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Abstract 28 

The aim of this study was to characterize the respiratory function profile of subjects 29 

with spinal and bulbar muscular atrophy (SBMA), and to explore the underlying 30 

pathological mechanism by comparing the clinical and biochemical indices of this 31 

disease with those of amyotrophic lateral sclerosis (ALS). We enrolled male subjects 32 

with SBMA (n = 40) and ALS (n = 25) along with 15 healthy control subjects, and 33 

assessed their respiratory function, motor function, and muscle strength. Predicted 34 

values of peak expiratory flow (%PEF) and forced vital capacity were decreased in 35 

subjects with SBMA compared with controls. In SBMA, both values were strongly 36 

correlated with the trunk subscores of the motor function tests and showed deterioration 37 

relative to disease duration. Compared with activities of daily living (ADL)-matched 38 

ALS subjects, %PEF, tongue pressure, and grip power were substantially decreased in 39 

subjects with SBMA. Both immunofluorescence and RT-PCR demonstrated a selective 40 

decrease in the expression levels of the genes encoding the myosin heavy chains 41 

specific to fast-twitch fibers in SBMA subjects. The mRNA levels of peroxisome 42 

proliferator-activated receptor gamma coactivator 1-alpha and peroxisome proliferator-43 

activated receptor delta were up-regulated in SBMA compared with ALS and controls. 44 

In conclusion, %PEF is a disease-specific respiratory marker for the severity and 45 

progression of SBMA. Explosive muscle strength, including %PEF, was selectively 46 
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affected in subjects with SBMA and was associated with activation of the mitochondrial 47 

biogenesis-related molecular pathway in skeletal muscles.  48 
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Introduction 49 

Spinal and bulbar muscular atrophy (SBMA), or Kennedy’s disease, is a slowly 50 

progressive lower motor neuron and muscular disease characterized by bulbar and limb 51 

muscle weakness and elevated levels of serum creatine kinase [1–3]. SBMA is caused 52 

by the expansion of a CAG repeat within the first exon of the androgen receptor (AR) 53 

gene [4]. Muscular weakness generally appears between 30 and 60 years of age, and 54 

affected individuals typically require a wheelchair 15 to 20 years after the onset of 55 

symptoms [2]. Patients occasionally experience laryngospasm, a sudden sensation of 56 

dyspnea [5,6], and often develop dysphagia at advanced stages, eventually resulting in 57 

aspiration or choking. Pneumonia and/or respiratory failure may occur at advanced 58 

stages of the disease [7], indicating that the management of swallowing and respiratory 59 

function is indispensable for the long-term care of patients with SBMA. However, in 60 

contrast to amyotrophic lateral sclerosis (ALS), another motor neuron disease for which 61 

the clinical features of dyspnea have been well documented, respiratory impairment in 62 

SBMA has not been well characterized. For instance, forced vital capacity (FVC) is the 63 

most important respiratory marker in ALS and is critical for both the respiratory and 64 

nutritional management of patients [8,9], whereas such markers for SBMA 65 

management have yet to be identified. The aim of this study was to characterize 66 

respiratory function in subjects with SBMA both cross-sectionally and longitudinally, 67 
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and to explore the potential underlying pathological mechanisms of SBMA by 68 

comparing the clinical and biochemical indices of this disease with those of ALS. 69 

 70 

Materials and Methods  71 

Standard protocol approvals, registration, and participant 72 

consent  73 

This study conformed to the Ethics Guidelines for Human Genome/Gene Analysis 74 

Research and the Ethical Guidelines for Medical and Health Research Involving Human 75 

Subjects endorsed by the Japanese government. The Ethics Committee of Nagoya 76 

University Graduate School of Medicine approved this study, and all participants 77 

provided written informed consent prior to study participation. 78 

 79 

Study population  80 

We studied 40 consecutive male subjects diagnosed with SBMA via genetic testing and 81 

25 consecutive male subjects with a clinical diagnosis of definite to probable ALS based 82 

on the revised El Escorial Criteria [10]. We also evaluated 15 healthy, age-matched 83 

male subjects with no diagnosed neurological disorders. The inclusion criteria were as 84 

follows: (i) subjects were 30–80 years old at the time of informed consent, and (ii) 85 



