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Power of one nonclean qubit
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The one-clean qubit model (or the DQC1 model) is a restricted model of quantum computing where only a
single qubit of the initial state is pure and others are maximally mixed. Although the model is not universal, it can
efficiently solve several problems whose classical efficient solutions are not known. Furthermore, it was recently
shown that if the one-clean qubit model is classically efficiently simulated, the polynomial hierarchy collapses
to the second level. A disadvantage of the one-clean qubit model is, however, that the clean qubit is too clean: for
example, in realistic NMR experiments, polarizations are not high enough to have the perfectly pure qubit. In this
paper, we consider a more realistic one-clean qubit model, where the clean qubit is not clean, but depolarized. We
first show that, for any polarization, a multiplicative-error calculation of the output probability distribution of the
model is possible in a classical polynomial time if we take an appropriately large multiplicative error. The result
is in strong contrast with that of the ideal one-clean qubit model where the classical efficient multiplicative-error
calculation (or even the sampling) with the same amount of error causes the collapse of the polynomial hierarchy.
We next show that, for any polarization lower-bounded by an inverse polynomial, a classical efficient sampling (in
terms of a sufficiently small multiplicative error or an exponentially small additive error) of the output probability
distribution of the model is impossible unless BQP (bounded error quantum polynomial time) is contained in the
second level of the polynomial hierarchy, which suggests the hardness of the classical efficient simulation of the
one nonclean qubit model.
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To show the supremacy of quantum computing over
classical computing is one of the most central research subjects
in physics and computer science. Although several quantum
advantages have been shown in terms of communication
complexity [1,2] and query complexity [3,4], the ultimate
question remains open: Is BPP (bounded error probabilistic
polynomial time) equal to BQP (bounded error quantum
polynomial time)?

One good strategy to study the gap between quantum
and classical is restricting the quantum side. It is also
important from the experimental point of view given the
high technological demands for the realization of a universal
quantum computer. For example, quantum computing that uses
only Clifford gates [5,6] or fermionic linear optical gates (or
the matchgates) [7–10] is classically efficiently simulatable.
On the other hand, restricted models that do not seem to
be classically efficiently simulatable do exist [11–15]. For
example, if quantum computing that uses only noninteracting
bosons [15] or commuting gates [12–14] (the so-called IQP
model) is classically efficiently simulated, then the polynomial
hierarchy collapses to the third level (or the second level [16]).
Since a collapse of the polynomial hierarchy is not believed
to happen, these results suggest the hardness of the classical
efficient simulation of these restricted models.

The one-clean qubit model (or the DQC1 model) [17] is
another restricted model of quantum computing that is believed
to be stronger than classical computing. The model was
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originally motivated by NMR, which has over half a century
of history and mature control schemes [18–20]. An NMR
spin ensemble system has several physical advantages: for
example, molecules consisting of a wide variety of nuclear and
electron spins can be chemically synthesized. Furthermore,
the macroscopic signals are obtained by virtue of the huge
number of copies in the ensemble with less backaction. Finally,
each spin is highly isolated from external degrees of freedom,
which is favorable to avoid decoherence. For these reasons,
a NMR spin ensemble system is a useful experimental setup
to probe quantum many-body dynamics and, in fact, it has
been applied to several quantum information processing tasks
including quantum simulation [21]. However, a disadvantage
of NMR is that the initialization (polarization) of a nuclear spin
is not easy. Therefore, NMR quantum information processing
has to be a highly-mixed-state quantum computation.

The one-clean qubit model formalizes NMR quantum
information processing in the following way: First, the initial
state is |0〉〈0| ⊗ ( I

2 )⊗n−1, where I ≡ |0〉〈0| + |1〉〈1| is the
two-dimensional identity operator. Second, any (uniformly
generated polynomial-time) n-qubit unitary operator is applied
on it. Finally, some qubits are measured in the computational
basis. (Note that, in some strict definitions, only a single qubit
is allowed to be measured, or only an expectation value of a
single-qubit measurement is obtained.)

