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Abstract. Multi-scale plasma turbulence including electron and ion tempera-
ture gradient modes (ETG/ITG) has been investigated by means of electromag-
netic gyrokinetic simulations. Triad transfer analyzes on nonlinear mode coupling
reveal cross-scale interactions between electron and ion scales. One of the inter-
actions is suppression of electron-scale turbulence by ion-scale turbulence, where
ITG-driven short-wave-length eddies act like shear flows and suppress ETG tur-
bulence. Another cross-scale interaction is enhancement of ion-scale turbulence in
presence of electron-scale turbulence. This is caused via short-wave-length zonal
flows which are created by passing kinetic electron response in ITG, suppress
ITG by their shearing, and are damped by ETG turbulence. In both cases, sub-
ion-scale structures between electron and ion scales play important roles in the
cross-scale interactions.
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1. Introduction

Plasma turbulence inherently involves multi-scale physics covering electron and ion
scales characterized by their gyroradii. Since their scales are different by a factor of
∼
√
mi/me when their temperatures are the same, the most of previous literature

assumed separation of their scales and analyzed single-scale turbulence driven by
electron or ion temperature gradient modes (ETG or ITG). Recent simulation studies,
however, resolve multi-scale ETG/ITG turbulence and suggest existence of the cross-
scale interactions.
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Although several mechanisms have already been discussed, e.g., mutually
exclusive competition between ITG and ETG [1], stabilization of ITG by ETG-driven
zonal flow [2], stabilization of ETG by short-wave-length ITG eddies and its weak
back reaction to ITG [3], the understanding on the physical mechanisms of cross-
scale interaction is still insufficient. The gyrokinetic simulation is a powerful tool to
investigate the multi-scale ETG/ITG plasma turbulence. The early work by Jenko
in 2004 employed Tokamak edge-like parameters and showed the coexistence of ITG
and ETG [4]. In 2007, Candy and Waltz carried out simulations with employing
Tokamak core parameters and found the suppression of ETG by ITG [5, 6]. Short
while later, Görler reported ETG transport can survive when the linear growth rate
of ITG is relatively small [7]. Although the above simulations employed reduced
ion-to-electron mass ratio mi/me = 400 or 900, recent progress of supercomputer
technology and parallel computation algorithm allows us to access the realistic mass
ratio mi/me = 1836 for proton and 3670 for deuteron. The cross-scale interactions
are observed even in these realistic mass ratio cases where the scales of electron and
ion gyroradii separate further. A series of works by Howard et al. on the comparison
between Alcator C-Mod experiments and multi-scale ETG/ITG simulations indicate
that realistic mass ratio and cross-scale interactions between ETG and ITG can
be essential for explaining experimental transport levels [8, 9]. Besides, multi-scale
electromagnetic simulations by Maeyama et al. with the realistic mass ratio and β
value confirm not only the suppression of ETG by ITG but also enhancement of ion-
scale transport by electron-scale turbulence when ITG is stabilized by finite-β effects
[10, 11]. The latest report from DIII-D experiments with ITER baseline parameters
also suggests that cross-scale interactions must be accurately described to predict the
performance of ITER burning plasma [12]. To promote the understanding on complex
behaviors of cross-scale interactions, detailed analyses on nonlinear mode-to-mode
coupling are indispensable.

In this context, this paper discuss in details the new aspect of physical mechanisms
of cross-scale interactions in multi-scale ETG/ITG turbulence by Maeyama et al. The
remainder of the paper is outlined as follows. In Sec. 2, we briefly describe our
simulation model and develop diagnostic methods of nonlinear mode-to-mode transfer
for the analysis of cross-scale interactions. In Sec. 3, simulation results demonstrate
the existence of mutual cross-scale interactions. By means of the nonlinear transfer
diagnostics, effects of ion-scale turbulence to electron-scale turbulence (the i → e
interaction) is investigated in detail, and vice versa (the e→ i interaction). In Sec. 4,
the identified physical mechanisms of the cross-scale interactions are summarized. The
cross-scale interactions are understood as successive nonlinear interactions between
electron and ion scales via intermediate sub-ion-scale structures.

2. Methods

2.1. Governing equations

Micro-instabilities and turbulence associated with the anomalous transport in
magnetic fusion plasma are well described by the electromagnetic gyrokinetics.
The gyrokinetic Vlasov equation for the perturbed gyrocenter distribution function
f̃s(x, v∥, µ, t) =

∑
k f̃ske

ik·x of the plasma species s [= e (electron), i (ion)] is expanded
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in the perpendicular wave number space,

∂f̃sk
∂t

+

(
v∥∇∥ + ik · vds −

µ∇∥B

ms

∂

∂v∥

)
f̃sk +Nsk

= −esFMs

Ts

[
v∥

(
∇∥J0skϕ̃k +

∂J0skÃ∥k

∂t

)

+ ik · vdsJ0skϕ̃k − ik · v∗sJ0sk(ϕ̃k − v∥Ã∥k)

]
+ Csk, (1)

where vds = b× (µ∇B+msv
2
∥b ·∇b)/(esB) and v∗s = b× [Ts∇ lnns+(msv

2
∥/2+µB−

3Ts/2)∇ lnTs]/(esB) denote the magnetic and diamagnetic drift velocities. E × B
and magnetic flutter nonlinearities are represented by Nsk = −

∑
p

∑
q δp+q,k(b ·

p × q/B)J0sp(ϕ̃p − v∥Ã∥p)(f̃sq + esFMsJ0sqϕ̃q/Ts). A collision operator employed
here is the gyrophase-averaged Lenard-Bernstein model collision operator Csk =
νs[∂v∥(v∥f̃sk + v2ts∂v∥ f̃sk) + (1/v⊥)∂v⊥(v

2
⊥f̃sk + v2tsv⊥∂v⊥ f̃sk) − k2⊥ρ

2
tsf̃sk] [13], whose

velocity-space-derivative terms describe a drag force and diffusion in velocity space,
conserve local particle density, and yields a Maxwell distribution as an equilibrium
state, while the last term represents the classical diffusion with the coefficient νsρ

2
ts.

