposed 

model for count outcomes lie in: first, the model offers a joint distribution without 

any restrictions to accept both positive and negative correlations among the 

error term structure components. Second, no need for a simulation-based 

technique which is usually a computationally burdensome in the multivariate 

econometric model. The proposed model uses an alternative way to utilize a 

latent continuous variable of the ordered response model and match the 

probability of this latent variable to a corresponding count outcome variable 

probability. The error term components are assumed as equivalent to the 

corresponding latent variables that represent different count outcomes. The 

bivariate copula function in the CML technique is used to tie two count marginal 

distributions that reflect two different count outcomes. The proposed model is 

parametric; straightforward to implement and more flexible to allow 

parameterizing the count marginal distribution to reflect the effect of the 

explanatory variables that affect each count outcome. The proposed model 

also offers a non-linear asymmetric interdependence structure among error 

term components. The correlations among the error components is obtained 

from transferring the level of dependency of the copula function into a non-

parametric Kendall’s ‘τ’ measure. 

The model framework is demonstrated for an empirical application to 

study four different categories of crash types that commonly occur on freeway 

segments located on highway No. 5 in the State of Washington. The proposed 

model is used to investigate the dependence structure among these categories 

of crash types which are a rear end; sideswipe; fixed object and ‘all-other’. The 

aim is to get a better understanding on the nature of each crash type and its 

influence in order to adjust the safety policy and to enhance the parameter 

estimates of the explanatory variables. The effects of geometry and traffic 

characteristics of the freeway segments of each type of crash have been 
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investigated. We examined five different copula functions and selected the NBII 

as the marginal distribution to capture different sizes of the overdispersion, 

which is considered a common problem in the crash count distributions. The 

empirical results show that Frank copula is best to fit our data in a statistical 

point of view. In addition, considering the correlation among the unobserved 

heterogeneity is highly recommended to enhance the covariance and the 

variance structure estimation when they are compared to the corresponding 

observed ones. The marginal effect calculations give an insight that the 

characteristics of horizontal curves of the selected freeway increase the 

likelihood of rear end; sideswipe; fixed objects and all-other types of crashes 

compared to the characteristics of vertical curves.  

The severity level is not considered in this chapter. One might think of 

utilizing another crash count dataset that contains the number of crashes by 

both crash type and severity level which offers richer insights into the 

differential impacts of various explanatory variables on the crashes. 

Furthermore, it would be also a significant work to investigate the multivariate 

serial correlation among the analysis period of a pooled crash count dataset.  
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Chapter 6  

 

 

 

Random Effect Poisson Gamma Mixture 

Model 

 

6.1 INTRODUCTION 

This chapter presents a negative binomial crash sum model as an alternative 

for modeling time invariant heterogeneity in short crash data panels.  Time 

invariant heterogeneity arising through multiple years of observation (2005-

2007) for each segment is viewed as a common unobserved effect at the 

segment level, and typically treated with panel models involving fixed or 

random effects.  Random effects model unobserved heterogeneity through the 

error term, typically following a gamma or normal distribution. We take 

advantage of the fact that gamma heterogeneity in a multi-period Poisson count 

modeling framework is equivalent to a negative binomial distribution for a 

dependent variable which is the summation of crashes across years. The 

Poisson panel model referred to in this paper is the random effects Poisson 

gamma (REPG).   

6.2 BACKGROUND 

In the classical approach of modeling the crash count data, it is customary to 

assume the data is cross-sectional in nature (see for example, Lord, 2000; Ivan 

et al., 2000; Lyon et al., 2003; Miaou and Lord, 2003; Lord et al., 2005; Miaou 

and Song, 2005).  Alternatively, when time effects are considered, we have a 

combination of cross-sectional data and time series data (also known as the 

panel data) in which the duration of observations is included (Law et al., 2009; 

Kumara and Chin, 2004; Chin and Quddus, 2003 and Quddus, 2008). Time 
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effects shared across observations result in the efficiency problem (Shankar et 

al., 1995; Greene, 2003). Ignoring time invariant heterogeneity results in the 

consequence that parameters that are insignificant in reality will be incorrectly 

identified as significant, and therefore included in the model.  A recent study by 

Mannering et al (2016) discusses the various form of unobserved heterogeneity 

and consequences for parameter estimation.  Time invariant heterogeneity is 

identified as an important aspect of unobserved heterogeneity, and the study 

emphasizes the importance of further study on this subject.   

Time invariant heterogeneity in crash data can be modeled by 

accounting for repeated observation effects through a negative multinomial 

density (Ulfarsson and Shankar, 2003).  In this approach, the negative binomial 

density is modified to account for contributions from each time period.  In the 

second approach, the error term across time observations is treated as a 

random effect (Shankar et al, 1998) that follows an arbitrary continuous 

distribution7. A more general approach is to treat the time effect via the year 

indicator as a random parameter in a random parameter count model.  If some 

or all of the year indicators are random, then, it implies that the serial correlation 

effect is stochastic and not constant across years.  The random effects model 

is a constrained version of this model, where the intercept alone is random.  

Sittikariya et al. (2005) proposed a zero inflated Poisson (ZIP) model to account 

for excess zeroes in the crash data. In their method they used the negative 

multinomial approach to adjust the standard errors.  By comparing the negative 

multinomial standard errors and cross sectional negative binomial standard 

errors, they used a loading factor principle which represented the level of 

inflation in standard errors of the parameters estimates due to serial correlation.  

Neither of the approaches or other published literature on serial correlation in 

count models addresses the impact of cumulative exposure.  Under cumulative 

exposure, one can visualize the crash model to be composed of multiple years 

of observation, as opposed to the conventional one-year window.  With multiple 

                                            
 

7  An alternative approach instead uses an arbitrary discrete distribution representation of 
unobserved heterogeneity, which generates a class of models called finite mixture models 
(Cameron and Trivedi, 2001). 
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years of observation, the problem of excess zeros is potentially mitigated, while 

the problem of time series effects is now treated as a single cumulative effect 

as opposed to a common unobserved effect across time periods for any given 

segment.     

The aim of this chapter is to therefore evaluate the parameters of a count 

model under the influence of time invariant heterogeneity and compare the 

magnitudes and standard errors with those from a cumulative crash count 

model.  The cumulative crash count model, also termed here in this paper as 

the crash sum model would represent a single cross sectional analysis of 

crashes summed up across the entire time period.   

6.3 EMPIRICAL CRASH DATA SETTING 

We used same configuration of the crash types of both chapter four and chapter 

five. The data here are organized as a panel count data. The time plays a vital 

role to add more information to our proposed model. The unobserved 

heterogeneity now is considered in a dynamic status. The crash-count type 

distributions are presented in Figure (3-2) while the descriptive statistic of the 

main explanatory variables in this study is shown in Table (3-2). 

6.4 METHODOLOGY 

Modeling panel crash count data with random effects is usually started by 

assuming the error term 𝛼 follows an arbitrary continuous distribution  f  (for 

example gamma, or Gaussian distribution, Cameron and Trivedi, 2013). Let i 

be an index of crash types, t be an index representing the year of observation 

in the panel, and q be an index of segment number, respectively. Then we can 

write the joint probability of the observed crash count variable itqy  for a given 

crash type i observed during time t on segment q as: 

     

    iqiq

T

t

iqitq

iqiqiqiTqqiqiiTqqiqi

dfyP

dfyyyPyyyP





 




















0 1

0

2121

|

|,...,,,...,,

                         (6-1) 

where iq  represents an error term that is invariant with time for a specific crash 
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type i and segment q (also known as the multiplicative segment-specific effect). 

Let’s assume the observed number of crashes itqk is drawn from a Poisson 

distribution as,  

    

 
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                                                   (6-2) 

Where itq  represents the expected number of crashes, itqx is a vector of 

explanatory variables that affect the number of crashes and iβ is a vector of 

parameters to be estimated including the constant. Let  
iitqitq βx exp , and iq  

follows a gamma distribution with mean equal to one and variance equal to 

i/1  .  Then, we can write the likelihood function based on Eq. (6-1) as: 
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Eq.  (6-3) is the REPG model which is proposed by Hausman et al (1984). The 
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REPG distribution has  
itqitqyE   and   iitqitqitqyV  /2  properties, and is 

equivalent to an NB distribution for 



T

t

itqiq kK
1

with expectation 



T

t

itqiq

1

 . The 

log-likelihood function represented by Eq.  (6-4) is coded in STATA (2005) and 

the default BFGS algorithm provided by the maxlik procedure in STATA was 

used for maximizing this function.  

In the event that the X vector has few and infrequent and minor changes 

in value over T, assuming equality of X over the individual time periods, we see 

that 

 itq

T

t

itqiq T lnlnln
1

 
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                                                                  (6-5) 

which implies that for a crash sum model, using a representative iqx , we get 

  itqREPGiqCSiq T xβxβ  lnln                                                             (6-6) 

where CSβ  is the parameter vector for the crash sum model, and REPGβ  is the 

estimated parameter vector for the REPG model, iqx and itqx are respective 

vectors of independent variables for the crash sum and REPG models.  This 

relationship indicates that the crash sum model can be estimated with an 

adjustment to the constant by a scalar value of ln(T) to make parameter 

estimation consistent with the REPG.  This is a reasonable adjustment in short 

panels, while in longer panels the applicability may not be suitable due to the 

fact that the modifications to the X vector can be significant (due to lane addition 

or width adjustments, ADT adjustments, shoulder width adjustments and 

curvature adjustments). 

We discuss below results from the panel REPG model and the crash 

sum model.  To begin the evaluation, the REPG is first baselined against a 

cross-sectional NB model (sample size N=822) denoted as the independent 

model, because this model does not assume sharing of time invariant 

heterogeneity across multiple time periods for a segment. In other words, the 

within-segment correlation is ignored and within-segment observations are 
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treated as independent observations.  The idea is to illustrate the downward 

bias in standard error when time invariant heterogeneity is ignored. The 

apparent serial correlation induced by the time invariant heterogeneity can be 

substantial, as the discussion of the results will indicate.  To keep the panel 

duration short, we select a three-year panel that experienced minimum 

changes in the X vector.  We then evaluate the cumulative crash count model 

(sample size N=274). We estimate five crash outcome types in this evaluation, 

including total crashes, rear ends, sideswipes, fixed objects and all-other types.  