If the clean qubit |0〉 of the initial state is replaced with the
maximally mixed state I

2 , the quantum computing is trivially
simulatable with a polynomial-time classical computer, since
U ( I

2 )⊗nU † = ( I
2 )⊗n for any unitary operator U . This example

suggests that the one-clean qubit model is also classically
efficiently simulatable, since only a single pure qubit does not
seem to cause any drastic change. However, surprisingly, the

2469-9926/2017/95(4)/042336(6) 042336-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevA.95.042336


MORIMAE, FUJII, AND NISHIMURA PHYSICAL REVIEW A 95, 042336 (2017)

model can efficiently solve several problems whose efficient
classical solutions are not known, such as the spectral density
estimation [17], testing integrability [22], calculations of
the fidelity decay [23], and approximations of the Jones
polynomial, HOMFLY polynomial, and Turaev–Viro invariant
[24–27]. Furthermore, it was recently shown that, if the
probability distribution of the measurement result on the
single output qubit of the one clean qubit model is classically
efficiently sampled (in terms of a multiplicative error or
an exponentially small additive error), then the polynomial
hierarchy collapses to the second level [16,28]. Roles of
quantumness (entanglement, discord, etc.) in the one-clean
qubit model has also been intensively studied [29–37].

A disadvantage of the one-clean qubit model is, however,
that the clean qubit is too clean: for example, in realistic
experiments, the polarization of spins in an NMR ensemble
is not high enough to obtain the perfectly pure qubit (even
if the algorithmic cooling or the quantum data compression
[38–40] is employed). Therefore, the following important
question remains open: can we show any hardness of a classical
efficient simulation of a more realistic one “nonclean” qubit
model?

In this paper, we consider a modified version of the one
clean qubit model where the clean qubit of the initial state is
not clean but depolarized [Eq. (1)]. We first show that, for any
polarization, a multiplicative-error calculation of the output
probability distribution of the model is possible in a classical
polynomial time if we take a sufficiently large multiplicative
error. Note that the result is in strong contrast with that of
the ideal one-clean qubit model where the classical efficient
multiplicative-error calculation (or even the sampling) with the
same amount of error causes the collapse of the polynomial
hierarchy [16,28]. We also point out that the bound of the
multiplicative error is optimal by showing a counterexample
for errors smaller than the bound. We next consider the
sampling of the output probability distribution of our model.
We show that for any polarization lower-bounded by an
inverse polynomial, a classical efficient sampling (in terms
of a sufficiently small multiplicative error or an exponentially
small additive error) is impossible unless BQP is contained in
the second level of the polynomial hierarchy. Since it is not
believed to happen [41], the result demonstrates the power of
one nonclean qubit. In short, the computational capability of
the one nonclean qubit model with a small polarization exhibits
a “phase transition” on the magnitude of the polarization: a
classical simulation with a multiplicative error larger than the
polarization is possible, but it is impossible when the error is
smaller than the polarization.

Note that, with similar and other motivations, noisy versions
of IQP circuits have been studied recently and shown to be hard
to efficiently simulate classically [14,42]. Moreover, quantum
computing that uses a universal gate set but is too noisy to
realize fault-tolerant universal quantum computing was shown
to be hard to classically efficiently simulate [43].

One nonclean qubit model. We consider the following
model: The initial state is the n-qubit state

ρ init
ε ≡

(
1 + ε

2
|0〉〈0| + 1 − ε

2
|1〉〈1|

)
⊗

(
I

2

)⊗(n−1)

, (1)

where the first qubit corresponds to the nuclear spin to be
probed whose polarization ε is relatively higher than the others
but still very small. (This type of nonclean qubit model was
also studied in Ref. [44].) The case ε = 1 corresponds to
the original one-clean qubit model. Any (uniformly generated
polynomial-time) n-qubit unitary operator U is applied on the
initial state to obtain ρε ≡ Uρ init

ε U †. Finally, some qubits are
measured in the computational basis. If we measure all qubits,
the probability pz of obtaining the result z ∈ {0,1}n is

pz ≡ 〈z|ρε |z〉 = ε

〈
z

∣∣∣∣U
(

|0〉〈0| ⊗ I⊗(n−1)

2n−1

)
U †

∣∣∣∣z
〉
+ 1 − ε

2n
.

Multiplicative-error calculation. First, we consider calcu-
lations of the output probability distribution of the model. As
is shown in Appendix A, the exact calculation is trivially #P
hard (actually GapP complete). We therefore consider approx-
imations; namely, multiplicative-error calculations. Here, a
multiplicative-error approximation with the error c � 0 means
that the target value p and the calculated value q satisfy
|p − q| � cp.

Result 1. For any 0 � ε < 1, pz can be approximated by
the uniform distribution qz = 1

2n with any multiplicative error
c that satisfies c � ε

1−ε
.

Proof. We can show 1−ε
2n � pz � 1+ε

2n for any z ∈ {0,1}n.
Therefore,

∣∣∣∣pz − 1

2n

∣∣∣∣ � ε

2n
= ε

1 − ε

1 − ε

2n
� cpz.