The perturbed electrostatic and parallel vector potentials ϕ̃k, Ã∥k are determined by
the gyrokinetic Poisson and Ampère equations[

k2⊥ +
1

ε0

∑
s

e2sns
Ts

(1− Γ0sk)

]
ϕ̃k

=
1

ε0

∑
s

es

∫
dv3J0skf̃sk, (2)

k2⊥Ã∥k = µ0

∑
s

es

∫
dv3J0skv∥f̃sk, (3)

where the gyrophase-average operators are J0sk = J0(k⊥ρs) and Γ0sk =
I0(k

2
⊥ρ

2
ts) exp(−k2⊥ρ2ts) with the gyroradius ρs = msv⊥/(esB). We employ the local

flux-tube model in a circular tokamak (or so-called s − α) geometry with the flux
coordinates x = r− r0, y = (r0/q0)[qθ− ζ], z = θ (where the minor radius r, poloidal
and toroidal angles θ, ζ), while the parallel velocity v∥ and the magnetic moment µ
are used as velocity-space coordinates. Time evolution of the perturbed distribution
function and electromagnetic fields are numerically solved by the gyrokinetic Vlasov
simulation code GKV [14]. Recent extension of its computational capability enables
multi-scale ETG/ITG turbulence simulations [15].

2.2. Entropy balance and gyrokinetic triad transfer

Multiplying Tsf̃
∗
sk/FMs+esJ0skϕ̃

∗
k to Eq. (1) and integrating it over the velocity space

and along the field aligned coordinate, one derives the entropy balance relation [16]
for each mode,

d

dt
(Sk +Wk) = Xk +Dk + Ek + Ik. (4)
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From the left, the perturbed entropy Sk, the perturbed field energyWk, the turbulent
flux drive Xk, the collisional dissipation Dk and the parallel streaming term Ek (which
represents the mode conversion due to the parallel streaming in the sheared magnetic
field [17]) are respectively given by,

Sk =
∑
s

⟨∫
dv3

Ts|f̃sk|2

2FMs

⟩
, (5)

Wk =

⟨[
ε0k

2
⊥ +

∑
s

e2sns
Ts

(1− Γ0sk)

]
|ϕ̃k|2

2
+
k2⊥
µ0

|Ã∥k|2

2

⟩
, (6)

Xk =
∑
s

[
TsΓsk

Lns

+
1

LTs

(
Qsk − 3

2
TsΓsk

)]
, (7)

Dk = Re

[⟨∫
dv3

(
Tsf̃

∗
sk

FMs
+ esJ0skϕ̃

∗
k

)
Csk

⟩]
, (8)

Ek = −

⟨∫
dv3∇∥

v∥FsM

2Ts

∣∣∣∣∣Tsf̃∗skFMs
+ esJ0skϕ̃k

∣∣∣∣∣
2
⟩ , (9)

with the particle and energy fluxes Γsk = Re[⟨
∫
dv3ikyJ0sk(ϕ̃

∗
k−v∥Ã∗

∥k)f̃sk/B⟩], Qsk =

Re[⟨
∫
dv3ikyJ0sk(ϕ̃

∗
k−v∥Ã∗

∥k)(msv
2
∥/2+µB)f̃sk/B⟩] and density and temperature scale

lengths Lns
= |∇ lnns|−1, LTs

= |∇ lnTs|−1. The last term Ik is the gyrokinetic
entropy transfer term describing mode-to-mode coupling via the E×B and magnetic
nonlinearities. The role of this term in nonlinear plasma turbulence is extensively
investigated, e.g., on the entropy cascade [18, 19], zonal flow shearing [20], and
magnetic stochastization [21]. The gyrokinetic entropy transfer is given by

Ik =
∑
p

∑
q

Jp,q
k , (10)

where the triad transfer has a symmetric form [20],

Jp,q
k =

∑
s

δk+p+q,0
b · p× q

2B

× Re

[⟨∫
dv3

(
ψ̄spg̃sq − ψ̄sq g̃sp

) Tsg̃sk
FMs

⟩]
, (11)

with the gyrophase-averaged generalized potential ψ̄sk = J0sk(ϕ̃k − v∥Ã∥k) and the

non-adiabatic part of the perturbed distribution function g̃sk = f̃sk+esJ0skϕ̃kFMs/Ts.
The angular brackets ⟨· · · ⟩ denotes the average over the field aligned coordinate z.
Under the coupling condition k+ p+ q = 0, the triad transfer satisfies the symmetry
Jp,q
k = Jq,p

k , the detailed balance Jp,q
k + Jk,p

q + Jq,k
p = 0, and if k, p and q are

parallel, Jp,q
k = 0. Therefore, possible combinations of the triad coupling Jp,q

k , Jk,p
q ,

Jq,k
p are 2 givers and 1 taker (−,−,+) or 1 giver and 2 takers (−,+,+). For example,

the negative triad transfer Jp,q
k physically means that the entropy of the k mode is

transferred to the p or q modes, while its direction is unknown until examining Jk,p
q

and Jq,k
p . Summing up contributions through all triad couplings, the total entropy

transfer Ik describes the k mode is nonlinearly excited or damped. It is also noted
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that, since Xky=0 = Eky=0 = 0 and Dk is a negative definite, the total transfer for
zonal (ky = 0) modes should be positive Iky=0 = −Dky=0 > 0 in the steady state.