Yamada 7 

 

subjects were able to stand upright for 6 min without assistance. The exclusion criteria 86 

were as follows: (i) severe complications, such as malignancy; (ii) other neurological 87 

complications; (iii) zero kg grip power in the dominant hand; or (iv) participation in 88 

any other clinical trial before providing informed consent. All subjects were Japanese 89 

males and were observed at Nagoya University Hospital between June 2013 and March 90 

2016. 91 

 92 

Pulmonary function test  93 

A pulmonary function test was performed for all participants using a spirometer 94 

(FUDAC-77; FUKUDA DENSHI, Tokyo, Japan), which calculated and recorded FVC, 95 

forced expiratory volume in 1 s (FEV1.0), the ratio of FEV1.0 to FVC, and peak 96 

expiratory flow (PEF). The predicted values of FVC and FEV1.0 were calculated using 97 

Baldwin’s equation [11] and Berglund’s equation [12], respectively. PEF is defined as 98 

the maximum expiratory flow per minute, which can be used to measure how fast a 99 

subject can exhale as well as to judge the strength of the expiratory muscles and the 100 

condition of the large airways. %PEF was calculated from regression equations for 101 

predicting PEF in the Japanese population. The subjects sat in a chair with a backrest 102 

and were instructed to inhale as deeply as possible, and then exhale through a 103 

mouthpiece as quickly as possible, with their noses occluded. 104 
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 105 

Longitudinal analysis of pulmonary function tests 106 

Pulmonary function was measured every 6 months. To clarify the chronological 107 

changes in respiratory function in subjects with SBMA, we analyzed the longitudinal 108 

data of subjects who were evaluated for 1 year or longer during the follow-up period. 109 

 110 

Motor function  111 

We assessed disease severity in the subjects using the following functional parameters: 112 

the revised Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS-R), 113 

Spinal and Bulbar Muscular Atrophy Functional Rating Scale (SBMAFRS), modified 114 

quantitative myasthenia gravis (mQMG) score, tongue pressure, and grip power. 115 

SBMAFRS is a validated disease-specific functional scale for SBMA that demonstrates 116 

a high sensitivity for monitoring disease progression [13]. The validity of the motor 117 

functional measurements we used for SBMA is described in the S1 Methods.  118 

 119 

Immunohistochemistry of muscle biopsy specimens 120 

Bicep muscle specimens for immunohistochemistry were obtained from male subjects 121 

with SBMA (n = 2; 44 and 56 years old) or with ALS (n = 2; 51 and 63 years) by open 122 
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biopsy. The specimens were snap-frozen in isopentane, chilled in dry ice, and preserved 123 

at −80°C until analysis. Samples were cut on a cryostat using standard methods into 10-124 

µm sections, as described previously [14]. Analysis of myosin heavy chain (MHC) 125 

expression was performed with primary antibodies against MHC type I (BAF-8; 1:50), 126 

MHC type IIa+IIx (SC-71; 1:600), and MHC type IIx (6H1; 1:50) (Developmental 127 

Studies Hybridoma Bank, University of Iowa) [15]. Immunoreactivity was detected 128 

using the following secondary antibodies: Alexa Fluor 647 IgG2b (1:500), Alexa Fluor 129 

488 IgG1 (1:500), and Alexa Fluor 555IgM (1:500) (Invitrogen, Carlsbad, CA, USA). 130 

Slides were visualized with an LSM710 laser-scanning confocal microscope (Carl Zeiss, 131 

Oberkochen, Germany). 132 

 133 

Quantitative RT-PCR  134 

We analyzed the intramuscular mRNA expression levels of MYH genes in intercostal 135 

muscle specimens from 5 subjects with SBMA (mean ± SD age, 67.6 ± 10.6 years) and 136 

5 subjects with ALS (68.4 ± 2.3 years). We also analyzed the mRNA levels of MYH7 137 

