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Background: Although a variety of synthetic materials have been used to reconstruct tissue

defects, these materials are associated with complications such as seromas, fistulas,

chronic patient discomfort, and surgical site infection. While alternative, degradable ma-

terials that facilitate tissue growth have been examined. These materials can still trigger a

foreign body inflammatory response that can lead to complications and discomfort.

Materials and methods: In this report, our objective was to determine the effect of placing a

pedicled omental flap under a biodegradable, microfibrous polyurethane scaffold serving

as a full-wall thickness replacement of the rat abdominal wall. It was hypothesized that the

presence of the omental tissue would stimulate greater vascularization of the scaffold and

act to reduce markers of elevated inflammation in the patch vicinity. For control purposes,

a polydimethylsiloxane sheet was placed as a barrier between the omental tissue and the

overlying microfibrous scaffold. Both groups were sacrificed 8 wk after the implantation,

and immunohistological and RT-PCR assessments were performed.

Results: The data showed omental tissue placement to be associated with increased

vascularization, a greater local M2/M1 macrophage phenotype response, and mRNA levels

reduced for inflammatory markers but increased for angiogenic and antiinflammatory

factors.

Conclusions: From a clinical perspective, the familiarity with utilizing omental flaps for an

improved healing response and infection resistance should naturally be considered as new

tissue engineering approaches that are translated to tissue beds where omental flap

application is practical. This report provides data in support of this concept in a small

animal model.

ª 2016 Elsevier Inc. All rights reserved.
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In clinical practice, autologous fascia lata or synthetic mate-

rials, including polypropylene and polyester meshes, and

expanded polytetrafluoroethylene, are mainly used to repair

or reinforce tissue defects.1 However, the use of such mate-

rials can be associated with complications such as seromas,

fistulas, chronic patient discomfort, and surgical site infec-

tion.2-5 To circumvent these issues, researchers have been

devising operative procedures or developing materials that

have increased resistance to infection and better functional

outcomes. Biodegradable synthetic materials designed to

facilitate tissue ingrowth and scaffold remodeling and that

result in tissues which mechanically approximate native tis-

sue would represent a regenerative approach likely to reduce

the complications seen with current replacement materials.

Recent reports have shown the repair of abdominal wall

defects in a small animal model utilizing a microfibrillar,

biodegradable poly (ester urethane) urea (PEUU) generated

with electrospinning techniques. The data suggest that this

approachmight provide sufficient strength alongwith cellular

infiltration.6-8 Although the tissue response to the PEUU ma-

terial appeared adequate, at least in an acute model, one

might wish to achieve a biological response with greater

vascularization and the potential for greater infection resis-

tance. It is known that the placement of an omental tissue flap

near artificial implanted surfaces provides some protection

against infection and stimulates wound healing, particularly

in terms of vascularization. This technique is often used

clinically in inflammatory situations including pyothorax and

osteomyelitis or to control infection risk from artificial mate-

rials such as expanded polytetrafluoroethylene and materials

serving as skull plates and vascular grafts.9-12 In tissue engi-

neering, omentum has been used as an in situ bioreactor and

to improve local angiogenesis in response to scaffold im-

plants.13-20 In this report, our objective was to determine the

effect of placing a pedicled omental flap under a biodegrad-

able, microfibrous PEUU scaffold serving as a full wall thick-

ness replacement of the rat abdominal wall. It was

hypothesized that the presence of the omental tissue would

stimulate greater vascularization of the scaffold and act to

reduce markers of elevated inflammation in the patch vicin-

ity. For control purposes, a polydimethylsiloxane (silicone)

sheet was placed as a barrier between the omental tissue and

the overlying microfibrous PEUU scaffold.
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Materials and methods