2.2.1. Fluid approximation of gyrokinetic triad transfer The total entropy transfer,
Eq. (10), can be rewritten as Ik = −

∑
s Re[⟨

∫
dv3NskTsg̃sk/FMs⟩], and is easily

evaluated with a small computational cost. Considering the implementation of
the gyrokinetic triad transfer analysis, Eq. (11), however, one have to treat the
combination of all Fourier modes with keeping 5D phase space information. Then,
it demands extreme computations especially for multi-scale turbulence. To reduce the
computational complexity, we consider a fluid approximation of the gyrokinetic triad
transfer. One of possible approaches is the Hermite and Laguerre expansion (for v∥
and µ, respectively) of the ”gyrocenter-position” distribution function f̃sk [22]. An
alternative way, which we employ here, is the expansion of the non-adiabatic part of
the ”particle-position” distribution function J0skg̃sk,

J0skg̃sk =

∞∑
l=0

∞∑
m=0

Msk|l,m

l!
Hl(v̄∥)Lm(µ̄)FMs, (12)

Msk|l,m =

∫
dv3Hl(v̄∥)Lm(µ̄)J0skg̃sk, (13)

where v̄∥ = v∥/vts and µ̄ = µB/Ts. We note that the Hermite and Laguerre polynomi-

als with the Maxwellian weight function, Hl(x) = (−1)l exp(x2/2)(d/dx)l exp(−x2/2)
and Lm(x) = exp(x)/m!(d/dx)m[xn exp(−x)], satisfy the orthogonality relations,∫∞
−∞ dxHl(x)Hn(x) exp(−x2/2) = l!

√
2πδl,n and

∫∞
0
dxLm(x)Ln(x) exp(−x) = δm,n.

By defining fluid moments as

ñsk =

∫
dv3J0skfsk, (14)

ũ∥sk =

∫
dv3v∥J0skfsk, (15)

p̃∥sk =

∫
dv3msv

2
∥J0skfsk, (16)

p̃⊥sk =

∫
dv3µBJ0skfsk, (17)

q̃∥∥sk =

∫
dv3msv

3
∥J0skfsk, (18)

q̃∥⊥sk =

∫
dv3v∥µBJ0skfsk, (19)
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the expansion coefficients Msk|l,m up to the third order are given by

Msk|0,0 =
ñsk
ns

+
esϕ̃k
Ts

Γ0sk, (20)

Msk|1,0 =
ũ∥sk

nsvts
, (21)

Msk|2,0 =
p̃∥sk

nsTs
− ñsk

ns
, (22)

Msk|0,1 = − p̃⊥sk

nsTs
+
ñsk
ns

+
esϕ̃k
Ts

k2⊥ρ
2
ts(Γ0sk − Γ1sk), (23)

Msk|3,0 =
q̃∥∥sk

nsTsvts
−

3ũ∥sk

nsvts
, (24)

Msk|1,1 = −
q̃∥⊥sk

nsTsvts
+
ũ∥sk

nsvts
, (25)

where Γ1sk = I1(k
2
⊥ρ

2
ts) exp(−k2⊥ρ2ts). For evaluation of the triad transfer,

velocity-space integrals of J0spϕ̃pg̃sq g̃sk/FMs and v∥J0spÃ∥pg̃sq g̃sk are required.
Using Neumann’s addition theorem for Bessel functions J0sp = J0sqJ0sk +
2
∑∞

n=1(−1)nJnsqJnsk cos(nθqk), where k+ p+ q = 0 and θqk is the angle between q
and k, the integrals become∫

dv3
J0spϕ̃pg̃sq g̃sk

FMs
= ϕ̃p

∫
dv3

[
J0sq g̃sqJ0skg̃sk

+ 2

∞∑
n=1

(−1)nJnsq g̃sqJnskg̃sk cos(nθqk)

]
≃ ϕ̃p

∑
l

∑
m

ns
l!
Msq|l,mMsk|l,m, (26)

∫
dv3v∥

J0spÃ∥pg̃sq g̃sk

FMs
≃

vtsÃ∥p
∑
l

∑
m

ns
l!
(Msq|l+1,m + lMsq|l−1,m)Msk|l,m, (27)

here we neglect n > 0 higher order terms for simplicity. As a result, the gyrokinetic
triad transfer, Eq. (11), is approximated by the fluid moments

Jp,q
k ≃ Jp,q

k(f)

=
∑
s

δk+p+q,0
nsTsb · p× q

2B

× Re

[∑
l

∑
m

⟨{
ϕ̃pMsq|l,m − ϕ̃qMsp|l,m

− vtsÃ∥p(Msq|l+1,m + lMsq|l−1,m)

+ vtsÃ∥q(Msp|l+1,m + lMsp|l−1,m)
}Msk|l,m

l!

⟩]
, (28)

for the practical purpose we have employed fluid moments up to the third order, Eqs.
(20) - (25). The fluid approximation significantly reduces the computational cost
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(a) Electron transfer (kinetic)
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(b) Electron transfer (fluid)
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(c) Ion transfer (kinetic)
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(d) Ion transfer (fluid)
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Figure 1. Comparison of gyrokinetic entropy transfer Ik =
∑

p

∑
q Jp,q

k and its

fluid approximation Ik(f) =
∑

p

∑
q Jp,q

k(f)
, where Jp,q

k(f)
is given by Eq. (28) up

to the third order (normalized by n0Tivtiρ
2
ti/R

3). We have split the transfer into
each species, (a)-(b) for electrons and (c)-(d) for ions. Positive (negative) transfer
means that the mode k obtains (loses) its entropy via nonlinear mode coupling.

and memory. It only requires 3D data of the fluid moments of Eqs. (14) - (19) and
electromagnetic potentials, and can be treated by post-processing.