(encoding MHC type I), MYH2 (encoding MHC type IIa), MYH1 (encoding MHC type 138 

IIx), peroxisome proliferator-activated receptor alpha (PGC-1α), peroxisome 139 

proliferator-activated receptor alpha (PPARα), PPARγ, PPARδ, and AMPK in iliopsoas 140 

muscle specimens from 5 subjects with SBMA (67.6 ± 10.6 years), 6 subjects with ALS 141 
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(64.8 ± 11.2 years), and 4 subjects with other diseases (70.8 ± 7.6 years), including 142 

progressive supranuclear palsy (n = 2), Guillain-Barré syndrome (n = 1), and Sjögren's 143 

syndrome (n = 1). There was no statistically significant difference in age at the time of 144 

examination between the SBMA subjects, ALS subjects, and disease controls. The 145 

detailed procedures are described in the S1 Methods.  146 

 147 

Genetic analysis  148 

Genomic DNA was extracted from peripheral blood samples from subjects with SBMA 149 

using conventional techniques. PCR amplification of the AR CAG repeat was 150 

performed using a fluorescein-labeled forward primer (5′-151 

TCCAGAATCTGTTCCAGAGCGTGC-3′) and an unlabeled reverse primer (5′-152 

TGGCCTCGCTCAGGATGTCTTTAAG-3′). The detailed PCR conditions have been 153 

described previously [16]. 154 

 155 

Statistical analysis  156 

We used an unpaired t-test or Mann–Whitney U test to compare continuous variables 157 

between two groups, analysis of variance (ANOVA) with Tukey’s post-hoc test for 158 

multiple comparisons, and Pearson’s correlation coefficient for analyzing correlations 159 
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among parameters. Analysis of covariance (ANCOVA) was performed to adjust the 160 

data for a covariate. We considered p-values less than 0.05 to be significant, and 161 

correlation coefficients (r) greater than 0.3 as strong. We fitted a marginal model using 162 

the generalized estimation equation (GEE) approach under an unstructured covariance 163 

matrix to clarify the population-averaged progression of the pulmonary function tests. 164 

Calculations were performed using the statistical software packages SPSS 23.0J (IBM 165 

Japan, Tokyo, Japan) and SAS 9.4 (SAS Institute Inc., NC, US). 166 

 167 

Results  168 

Clinical backgrounds and blood chemistry values of the 169 

subjects  170 

The clinical backgrounds of the control subjects and the subjects with SBMA and ALS 171 

are presented in Table 1. The mean age at examination was higher in subjects with ALS 172 

than in those with SBMA, whereas the mean disease duration was shorter in the ALS 173 

subjects than in the SBMA subjects. The proportion of non-smokers, ex-smokers, and 174 

current smokers was equivalent in both groups. Serum concentrations of creatine kinase 175 

and testosterone were higher in the SBMA subjects. The characteristics of the SBMA 176 

subjects, such as age at examination, age at onset, and AR CAG repeat size, were similar 177 
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to previously reported values [17–19]. 178 

 179 

Table 1.  Clinical background of subjects. 180 

 181 

 SBMA  ALS Control 

p-valuea 

(n = 40) (n = 25) (n = 15) 

Age at examination, years 

53.4 ± 10.4 65.2 ± 7.6 54.4 ± 7.7 <0.001 

(33–76) (48–78) (38–68)  

Duration from onset, years 

8.7 ± 5.0 1.3 ± 0.9 NA <0.001 

(0–17) (0.5–4)   

Smoking     

  Non-smoker, % 40.0 32.0 33.3 N.S. 

  Ex-smoker, % 45.0 52.0 26.7 N.S. 

  Current smoker, % 15.0 16.0 40.0 N.S. 

Blood chemistry values     

  Creatine kinase, IU 

1057.8 ± 708.1 242.0 ± 276.3 119.7 ± 47.5 <0.001 

(202–3064) (23–1383) (43–204)  

  Testosterone, ng/mL 

7.8 ± 3.2 5.3 ± 1.6 6.8 ± 3.7  0.003 

(3.6–16.6) (2.8–9.7) (3.5–19.2)  

CAG repeat size in AR gene 

47.2 ± 3.3 NA NA  

(42–54)    

 182 

SBMA, spinal and bulbar muscular atrophy; ALS, amyotrophic lateral sclerosis; NS, 183 

not significant; AR, androgen receptor; NA, not applicable. Data are shown as the mean 184 
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± SD. 185 

aDifference between SBMA and ALS by ANOVA with Tukey’s post-hoc test. 186 

 187 

Respiratory function in SBMA 188 

Relative to healthy controls, the subjects with SBMA exhibited decreased values 189 

for %FVC and %PEF, but not for FEV1.0/FVC (Fig 1). The actual values for PEF were 190 

also lower in SBMA subjects than in control subjects. When comparing SBMA and 191 