Therefore, in total, in this evaluation, five crash type models were estimated 

separately for: the independence (no serial correlation) scenario; REPG model 

scenario; and the cumulative crash count scenario. 

6.5 RESULTS 

The evaluation of the REPG model against the independent NB model is 

presented first, as shown in Table (6-1).  The REPG model outperforms the 

independent NB model on several information criteria such as the AIC and BIC 

(Kuha, 2004).  Most noticeably, the standard errors of the parameters in the 

independent model are significantly downward biased, with the exception of the 

overdispersion parameter.  The overdispersion parameter spuriously captures 

the time invariant heterogeneity effect with an inflated standard error.  The 

parameter estimates including the constant are downward biased by 40-60%, 

with horizontal curve count recording the highest bias of around 60%.  This 

indicates a significant amount of time invariant heterogeneity. 

The REPG model by assumption however assumes the explanatory 

effects are identical and consistent across the multiple time periods.  The 

second issue relates to the empirical equivalence of the crash sum model and 

the REPG model.  To evaluate the first issue relating to parameter constancy 

across multiple time periods, we estimated one year NB models for each of the 

analysis year, 2005, 2006 and 2007.  We compared the parameter estimates 

year by year for these NB models and the asymptotic t-tests indicated that the 

similarity in parameters cannot be rejected at the 5% level of confidence8.  The 

                                            
 

8 We took the chance to investigate this assumption even further by allowing the interaction of 
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second issue relating to the empirical equivalence of the crash sum model and 

the REPG was evaluated using the Hausman test (more details on Hausman’s 

test see Baltagi, 2008; Cameron and Trivedi, 2005),  

        CS

Total
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                      (6-7) 

This evaluation was done for all crash outcome models, but by way of 

example, we discuss the results for the total crash model, as shown in Eq.(6-7).  

The Hausman test here compares two models, the first being the crash sum 

model, and the second being the REPG model.  The crash sum model under 

the null hypothesis is efficient, while the REPG model is consistent under the 

alternative.  The parameter vectors 
REPG

Totalβˆ CS

Totalβ
~

 denote the REPG model for total 

crashes and crash sum model for total crashes respectively.  The middle term 

in Eq.(6-7) denotes the inverse of the variance difference for the two models.  

The results of Hausman’s test (often denoted by H) produced an H statistic 

value of 4.63 which is not significant to reject the null hypothesis under 5% 

significance level of the critical value of chi-square distribution.  This indicates 

that the null hypothesis cannot be rejected that the two models are equivalent 

and that the REPG model is a consistent alternative.  Further, the asymptotic 

t-test comparison of parameters between the crash sum model and the REPG 

model indicated that no parameter was statistically different at the 5% level of 

confidence. 

 

  

                                            
 

dummy variables of the years of observation along with the selected explanatory variables for 
each crash type and the total in the REPG model. The results show that the variability of the 
effects of the explanatory variables are not significant and the assumption is valid for our model 
purpose. 
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Table (6-1) Standard error downward bias in independent model of total crashes 

** Significant at 99% level; * Significant at 95% level; † Significant at 90% level. 

 

Explanatory variables 
REPG model 

Independent NB 
model Crash sum model 

Estimate S.E. Estimate S.E. Estimate S.E. 

LnAADT 1.079** 0.122 1.542** 0.086 1.350** 0.124 

LnLength 0.660** 0.088 0.754** 0.058 0.678** 0.086 

Urban rural dummy, 1 if rural, 0 if urban -0.463** 0.114 -0.323** 0.078 -0.340** 0.112 

Proportion of three or more lanes cross section by length of 
segment 

0.806** 0.092 0.749** 0.061 0.734** 0.089 

Number of horizontal curves per segment 0.129** 0.032 0.104** 0.020 0.120** 0.031 

Diamond interchange type dummy -0.379** 0.082 -0.285** 0.054 -0.326** 0.081 

Smallest vertical curve gradient in segment 0.117** 0.045 0.113** 0.029 0.112** 0.044 

Shortest vertical curve length in segment in miles -2.272** 0.839 -2.128** 0.577 -2.192** 0.819 

Largest vertical curve rate of vertical in segment -0.036† 0.019 -0.028* 0.013 -0.032† 0.019 

Constant -8.431** 1.186 -12.933** 0.841 -11.060**a 1.212 

 γi
−1 (dispersion parameter) 0.278** 0.029 0.273** 0.072 0.260** 0.027 

Log-likelihood at convergence  -2,354.2 -2,507.7 -1,105.8 

AIC 4,730.4 5,037.4 2,233.6 

BIC 4,782.2 5,089.3 2,273.3 

Sample size 274 822 274 
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We also have test the presence of serial correlation in the residuals (error) 

from our REPG model. The test is used to show that the residuals follow a 

specific pattern. We selected Durbin Watson test for panel data as one of the 

popular tests for this purpose (see Bhargava et al., 1982).  
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The DW value is distributed in the ]4,0[   range, with an expected value two 

indicating no first order serial correlation. When the successive residuals itq  

are close to each other the test value of DW will be low, indicating a presence 

of a positive serial correlation that we are concerned about. The DW tested 

values are 0.12, 0.13, 0.30, 0.70 and 0.78 for Total crash, rear end, sideswipe 

fixed object and all-other types respectively, which are less than the 

corresponding critical values, indicate to accept the null hypothesis with a 

statistical evidence that the residuals are positively serially correlated under 1% 

significance level. This is clearly shown in Figure (6-1) and Figure (6-2), as we 

plotted the residuals that get from the REPG model of each segment vary with 

the time of observation for each crash type and the total crash count.  

We discuss now the parameters of the crash sum model for the total crash 

outcome.  The parameters are shown in the far right column of Table (6-1) as 

shown in Table (6-1). The logarithm of ADT and logarithm of length are 

positively signed, while, the urban-rural indicator, diamond interchange 

indicator, shortest vertical curve length, and largest rate of vertical curvature 

are negatively signed. Cross sections with greater than 3 lanes, number of 

horizontal curves and gradient of shortest vertical curve in segment are 

positively signed.   
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Figure (6-1) Residuals vary with time for each crash type 

 

 

 

 

 

 

 

 

 

 

 

Figure (6-2) Residuals vary with time for the total crash count 
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The parameter effect sizes are quite similar to that of the REPG model.  

The constant value in the crash sum model reflects the adjustment due to the 

time duration effect described in Eq. (6-6). The dispersion parameter is 

significant in the crash sum model and with a comparable magnitude to the 

REPG model. The standard error of the dispersion parameter is similar as well.  

Notably, the standard errors are highly similar, with variations within 7% at the 

maximum.  A majority of the parameters in the crash sum model have standard 

errors within +/- 2 percent of the REPG model. This pattern of parameter 

behavior repeated for the individual crash type models as well, which we do not 

discuss in this paper. To briefly summarize the parameters that were significant 

in the individual crash type models, such as rear end, sideswipe, and fixed 

objects included the logarithm of ADT, logarithm of length, the urban-rural 

indicator, the proportion of segment with three or more lanes variable, the 

number of horizontal curves variable and the diamond interchange indicator 

variable. The all-other crash type model included the logarithm of ADT, 

logarithm of length, and proportion of segment with three or more lanes. The 

standard errors (as shown in Table (6-2)) of the parameters in the individual 

crash type models were within +/- 7% of the REPG model of the same crash 

type.  The only exception was the standard error of the dispersion parameter 

which varied as much as +/- 20% (for rear-end) compared to the REPG model. 

6.6 SUMMARY 

This study evaluated the random effects Poisson gamma model against 

a crash sum model for a three-year panel of crash counts in Washington State 

for the period 2005-2007. We found that the REPG model and the crash sum 

model were empirically equivalent based on tests of parameter similarities. The 

crash sum model appears to be a reasonable empirical alternative to the panel 

model given that the standard errors and parameter magnitudes are highly 

similar in the presence of time invariant heterogeneity. The time invariant 

gamma heterogeneity effect captured in the REPG indicates that it is equivalent 

to an NB distribution for a dependent variable that is equal to the sum of 

crashes in the whole period, and with an expectation equal to the sum of 

expectations from the individual time periods. The reasonableness of the crash 
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sum model as an alternative appeals from the fact that it requires less frequent 

measurements of geometrics and ADT. This is under the assumption that 

dramatic changes in the independent variable vector do not occur in the panel 

observation period. Since we tested a three-year panel, the conclusion of what 

constitutes a time threshold for the application of the crash sum model is 

indeterminate. In the crash sum model, the assumption of a representative X 

value will have an impact on the parameter outcomes if there are significant 

changes to the X value over multiple periods. Since, in our dataset, the changes 

in X were minimal, the use of an average value versus an individual year value 

made little difference. However, this assumption cannot be validated in longer 

time periods when design changes start to have a noticeable effect. This aspect 

of constancy of X needs to be researched in longer panels before further 

conclusions on the suitability of the crash sum model can be made. The added 

benefit of the crash sum model however, is that it approximates the time 

invariant heterogeneity effect on parameter estimates reasonably well in crash 

contexts where the crash distribution is from roadways with high exposure 

(such as the interstate system in our case study). It remains to be seen as to 

how the model behavior changes with respect to low exposure part of the 

highway network, and parts of the network where the X vector can change 

frequently (such as variable message signing areas). Nevertheless, the capture 

of time invariant heterogeneity via the crash sum model ensures that the 

appropriate variables are identified as statistically significant in the model.  This 

allows for proper model specification across multiple crash type outcomes.   
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Table (6-2) Three-year crash sum model standard error ratios with respect to REPG model. 