Figure 1 plots the total entropy transfer evaluated by the gyrokinetic description
or the fluid approximation by using the multi-scale turbulence data at the saturated
state, where ion-scale fluctuations dominate as shown in Sec. 3. Regarding to the
electron entropy transfer in Fig. 1 (a) and (b), the fluid approximation captures
qualitative properties such as negative entropy transfer to the dominant ITG modes
at (kxρti, kyρti) ≃ (0, 0.3) and its twisted mode in the sheared magnetic geometry
[23, 24] on the line of kx = ±2πŝky, where ŝ is the magnetic shear. It also satisfies
the theoretical requirement on the positivity of entropy transfer to zonal modes.
Unfortunately, the absolute value of the fluid approximation have differences of order
unity from the gyrokinetic one, and thus is not applicable for quantitative evaluations
of nonlinear couplings. Fluid approximation of the ion transfer also shows qualitative
agreement with gyrokinetic one at the low wave number region, although the transfer
at kρti > 1 is underestimated [See Fig. 1 (c) and (d)]. The errors in the fluid
approximation originate from (i) the truncation of the fluid moments and (ii) the
finite-Larmor-radius correction of neglecting higher-order terms in the expansion of
the Bessel function, Eqs. (26), (27). The latter seems to underestimate the transfer at
high wave number region kρts. As a consequence, Fig. 1 demonstrates a qualitative
applicability of the fluid approximation.

2.2.2. Sub-space transfer analysis From the ETG/ITG turbulence simulation results,
ETG is strongly distorted by ITG turbulence and there is no coherent structure
at electron scales. To analyze collective behaviors of electron-scale turbulence, we
here define sub-space transfer analysis technique. We divide the wave-number space
Ω = {k} into several sub-spaces Ωk, where the union of all sub-spaces constructs the
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Figure 2. (a) Schematic picture of the sub-space transfer J
Ωp,Ωq

Ωk
, (b) Example

of J
Ωp,Ωp

Ωk
̸= 0, and (c) Split of the wave number space into zonal modes

ΩZF = {k | ky = 0}, ion-scale modes Ωi = {k | |ky ̸= 0 ∩ kρti ≤ 2}, and
electron-scale modes Ωe = {k | ky ̸= 0 ∩ kρti > 2}.

whole wave-number space ∪kΩk = Ω and the each intersections are empty Ωk∩Ωp = ∅.
Taking the sum over k in a sub-space, the sub-space entropy balance

d

dt
(SΩk

+WΩk
) = XΩk

+DΩk
+ EΩk

+ IΩk
, (29)

the nonlinear entropy transfer

IΩk
=
∑
Ωp

∑
Ωq

J
Ωp,Ωq

Ωk
, (30)

and the sub-space transfer

J
Ωp,Ωq

Ωk
=
∑
k∈Ωk

∑
p∈Ωp

∑
q∈Ωq

Jp,q
k , (31)

are respectively defined, where
∑

Ωk
means the summation over all sub-spaces and∑

k∈Ωk
means the summation over all k being an element of Ωk. Thus,

∑
k∈Ω =∑

Ωk

∑
k∈Ωk

. The sub-space transfer measures the entropy gain for the modes in
the sub-space Ωk via nonlinear triad interactions with the modes in Ωp and Ωq

[schematically shown in Fig. 2 (a)] and preserves some mathematical properties such as

the symmetry J
Ωp,Ωq

Ωk
= J

Ωq,Ωp

Ωk
and the detailed balance J

Ωp,Ωq

Ωk
+J

Ωk,Ωp

Ωq
+J

Ωq,Ωk

Ωp
= 0

(and especially the self-conservation JΩk,Ωk

Ωk
= 0) in the same manner as the triad

transfer. A property different from the triad transfer is that J
Ωp,Ωp

Ωk
̸= 0 if Ωp ̸= Ωk,

since p ∈ Ωp and q ∈ Ωp can interact with k ∈ Ωk [Fig. 2 (b)]. The sub-space transfer
analysis is regarded as a natural extension of a shell-to-shell transfer (often used for
the analysis of neutral fluids and applied for some studies on plasma turbulence),
where sub-spaces are chosen to be concentric shells Ωn = {k | |k − n∆| < ∆/2}
with the width ∆, and then,

∑
Ωq
J
Ωp,Ωq

Ωk
is regarded as the transfer between the

shells Ωk and Ωp. Although the shell-to-shell transfer is essentially appropriate for
homogeneous turbulence, the sub-space transfer allows flexible analysis of interactions
among arbitrary sub sets of wave-number space. It is desirable for the analysis of
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plasma turbulence which is often anisotropic especially in case with the strong zonal
flows. Indeed, in the following section the wave-number space is divided into zonal
modes ΩZF = {k | ky = 0}, ion-scale modes Ωi = {k | |ky ̸= 0 ∩ kρti ≤ 2}, and
electron-scale modes Ωe = {k | ky ̸= 0 ∩ kρti > 2}, as drawn in Fig. 2 (c).