ALS patients, the %PEF, an index of explosive muscle power, was significantly 192 

decreased in SBMA subjects, whereas other indices were comparable between the two 193 

groups. The difference in %PEF between SBMA and ALS subjects was significant after 194 

adjustment for the ALSFRS-R and %FVC with ANCOVA (p = 0.002 and 0.002, 195 

respectively) (Fig 2). These findings suggest that both %PEF and %FVC are decreased 196 

in SBMA patients, as observed in ALS, but the reduction of %PEF is specific to the 197 

subjects with SBMA. 198 

 199 

Fig 1.  Respiratory function profile of subjects with SBMA. The actual and 200 

predicted values of forced vital capacity (FVC) (A, B), forced expiratory volume in 1 s 201 

(FEV1.0) (C), the ratio of FEV1.0 to FVC (D), and actual and predicted values of peak 202 

expiratory flow (PEF) (E, F) were compared among SBMA subjects (n = 40), ALS 203 
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subjects (n = 25), or healthy controls (n = 15). Compared with the healthy controls, 204 

patients with SBMA exhibited decreased values for %FVC, PEF, and %PEF. The actual 205 

values of PEF were also lower in SBMA than in controls. When comparing SBMA and 206 

ALS subjects, %PEF was significantly decreased in SBMA, but no differences were 207 

detected for the other indices. ** p < 0.01. * p < 0.05. Data are presented as the mean 208 

± SE. SBMA, spinal and bulbar muscular atrophy; ALS, amyotrophic lateral sclerosis; 209 

HC, healthy controls. 210 

Fig 2.  Relationships between %PEF and ALSFRS-R or %FVC in subjects with 211 

SBMA and ALS. Comparison of the relationships between %PEF and total score of 212 

ALSFRS-R (A) or %FVC (B) in SBMA and ALS. The difference in %PEF between 213 

SBMA and ALS was significant after adjustment for the ALSFRS-R and %FVC with 214 

ANCOVA. %PEF, predicted values of peak expiratory flow; ALSFRS-R, the revised 215 

Amyotrophic Lateral Sclerosis Functional Rating Scale; %FVC, predicted forced vital 216 

capacity. 217 

 218 

Relationship between respiratory function and motor 219 

function scores in SBMA  220 

We next investigated the relationship between respiratory parameters and the total score 221 

and subscores on the motor functional scales SBMAFRS and ALSFRS in the SBMA 222 
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subjects (Table 2). %PEF strongly correlated with total score as well as with the trunk 223 

and lower limb subscores of the SBMAFRS, particularly with the trunk subscore (S1 224 

Fig). However, we observed no significant correlations between %PEF and bulbar, 225 

upper limb, or respiratory subscores. The lack of correlation between the respiratory 226 

domain of SBMAFRS and %PEF or %FVC appears to stem from the fact that most 227 

subjects were at relatively early stages of the disease and reported no overt dyspnea on 228 

the functional scales [13]. The total scores and subscores of SBMAFRS correlated more 229 

strongly with %PEF than %FVC. Similar relationships were also observed for 230 

ALSFRS-R (S2 Fig). These results indicate that %PEF is a sensitive biomarker of 231 

respiratory dysfunction, reflecting in particular the truncal function of subjects with 232 

SBMA. 233 

 234 

Table 2.  Correlations between motor function scores and respiratory indices in 235 

subjects with SBMA. 236 

 237 

SBMA (n = 40) %PEF %FVC FEV1.0 / FVC 

SBMAFRS r = 0.460 (p = 0.003) r = 0.342 (p = 0.031) r = 0.100 (p = 0.541) 

  Bulbar r = 0.259 (p = 0.107) r = 0.206 (p = 0.202) r = −0.037 (p = 0.819) 

  Upper Limb r = 0.007 (p = 0.964) r = 0.017 (p = 0.918) r = −0.142 (p = 0.383) 

  Trunk r = 0.614 (p < 0.001) r = 0.443 (p = 0.004) r = 0.211 (p = 0.192) 
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  Lower Limb r = 0.379 (p = 0.003) r = 0.248 (p = 0.123) r = 0.260 (p = 0.105) 

  Respiratory r = 0.063 (p = 0.699) r = 0.076 (p = 0.642) r = −0.003 (p = 0.983) 