Explanatory Variable Total Rear-End Sideswipe 
 

Fixed Object 
 

All-Other 

LnAADT 1.023 0.998 1.026 1.013 1.005 

LnLength 0.977 0.937 1.001 1.001 1.000 

Urban rural dummy, 1 if rural, 0 if urban 0.983 0.967 1.006 1.002 - 

Proportion of three or more lanes cross section 0.976 0.950 1.002 1.001 1.000 

Number of horizontal curves per segment 0.973 0.941 1.002 1.000 - 

Diamond interchange type dummy 0.983 0.966 1.004 1.001 - 

Smallest vertical curve gradient in segment 0.978 - 1.001 - - 

Largest beginning vertical curve elevation - - 1.002 - - 

Longest horizontal curve central angle - - - 1.000 - 

Number of vertical curves - - - 1.000 - 

Shortest vertical curve length 0.976 - - - - 

Largest vertical curve rate of vertical curvature 0.968 - - - - 

Constant 1.022 0.996 1.026 1.013 1.005 

γi
−1 (dispersion parameter) 0.925 0.814 1.001 0.998 0.995 

Log-likelihood at convergence -856.6 -669.8 -455.5 -493.9 -449.6 

AIC 1,735.1 1,355.6 931.0 1,007.7 909.1 

BIC 1,774.9 1,384.5 967.1 1,043.8 927.2 

Sample size 274 274 274 274 274 

Ratio = standard error of crash sum model/ standard error of REPG model. 
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Chapter 7  

 

 

 

Multivariate Panel Copula-Based Model 

 

7.1 INTRODUCTION 

This chapter suggests an econometric framework to model the multivariate 

panel crash by type count data. The point of emphasis is that modeling 

multivariate panel count data has more superior econometric benefits, which is 

clarified in producing more efficient parameter estimates compared to the ones 

arise from the multivariate cross-sectional models. Within this context, we 

considered the intertemporal correlations of a given crash type among the 

years of observations. Moreover, we have considered the inter-type 

correlations that formulated from jointing the probability among different crash 

types. Both of these correlation components are added more intricacy to seek 

a conceivable inference. We developed two flexible models to overcome this 

problem: Multivariate Panel Poisson Gamma Copula (MVPPGC) and 

Multivariate Panel Copula-Copula model (MVPCC). These two models are in 

no need for a simulation mechanism, which is a common issue to model the 

multivariate count outcomes. The source of flexibility of these models are 

demonstrated through allowing a non-linear asymmetric shape of these 

correlation components that generated among the unobserved heterogeneity 

of each crash type and across the years of observations.  

7.2 BACKGROUND 

Panel count data or longitudinal count data are observations arise from the 

count process over a specific time period. Crash panel count data with no 

exception is a part of nature of this process which is observed for a specific 

roadway individual entity (segment/intersection) over a one year usually. Crash 
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panel count data are more elaborate and complex to deal with, because the 

same individual entity is observed over time. As it is pointed out in Camerion 

and Trivedi (2013), a key advantage of modeling panel count data over cross-

section count data is that the former allows more general types of individual 

heterogeneity, as we will see later. Most of the developed multivariate models 

are cross-section data models in the literature. The nature of the complexity of 

both the multivariate and panel data alongside with the counting process are 

still to be considered one of the biggest challenges in econometric modeling 

(Camerion and Trivedi, 2013). The multivariate panel count1 data emerge in 

crash count data involving various crash types in which these types are 

measured over a specific period of time on a specific location. Panel count data 

itself refers to multidimensional data, other dimensions come from joint each 

crash count type together.  On bivariate/multivariate cross-section count 

models the reader can refer to Imprialou and Quddus (2016); Lee et al., (2015); 

Li et al., (2015); Park and Lord (2007). Alternatively, on univariate panel crash 

count models where the time of observation plays an important role in 

estimation can be found in (on the fixed effect see Law et al., 2009; Kumara 

and Chin, 2004; on random effect Poisson or negative binomial (NB) see Chin 

and Quddus, 2003 and Quddus, 2008). There is a bigger picture unfolding with 

respect the relationship among different crash count outcomes in panel data 

framework that needs to be considered. Recent advancements in econometric 

modeling techniques have allowed researchers to extend univariate crash 

panel data analysis to a higher dimension and generate a well-known class of 

multivariate panel crash count models. The latter models outperform the 

corresponding univariate ones and permit more dynamic dependency through 

the unobserved heterogeneity. Furthermore, a comparison among different 

crash count outcomes can be achieved through draw inferences from the joint 

analysis of the multiple response count variables (Katuwandeniyage and 

                                            
 

1 A comprehensive review on multivariate count models and panel count regression models 
can be found in Cameron and Trivedi (2013) chapter (8), chapter (9) respectively. in addition, 
another extensive review can be found in Winkelmann (2013), on correlated count data see 
Chapter (7) includes a subsection (7.2) on panel data models. 
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Priyantha, 2015). Unsurprisingly, multivariate panel crash count models are 

more attractive than simply univariate panel models. Multivariate crash count 

models still dominate the researchers' main topics in the literature (see Ma et 

al., 2008). In the context of multivariate panel crash count models, the state of 

the art in estimating the interdependence of multiple traffic safety outcomes 

over the years of observations involves simulation based parameter estimation. 

Generally speaking, any multivariate cross-section crash count model can be 

transformed into a univariate panel count model (Winkelmann, 2013); for 

example, the multivariate negative binomial count model becomes random 

effect Poisson-gamma mixture (also known as the multinomial negative 

binomial count model). Bhat et al. (2014a) addressed three major types of 

multivariate cross-section count data approaches as we saw in Chapter 5)). 

Recall the first category, namely, multivariate count models, typically, there are 

five multivariate count models which offer a correlation structure among 

frequencies of the random outcomes: Multivariate Poisson model; multivariate 

negative binomial model; multivariate Poisson-gamma mixture model; 

multivariate Poisson-log-normal model and latent Poisson-normal model 

(Winkelmann, 2013). Our approach is relatively close to the latent Poisson-

normal model but with more extension, and in no need to a simulation solution. 

A certain belief that the correlation among the unobserved heterogeneity 

for the same crash type among the years of observation and among the crash 

types cause serious efficiency problems has been entrenched in literature (see 

for example Ulfarsson and Shankar, 2003; Sittikariya et al.,2005). As a 

consequence of formulating the joint probability, both of these correlation 

components are added more difficulty to seek a conceivable inference. To 

include the intertemporal correlations into the first category, the fixed/random 

effect is a common concept to accommodate the individual effects among the 

years of observations. 

Both the bivariate copula function and the CML technique for count data 

are explained extensively in Chapter 5). In the following sections, we will 

investigate the actuarial-related modeling problems that associated with the 

multivariate panel crash count models context, and apply our proposed 

methodology. 
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7.2.1 Unobserved heterogeneity among years-crash types 

A common issue associated with panel count model is the correlation 

among the years of observation also known in the literature as a serial 

correlation, autoregressive, intertemporal correlation effect problem. The 

intertemporal correlation (here and after) occurs when the unobserved 

heterogeneity (unobserved factors) are correlated over the years of 

observations (Ulfarsson and Shankar, 2003). The intertemporal correlation 

among time periods will not affect the unbiasedness or consistency of the 

model parameters, but it does affect their efficiency (Greene, 2003). A positive 

intertemporal correlation is noticeable in estimated panel count models with 

standard errors smaller than the corresponding values produced by the cross-

section models. Therefore, it’s imperative to model the intertemporal correlation 

issue to avoid a wrong conclusion on interpreting the parameter estimates that 

seem more accurate than they really are, which means the chance to include 

an insignificant variable in the model.  

Panel count data give an opportunity to distinguish between the true and 

apparent contagion1 issue for the specific individual. This feature allows more 

control of unobserved heterogeneity on count data modeling for the specific 

individual (Cameron and Trivedi, 2013). For example, controlling for a specific 

individual freeway segment (our case context) propensity to produce a certain 

number of crashes. For a single cross-section, these controls can only rely on 

the actual observed explanatory variables such as the physical characteristics 

of the segment, and estimates may become inconsistent if there is additionally 

an unobserved component to the specific individual segment. Within 

multivariate panel data, one can additionally include a term which represents 

                                            
 

1 Given the background of count data, If the composition of the observation unit (segment) 
changes over consecutive trails (crash occurrence is a success trail), as far as, it happens 
to exist three associated scenarios that appear in count model assumptions. These 
scenarios are: First, occurrence-dependence, which the composition changes as a 
consequence of previous success trail. Second, duration-dependence, which occurs as a 
consequence of previous non-success. Third, and finally, a non-stationarity, which the 
composition changes due to external reasons independently from the pervious process 
(fail/success). Both of first and second scenarios are known as a 'contagion' in the statistics 
literature (Winkelmann, 2013). Contagious situation violates the Poisson distribution 
equality assumption which is the common case for accident occurrence predisposition 
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the specific individual segment for the unobserved heterogeneity that is time-

varying to accommodate the intertemporal along with/without a different 

separation parameter to include the time-invariant unobserved heterogeneity 

such as the ones that causes the over-dispersion problem. 

7.3 MODELING FRAMEWORK 

In this section, at first, we will formulate the multivariate panel count models 

based on the random effect approach using the Poisson-gamma mixture to 

accommodate the intertemporal correlations among the years of observation 

and the copula function will be used to join the crash types simultaneously. For 

this type of model, we have selected one parameter to reflect both the temporal 

correlation and the time-invariant (overdispersion) effect. The second part is 

devoted to more flexible model that we use copula function to hold the 

intertemporal correlation instead the random effect and separate the parameter 

of the overdispersion from the serial correlation. Let i  Ii ....,,2,1  be an index 

of the ith observed crash type. Let also assume t  Tt ....,,2,1  an index of unit 

of time of observation in the panel crash record. Let q  Qq ....,,2,1  represents 

an index of the observation unit (number of segments of the interstate freeway). 