The computational cost of the sub-space transfer can be reduced by using the
Fast Fourier Transform algorithm (FFT), when the number of sub-spaces are not
large. The wave-number-space filter

GΩk

k =

{
1 (k ∈ Ωk)

0 (k /∈ Ωk)
(32)

leads to the expression
∑

k∈Ωk
=
∑

kG
Ωk

k , and therefore sub-space transfer can be
expanded as

J
Ωp,Ωq

Ωk
=
∑
s

Re

[⟨∫
dv3

∑
k

Ts(G
Ωk

k g̃sk)

FMs
NΩp,Ωq

sk

⟩]
, (33)

NΩp,Ωq

sk =
∑
p

∑
q

δk+p+q,0
b · p× q

2B

×
(
G

Ωp
p ψ̄spG

Ωq
q g̃sq −G

Ωq
q ψ̄sqG

Ωp
p g̃sp

)
, (34)

Therefore, after the preparation of the filtered functions GΩk

k ψ̄sk and GΩk

k g̃sk, the
convolution in Eq. (34) is calculated by using FFT with a reduced computational cost
of the order of N logN .

3. Results

Using the entropy transfer analysis techniques, we here investigated nonlinear
interactions in multi-scale ETG/ITG turbulence. The following simulation data are
the same as those in our previous publication [11], where plasma parameters are set
to be the so-called cyclone base case parameters with employing realistic proton-to-
electron mass ratio mi/me = 1836 and β value (2%). A large number of grid points
are employed to resolve electron and ion scales simultaneously.

3.1. Turbulent fluctuations and associated transport

At the beginning, we briefly describe time evolution of a multi-scale ETG/ITG
turbulence simulation. Figure 3 shows snapshots of the electrostatic potential
fluctuations in the bad curvature region (z = 0). Starting with almost quiescent initial
conditions, the high-growth-rate ETG modes rapidly grow up. Saturated profile in
Fig. 3 (a) demonstrate the appearance of radially elongated eddies, called as streamers
[25]. After that, in the presence of ETG turbulence, the ITG modes linearly grow up
in Fig. 3 (b). The most unstable ITG has the wavenumber (kxρti, kyρti) = (0, 0.33)
or equivalently the poloidal wavelength λy = 18.8ρti. It is also found that passing
electrons tend to elongate the ITG mode structure in parallel direction and create
twisted structures in the presence of magnetic shear. The radial wavenumber of the
twisted mode is kx = 2πŝky = 1.6ρ−1

ti (or equivalently λx = 3.8ρti) for kyρti = 0.33 and
ŝ = 0.78. This corresponds to the fine radial structures observed in Fig. 3 (b). Finally
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Figure 3. Snapshots of the electrostatic potential fluctuations ϕ̃ [normalized by
Tiρti/(eR)] at the flux-tube mid-plane z = 0 (bad curvature region). There are
three time slices: (a) ETG-dominant regime at t = 4.5R/vti, (b) linear growth of
ITG at t = 33.18R/vti, and (c) a quasi-steady state at t = 60.36R/vti. Ten-times
magnified pictures are also drawn to see electron scales.



Cross-scale interactions between electron and ion temperature gradient driven turbulence via sub-ion-scale structures11

3RORLGDO�ZDYHQXPEHU�N\!WL

��������������������������

���

�

����

����
F
H
N
�F
J
%

/RZ�N
VLPXODWLRQ

+LJK�N�
VLPXOD
WLRQ

)XOO�N�
VLPXODWLRQ

/RZ�N�VLP��
ILOWHULQJ�=)V�
�N[!WL!����

Figure 4. Electron energy diffusivity spectrum χek as a function of the poloidal
wave number, obtained from a full-k simulation resolving multi-scale ETG/ITG
turbulence (a solid red line), single-scale simulations resolving only electron-scale
high-k modes (a dashed green line) or ion-scale low-k modes (a dotted blue line).
Transport levels in a low-k simulation filtering out kxρti > 0.8 zonal fluctuations
is also plotted (a thick blue line).

the growth of ITG instability is also saturated, and one finds a quasi-steady state of
multi-scale ETG/ITG turbulence shown in Fig. 3 (c), where ITG-driven turbulent
structures are dominant, and the electron-scale streamers almost disappear. (We note
that there are reports that electron-scale streamers can locally survive against the
background larger-scale ITG turbulence when employing marginal ITG parameters
[7, 9].) The ITG turbulence generates various size of eddies and the large-scale zonal
flows characterized by zero poloidal wave number ky = 0. From the figure, its radial
scale is kxρti ≃ 0.13 or equivalently λx ≃ 48ρti. One also finds kyρti ≃ 0.33 or
lower-wave-number eddies and associated fine radial structures.

From this turbulence data, electron energy diffusivity spectrum is calculated by
χek = QekLTe/(n0Te), as shown in Fig. 4. The normalization is in the ion gyro-Bohm
unit χgB = vtiρ

2
ti/R. As ITG turbulence dominates in a quasi-steady state, ion-scale

fluctuations are responsible for a large amount of electron energy transport, peaking
around (kx, ky) = (0, 0.3ρti). Comparing the multi-scale (full-k) simulation results to
other single-scale ones resolving only electron or ion scales (high-k and low-k), one
finds a significant reduction of the electron-scale transport, and at the same time, an
enhancement of the ion-scale transport in the multi-scale ETG/ITG turbulence. The
results clearly demonstrate the mutual cross-scale interactions. In Fig. 4, an ion-
scale simulation result with artificially filtering out high-wave-number (kxρti > 0.8)
zonal flows is also plotted. The result shows a clear enhancement of transport level in
comparison to the nominal low-k simulation. This point will be discussed in Sec. 3.3.