�
According to the result of Ref. [16], if the output probability

distribution of the computational-basis measurement on the
single output qubit of the one clean qubit model is classically
efficiently sampled with the c = 1 − 1

2n multiplicative error,
then the polynomial hierarchy collapses to the second level
(see Appendix B). Result 1 shows that the hardness result no
longer holds for the one nonclean qubit case [45]. In fact, from
Result 1, for any x ∈ {0,1},
∣∣∣∣∣∣

∑
y∈{0,1}n−1

pxy − 1

2

∣∣∣∣∣∣ =
∣∣∣∣∣∣

∑
y∈{0,1}n−1

pxy −
∑

y∈{0,1}n−1

1

2n

∣∣∣∣∣∣
�

∑
y∈{0,1}n−1

∣∣∣∣pxy − 1

2n

∣∣∣∣ � c
∑

y∈{0,1}n−1

pxy,

which means that the probability
∑

y∈{0,1}n−1 pxy of obtaining
x ∈ {0,1} when the first qubit of our model is measured in
the computational basis is approximated as 1

2 (and therefore
efficiently sampled classically) with the multiplicative error c.
If we take the polarization ε as ε � 1

2 − 1
2n+2−2 , for example,

c can be c = 1 − 1
2n .

Optimality of the bound. We can show that the bound c �
ε

1−ε
of Result 1 is optimal in the following sense:

Result 2. For any 0 � ε < 1 and c � 0 such that 0 � c <
ε

1−ε
, and for any probability distribution q : {0,1}n � z �→

qz ∈ [0,1], there exists an n-qubit unitary operator U such
that |pz − qz| > cpz for a certain z ∈ {0,1}n.
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Proof. If qz < 1
2n for all z ∈ {0,1}n, then

∑
z∈{0,1}n qz < 1,

which is a contradiction. Therefore, there is at least one y ∈
{0,1}n such that qy � 1

2n . Let y1 ∈ {0,1} be the first bit of y. If
we take U = Xy1⊕1 ⊗ I⊗n−1,

py = ε

〈
y

∣∣∣∣U
(

|0〉〈0| ⊗ I⊗n−1

2n−1

)
U †

∣∣∣∣y
〉
+ 1 − ε

2n

= ε

〈
y

∣∣∣∣
(

|y1 ⊕ 1〉〈y1 ⊕ 1| ⊗ I⊗n−1

2n−1

)∣∣∣∣y
〉
+ 1 − ε

2n

= 1 − ε

2n
,

and therefore |py − qy | � ε
2n , while cpy < ε

1−ε
1−ε
2n = ε

2n .

Hence we obtain |py − qy | > cpy . �
Multiplicative-error sampling. We next consider the sam-

pling. We first show the hardness result for the multiplicative-
error case.

Result 3. Let us assume that, for any (uniformly generated
polynomial-time) n-qubit unitary operator U , there exists a
poly(n)-time classical probabilistic algorithm that outputs z ∈
{0,1}n with probability qz such that

|p0n − q0n | � cp0n , (2)

with a certain c that satisfies 0 � c � ε − 1
δ(n) for a polynomial

δ > 0. Then BQP is contained in the SBP (small bounded error
probability).

Note that the value of c considered in Result 3 is always
smaller than that of Result 1, since ε

1−ε
− (ε − 1

δ
) � 0 and,

therefore, there is no contradiction between these two results.
More importantly, since ε

1−ε
= ε + O(ε2) for small ε, the com-

bination of Result 1 and Result 3 means that the polarization
ε is the “phase-transition point” for the multiplicative error c:
if c > ε then the classical simulation is possible (Result 1),
while if c < ε then it is impossible (Result 3).

There are three further remarks before the proof of Result
3. First, Result 3 implicitly assumes that ε is lower-bounded
by an inverse polynomial, since otherwise no c can satisfy
c � ε − 1

δ
. The assumption, ε � 1/poly, is acceptable, since

we can take such ε in realistic NMR experiments. (Actually, ε
can be even a small but system-size-independent constant.)
Second, the standard definition of the multiplicative-error
sampling is that |pz − qz| � cpz for any z ∈ {0,1}n but, in
Result 3, the satisfiability only for z = 0n is enough. Finally,
SBP is defined in the following way [46]: A language L is in
SBP if there exist a polynomial r and a uniformly generated
family of polynomial-size probabilistic classical circuits such
that, if x ∈ L, then the acceptance probability is �2−r(|x|)
and, if x /∈ L, then the acceptance probability is �2−r(|x|)−1.
As is shown in Appendix C, the bound (2−r ,2−r−1) can be
replaced with (a2−r ,b2−r ) for any 0 � b < a � 1 such that
a − b � 1

poly
. It is known that SBP is in AM (Arthur-Merlin)