Scaffold fabrication

PEUUwas synthesized frompolycaprolactone diol (Mn¼ 2000),

1,4-diisocyanatobutane (SigmaeAldrich, St. Louis, MO), and

putrescine (Sigma-Aldrich), according to previously described

methods.8 For this study, a wet electrospun PEUU (wet ePEUU)

scaffold was made by concurrently electrospinning the poly-

mer and electrospraying culture medium. The cell culture

medium employed was Dulbecco’s modified Eagle medium

(DMEM, Invitrogen, Carlsbad, CA) with 10% fetal bovine serum
5.4.0 DTD � YJSRE14078_proof � 17
penicillin/streptomycin (GIBCO), and 0.5% chick embryo

extract (GIBCO). The culture medium was contained in a sy-

ringe with a 1.2-mm inner diameter steel capillary attached

and placed in a syringe pump. The capillary was charged at

7 kV and suspended 4 cm above a 6-mm diameter mandrel.

Medium flow through the capillary was 0.2 mL/min. At the

same time, PEUU dissolved in hexafluoroisopropanol (12%, w/

v) was placed in a syringe with an attached steel capillary and

placed 20 cm from themandrel, perpendicular to themedium-

containing syringe. A syringe pump was used to flow the

polymer solution at 1.5 mL/h with the capillary charged at

12 kV. The mandrel was charged at �4 kV and rotated at

250 rpm (8-cm/s tangential velocity)while translating back and

forth 8 cm along the x-axis at 0.15 cm/s (Fig. 1B).

Animal model

Adult, female syngeneic Lewis rats (Harlan Laboratories,

Indianapolis, IN) aged 10- to 12-weeks old and weighing 200-

250g were used for this procedure. This gender and age was

selected since the growth curve for female Lewis rats plateaus

earlier than male rats, and the created surgical defects would

not be affected by the ongoing growth expected with the male

rats. A single gender was utilized to minimize the effect of

different growth rates on the healing response. The Institu-

tional Animal Care and Use Committee of the University of

Pittsburgh approved the procedure protocols. Anesthesia was

achieved by inhalation of 1.25%-2.5% isoflurane with 100%

oxygen. The abdomen was sterilized with povidone-iodine

solution, and procedures were performed in a sterile envi-

ronment on a heating blanket. The surgical procedure was

based on that previously reported by Hashizume et al.8

A skin incision was made above the linea alba 3.5 cm in

length from 2 cm caudal of the xiphoid process. A surgical

defect (1 � 2.5 cm) included all the layers of the abdominal

wall including the fascia, rectus abdominis muscle, and pari-

etal peritoneum, but the skin and subcutaneous soft tissue

were preserved. This anatomical defect was then repaired

with the generated scaffolds sutured to a pedicled omental

flap or to a sterilized silicon sheet (4� 6 cm size, 0.02-cm thick,

BioPlexus, CA). The pedicled omental flap was prepared by

detachment from the transverse colon and spread on the

bowel (Fig. 1A). The scaffolds (1 � 2.5 cm, 400-mm thick) were

sutured to the peripheral abdominal fascia and muscle with a

continuous 7-0 polypropylene suture without overlap be-

tween muscle and scaffold and in direct contact with the

subcutaneous tissue and the bowels. Skin closure over the

patch was achieved by double-layer suturing. For post-

operative analgesic treatment, 0.1-mg/kg buprenorphine and

100-mg/kg cefuroxime were injected subcutaneously twice

daily for 3 days after procedure.

For the omental-attached (omentum) group, the implanted

samples were surgically retrieved at 4 and 8 wk post-

implantation (n ¼ 7 per time point). For the silicon barrier

(control) group, implanted samples were retrieved 8 wk

postimplantation (n ¼ 7). At retrieval, animals were eutha-

nized by 5% isoflurane inhalation, and the abdominal wall was

circumferentially incised to expose the peritoneal cavity and
December 2016 � 1:14 am � ce
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Fig. 1 e Surgical procedure. (A) A wet electrospun PEUU scaffold was fabricated by the concurrent polymer electrospinning

and culture medium electrospraying. Lower image is material detached from the mandrel. (B) A 2.5 3 1 cm abdominal wall

defect was created and repaired with PEUU scaffolds on pedicled omental flap (omentum group) or silicon sheet (control

group). M [ abdominal muscle; S [ stomach. (Color version of figure is available online.)
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the repair site. Representative specimens were photographed

in situ for later review and comparisons. The patches were

explanted by cutting with approximately a 5-mmmargin from

the original suture line and divided for histology, immuno-

histochemistry, and RT-PCR.
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Histology and immunohistochemistry