Field energy spectrum in Fig. 5 also shows suppression of electron-scale
turbulence and enhancement of ion-scale turbulence in a multi-scale ETG/ITG
turbulence simulation. The plot includes zonal components having zero poloidal
wave number ky = 0. In consistent with Fig. 3, a single-scale ETG turbulence
simulation (high-k) shows weak zonal flow generation and a distinct peak of streamers,
while strong zonal flows are driven in single-scale ITG and multi-scale ETG/ITG
turbulence simulations (low-k and full-k). It should be noted that total field energy is
different by a factor of two,

∫
Wkdky/(n0Tiρ

2
ti/R

2) = 15.7 and 30.8 for low-k and full-k
simulations, but the energy of ky = 0 zonal modes have only little change. Since zonal
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Figure 5. Field energy spectrum Wk as a function of the poloidal wave number,
obtained from a full-k simulation resolving multi-scale ETG/ITG turbulence
(circular dots), single-scale simulations resolving only electron-scale high-k modes
(square dots) or ion-scale low-k modes (triangle dots).

modes are driven by the nonlinear entropy transfer from non-zonal modes, this means
that generation of zonal modes becomes inefficient in the presence of electron-scale
turbulence.

3.2. The i→ e interaction

One of key questions we should address is: how does ion-scale turbulence suppress
electron-scale streamers? The answer is the shearing of streamers by short-wave-
length ITG eddies as explained in this subsection.

To evaluate cross-scale effects on a streamer, we have applied the detailed triad
transfer analysis using the fluid approximation for a typical wave number of a streamer
k = (0, 4.4ρ−1

ti ), as plotted in Fig. 6. For convenience, we again explain its
physical meaning. The triad transfer function having six-dimensional dependence
(kx, ky, px, py, qx, qy) can be reduced to a two-dimensional function by imposing the
resonant condition k + p+ q = 0 and choosing a fixed k. Then, Jp,q

k (px, py), plotted
as a function of p, denotes the entropy gain of the analyzed mode k through the
coupling with p (and q = −k − p). On the other hand, Jq,k

p (px, py) describes the
gains of p modes through the coupling with the analyzed mode k (and q). Then, Fig.
6 (a) shows that the analyzed k = (0, 4.4ρ−1

ti ) streamer couples with various modes
in wide wave number range. Distinctive positive values of Jp,q

k around py ≃ −0.4ρ−1
ti

and py ≃ −4.0ρ−1
ti satisfying the resonant condition mean that the analyzed streamer

obtains entropy through the coupling with these modes. On the other hand, negative
values of Jp,q

k around py ≃ 0.4ρ−1
ti and py ≃ −4.8ρ−1

ti means that entropy of the
analyzed streamer is transferred to those modes. The above entropy giver and taker
are clarified in Fig. 6 (b). The modes around py ≃ −4.0ρ−1

ti (or py ≃ −4.8ρ−1
ti ) mainly

lose (or obtain) entropy via the coupling with the analyzed streamer of the mode k,
while the other modes have little loss or gain. This observation is consistent with the
detailed balance Jp,q

k +Jk,p
q +Jq,k

p = 0, i.e., the analyzed ky ≃ 4.4ρ−1
ti streamer obtains

the entropy (Jp,q
k > 0) from the modes py ≃ −4.0ρ−1

ti (Jq,k
p < 0), where the coupled

modes qy = −ky−py ≃ −0.4ρ−1
ti acts like a mediator (Jk,p

q ≃ 0). Similarly, the entropy

of the analyzed ky ≃ 4.4ρ−1
ti streamer is transferred to the modes py ≃ −4.8ρ−1

ti via
the copling with qy = −ky − py ≃ 0.4ρ−1

ti (−Jp,q
k ≃ Jq,k

p > 0 ≃ Jk,p
q ). We have
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Figure 6. Analysis of the triad transfer for a streamer based on the fluid
approximation (normalized by n0Tivtiρ

2
ti/R

3). (a) Jp,q
k(f)

for k = (0, 4.4ρ−1
ti ) is

plotted as a function of p, which represents the entropy gain of the fixed mode k

through the coupling with p. (b) Jq,k
p(f)

for k = (0, 4.4ρ−1
ti ) is plotted as a function

of p, which represents the entropy gain of p through the coupling with the fixed
mode k.

checked the triad transfer functions not only of the mode k = (0, 4.4ρ−1
ti ) but also

of some other modes around wave-number range of the typical ETG turbulence, and
observed similar entropy transfers through the coupling with ion-scale eddies.

Although strong low-wave-number zonal flows having kxρti = 0.13 are observed in
the previous subsection, its contribution on an electron-scale streamer is not dominant.
The relevant wave number for cross-scale coupling between ITG turbulence and ETG
streamers are clearly shown in Fig. 7, where positive/negative contributions on the
analyzed streamer are separately shell integrated in the wave number space,

Jp,q
k(+)(p⊥) =

1

∆p

∑
|p⊥−p′

⊥|<∆p/2

Jp′,q
k (p′x, p

′
y)
(
for Jp′,q

k ≥ 0
)
, (35)

Jp,q
k(−)(p⊥) =

1

∆p

∑
|p⊥−p′

⊥|<∆p/2

Jp′,q
k (p′x, p

′
y)
(
for Jp′,q

k < 0
)
, (36)

with a shell width of ∆p. With the consideration of the detailed balance, the positive
(or negative) contributions show that the analyzed streamer obtains from (loses to)
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Figure 7. Shell-integrated triad transfer [from Fig. 6 (a)] with separating positive
and negative contributions, Jp,q

k(+)
(p⊥) and Jp,q

k(−)
(p⊥) defined in Eqs.(35), (36)

(where ∆p = 0.13ρ−1
ti ). The analyzed wave number of the streamer |k| = 4.4ρ−1

ti
is also plotted by a dotted line as a reference.

the neighboring-wave-number modes through the coupling with ion-scale turbulence.
The ion-scale turbulence works as a mediator, and eddies around p⊥ρti ≃ 1 are more
effective than low-wave-number zonal flows at p⊥ρti ≃ 0.13.