7.3.1 Multivariate Mixture Panel Count Model 

The mixture distribution function is one of possible ways to construct the 

multivariate panel count model. Let a count outcome variable itqy  can take the 

value itqm , (where itqm may take one of the positive integer number; i.e.,

},....,2,1,0{itqm ), which is the observed crash count of crash type i at the 

observed time t for the segment q. The multiplicative individual (segment) 

specific effect is used to represent the error components interaction in the 

expected crash count function as (Cameron and Trivedi, 2013) 

 

  itqitqitqi

itqitqitq

itqitqitqitqiitqitq myE













xβ

βx

'exp

,,,|

                                         (7-1) 

where, itqx  is a ( 1H )-vector of explanatory variables (including a constant), 
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iβ is an individual specific ( 1H )-vector of parameter to be estimated.  , is a 

random variable represent the intertemporal correlation among the years of 

observations.  , is a random variable represent the correlation among the 

crash types. Since,  itqitqitqitqy Pr~ , using the mixture distribution function, 

we can write the joint probability of the count outcome varies for different crash 

type on different year of observation as,  

      qq

1 1

,,,|Pr...Pr υαυα ddfyy qqqM
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t
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where, Mqf  is a multivariate density function that hold the unobserved 

heterogeneities components. Let also two indices ( Th ,...,2,1 ) and 

( Ij ,...,2,1 ), where the dimensions of qα  is not mandatory to equal to qυ , and 

both are given as1,  
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where VIVT, are the varaince-covaraince matrices of the unobserved 

heterogeneities generated from each correlation of the error terms for each 

crash years-types with equal variances property when ti)(i, t)(t, i VIVT    and 

unequal covariances property when ti)(j, t)(h, i VIVT  . The conjugated 

                                            
 

1 Normalizing the error components fundamentally depend on the selection of the mixture 
function. For example, for a univariate single share random effect count model for the serial 
correlation, if the gamma distribution (mixture function) is selected to represents the 
unobserved heterogeneity, the error will be normalized to 1 instead of 0 (that’s also applicable 
for the integral domains, which in that case it would be (0~+inf)).  
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probabilities represented by Eq.     (7-2) of the unconditional crash count 

probability has no closed-form solution. The solution using numerical 

integration is a computationally intensive (see Cameron and Trivedi, 2013; 

Paleti and Bhat, 2013). We overcome this difficulty by introducing a simple 

formula that can approximate the probability of Eq.     (7-2) using altogether the 

random effect concept, copula function and the CML method. The multivariate 

panel count model by definition assumes the explanatory effects are identical 

and consistent across the multiple time periods.   

7.3.1.1 Multivariate panel Poisson-gamma mixture-copula count model 
(MVPPGC): 

As we mentioned earlier, in this type of model, we will let the Poisson-gamma 

mixture model to hold the probability of the individual crash type across the 

years of observations to account the intertemporal correlation problem, while 

the correlation among the crash types itself will be represented through the 

copula function and the CML technique. Modeling the intertemporal correlation 

using Poisson-gamma mixture model is well known in the literature (as a 

random effect model or multinomial Negative binomial, random effect Poisson 

gamma mixture …etc). It is usually started by letting the unobserved 

heterogeneity random variable  (as a single share property) to vary across 

the segments for each crash type and being subjected to a certain univariate 

continues distribution  
iqf  (we will use gamma distribution, but any i.i.d 

continuous distribution is also suitable) (Camerion and Trivedi, 2013). Eq.     

(7-2) collapses into, 
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Let’s assume the observed number of crashes itqm is drawn from a Poisson 

distribution as,  
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Substitute Eq. (7-5) into Eq. (7-4) and the likelihood function has a closed-

form solution as,  
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where
T

iHiii ),.....,,( 21 β ,  I ,....., 21γ  and  ii

dii

qi
G  ,~

...

 with expected 

mean   1iqE   and variance i/1 . Eq.  (7-6) is the multiplayers of the random 

effect Poisson gamma mixture probabilities across all the crash types. This 

distribution has suggested by Hausman et al (1984) with the  
itqitqyE   and 

  iitqitqitqyV  /2  properties. The time invariant unobserved heterogeneity 

and the intertemporal correlation are represented by same dispersion 

parameter i .  

We will select the bivariate copula function with the following properties

  0,11 tqyFC  =   qyFC 22,0 = 0;   1,11 qyFC =  qyF 11
and   qyFC 22,1 =  

qyF 22
, which 

allows us to solve the integral of the joint distribution and to seek for a non-

linear and asymmetric patterns of relationships among the error terms which 

give more flexibility in modeling for more details see (Mothafer et al., 2016; Bhat 

and Eluru, 2009). The model estimation is carried out after specifying a suitable 

marginal distribution F for the count outcome and an appropriate copula C. The 

CML technique has been utilized to overcome the multi-dimensionality that 

generated from the dependencies among the crash types without a need to 

evaluate the full likelihood function given in Eq.     (7-2) (Bhat et al., 2014b; Bhat 

et al.,2014c; Castro et al., 2012; Castro et al., 2013; Yamamoto and Morikawa; 
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2013; Sener et al., 2010; Ferdous et al., 2010; Paleti and Bhat, 2013). Let the 

observations for a given year as  Itqtqtq mmm ,....,, 21 . The pairwise CML which 

works with the bivariate copula perfectly, is used to obtain the joint probability 

among the crash types, thus the latter expression collapses into 

  2/1 IIT  pairs of bivariate probability computations and it takes the 

form, 
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And we specify 
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where ij  represents the level of dependency between the marginals 

)(),( jtqjtitqit mFmF  for a certain copula function C (there is a   2/1 II  ij

parameters in total). The marginal distribution that we selected is the 

cumulative negative binomial count distribution NBII, which accommodates the 

time invariant unobserved heterogeneity for each given year of observation of 

each individual crash type as, 
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where  itqiitq xβ exp  ,     21

itqiitqitqit y    are the conditional mean and 

the conditional variance respectively (overdispersion occurs when 1/ i  > 0).  
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7.3.1.2 Multivariate panel copula-copula (MVPCC) count model: 

In this model, a more flexible structure of the intertemporal correlation among 

the years of observations is introduced. Rather than assign a parametric 

distribution for the random effects, a possible alternative is to use the bivariate 

copula and the pairwise CML, but this time, across the years of observations, 

then the joint probability in that case are collapses into   2/1 TTI  pairs 

of bivariate probability computations. Without loss generality, let an index 

( Th ,...,2,1 ), with the observations among years for a given crash type as 

 
iTqqiqi mmm ,....,, 21  so we can write,  
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where i  is a specified parameter of the selected parametric copula that 

represents the intertemporal correlation1 ,which is separated from the time-

invariant unobserved heterogeneity that represented by the dispersion 

parameter i . The count marginal distribution of Eq. (7-10) is also the NBII 

cumulative distribution as, 
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the joint probability among the crash type for the MVPCC model in that case is 

                                            
 

1 There are several structures to represent the variance-covariance of the temporal correlation 
for a given copula (e.g. independent; autoregressive of order 1 (AR (1)); Toeplitz; banded 
Toeplitz; unstructured and compound symmetry (also known as exchangeable)). We selected 
the compound symmetry were all the correlation parameters are constant over time, but 
another configuration could be also possibly augmented.  
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also given by the Eq.  (7-7) and Eq. (7-8).  

Assume three vectors of the parameter estimators of the two models are 

given as  IiHiiq  ,....,,;,....,, 21211 ζ , 

 IIiHiiq  ,....,,;,....,,;,....,, 2121212 ζ  

and  θζ ;,....,,;,....,, 21213 IiHiiq  . The first estimator for the MVPPGC 

model represents the parameters for the years of observations model given by 

the Poisson gamma mixture for a given crash type, which corresponds to the 

second estimator for the MVPCC model, except we have additional four 

intertemporal correlation parameters instead of one. The final estimator is the 

one represents the parameters in the joint probability among the crash types 

for a given year of observations which is used for both models.  

The likelihood functions for both models are easy to maximize, where the 

estimators 
q3,2,1ζ  are obtained by maximizing the logarithm of the sum of the 

two parts of likelihood functions for both models. These estimators are 

consistent and asymptotically normally distributed with asymptotic mean 
q3,2,1ζ  

and covariance matrix given by the inverse of Godambe’s (1960) sandwich 

information matrix  ζG  (see Zhao and Joe, 2005; Castro et al., 2012 and 

Ferdous et al. 2010). Define both  3,1ζV ,  3,2ζV  for MVPPGC and MVPCC 

model respectively. Similarly, define  3,1ζG ,  3,1ζH ,  3,1ζJ  and  3,1ζG ,  3,1ζH ,

 3,1ζJ . Where  ζH and  ζJ  are the Hessian and the Jacobian matrices. Starting 

with the MVPPGC model the score function can be written as, 
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while the  3,2ζV  and  3,2ζG  for the MVPCC model are given by replacing the 
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above by, 
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So far, the estimation was formulated for only a given segment q, to get 

the joint probability estimation across all segments, we write for the MVPPGC 

model,  
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Similarly, for the Jacobin matrix for the MVPPGC model 
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7.3.2 Model Estimation selection 

To assess the performance of our developed models we selected both the 

Akaike information criterion (AIC) and Bayesian information criterion (BIC) 

measures which is applicable for non-nested models (see Nikoloulopoulos and 

Karlis (2009); Winkelmann (2013); Cameron and Trivedi (2013)). The BIC 

performed better in large samples, whereas the AIC tends to be superior in 
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small samples (Shumway and Stoffer, 2010). The lowest values of these 

measures indicate a better performance usually. The AIC and the BIC can be 

given as    QLLAIC  2log2  , and      QLLBIC loglog2   , where 

  is the number of parameters of the copula model. The comparison between 

the MVPPGC and the MVPCC models is an interesting point to be investigated 

but first we need to adjust the likelihood function of the pairwise composite 

marginal likelihood estimate first. The weight  1/1 qT  is used for a given 

segment in the Eq. (7-10) so that the MVPPGC and the MVPCC likelihood 

estimations are comparable when we use the AIC and BIC measures (See Bhat, 

2011) and we can write. 
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A non-nested likelihood ratio test is also used (see Ben-Akiva and Lerman, 

1985) to give an insight of which model is more statistically significant. The 

estimation score functions of the log-likelihoods were coded in GAUSS Aptech 

(2014) and the default BFGS algorithm provided by the maxlik procedure in 

GAUSS was used for maximizing the score functions. 