For hematoxylin and eosin and Masson’s trichrome staining,

the samples were fixed in 10% formalin solution for 24 h,

embedded in paraffin, sectioned into 8-mm thick specimens,

and stained. For immunohistology, samples were fixed in 4%

phosphate-buffered paraformaldehyde for 2 h, immersed in

30% sucrose for 48 h, frozen, and cryosectioned into 8-mmthick

specimens. Sections for immunohistochemistry were reacted

with primary antibodies. The primary antibodies used for

immunohistochemical staining were mouse anti-rat CD163

(Serotec, Oxford, UK) at 1:100 dilution, rabbit anti-CCR7

(Abcam, Cambridge, UK) at 1:800 dilution, rabbit anti-rat von

Willebrand factor (vWF; Abcam) at 1:1000 dilution, and mouse

anti-rat alpha smooth muscle actin (Abcam) at 1:200 dilution.

The slides were counterstained with DAPI (IHC World, Ellicott

City, MD). For each sample retrieved, 10 different microscopic

fields were photographed for CD163-, CCR7-, vWF-, and alpha

smooth muscle actinepositive structures at 200 � magnifica-

tionandquantifiedusing IMAGE J software, (National Institutes

of Health, Bethesda, MD). Capillaries were identified as tubular

structures positively stained for vWF.
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RT-PCR

Retrieved samples were immediately immersed in liquid ni-

trogen and stored in a �80�C freezer until analysis. For RNA

extraction, areas of the retrieved samples were chopped in

small pieces, and approximately, 30 mg was processed as

previously described.8 Briefly, total RNA was extracted from

the retrieved tissues using an RNeasy Mini Kit (Qiagen, Venlo,
5.4.0 DTD � YJSRE14078_proof � 17 D
Netherlands). Complementary DNA (cDNA) was synthesized

with RNA to cDNA EcoDry Premix reverse transcriptase (Clo-

netech, Mountain View, CA, USA), according to the manufac-

turer’s instructions. cDNAs and primers were added to SYBR

Green PCR master mix (Applied Biosystems, Foster City, CA),

according to the manufacturer’s instructions. Quantitative

analysis was then performed with primers (Real Time

Primers, Elkins Park, PA). All data were normalized to beta-

actin, which was used as an internal control, and further by

expression relative to the control group. The sequences,

amplicon positions, and gene accession numbers of the

primers used for PCR are listed in the Table (Table).
Statistical analyses

Statistical analyses were performed using IBM SPSS Statistics

22 (IBM, Armonk, NY). Results are presented as

mean � standard deviation. Differences were considered to be

statistically significant at P < 0.05. In this study, the 8-wk

omentum group was compared with the 8-wk control group

and with the 4-wk omentum group respectively. One-way

analysis of variancewas usedwith Bonferroni post hoc testing.
Results

Macroscopic observations

The omentum group had a muscle border that showed evi-

dence of integration andwas surrounded by blood vessels and

abdominal wall muscle. Qualitative comparisons with the

control group at 8 wk suggested more surface vascularization

and a smoother transition to the peripheral muscle (Fig. 2A).

The wall thickness for both groups increased significantly

from preimplantation to the 8 wk time point, with no differ-

ences between the omentum and control groups (Fig. 2C). No

herniation was observed in either group.
ecember 2016 � 1:14 am � ce
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Table e DNA sequences of the primers.