ALSFRS-R r = 0.398 (p = 0.011) r = 0.288 (p = 0.072) r = 0.103 (p = 0.525) 

  Bulbar r = 0.252 (p = 0.117) r = 0.240 (p = 0.136) r = 0.068 (p = 0.679) 

  Upper Limb r = 0.002 (p = 0.992) r = −0.078 (p = 0.632) r = −0.156 (p = 0.337) 

  Trunk r = 0.485 (p = 0.002) r = 0.334 (p = 0.035) r = 0.124 (p = 0.446) 

  Lower Limb r = 0.331 (p = 0.037) r = 0.271 (p = 0.091) r = 0.199 (p = 0.219) 

  Respiratory r = -0.032 (p = 0.699) r = −0.057 (p = 0.725) r = −0.008 (p = 0.960) 

 238 

SBMA, spinal and bulbar muscular atrophy; %PEF, predicted values of peak expiratory 239 

flow; %FVC, predicted values of forced vital capacity; SBMAFRS, Spinal and Bulbar 240 

Muscular Atrophy Functional Rating Scale; ALSFRS-R, the revised Amyotrophic 241 

Lateral Sclerosis Functional Rating Scale. 242 

 243 

Longitudinal assessment of pulmonary function tests in 244 

SBMA 245 

To examine whether respiratory parameters reflect disease progression, we 246 

prospectively analyzed longitudinal changes in pulmonary function tests in subjects 247 

with SBMA (Fig 3). Using a linear model, we assessed the data from 32 subjects with 248 

SBMA who were assessed for longitudinal changes in pulmonary function (Fig 3A–C). 249 

Results revealed slow but steady deterioration for %PEF and %FVC relative to disease 250 

duration with the speed of decline being higher for %PEF. These results suggest 251 
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that %PEF, together with %FVC, are biomarkers of respiratory function in subjects with 252 

SBMA and could be used to quantitatively assess disease progression. 253 

 254 

Fig 3.  Longitudinal changes in respiratory function in SBMA. Longitudinal 255 

changes in %PEF (A), %VC (B), and FEV1.0/FVC (C) as a function of disease duration 256 

were analyzed. The solid lines indicate representative disease progression over disease 257 

duration calculated using a marginal model under an unstructured covariance matrix. 258 

The broken curvilinear line demonstrates the 95% confidence interval of these models. 259 

We calculated the estimated values at clinical onset (intercepts) and the change values 260 

per year (D). In an analysis using the marginal model, a generalized estimating equation 261 

(shown by the solid lines) identified that %PEF (A) and %FVC (B) demonstrated a 262 

slowly but with steady progression. PEF, peak expiratory flow; FVC, forced vital 263 

capacity; FEV1.0, forced expiratory volume in 1 s. 264 

 265 

Fast versus slow motor function in SBMA and ALS 266 

The decrease in %PEF in SBMA compared with ALS subjects led us to explore the 267 

possibility of a selective loss of fast muscle power in patients with this disease, 268 

considering that %PEF is an index of explosive muscle strength [20]. To test this 269 

hypothesis, we compared indices of fast and slow motor function that were not based 270 
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on respiratory function between SBMA and ALS subjects. Both groups were matched 271 

for activities of daily living (ADLs) (Table 3). The total score and subscores (bulbar, 272 

upper limb, trunk, lower limb, and respiratory) on the ALSFRS-R in the SBMA subjects 273 

were equivalent to the scores of the ALS subjects. The mQMG scores, which are indices 274 

of muscle endurance, were also similar between the groups. Nevertheless, tongue 275 

pressure and grip power, both of which reflect explosive muscle strength, were 276 

significantly decreased in the SBMA subjects compared with the ALS subjects. These 277 

differences remained significant after adjustment for the ALSFRS-R with ANCOVA 278 

(data not shown). Taken together, our results suggest that explosive muscle power is 279 

preferentially affected in SBMA patients compared with ALS patients. 280 

 281 

Table 3.  Motor function of subjects. 282 

 283 

 SBMA ALS Control p-valueb 

(n = 40) (n = 25) (n = 15)  

ALSFRS-R     

  Total 40.7 ± 3.3 39.9 ± 4.4 47.8 ± 0.6 N.S. 

  Bulbar 10.2 ± 1.1 10.0 ± 2.1 11.8 ± 0.6 N.S. 