From the observations in this section, we now draw a physical picture of
suppression of electron-scale streamers by ion-scale turbulence as the i→ e interaction.
The ITG-driven ion-scale turbulence generates not only long-wave-length zonal flows
but also involves large and small scale eddies. The long-wave-length zonal flows does
not effectively act on electron-scale streamers because of separation of spatio-temporal
scales. On the other hand, relatively short-wave-length ITG eddies having k⊥ρti ≃ 1
easily interact with electron-scale streamers. They are still larger than electron scales
and act like shear flows, tilting the electron-scale streamers and suppressing them.
Then, electron scales are governed by a normal cascade, i.e., the entropy is transferred
from the lower-wave-number modes to the higher-wave-number modes through the
coupling with short-wave-length ITG eddies.

3.3. The e→ i interaction

The second key question on the cross-scale interactions is: how does electron-scale
turbulence enhance ion-scale transport? The key player is short-wave-length zonal
flows which are created by the ITG modes with kinetic electrons, and damped by
electron-scale turbulence, as explained in this subsection.

In the previous subsection it is revealed that electron scales are governed by
a normal cascade. Therefore, the enhancement of the ion scale transport is not
attributed to the inverse energy cascade from electron to ion scales. Obtaining a hint
from the observation of inefficient zonal mode generation in a multi-scale ETG/ITG
turbulence simulation, we focus on the entropy transfer to zonal modes. Ion-scale and
electron-scale contributions are separately evaluated by using the sub-scape transfer
analysis technique Eq. (31) with a fluid approximation, where the wave-number space
is split into sub-spaces as shown in Fig. 2 (c). Fig. 8 shows radial wave number
spectra of the entropy transfer to zonal modes, where the ion/electron entropy transfer
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Figure 8. Sub-space transfer to zonal modes (normalized by the turbulent flux
drive term

∑
k Xk), where ΩZF is further split into each mode, and electron and

ion entropy transfers are individually evaluated as J
Ωp,Ωq

Ωk
=

∑
s J

Ωp,Ωq

sΩk
. The

dashed red line shows the ion entropy transfer caused by ion-scale fluctuations

J
Ωi,Ωi
ik∈ΩZF

, while the dotted green and solid blue lines respectively represent the

electron entropy transfer caused by ion-scale fluctuations and by electron-scale

contributions, J
Ωi,Ωi
ek∈ΩZF

and 2J
Ωe,Ωi
ek∈ΩZF

+ JΩe,Ωe
ek∈ΩZF

.

Figure 9. Time-space profile of the flux-surface averaged gyrocenter density (a)
of electrons ⟨ñe⟩ and (b) of ions ⟨ñs⟩ (normalized by n0ρti/R).

caused by the ion-scale/electron-scale turbulence is plotted. The ion entropy transfer

from electron scales (2JΩe,Ωi

ik∈ΩZF
+ JΩe,Ωe

ik∈ΩZF
) is negligibly small and is omitted. The ion

entropy is transferred from ion-scale fluctuations to low-wave-number zonal modes
at kxρti ≃ 0.13, as represented by JΩi,Ωi

ik∈ΩZF
which may be casually referred to the

contribution from ITG. On the other hand, the electron entropy transfer caused by
ion-scale fluctuations JΩi,Ωi

ek∈ΩZF
, which corresponds to the contribution from electron

response in ITG, drives not only the low-wave-number zonal modes but also relatively
high-wave-number zonal modes at kxρti = 1.3 or 1.6. Their wave numbers correspond
to the twisted mode in the sheared magnetic geometry kxρti = 2πŝkyρti = 1.3 or 1.6
for kyρti = 0.26 and 0.33, which are dominant poloidal wave numbers of the ITG
turbulence. As recently discussed in the literature [24], passing kinetic electrons in
ion-scale turbulence tend to elongate the mode structure in the parallel direction and
in turn create radially-twisted structures. The nonlinear coupling with these radially-
twisted modes drives high-wave-number zonal modes, which have non-negligible
impact on turbulent transport. Supplementally, flux-surface averaged gyrocenter
densities of electrons and ions in a multi-scale ETG/ITG turbulence simulation are
plotted in Fig. 9, which shows the existence of high-wave-number zonal components of



Cross-scale interactions between electron and ion temperature gradient driven turbulence via sub-ion-scale structures16

the electron gyrocenter density. High-wave-number zonal flows are formed through the
balance of the zonal electron gyrocenter density and the ion polarization. The electron
entropy transfer caused by electron-scale turbulence 2JΩe,Ωi

ek∈ΩZF
+JΩe,Ωe

ek∈ΩZF
, shown in Fig.

8 (a solid blue line), clearly demonstrates the damping effect on relatively high-wave-
number zonal modes at kxρti > 1 due to the electron-scale turbulence, while the effects
on the low-wave-number zonal modes around kxρti < 0.5 are negligibly small. We have
also checked the impact of the high-wave-number zonal flows by conducting a single-
scale ITG simulation with artificially filtering out the high-wave-number zonal flows,
i.e., ϕ̃k = 0 for ky = 0 and kxρti > 0.8. The result in Fig. 4 shows the enhancement of
ion-scale transport levels by neglecting the high-wave-number zonal modes. The high-
wave-number zonal flows have shearing rate comparable to low-wave-number zonal
flows and affect ITG turbulence as discussed in [24].