Gene Sequence information

b-actin

Forward 50-CAC ACT GTG CCC ATC TAT GA-30

Reverse 50-CCG ATA GTG ATG ACC TGA CC-30

VEGF

Forward 50-TCA CAG GGA GAA GAG TGG AG-30

Reverse 50-AGC CAG AAG ATG CTC ACT TG-3

IL-10

Forward 50-GAC GCT GTC ATC GAT TTC TC-30

Reverse 50-TTC ATG GCC TTG TAG ACA CC-30

IL-1ra

Forward 50-AAG ACC TTC TAC CTG AGG AAC AACC-30

Reverse 50-GCC CAA GAA CAC ATT CCG AAA GTC-30

IL-1b

Forward 50-AGA GTG TGG ATC CCA AAC AA-30

Reverse 50-AGT CAA CTA TGT CCC GAC CA-30

IL-12

Forward 50-TGC AGA GAA GGT CAC ACT GA-30

Reverse 50-GAT GAA GAA GCT GGT GCT GT-30
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Histological assessment

Histological assessment showed that both groups had exten-

sive cellular infiltration at both time points, and the omentum

group showed much more blood vessels than the control

group at higher magnification (Fig. 3). Vascular ingrowth was
Fig. 2 e Observations at explant. (A) At explant, the omental fla

group, the scaffold was surrounded by blood vessels and appea

contrast to the control group. (C) The wall thickness for both grou

time point, with no differences between the groups. Error bars [

online.)
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observed in both scaffold types at both time points. However,

the number of blood vessels was greater in the omentum

group than that in the control group at 8 wk (48� 15 vs 27� 7).

The number of foreign body giant cells (FBGCs) was greater in

the control group than that in the omentum group (17 � 4 vs

10 � 2; Fig. 4).
490
Immunohistochemical assessment

Assessment of scaffold site remodeling with immunostain-

ing for macrophage phenotype showed that the ratio of

CD163-positive cells (characteristic of M2 macrophages) to

CCR7-positive cells (characteristic of M1 macrophages)

increased for the omentum group and was greater at 8 wk

than that at 4 wk (Fig. 5). Macrophages consistent with the

M2 phenotype appeared to infiltrate the patches from the

abdominal (omental placed) side. The images in Figure 5

were taken from scaffold sections where the omental flap

had been detached from the lower side of the scaffolds.

Vascular density within the patches, as assessed by vWF

immunostaining, showed that the omentum group had

greater vascularization than the control group, and this dif-

ference increased for the omentum group from 4 to 8 wk. The

vWF positive structures were often surrounded by a-smooth

muscle actin-positive cells (Fig. 6). In examining the border

between the scaffold and omental tissue at 8 wk, there was

evidence of continuity between the omental tissue and the

scaffold materials with closely positioned vasculature and

M2 macrophages (Fig. 7). Unlike the image from Figure 5, the

omental tissue remained attached to the scaffold before

sectioning for Figure 7.
p was well adhered to the material. (B) In the omentum

red to be better integrated with the abdominal wall in

ps increased significantly from preimplantation to the 8 wk

± standard deviation. (Color version of figure is available
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Q7

Fig. 3 e Histology. Representative cross section of implanted scaffold at 4 and 8 wk after implantation. Both scaffold types

had extensive cellular infiltration at both time points. High magnification images are shown. 8-wk groups had more cells,

and the omentum groups had more blood vessels. Scale bars [ 1 mm and 100mm (center images). H and E [ hematoxylin

and eosin; MT [ Masson’s trichrome. (Color version of figure is available online.)
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RT-PCR

Assessment of RNA expression showed that at 8 wk, the

omentum group had greater VEGF and IL-1 receptor antago-

nist expression than the control group, and a similar amount

of IL-10 expression. The expression of IL-12 and IL-1was lower

in the omentum group (Fig. 8).
Fig. 4 e Foreign body giant cells. (A) High magnification images

(yellow arrows). Scale bars [ 100 mm. (B) The number of the gia

high power fields/rat with 7 rats/group). The omentum group had

control, but this number was reduced versus the 4 wk omentum

online.)