  Upper Limbs 6.6 ± 0.9 6.7 ± 1.2 8.0 ± 0 N.S. 

  Trunk 5.8 ± 1.3 5.8 ± 2.0 8.0 ± 0 N.S. 

  Lower Limbs 6.2 ± 1.2 6.0 ± 1.2 8.0 ± 0 N.S. 
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  Respiratory 11.9 ± 0.3 11.5 ± 1.1 12.0 ± 0 N.S. 

mQMG score     

  Total 5.48 ± 3.19 5.24 ± 3.31 ND N.S. 

  Head, lifted 1.33 ± 0.86 1.32 ± 1.03 ND N.S. 

  Left arm outstretched 1.33 ± 0.86 1.32 ± 1.03 ND N.S. 

  Right arm outstretched 1.13 ± 0.82 1.28 ± 1.06 ND N.S. 

  Left leg outstretched 0.85 ± 0.80 0.84 ± 1.07 ND N.S. 

  Right leg outstretched 0.80 ± 0.72 0.68 ± 0.99 ND N.S. 

Tongue pressure, kPa 17.39 ± 6.64 25.89 ± 13.85 45.5 ± 7.31 0.003 

(5.3–32.0) (0–47.0) (34.4–55.1)  

Grip powera, kg 19.76 ± 5.91 26.58 ± 10.73 44.3 ± 6.23 0.002 

(7.7–31.9) (8.4–49.3) (29.2–52.0)  

 284 

SBMA, spinal and bulbar muscular atrophy; ALS, amyotrophic lateral sclerosis; 285 

ALSFRS-R, revised Amyotrophic Lateral Sclerosis Functional Rating Scale; mQMG, 286 

modified quantitative myasthenia gravis; NS, not significant; NA, not applicable; ND, 287 

not determined. ALSFRS-R normal value = 48. Data are shown as the mean ± SD. 288 

aMaximum value of the dominant hand.  289 

bDifference between SBMA and ALS by ANOVA with Tukey’s post-hoc test. 290 

 291 

Alteration of fast- and slow-twitch fiber composition in 292 

SBMA and ALS  293 

Next, we hypothesized that the selective decline of fast muscle power in SBMA was 294 
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attributable to an alteration in fast- and slow-twitch fiber composition. To examine this 295 

hypothesis, we analyzed MHC isoforms in biopsied skeletal muscle specimens using 296 

immunohistochemistry (Fig 4). Type IIx fibers, which generate explosive power, were 297 

substantially decreased in samples from subjects with SBMA compared with samples 298 

from subjects with ALS, whereas type I fibers, which are associated with endurance, 299 

were atrophied in samples from ALS subjects.  300 

 To verify the immunofluorescence findings, we performed qRT-PCR analysis 301 

on intercostal and iliopsoas muscle specimens. In the intercostal muscles, which 302 

generate expiratory flow, the mRNA expression levels of MYH1 and MYH2, encoding 303 

MHC type IIx and IIa, respectively, but not MYH7, were significantly decreased in 304 

samples from SBMA subjects compared with ALS subjects, strengthening the theory 305 

that fast muscle power is predominantly affected in SBMA (Fig 5A–C). A 306 

corresponding reduction in MYH1 and MYH2 mRNAs was also observed in the 307 

iliopsoas muscles (Fig 5D, E). By contrast, the expression levels of MYH7, which 308 

encodes MHC type I, in the iliopsoas muscles were higher in samples from the SBMA 309 

subjects than in samples from the ALS subjects (Fig 5F). Furthermore, we compared 310 

the expression of putative regulators of muscle fiber switching among the groups (Fig 311 

5G–K). Results demonstrated that the mRNA levels of PGC-1α and PPARδ, which are 312 

known to regulate oxidative fiber type profile [21,22], were substantially up-regulated 313 
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in SBMA samples compared with ALS and disease-free control samples (Fig 5H, J). 314 

Although not significant, AMPK mRNA levels tended to be increased in subjects with 315 

SBMA (Fig 5K). 316 

 317 

Fig 4. Disease-specific fiber type alterations in SBMA and ALS. (A, B) 318 

Representative images of anti-MHC immunostaining in the biceps muscles of subjects 319 

with SBMA (A, n = 2) and ALS (B, n = 2). Type I (blue), type IIa (strong green), and 320 

type IIx (strong red and intermediate green) fibers are shown in single- and merged-321 

channel images of serial cross-sections of a human bicep incubated with an antibody 322 

cocktail (BAF-8, SC-71, and 6H1). Type IIx fibers were substantially decreased in 323 