 

7.3.3 Variance Covariance Structure of Developed Models 

The varaince-covaraince matrices VT , VI  of both the MVPPGC and MVPCC 

models are formulated from the unobserved heterogeneity for a given segment 

q where both matrices are squared with dimensions TT  , II  respectively.  

The variances appear along the diagonal and the covariances components in 

the off-diagonal elements as given below,  
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The expected covariance between two independent random discrete 
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variables for the MVPPGM model for the years of observations matrix VT  is 

given using, 
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while for the MVPCC model, we use the Hoeffding’s formula (more details see 

D'Angelo et al., 2013; Hoeffding, 1940) 
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for both models the covariances components in the VI  matrix among the crash 

types is given as, 
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where ti)(j, t)(h, i  and the average of the expected covariance  hti ,  and  hti ,  

among all segments are calculated using,  
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and, the total covariances of crash types are also given as, 
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The variance components along the diagonals of both the VT ,VI  of both 

the MVPPGC and the MVPCC models are equal when ti)(i, t)(t, i VIVT   and 

both given by,    21

itqiitqitqit y   (for NBII marginal distribution). The 

average of the variances  
itqitq y  of all segments is calculated using, 
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The total variance magnitude  it

Time

i yV  for the given crash type among all 

years of observations is obtained from sum of two components respectively 

as, 

       Time

iti

Time

itiit

Time

i yVEyEVyV                                                     (7-21) 

where the   Time

iti yEV  represents the variance of the expected number of total 

crash which is constructed from the observed heterogeneity while the second 

component   Time

iti yVE  is the expected variance formulated from the 

unobserved heterogeneity given in the VT matrix, both components are given 

by Eq. (24) respectively. 
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The same goes to the total variance  it

Crash

t yV  for the given year of 

observation across all crash types  

       Crash

itt
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ittit
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t yVEyEVyV                                                  (7-23) 

analogous to previous   
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7.4 EMPIRICAL CRASH DATA SETTING 

7.4.1 Configuration 

Here, also the crash-count record is considered as panel data. The crashes 

sample size produces (274) segment-year observations for (3) years of 

observation for each crash type. The crash-count type distributions are 
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presented in Figure (3-2) while the descriptive statistic of the main explanatory 

variables in this study is shown in Table (3-2). 

7.4.2 Temporal correlations patterns in the crash data 

A multiple time series plots of each crash type in the crash count data over 

three years of observations (from 2005 to 2007) is presented in Figure (7-1) In 

these plots the heterogeneity among segments, observations within a specific 

segment over the observation period tend to have the same value as compared 

to observations across segments for a given year. These plots also indicate a 

strong segment effects through a highly temporal correlation for crash type in 

our crash count data (temporal patterns are evident). 
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7.5 MODEL ESTIMATION AND PERFORMANCE 

In this section, we will mainly implement the developed models into our crash 

type’s dataset. But before that, we took the chance to take some results from 

our existed work (see Mothafer, et al. 2016) to select which type of copula we 

can start with to get maximum performance in a sense of offering better 

goodness-of-fit. Based on this work, for our both the MVPPGC and the MVPCC 

developed models we used and fixed "Frank" copula function among crash 

types for a given year of observation, since the former offers better fits among 

all the other copula functions. As for the MVPCC model we need to investigate 

also which copula should be used among the years of observation for a given 

crash type. There are several existed graphical techniques for this purpose, 

which used to fit the crash count by type without a need to the explanatory 

variables (See, Mothafer et al., 2016). Later, we implemented these results to 

Figure (7-1) Multiple time series plot of different crash type counts from 2005 
to 2007. 
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estimate the join probability of the designated crash types among the years of 

observations. Followed by more investigation on the variance covariance 

structure and the correlation among the unobserved heterogeneity that 

triggered from the joint these crash types. 

7.5.1 Model Specification and Crash Types Count Data Fitting 

Let itqy denote the observed crash count outcome of type i over a year of 

observation t for a given segment q, where i takes the value of “rear-end” (i=1), 

“sideswipe” (i=2), “fixed object” (i=3) and “all-others” (i=4) respectively. Three 

years of observation (short balanced panel count data) is used, where t and 

index takes the value 3,2,1t . We have 274Q  in total segments, each 

segment produces three crash record reading, so we have 822 ( 2743 ) 

observations in total. We assume that each crash type for a given year of 

observation follows a NB-II marginal distribution with a specification  itqit yF  and 

dispersion parameter i . It’s customary in crash count modeling to consider 

parameterizing the mean of the expected number of crashes for each crash 

type (denoted as itq ) as a function of all the explanatory variables 
itqx with the 

corresponding parameters iβ . Identifying the most significant explanatory 

variables vector itqx  for each crash type is required as each crash type has its 

own distinct mechanisms and characteristics. In this context, we selected same 

vectors that are represented in our previous work (see Mothafer et al., 2016) 

since same dataset includes crash types and explanatory variables are 

investigated (Ten explanatory variables were selected for the four crash count 

types). For the MVPCC model, we investigated (beside the graphical 

techniques), each of the following well-known parametric copula. Gaussian, 

Frank, Clayton, Gumbel and Joe copula are implemented to fit our crash types 

(including the explanatory variables) among the years of observations, but only 

the best copula in a statistical point of view will be reported to conserve on 

space, as we will see later. 

As we mentioned before, to construct a conceivable solution for both 

models we need to examine the crash types in form of pairs. As for the 
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MVPPGC model, there are 184
2

14
3 















 
 pairs among the crash types 

and years of observation in total, while there are   123
2

13
4 















 
 pairs 

among years of observations plus (18) pairs come from joint the probability 

among crash type for a given year which in total (30) pairs for the MVPCC 

model. The copula function facilitates the correlation between the pairs of the 

marginal distributions of the crash types using the CML pairwise method. 

7.5.1.1 Empirical Copula Diagnosis  

We used the both the PP-Copula-plot and the tail-dependence graphical 

techniques to investigate which copula should be used among years of 

observation for the MVPCC model only (more details on these techniques are 

presented in Mothafer et al., 2016). These techniques are used to for given a 

preliminary idea on which copula should be used for the (12) pairs among years 

of observations that mentioned above. In the PP-Copula-plot, the empirical 

copula probability versus the theoretical parametric probability are repeated for 

each parametric copula that we prepared from two different copula families 

(elliptical vs Archimedean) and to assign the best one to our MVPCC model 

later. Figure (7-2) shows the several PP-Copula-plots for the same pair (rear-

end crash count in 2005 vs rear end in 2006), we reported only one pair to 

conserve on space. With several competing parametric copulas, we prefer the 

one that is closest to the empirical in some sense. We can see that Gaussian; 

Frank and Gumbel are a good start for this pair. Other technique we used is 

the tail-dependence plot, the tail dependence of the rear-end in 2005 and the 

rear end in 2006 crashes is shown in  

Figure (7-3). We can see that most of the observations given by the empirical 

copula are located in the upper tail (segments with higher number of crash 

count (more dangerous segments)) with a pattern almost similar to Frank; 

Gaussian copula. The same results can be deduced from other pairs (other 

pairs are reported Appendix.D). 
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Figure (7-3) Tail-dependence plot of different copula functions for the pair 

rear-end 2005 against rear-end 2006 

 

  

Figure (7-2) Bivariate P-P plot of different copula functions for the pair rear-
end 2005 against rear-end 2006 
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7.5.2 Model Performance and Comparison 

We have selected the AIC, BIC and the Log likelihood values to determine 

which parametric copula function is more suitable to fit the temporal effect 

among the years of observation for a given crash type for the MVPCC model. 

Table (7-1) represents the performance measure of the log-likelihood; AIC and 

BIC of each copula function. It is obvious that Frank copula is the most suitable 

to fit the temporal correlation with the highest value of log-likelihood and lower 

values of AIC and BIC for the MVPCC model respectively. This result is 

spontaneous and in concordance with the one that we obtained from the 

graphical techniques and now we are positively confident that Frank copula is 

our final choice. 

A non-nested statistical likelihood ratio test was used to examine the 

performance of the developed models. The difference in the adjusted rho 

square ( 2

i ) value between the MVPPGC (the base model) and the MVPCC 

model (the compared model) is 0557.4 E . The probability that this difference 

could have occurred by chance is equal to 3989.0 which is larger than the 

critical probability        5.0
39430557.42  CLLE . The critical value, 

with a   81.6706CLL , is equal to 2167.0 which indicates that the difference 

in 
2

i  between the two discriminated models is statistically significant. In that 

case, MVPCC (Frank-Frank) model is more suitable to fit our crash types count 

data than MVPPGC, since the former offers more flexible way to model the 

intertemporal correlation among the years of observations for a given crash 

type. 

The essence of the difference between the MVPPGC and the MVPCC 

model arises in how to model the intertemporal correlation. To make it more 

clear, we have isolated the components of the probabilities and evaluated the 

Poisson-Gamma function against the bivariate Frank copula function by fitting 

the crash observations without including the explanatory variables and 

compared them graphically (using the bivariate quantile-quantile plot). The 

comparison is carried out through introduce a one pair bivariate Poisson-

Gamma mixture function to make it in similar to the dimensions of Frank copula 
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function (we used the pair rear-end crash type in 2005 with the one in 2006). 

There is a well-agreement between these two functions as it is shown in Figure 

(7-4).  

 

 

 

 

 

 

 

 

 

 

 

 

Table (7-1) Log-Likelihood, Akaike Information Criterion and Bayesian 
Information Criterion for Various Copulas. 

Copula Type Log-Likelihood AIC BIC 

Gaussian -5,949 11,915 11,946 
Frank -5,898 11,812 11,843 
Clayton -6,442 12,901 12,932 
Gamble -5,901 11,820 11,851 
Joe -5,906 11,830 11,861 

  

We also utilized a well-known standard metric measure - percentage 

relative error (PRE %) - to investigate the efficiency of the parameter estimates. 