5.4.0 DTD � YJSRE14078_proof � 17 D
Discussion

The use of syntheticmaterials to support or replace soft tissue

deficits leads to a foreign body response, characterized ulti-

mately by the formation of fibrous tissue around the implan-

ted material. In many cases, this response is acceptable,
Q5of the samples (HE). Giant cells could be seen in all groups

nt cells shown as mean number ± standard deviation (10

lower numbers of giant cells in the explants at 8 wk versus

group. (*P < 0.05). (Color version of figure is available
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Fig. 5 e Macrophage type. (A) Immunostaining for type 1 macrophages (CCR7, M1; green), type 2 macrophages (CD163, M2;

red), and Hoechst (blue) for samples from the omentum (4 and 8 wk) and control groups. Scale bars [ 100 mm. (B)

Quantitative image analysis of the M1 and M2 stained areas. The omentum group had a greater M2/M1 ratio compared to

the control group at the 8 wk time point (*P < 0.05). Error bars [ ± standard deviation. (Color version of figure is available

online.)
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although nonideal. Of more concern are complications such

as biomaterial-centered infections, chronic inflammation,

and host responses that can lead to mechanical failure of the

implant or stress concentrations at the interface between a

stiff implant and more compliant host tissue. To address

some of these complications, the placement of muscle, cuta-

neous, and omental flaps have been used, in some cases

prophylactically, but often as a strategy to avoid device

removal. The movement of viable and well-vascularized tis-

sue to the implant region can effectively improve the

biocompatibility of the artificial materials by altering some

aspects of the local tissue response.

The provision of a source for vascular ingrowth is one hy-

pothesized benefit of local flap placement, but the specific

mechanisms by which flap placement provides benefit are not

well defined. In the context of placement of greater omental

flaps, some reports show that the flap facilitates angiogenesis

in a similar manner as other flaps, resulting in control of

infection and good tissue remodeling.13-18 Other reports indi-

cate that the omental flap controls not only angiogenesis but

also provides protection against infection and inflammatory

reactions.19,20 The beneficial antiinflammatory effect may be
Fig. 6 e Vascularization. (A) Immunostaining for von Willebrand

and Hoechst (blue) for samples from the omentum (4 and 8 wk

image analysis of the vWF-stained area. At 8 wk, the omentum g

the control group (*P < 0.05). Error bars [ ± standard deviation

5.4.0 DTD � YJSRE14078_proof � 17
attributable to the cellular components and cytokines derived

from the omental flap.21,22 Although omental flaps have been

used to improve the local physiological response to artificial

materials in many studies, few reports examine the mecha-

nisms for an improved response in the setting of biomaterial

placement.

According to the results from immunohistochemistry and

PCR in this study, angiogenesis was significantly facilitated in

the omentum group compared with the control group. In

considering the localmacrophage population, theM2/M1 ratio

was markedly higher in the omentum group than that in the

control group, and numerous M2 macrophages accumulated

near the omental side of the scaffold implant, whereas M1

macrophages accumulated around the material in the

omentum group (Figs. 5 and 7B). In the control group, almost

no M2 macrophages were observed on the abdominal side,

although some were observed on the skin side. The M1

phenotype is generally associated with the classic foreign

body response, whereas the M2 phenotype near biomaterial

implants has been associated with constructive remodeling,

an increased M2 population may be desirable for tissue

regeneration.23,24 The local omental tissue may facilitate M2
factor (vWF; red), alpha smooth muscle actin (SMA; green),

) and control groups. Scale bars [ 100 mm. (B) Quantitative

roup had greater vWF positively stained areas compared to

. (Color version of figure is available online.)
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Fig. 7 e Border between scaffold and omentum. (A) Immunostaining for von Willebrand factor (vWF; red), alpha-smooth

muscle actin (SMA; green), and Hoechst (blue) for samples from the omentum 8-wk group. Scale bars [ 100 mm. (B)

Immunostaining for type 2 macrophages (CD163, M2; red) and Hoechst (blue) for samples from the omentum 8 wk group.