SBMA compared with ALS, whereas type I fibers were atrophied in ALS compared 324 

with SBMA. Scale bar, 100 µm. SBMA, spinal and bulbar muscular atrophy; ALS, 325 

amyotrophic lateral sclerosis; MHC, myosin heavy chain. 326 

Fig 5. Expression levels of myosin heavy chain and AMPK-PGC-1α pathway in 327 

the skeletal muscles. The mRNA expression levels of MYH1 (encoding MHC type IIx), 328 

MYH2 (encoding MHC type IIa), and MYH7 (encoding MHC type I) normalized to β2-329 

microglobulin levels in the intercostal muscles of SBMA (n = 5) and ALS (n = 5) 330 

subjects (A–C). The expression levels of MYH1 (A) and MYH2 (B) were significantly 331 

decreased in subjects with SBMA compared with subjects with ALS. The mRNA 332 
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expression levels of MYH1, MYH2, and MYH7 normalized to β2-microglobulin levels 333 

in the iliopsoas muscles of SBMA (n = 5), ALS (n = 6), and DC (n = 4) subjects (D–F). 334 

The mRNA levels of MYH1 and MYH2 in the iliopsoas muscle were significantly 335 

decreased in subjects with SBMA compared with ALS subjects, as observed in the 336 

intercostal muscles (D, E). The expression levels of MYH7 were significantly higher in 337 

subjects with SBMA than in subjects with ALS (F). Expression levels of the genes 338 

known to regulate muscle fiber type switching in SBMA (n = 5), ALS (n = 6), and DC 339 

(n = 4) samples. The mRNA levels of PGC-1α and PPAR-δ, which regulate the 340 

oxidative fiber type profile, were significantly increased in SBMA compared with ALS 341 

and DC. The Mann-Whitney U test was performed to assess significant differences for 342 

each target gene between SBMA and ALS. ANOVA with Tukey’s post-hoc test was 343 

performed to compare the significance of differences in each target gene among SBMA, 344 

ALS, and DC. **p < 0.01. *p < 0.05. Data are presented as the mean ± SE. SBMA, 345 

spinal and bulbar muscular atrophy; ALS, amyotrophic lateral sclerosis; DC, disease 346 

control; PGC-1α, proliferator-activated receptor gamma coactivator 1-alpha; PPAR, 347 

peroxisome proliferator-activated receptor. 348 

 349 

Discussion 350 

In the present study, we demonstrated that %PEF and %FVC were substantially 351 
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decreased in SBMA compared with controls, although there was no significant 352 

difference in FEV1.0 between the groups. Both %PEF and %FVC correlated with 353 

functional disease scores, particularly truncal subscores, and were linked to decreases 354 

in disease progression in subjects with SBMA. PEF is the maximum expiratory flow 355 

per minute and can be used to measure how fast a subject can breathe out, providing a 356 

reliable global measure of voluntary cough against the risk of aspiration pneumonia 357 

[23]. PEF is based on abdominal and intercostal muscle strength as well as the elastic 358 

recoil of the lung and chest wall. During forced expiration, such as peak flow, the 359 

abdominal muscles are activated to increase intra-abdominal pressure [24]. 360 

Furthermore, lower PEF values are associated with increased mortality from respiratory 361 

causes [25]. %PEF decreases during the course of neuromuscular disease [26] as well 362 

as during spinal cord injuries, in which a higher cord level lesion is associated with a 363 

greater decrease in %PEF [27]. As SBMA is a rare disease, clinical trials have to be 364 

done with a limited sample size. Therefore, identification of sensitive biomarkers for 365 

detecting benefits of tested therapies is urgently needed for SBMA [28]. Our study 366 

revealed that %PEF chiefly reflects truncal muscle strength in subjects with SBMA and 367 

is a reliable respiratory marker for disease severity and progression.  368 

 When comparing SBMA and ALS subjects, only %PEF was significantly 369 

decreased in SBMA. Unlike other parameters of pulmonary function tests, PEF is 370 
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generated by explosive muscle power in an effort-dependent manner. We further 371 