For both models, we assumed the explanatory effects are identical and 

consistent across the multiple time periods. The natural comparison between 

the MVPPGC and the MVPCC model of the parameter estimates indicates an 

augmentation in efficiency. The efficiency occurred to half of the parameter 

Figure (7-4) Bivariate quantile-quantile plot of bivariate frank copula vs 
bivariate cumulative Poisson-gamma mixture function, between 

observed rear-end crash in 2005 vs 2006. 
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estimates of the explanatory variable vectors in the MVPCC model, due to an 

introduction of a more flexible function to accommodate the temporal 

correlation. The PRE-values of the efficient parameter estimates include the 

constants of each crash type mean function are ranged within [+22/-37] %. In 

the same context, we also took the chance to compare our superior developed 

model (MVPCC) against the corresponding multivariate cross-sectional model 

(MCORC-Frank) that we already have developed in our previous work (more 

details on this model can be found in Mothafer et al., 2017). We noticed 

immediately that the standard error of the parameters in the MCORC-Frank are 

significantly downward biased compared to the MVPCC model as we expected. 

The PRE-values between these two models among the explanatory variable 

vectors are ranged between [+84/-46] %. In this framework, we obtained almost 

more than 76% enhancement in efficiency among the parameter estimate 

vectors, indicates that the MVPCC model outperforms the MCORC-Frank 

model.  

7.5.3 Empirical Estimation Results 

The MVPPGC and the MVPCC model results are shown in both Table (7-2) 

and Table (7-3). We discus now the parameters of the superior model only. As 

shown in  Table (7-3), the logarithm of ADT and logarithm of length are 

positively signed, while, the urban-rural indicator, diamond interchange 

indicator, shortest vertical curve length and largest rate of vertical curvature are 

negatively signed. Cross sections with greater than 3 lanes, number of 

horizontal curves and gradient of shortest vertical curve in segment are 

positively signed. These results obviously were similar for the MVPPGC model. 

The dispersion parameter γi is estimated to be 2.140, 6.167, 4.821 and 7.016 

for rear-end, sideswipe, fixed object and all-other types respectively, which 

imply an overdispersion magnitude of 0.467, 0.162, 0.207 and 0.143. The small 

size effect of the time-invariant of the unobserved heterogeneity for the “all-

others” type indicates that it’s possible to use Poisson marginal distribution, 

which matches the MCORC-Frank finding. The intertemporal correlation 

parameters ϑi are positively signed with values 2.140, 6.167, 4.821 and 7.016 

for rear-end, sideswipe, fixed object and all-other types respectively. As its 
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evident from above, our superior model (the MVPCC) supports different sizes 

of overdispersion and serial correlation in order to represent both the time-

invariant and time-varying correlations of the unobserved heterogeneity for 

each frequency of our crash type. The interpretation of the parameter estimates 

is in agreement with our previous work in Chapter 4Chapter 5. 

7.5.4 Variance-Covariance Representation 

The parameters of the level of dependency θij are presented also in same 

previous Table (7-3). These parameters demonstrate the presence of common 

unobserved factors among the crash types assuming that the latter will not vary 

among the years of observations. A significant positive value of θij indicates an 

association between the unobserved factors of each crash type in the 

corresponding pair. Rear-end vs sideswipe, rear-end vs all-others, sideswipe 

vs fixed objects; sideswipe vs all-others and finally fixed object vs all-others are 

found to be statistically significant, except the rear-end vs fixed object pair 

which found not significant indicates no correlation between these two crash 

types. 

The varaince-covaraince matrices, of the MVPCC model of the dynamic 

unobserved heterogeneity were estimated considering the average values 

among all segments using both Eq. (7-14) and its equal to, 
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     (7-25) 

The results in Eq.(7-25) indicate the differences in size of the variance-

covariance among the years of observations for a given crash type. Since the 

rear end crash type was the highest crash record in our dataset, it was natural 

to see that 
1VT   was the highest values. The covariance among the crash type 

pairs for the MVPCC model for a given year of observation is given as,  
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Table (7-2) Multivariate panel Poisson gamma mixture -copula based model: Frank Copula 

Explanatory variables 
Rear-End Sideswipe Fixed Objects All-Others 

Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E. 

Constant -23.497 2.367 -16.175 1.507 -7.527 2.134 -10.059 1.067 
LnAADT 2.493 0.244 1.688 0.155 0.847 0.211 1.064 0.112 
LnLength 0.486 0.160 0.657 0.118 0.844 0.128 0.952 0.080 
Urban rural dummy, 1 if rural,0 if urban -0.620 0.201 -0.662 0.146 -0.137♣ 0.145   
Proportion of three or more lanes cross section by    
length of segment 

0.897 0.135 0.610 0.118 0.348 0.110 0.476 0.107 

Number of horizontal curves per segment 0.149 0.058 0.101 0.037 0.055‡ 0.037   
Diamond interchange type dummy -0.207† 0.122 -0.266 0.094 -0.204† 0.111   
Smallest vertical gradient in segment   0.068* 0.033     
Largest beginning vertical curve elevation in segment   0.710† 0.389     
Largest horizontal curve central angle in segment     0.555* 0.255   
Number of vertical curves in segment     -0.044♣ 0.036   
Dispersion parameter γi (intertemporal effect is included) 1.946* 0.203 5.420 0.909 4.398 0.901 6.485 1.500 

Level of Dependency θij         

Sideswipe 2.058 0.337       
Fixed Objects 0.403♣ 0.316 1.125 0.284     
All-others 0.655* 0.255 0.985 0.285 1.171 0.265   

Sample size 273 
LL (C) with constant parameters only -6,706.8 

LL (β ) at convergence  -5,928.3 

AIC 11876.1 
BIC 11911.3 

S.E. standard error; - Not relevant; * Significant at 5% level; † Significant at 10% level; ‡ Significant at 15% level; ♣ Not Significant. All the other coefficients 

are significant at the level of 1%. Significance of the actual overdispersion parameter (1/ γi) is estimated using the delta method.  Significance of the 
overdispersion effect is very strong for all crash types, at or better than the 99.5% level except the one for rear-end crash type. 
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Table (7-3) Multivariate panel copula -copula based model: Frank-Frank copula 

Explanatory variables 
Rear-End Sideswipe Fixed Objects All-Others 

Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E. 

Constant -24.225 2.443 -15.894 1.596 -8.465 1.719 -10.044 1.055 
LnAADT 2.564 0.250 1.658 0.165 0.935 0.174 1.061 0.111 
LnLength 0.456 0.166 0.640 0.122 0.809 0.113 0.944 0.081 
Urban rural dummy, 1 if rural,0 if urban -0.563 0.214 -0.657 0.143 -0.086♣ 0.122   
Proportion of three or more lanes cross section by    
length of segment 

0.852 0.136 0.610 0.121 0.346 0.106 0.478 0.107 

Number of horizontal curves per segment 0.140* 0.058 0.096* 0.038 0.047‡ 0.032   
Diamond interchange type dummy -0.163♣ 0.156 -0.271 0.096 -0.169† 0.096   
Smallest vertical gradient in segment   0.070* 0.032     
Largest beginning vertical curve elevation in segment   0.742† 0.418     
Largest horizontal curve central angle in segment     0.643 0.245   
Number of vertical curves in segment     -0.031♣ 0.026   
Dispersion parameter γi 2.140 0.247 6.167 1.314 4.821 0.998 7.016 1.924 

Intertemporal Correlation parameter ϑi 4.046 0.487 2.208 0.365 1.613 0.299 0.994 0.262 

Level of Dependency θij (among crash types)         

Sideswipe 1.939 0.334       
Fixed Objects 0.356♣ 0.258 1.116 0.279     
All-others 0.643 0.232 0.968 0.284 1.165 0.258   

Sample size 273 
LL (C) with constant parameters only -6,677.1 

LL (β ) at convergence  -5,897.5 

AIC 11,812.2 
BIC 11,843.3 

S.E. standard error; - Not relevant; * Significant at 5% level; † Significant at 10% level; ‡ Significant at 15% level; ♣ Not Significant. All the other coefficients 
are significant at the level of 1%. 
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                                           (7-26) 

The average of the covariance values among the years of observations given 

in Eq.(7-26) concurs the results of the MCORC-Frank finding since both the 

developed model and the former model utilize the Frank copula among the 

crash types (see Mothafer et al., 2016). The total covariance values of both the 

MVPPGC and the MVPCC model of the ones resulting from estimates the 

expected number of crashes of a specific type and the ones from the stochastic 

error term associations generated from each marginal pair among the years of 

observation are given in Table (7-4). The negative value of the PRE% 

represents the amount of the crashes that unexplained by the designated 

model, as this percentage decreases, the model is less statistically preferable. 

The average of PRE% values for the MVPCC model (-16%) which is larger 

than the corresponding average of the MVPPGC model (-36%). The results 

suggest that the MVPCC model once again outperforms the MVPPGC in 

representing more accurately the covariance structure among the years of 

observations. In an analogous pattern, we also computed the covariances 

among the crash types for a given year of observation and presented them in 

Table (7-5)13. As it evident through this table, our proposed model offers more 

                                            
 

13 Theoretically speaking, the average of these values among the years of observations are 
similar to the one we obtained using the MCORC-Frank model. For example, the average value 
of the covariance among the years of observations between the rear end and the sideswipe for 
our superior model is 73.88 while for our previous model it was 124.12 [Table (5-7) in Mothafer 
et al.,2016]  
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details compared to our cross-sectional previous model. As it evident through 

this table, our proposed model offers more details compared to our cross-

sectional previous model. 

The last step is to calculate the total variance structure among the years 

of observations for a given crash type for both models since they used two 

different concepts to model the intertemporal correlations. The results are 

presented in Table (7-6), which indicate that the MVPCC model has an average 

of PRE% (-35%) which is larger than the corresponding value of the MVPGC 

model (-45%). These results reflect which model is more accurately performed 

better in predicating the crash count. Table (7-7) epitomizes the total variance 

values among crash types for a given year of observation of our superior model, 

which are compared to the corresponding observed ones. The average of these 

values is almost similar to the one we obtained before in [Table (5-8)]. 
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Table (7-4) Total covariance among the years of observations for a given crash type. 