From the above observation, we discuss a physical mechanism of the enhancement
of ion-scale transport by electron-scale turbulence as the e → i interaction. Ion-scale
ITG turbulence produces not only long-wave-length zonal flows but also short-wave-
length ones. In the presence of kinetic electrons, mode structures of ITG elongate
in the parallel direction and generate radially short-wave-length fluctuations/zonal
flows in a sheared magnetic geometry. The short-wave-length zonal flows sustained
by electron density fluctuations are disturbed by electron-scale turbulence. In other
words, without kinetic electron response in ITG, there is no electron-scale contribution
to the ion scale, since it will be averaged out by ion gyromotion. The damping effect
of electron-scale turbulence on short-wave-length zonal flows reduces the zonal flow
shearing, in turn, enhances the ion-scale transport.

4. Summary and discussion

We have carried out multi-scale ETG/ITG gyrokinetic simulations and investigated
the physical mechanisms of cross-scale interactions by means of the fluid
approximation of triad transfer analysis and the sub-space transfer analysis technique.
First, a suppression mechanism of electron-scale turbulence by ion-scale turbulence
(called as the i → e interaction) is examined in detail by using the triad transfer
analysis on electron-scale streamers. Relatively short-wave-length eddies k⊥ρti ≃ 1
caused by the ITG turbulence acts like shear flows on the electron-scale steamers
and suppresses them. Then, the electron scale is governed by the normal cascade via
the coupling with relatively short-wave-length ITG eddies. Second, an enhancement
mechanism of ion-scale turbulence by electron-scale turbulence (called as the e → i
interaction) is investigated by using the sub-space transfer analysis, where ion-scale
and electron-scale contributions to zonal flow generation/damping are split. It is
revealed that short-wave-length zonal flows kxρti ≃ 1 generated by the ITG turbulence
with kinetic electrons are effectively damped by the electron-scale turbulence. As a
result, reduction of zonal flow shear by the electron-scale turbulence enhances the
ion-scale transport.

The above discussion is schematically summarized in Fig. 10. According to a
single-scale turbulence paradigm, ion-scale turbulence (ITGs) at kρi < 1 produces
long-wave-length zonal flows (Low-k ZFs), of which the shearing motion suppresses
ITGs. It is supposed to be independent of electron-scale turbulence (ETGs, Streamers)
at kρi ≫ 1. On the other hand, in a multi-scale paradigm, there are cross-scale
interactions between electron and ion scales. First, ITG turbulence generates short-
wave-length eddies (High-k Eddies) at kρi ≃ 1, which suppresses electron-scale
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Figure 10. Schematic picture of the cross-scale interactions between ion-scale
and electron-scale turbulence through sub-ion-scale structures. The symbols ’(e)’
and ’(s)’ denote the ’excitation’ and ’suppressing’ effects, respectively.

turbulence. Second, kinetic electrons in the ITG turbulence produce short-wave-length
zonal flows (High-k ZFs), which tend to suppress ITGs and can be disturbed by the
electron-scale turbulence. Through these processes, the electron-scale and ion-scale
turbulence can interact. We emphasize the importance of sub-ion-scale structures
around kρi ≃ 1 in cross-scale interactions, rather than long-range interactions in
wave-number space.

We have newly developed the fluid approximation of triad transfer analysis
and the sub-space transfer analysis techniques, to evaluate nonlinear cross-scale
interactions in multi-scale turbulence. The fluid approximation significantly reduces
computational cost and allows the analysis of triad transfer by post-processing, but
is applicable only for qualitative analysis. Since the formulation is based on particle
position fluid moments (not on gyrocenter fluid moments which cannot be measured
in experiments), the fluid approximation of triad transfer can be experimentally
evaluated, if fluid moments are measured with sufficient two-dimensional resolutions.
The sub-space transfer, which does not necessarily require the fluid approximation,
allows flexible analyses of interactions among arbitrary sub-spaces, and identifies
collective behaviors of cross-scale interactions. Additionally, we here propose another
class of sub-space transfer, which may be a convenient diagnostic tool of cross-scale
interactions in gyrokinetic simulations with moderate computational costs. Dividing
the wave-number space into two sub-spaces of ion and electron scales for evaluating

NΩp,Ωq

sk of Eq. (34) by using FFT, one may obtain the following form of the entropy
transfer,

J
Ωp,Ωq

sk = Re

[⟨∫
dv3

Tsg̃sk
FMs

NΩp,Ωq

sk

⟩]
. (37)

It keeps only the symmetric property J
Ωp,Ωq

sk = J
Ωq,Ωp

sk but not the detailed balance.

The transfer JΩi,Ωi

k represents the net entropy gain/loss of the mode k from ion-scale

turbulence, and 2JΩe,Ωi

k + JΩe,Ωe

k means the contributions in the presence of electron-
scale turbulence.

The multi-scale turbulence paradigm is not limited to the case between ITG and
ETG turbulence. For example, micro-tearing modes are characterized by an ion-scale
poloidal wave number and a radially localized current sheet, which may be regarded as
a sub-ion-scale structure and can be affected by the ETG turbulence. Not only micro-
instabilities of electron and ion scales, interactions between ion-scale turbulence and
global magneto-hydrodynamic instabilities are an alternative topic of interests [26].



Cross-scale interactions between electron and ion temperature gradient driven turbulence via sub-ion-scale structures18

Extensions of multi-scale plasma turbulence to other instabilities are remained for
future works, and should provide more comprehensive understandings on cross-scale
interactions.
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