revealed that, in addition to %PEF, tongue pressure and grip power, which also reflect 372 

explosive muscle strength, are also specifically decreased in subjects with SBMA 373 

compared with those with ALS. By contrast, the mQMG score, which is an index of 374 

muscle endurance, was similar between the two groups. Taken together, these findings 375 

suggest a reduction in explosive muscle strength in subjects with SBMA, consistent 376 

with the preferential loss of fast-twitch muscle fibers in these subjects. Muscular 377 

function is chiefly dependent on the specific characteristics of various muscle fiber 378 

types, and immunohistochemistry of the MHC isoforms in skeletal muscles reveals four 379 

fiber types (i.e., I, IIa, IIx, and IIb) in rodents and most other mammalian species. 380 

However, only type I, IIa, and IIx fibers are present in most human muscles [29]. These 381 

fibers differ from one another in oxidative/glycolytic metabolism: type I fibers are more 382 

oxidative and regulate endurance muscle strength; type IIx fibers are more glycolytic 383 

and regulate explosive muscle strength; type IIa fibers exhibit characteristics of both 384 

type I and IIx fibers [30]. Glycolytic fast-twitch fibers are preferentially vulnerable in 385 

a transgenic mouse model of SBMA and in humans with the disorder [31–33]. Results 386 

from the present study indicate that the decrease in explosive muscle strength in 387 

subjects with SBMA is strongly associated with a reduction in the number of fast-twitch 388 

muscle fibers.  389 
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In the present study, the muscles of SBMA subjects demonstrated glycolytic-390 

to-oxidative switching in association with an up-regulation of PGC-1α and PPARδ. 391 

Fiber type switching is induced in adult skeletal muscle by changes in nerve activity or 392 

loading. Glycolytic-to-oxidative switching can be induced by tonic low-frequency 393 

electrical stimulation [30]. The AMPK-PGC-1α pathway alters the fiber type profile 394 

toward oxidative metabolism by regulating MYH gene expression. For instance, 395 

overexpressing AMPK and PGC-1α in mice has been shown to increase mitochondrial 396 

content and the levels of oxidative enzymes in fast muscle fibers, increasing muscle 397 

resistance against fatigue [21,34]. Similarly, PPARδ signaling induces a more oxidative 398 

fiber type profile in mice, with an increased amount of mitochondrial DNA, up-399 

regulation of slow contractile protein genes, and an increased resistance to fatigue [22]. 400 

PGC-1α was reportedly increased in the muscles of a knock-in mouse model of SBMA, 401 

consistent with our findings in humans [35]. Given that AR inhibits the AMPK-PGC-402 

1α pathway [36], the loss of AR function may underlie the up-regulation of PGC-1α in 403 

SBMA. In fact, subjects with SBMA often exhibit certain symptoms of androgen 404 

insensitivity syndrome, such as gynecomastia and reduced fertility, which have been 405 

attributed to loss of AR function [37]. Females possess a greater number of slow-twitch 406 

fibers than males, which is the molecular basis for gender differences in response to 407 

fatigue or muscle tetanus. These gender differences further support our view that 408 
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disease-specific alterations of fiber type occur in the skeletal muscles of subjects with 409 

SBMA.  410 

A possible alternative explanation for the preferential deficiency of fast-twitch 411 

fibers in subjects with SBMA is the adaptation of surviving muscles to endurance 412 

activities during the slow progression of the disease. This view is supported by the 413 

observation that chronic inactivation of muscles leads to selective atrophy of fast-twitch 414 

fibers [38]. A similar loss of fast-twitch fibers was also documented in spinal muscular 415 

atrophy, which is another neuromuscular disorder affecting both spinal motor neurons 416 

and skeletal muscle [39]. Future studies should directly address the mechanisms 417 

underlying disease-specific alterations of fiber type in SBMA, and they should focus 418 

on identifying pharmacological or non-pharmacological interventions to reverse these 419 

alterations. 420 

 In summary, we found that subjects with SBMA exhibited decreased %PEF, 421 

which appears to reflect the preferential involvement of fast-twitch fibers in this disease. 422 

Given that the leading causes of death in subjects with SBMA are pneumonia and 423 

respiratory failure [7], particular attention should be paid to %PEF decline during the 424 

clinical management of SBMA.   425 
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