 

Rear-End Sideswipe Fixed Objects 

Obs. MVPCC (Frank-Frank) Obs. MVPCC (Frank-Frank) Obs. MVPCC (Frank-Frank) 

 
Total Cov PRE%  Total Cov PRE%  Total Cov PRE% 

2005          

Sideswipe 109.09 64.48 -41%       

Fixed Objects 54.65 32.72 -40% 15.62 10.47 -33%    

All Others 31.91 22.31 -30% 9.4 6.95 -26% 6.46 4.8 -26% 

2006          

Sideswipe 105.02 73.47 -30%       

Fixed Objects 47.92 36.48 -24% 14.24 11.37 -20%    

All Others 33.62 24.99 -26% 10.52 7.58 -28% 6.17 5.12 -17% 

2007          

Sideswipe 98.99 83.7 -15%       

Fixed Objects 36.05 40.67 13% 11.45 12.34 8%    

All Others 22.12 27.99 27% 6.82 8.27 21% 3.29 5.46 66% 

PRE %= (Estimated-Obs.)/Obs. 100% 
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Table (7-5) Total covariance among the crash types for a given year of observation for the MVPCC model. 

 

Rear-End Sideswipe Fixed Objects 

Obs. MVPCC (Frank-Frank) Obs. MVPCC (Frank-Frank) Obs. MVPCC (Frank-Frank) 

 
Total Cov PRE%  Total Cov PRE%  Total Cov PRE% 

2005          

Sideswipe 109.09 64.48 -41%       

Fixed Objects 54.65 32.72 -40% 15.62 10.47 -33%    

All Others 31.91 22.31 -30% 9.4 6.95 -26% 6.46 4.8 -26% 

2006          

Sideswipe 105.02 73.47 -30%       

Fixed Objects 47.92 36.48 -24% 14.24 11.37 -20%    

All Others 33.62 24.99 -26% 10.52 7.58 -28% 6.17 5.12 -17% 

2007          

Sideswipe 98.99 83.7 -15%       

Fixed Objects 36.05 40.67 13% 11.45 12.34 8%    

All Others 22.12 27.99 27% 6.82 8.27 21% 3.29 5.46 66% 

PRE %= (Estimated-Obs.)/Obs. 100% 
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Table (7-6) Total variance structure among the years of observations for a given crash type 

 MVPPGC Model MVPCC Model (Frank-Frank) 

Crash Type Observed   Time

iti yEV    Time

iti yVE   it

Time

i yV
 

PRE%   Time

iti yEV    Time

iti yVE   it

Time

i yV
 

PRE% 

Rear End 3651.11 1347.16 993.36 2340.52 -36% 1143.30 1279.81 2423.12 -34% 
Sideswipe 277.47 68.13 38.08 106.21 -62% 61.94 79.59 141.52 -49% 

Fixed Object 82.44 23.02 25.59 48.60 -41% 23.05 37.22 60.27 -27% 
All-Others 40.78 11.62 11.72 23.34 -43% 11.30 17.34 28.64 -30% 

 

 

Table (7-7) Total variance among crash types for a given year of observation. 

 

 

 

 

 

 

 

 MVPCC (Frank-Frank) 

Year Observed   Crash

itt yEV
 

  Crash

itt yVE
 

 it

Crash

t yV
 

PRE% 

2005 985.02 300.77 272.21 572.98 -42% 

2006 901.74 341.56 308.37 649.94 -28% 

2007 764.92 388.15 349.55 737.70 -4% 
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7.6 SUMMARY 

This chapter proposes an econometric framework to model the multivariate 

panel crash by type count data. The point of interest in the multivariate panel 

modeling is to obtain more efficient parameter estimates by taking in 

consideration the intertemporal correlations of a given crash type among the 

years of observations. Formulating the joint probability among different crash 

types also triggers an inter-type correlations which added more difficult to seek 

a conceivable inference. Our effort was to simplify this problem by introduce a 

flexible solution (computationally tractable), that is in no need for a simulation-

based technique, which is a common case in modeling multivariate panel data. 

Two proposed models are introduced for this purpose, the MVPGC and the 

MVPCC model. In first model, we used the random effect principle to model the 

intertemporal correlation among the years of observations for a given crash 

type. Poisson-Gamma Mixture function is used as an easy distribution to imply 

in that context, while the bivariate copula function was exploited in the second 

model for same correlation.  Both models use the bivariate copula function to 

model the inter-type correlations (among crash types) for a given year of 

observation. We sought a solution for the joint probability of these two models 

through the pairwise copula-CML technique which offers a joint distribution 

without any restrictions to accept both positive and negative correlations. 

The performance of these proposed models is demonstrated through an 

empirical application to study four different categories of crash types that 

commonly occur on freeway segments located on highway No. 5 in the State 

of Washington, USA for three years of observations (from 2005 to 2007, 

balanced short panel). The statistical superior model is used to draw an 

inference on the dependence structure among these categories. The empirical 

results show that Frank copula is more preferable to fit the intertemporal 

correlations which allows more freedom to the unobserved heterogeneity to 

interact, compared to the Poisson-Gamma mixture distribution. As we expected, 

the standard errors of the estimated parameters are more efficient if it’s 

compared to the corresponding downward biased parameters of the 

multivariate cross-sectional count model. The variance-covariance structure is 

more accurately represented by our proposed model with more ability in 
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predicating the crash count outcomes.  

The severity level is not considered in this paper. One might think of 

utilizing another crash count dataset that contains the number of crashes by 

both crash type and severity level which offers richer insights into the 

differential impacts of various explanatory variables on the crashes. 
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Chapter 8  

 

 

 

Conclusions and Future Work 

8.1 CONCLUSIONS 

In the context of this thesis, we have developed several multivariate count 

models to accommodate the correlation among different crash types. The point 

of interest in the multivariate modeling are to investigate whether these crash 

types are jointly determined and to enhance the parameter estimate efficiency. 

The unobserved heterogeneity (factors) associations with crash-count data are 

manifested into three forms mainly, which are: A) the ones causes the over-

dispersion in the context of cross-sectional data (or within a short observation 

period like one year in the panel data context). B) The one arises from the 

correlation of the error term of same crash type outcome over the same 

observation unit correlated among the years of observations (also known as 

serial correlation, autocorrelation and intertemporal effect in the literature). C) 

The ones which are triggered from the association of the unobserved 

heterogeneity among different types of crashes (inter-type correlation). In our 

consideration, we set a framework that serve our intention to produce 

multivariate count model with non-biased parameter estimates. Furthermore, 

we sought a more practical methodological solution that can be less 

computational expensive and more accurately demonstrate crash-count 

predictions. Our crash data record are obtained from the Washington 

transportation department. The crash-count by type observations consist a 

sample size produces 822 (=274x3) segment-year observations. rear-end, 

sideswipe, and fixed objects crash types and “all other,” types  are considered 

in each chapter in this study.    

Here and after, we will briefly confer an overview of the main findings of 
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each chapter in this thesis, so that, next section will discuss our contributions 

to the crash-count modeling followed by a section on the points that to be 

considered in the future researches. 

8.2 CONTRIBUTIONS 

In chapter 4, we have developed the multivariate Poisson gamma mixture 

model (MVPGM).The crash-data record treated as a cross-sectional data, thus 

no time is involved in calculation. The model is used to investigate the inter-

type correlations and covariances structure among the designated crash types. 

This model has a closed-form for the joint probability function and ease to 

implement but with so called a ‘single-shared’ property. This property has been 

assumed to compensate the intricacy of the joint probability on expensive that 

all the unobserved heterogeneity from each different crash type carries same 

size. Moreover, MVPGM is uniquely restricted to represent only the positive 

correlation among crash types. The model parameters show that indeed there 

are significant unobserved heterogeneity correlations. In addition the results 

show that MVPGM covariances of crash types are in better agreement with 

observed covariances than those from univariate crash type models. These 

findings are in spite of our observation that the individual crash type models 

provide for statically better fits due to their unconstrained dispersion 

parameters, which is constrained in our proposed model here. This finding 

underscores the need to explore the behavior of dispersion in multivariate crash 

type contexts.  

Our next task was to extend the work of chapter four, through seeking a 

better crash-count model under same assumption of cross-sectional data 

scope. Thus, we developed the multivariate copula-based ordered response 

model (MCROC) in chapter five. This model promises a joint probability without 

any restrictions to allow both positive/negative correlations among the error 

terms structure components. Likewise, more tractable model that is in no need 

for a simulation-based solution which is a common computationally 

burdensome solution that appears in many multivariate count models. The 

model utilizes an alternative way to approach the problem which is represented 

through modifying the conventional ordered response model. This modification 
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exploits the latent continuous variable to match the corresponding count 

variable through considering their probability equivalency concept. Therefore 

to serve all our preferences above we have employed both the CML technique 

and the bivariate copula function that both show an excellent cooperation over 

offering a parametric, straightforward and flexible model. In addition to the 

above features, our proposed model adds a plus-point over representing more 

accurately the correlation structure through allowing a non-linear asymmetric 

schemes among the unobserved heterogeneity types. The empirical results 

show that Frank copula is the best to fit our crash-count data from the statistical 

point of view. Furthermore, considering the correlations among the crash types 

are highly beneficial and recommended to enhance the covariance and total 

variance structure that both present a better prediction. 

Be in quest of incorporate the period of analysis (time of observation) 

effect among the crash types which is neglected in both chapter four and 

chapter five, we presented our effort in this context in chapter six. The crash-

count data are now considered as a panel-count data were the time of 

observation is relevant. We evaluated the random effects Poisson gamma 

model (REPG) against a crash sum model for three years of observations. Our 

major findings here was that the REPG model and crash sum model were 

empirically equivalent based on several statistical tests of parameter estimates 

similarities. The crash sum model appears to be a reasonable empirical 

alternative to the panel model given that the standard errors and parameter 

magnitudes are highly similar in the presence of time invariant heterogeneity. 