Scale bars [ 100 mm. (Color version of figure is available online.)
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expression, and this function may be associated with the

antiinflammatory effect of the greater omentum itself. Some

angiogenic cytokines are released by M1 macrophages, which

are also reportedly involved in angiogenesis, but the involve-

ment of M2macrophages is considered to be more substantial

in this process.25 The ratio of M2/M1 in this study was higher

at 8 wk than that at 4 wk, and this was consistent with a

previous study in a similar animal model, which showed that

the proportion of M2 macrophages increased progressively

from 4 wk to 8 wk, although the used material was slightly

different, and omental tissue placement was not employed.26

FBGC formation, which is a common response to synthetic

material implantation, is considered to be associated to type 1

macrophage action and is often seen at the chronic inflam-

matory stage.27 At the 8 wk time point, the number of FBGCs

was significantly less for the omentum group, consistent with

a moderated foreign body response and reduced M1 activity.

To our knowledge, this is the first report that has examined
Fig. 8 e RT-PCR: RT-PCR results from the scaffold region for

VEGF, IL-10, IL-1 receptor antagonist, IL-1b, and IL-12. The

values for the omentum group were normalized by beta-

actin, and further normalized by the value of the control

group at the 8-wk time point. Data are shown as relative

expression compared to the control group (*P < 0.05). Error

bars [ ± standard deviation. (Color version of figure is

available online.)
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the effect of omental tissue placement on the M2macrophage

response to a foreign body implantation.

Consistent with the M2 and M1 macrophage response dis-

cussed previously, there was evidence of a decrease in local

inflammatory cytokines with omental tissue placement and

an increase in IL-1ra. These mRNA data were accompanied by

a significant increase in VEGF mRNA. These data, together

with the macrophage phenotype data support the earlier

suggestion that both cellular and humoral actions associated

with local omental tissue are acting to improve local angio-

genesis andmodulate the foreign body response. In the future,

a broader array of factors involved in inflammatory pathways

could be investigated in greater detail. Also, the macrophage

markers employed in this report were limited to CCR7 and

CD163. CD86, CD206, CD68, and other phenotype-specific

markers could be used to characterize M1 and M2 cells in

greater detail. Another limitationwas the investigation of only

two time points, 4 and 8 wk. Although at 8 wk, the omentum

group showed several indicators consistent with a moderated

inflammatory reaction relative to the control group, it may not

be enough to definitively support a positive role for the

omentum in regulating the foreign body response in this

model Longer time points would add important insight into

where the local response ultimately stabilizes, and additional

early time points for the control and omentum groups would

better define the relative benefit for omental tissue in this early

period, where the limited data of this report may indicate less

of a clear benefit. Finally, the rodentmodel is clearly limited in

terms of extrapolation to the clinical setting. In particular, the

areas and volumes of material being implanted may mitigate

some of the benefits of a closely placed omental flap. Although

this study used a silicone sheet as a barrier between the

omental tissue and the overlying scaffold to isolate the effect

of intentionally placed omental tissue, in the absence of such a

barrier, some variable omental tissue adhesion may be ex-

pected to occur and bring some local benefit.
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Conclusions

In reconstructing a full thickness abdominal wall defect in the

rat, placing a pedicled omental flap under a biodegradable,

microfibrous elastomeric scaffold was associated with greater

vascularization of the scaffold and a reduction in the inflam-

matory markers that are characteristic of the foreign body

response. The reduced response was characterized with

respect to the control surgery, where a polydimethylsiloxane

sheet was placed as a barrier between the omental tissue and

the overlying microfibrous scaffold. These results have im-

plications for the use of this approach beyond the use of

materials in abdominal wall reconstruction but also for other

tissue defects where a combined temporary scaffold and

omental flap approach might be employed. From a clinical

perspective, the familiarity with using omental flaps for an

improved healing response and infection resistance should

naturally be considered as new tissue engineering approaches

are translated to tissue beds where omental flap application is

practical.
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