The reasonableness of the crash sum model as an alternative appeals from the 

fact that it requires less frequent measurement of geometrics and ADT. This is 

under the assumption that dramatic changes in the independent variable vector 

do not occur in the panel observation period. Although, our major concern was 

whether this assumption is valid, the capture of time invariant heterogeneity via 

the crash sum model ensures that the appropriate variables are identified as 

statically significant in the model. We recommend to use the crash sum model 

as an alternative to the EPRG model with for short panel crash-count data only 

an extra caution. 

Through the transition from cross-sectional crash-count data modeling 
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presented in chapter four and five, into panel crash count modeling presented 

in chapter six, we maintained the same focus but to expand the work of chapter 

six to develop our last model in this thesis. Chapter seven, proposes an 

econometric scheme to model the multivariate panel crash-count by type data. 

The work here is an effort to combine and promote all the techniques that we 

learned in chapter four, five and six. To our basic knowledge, our effort in this 

chapter is considered as a first attempt to model multivariate panel crash-count 

data. We sought a conceivable inference through developing a flexible, 

computationally tractable model that takes in consideration both the time 

invariant and time-varying unobserved heterogeneity effects. For this purpose, 

we proposed two models, the multivariate panel Poisson gamma-copula model 

(MVPPGC) and the multivariate panel copula-copula model (MVPCC). In the 

first model we utilized from chapter six the random effect Poisson gamma 

function to accommodate the correlation among the years of observations, 

while the bivariate copula with the pairwise CML are used to carry the 

correlations among the crash types. In the second model we replaced the 

Poisson gamma function by the bivariate copula and pairwise CML to achieve 

the same goal. The empirical results show that Frank copula is more preferable 

to fit the time-invariant unobserved heterogeneity among different crash types 

across the years of observations. It was not a surprise that our superior 

proposed model (MVPCC) produces a more efficient parameter of estimates 

through enlarging the standard error, if they are compared to the corresponding 

downward biased parameters of the multivariate cross-sectional count model 

that presented in chapter five. Thus, the Table (7-3) represents our last update 

for the parameter estimates which can offer a valuable insight on each crash 

count type related parameters. Since only the standard errors are different 

between MVPGM and MVPCC we can refer to same extensive discussion on 

the importance of these explanatory variables for each crash count type 

chapter four with consideration our final results here. 

8.3 FUTURE RESEARCH 

Within the objectives of this study, we have overcome several methodological 

crash-count related problems. Nevertheless, we haven't included other 
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perspectives which offer a richer insight regarding crash count by type. For 

example, the severity level is not considered due to our limited current crash 

data information. Perhaps, crash count by type categorized by severity level 

will serve this perspective. Furthermore, increase the sample size and analyze 

a larger panel count data will enhance our parameter estimate standard errors 

efficiency even further than the current status. We believe that the proposed 

methodology framework in this study, can be transferred easily to other data 

set. Not to mention that we can add more dimensions of several crash count 

outcomes (for example disassembly the all-other category crash types into 

other dimensions) to investigate the usability of our current model in regard or 

time/computational cost. The interesting part of the empirical copula that we 

presented among different pairs in our crash count dataset is that we can use 

different copula function for each pair based on the graphical techniques that 

we demonstrated. In this regard, further work is possible to get more efficient 

model, rather than our current assumption, that copula function type is a fixed 

type among all the pairs. 
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Figure (A.1-1). The empirical copula using 1/Q type compared 
to a selected parametric copula (x=Rear end vs y=fixed object) 

Appendix.A  

 

 

 

Cross-sectional count pairs 

A.1 REAR END VS. FIXED OBJECT 
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Figure (A.1-2) PP-plot of the parametric copula vs. the empirical copula. 

Figure (A.1-3) Tail dependence plot. 
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Figure (A.2-1). The empirical copula using 1/Q type compared 
to a selected parametric copula (x=Rear end vs y=’all-other’) 

Figure (A.2-2). PP-plot of the parametric copula vs. the 
empirical copula. 

A.2 REAR END VS. ‘ALL-OTHER’ 
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Figure (A.2-3). Tail dependence plot 

Figure (A.3-1). The empirical copula using 1/Q type compared to 
a selected parametric copula (x=sideswipe vs y=Fixed object) 

 

A.3 SIDESWIPE VS. FIXED OBJECT 
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Figure (A.3-2). PP-plot of the parametric copula vs. the 
empirical copula. 

Figure (A.3-3). Tail dependence plot. 
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Figure (A.4-1). The empirical copula using 1/Q type compared 
to a selected parametric copula (x=sideswipe vs y=’all-other’) 

Figure (A.4-2). PP-plot of the parametric copula vs. the 
empirical copula. 

A.4 SIDESWIPE VS. ‘ALL-OTHER’ 
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Figure (A.4-3). Tail dependence plot. 

Figure (A.5-1). The empirical copula using 1/Q type compared 
to a selected parametric copula (x=fixed object vs y=’all-other’) 

 

A.5 FIXED OBJECT VS. ‘ALL-OTHER’ 
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Figure (A.5-2). PP-plot of the parametric copula vs. the 
empirical copula. 

Figure (A.5-3). Tail dependence plot. 
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Appendix.B  

 

 

 

Hoeffding’s formula 

B.1 DEFINITION 

For discrete count random variables iqy  and jqy , any bivariate joint probability 

cumulative functions C of iqy  and jqy with margins iF   and jF  can satisfy the 

condition, 
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similarly, 
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for any event   of iqy . It follows from the identities Eq. (B.1-2) and Eq. (B.1-3) 

that 
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and 
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Then we can write the covariance in the form of the copula function as (see 

Lee, 2001), 
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which is identical to Hoeffding’s formula given in Eq. (5-18) and it can be used 

to get the covariance between two count dependent random variables. 
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Figure (D.1.1-1). The empirical copula using 1/Q type compared to a 
selected parametric copula (x=rear-end 2005 vs y=rear-end2007) 

Appendix.D  

 

 

 

Panel count pairs 

D.1 REAR-END  

D.1.1 Between the year 2005 and 2007 
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Figure (D.1.1-2). PP-plot of the parametric copula vs. the 
empirical copula. 

Figure (D.1.1-3). Tail dependence plot. 
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Figure (D.1.2-1). The empirical copula using 1/Q type compared to a 
selected parametric copula (x=rear-end 2006 vs y=rear-end2007) 

Figure (D.1.2-2). PP-plot of the parametric copula vs. the empirical copula. 

D.1.2 Between the year 2006 and 2007 
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Figure (D.1.2-3). Tail dependence plot. 

Figure (D.2.1-1). The empirical copula using 1/Q type compared to a 
selected parametric copula (x=sideswipe 2005 vs y=sideswipe 2006) 

 

 

D.2 SIDESWIPE 

D.2.1 Between the year 2005 and 2006 
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Figure (D.2.1-2). PP-plot of the parametric copula vs. the empirical copula. 

Figure (D.2.1-3). Tail dependence plot. 
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Figure (D.2.2-1). The empirical copula using 1/Q type compared to a 
selected parametric copula (x=sideswipe 2005 vs y=sideswipe 2007) 

Figure (D.2.2-2). PP-plot of the parametric copula vs. the empirical copula. 

D.2.2 Between the year 2005 and 2007 
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Figure (D.2.2-3). Tail dependence plot. 

Figure (D.2.3-1). The empirical copula using 1/Q type compared to a 
selected parametric copula (x=sideswipe 2006 vs y=sideswipe 2007) 

 

D.2.3 Between the year 2006 and 2007 
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Figure (D.2.3-2). PP-plot of the parametric copula vs. the empirical copula. 

Figure (D.2.3-3). Tail dependence plot. 
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Figure (D.3.1-1). The empirical copula using 1/Q type compared to a 
selected parametric copula (x=fixed object 2005 vs y=fixed object 2007) 

Figure (D.3.1-2). PP-plot of the parametric copula vs. the empirical copula. 

D.3 FIXED OBJECT 

D.3.1 Between the year 2005 and 2006 
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Figure (D.3.1-3). Tail dependence plot. 

Figure (D.3.2-1). The empirical copula using 1/Q type compared to a 
selected parametric copula (x=fixed object 2005 vs y=fixed object 2007) 

 

D.3.2 Between the year 2005 and 2007 
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Figure (D.3.2-2). PP-plot of the parametric copula vs. the empirical copula. 

Figure (D.3.2-3). Tail dependence plot. 
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Figure (D.3.3-1). The empirical copula using 1/Q type compared to a 
selected parametric copula (x=fixed object 2006 vs y=fixed object 2007) 

Figure (D.3.3-2). PP-plot of the parametric copula vs. the empirical copula. 

D.3.3 Between the year 2006 and 2007 
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Figure (D.3.3-3). Tail dependence plot. 

Figure (D.4.1-1). The empirical copula using 1/Q type compared to a 
selected parametric copula (x=’all-other’ 2005 vs y=’all-other’ 2006) 

 

D.4 ‘ALL-OTHER’ 

D.4.1 Between the year 2005 and 2006 
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Figure (D.4.1-2). PP-plot of the parametric copula vs. the empirical copula. 

Figure (D.4.1-3). Tail dependence plot. 
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Figure (D.4.2-1). The empirical copula using 1/Q type compared to a 
selected parametric copula (x=’all-other’ 2005 vs y=’all-other’ 2007) 

Figure (D.4.2-2). PP-plot of the parametric copula vs. the empirical copula. 

D.4.2 Between the year 2005 and 2007 
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Figure (D.4.2-3). Tail dependence plot. 

Figure (D.4.3-1). The empirical copula using 1/Q type compared to a 
selected parametric copula (x=’all-other’ 2006 vs y=’all-other’ 2007) 

 

D.4.3 Between the year 2006 and 2007 
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Figure (D.4.3-2). PP-plot of the parametric copula vs. the empirical copula. 

Figure (D.4.3-3). Tail dependence plot. 
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