[46], and therefore in the second level of the polynomial
hierarchy: SBP ⊆ AM ⊆ �

p

2 . Hence BQP ⊆ SBP means that
BQP is in the second level of the polynomial hierarchy. Note
that BQP ⊆ SBP itself is also unlikely, since SBP ⊆ BPPpath

and there is an oracle such that BQP is not contained in BPPpath

[47].
Proof. Let us assume that a language L is in BQP. This

means that for any polynomial r , there exists a uniformly

generated family {Vx} of polynomial-size quantum circuits
such that

〈
0n

∣∣V †
x

(|0〉〈0| ⊗ I⊗n−1
)
Vx

∣∣0n
〉{ � 1 − 2−r (x ∈ L)

� 2−r (x /∈ L).

Here, n = poly(|x|). Let us take U = V
†
x . We also take r such

that ε2−r+1 � 1
2δ

.
If x ∈ L,

q0n � (1 − c)

[
ε

2n−1
〈0n|V †

x

(|0〉〈0| ⊗ I⊗n−1)Vx |0n〉 + 1 − ε

2n

]

� (1 − c)

[
ε

2n−1

(
1 − 2−r

) + 1 − ε

2n

]

= (1 − c)

2n

(
1 + ε − ε2−r+1).

If x /∈ L,

q0n � (1 + c)

[
ε

2n−1

〈
0n

∣∣V †
x

(|0〉〈0| ⊗ I⊗n−1)Vx

∣∣0n
〉 + 1 − ε

2n

]

� (1 + c)

[
ε

2n−1
2−r + 1 − ε

2n

]

= (1 + c)

2n

(
1 − ε + ε2−r+1).

Since

(1 − c)
(
1 + ε − ε2−r+1

) − (1 + c)
(
1 − ε + ε2−r+1

)
= 2

(
ε − ε2−r+1 − c

)

� 2

[
ε − 1

2δ
−

(
ε − 1

δ

)]

= 1

δ
,

L is in SBP. �
Exponentially small additive error sampling. We can also

show a similar hardness result for the exponentially small
additive-error case.

Result 4. Let us assume that for any (uniformly generated
polynomial-time) n-qubit unitary operator U , there exists a
poly(n)-time classical probabilistic algorithm that outputs
z ∈ {0,1}n with probability qz such that

|p0n − q0n | � η, (3)

with a certain η that satisfies 0 � η � (ε − 1
δ
)2−n for a

polynomial δ > 0. Then BQP is contained in SBP.
Before giving a proof, there are two remarks: First, we again

implicitly assume ε � 1/poly. Second, the assumption (3)
can be replaced with the more standard assumption (L1-norm
additive-error approximation),

∑
z∈{0,1}n |pz − qz| � η, since

if it is satisfied then |p0n − q0n | �
∑

z∈{0,1}n |pz − qz| � η, and
therefore Eq. (3) is satisfied. Since Eq. (3) is weaker, we have
used it.

Proof. Let us assume that a language L is in BQP, and
let Vx be the corresponding circuit as assumed in the proof
of Result 3. We take U = V

†
x , and r such that ε2−r+1 � 1

2δ
.

If x ∈ L, q0n � 1
2n (1 + ε − ε2−r+1 − 2nη). If x /∈ L, q0n �
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1
2n (2−r+1ε + 1 − ε + 2nη). Since(

1 + ε − ε2−r+1 − 2nη
) − (

1 − ε + ε2−r+1 + 2nη
)

� 2

[
ε − 1

2δ
−

(
ε − 1

δ

)]
= 1

δ
,

L is in SBP. �
Discussion. In this paper, we have used a multiplicative

or an exponentially small additive error in the definition of
the classical samplability. It is an important open problem
whether we can generalize the results to a constant or inverse-
polynomial L1-norm error as was done for the boson sampling
[15], the IQP [13,14], and Fourier sampling [48]. (These results
do not seem to be directly applied to the one-qubit model,
even in the perfect polarization case, since the one-qubit model
seems to be able to simulate standard quantum computing with
only an exponentially small rate.) In the present case, however,
using a multiplicative or an exponentially small additive error
is justified, since in our case the model itself is noisy. In
other words, we consider the following sampling problem:
“sample the output probability distribution of a noisy one clean
qubit model.” The problem can be, of course, exactly solvable
with the noisy one clean qubit model, but we have shown
that solving the problem classically is impossible even with
a multiplicative or an exponentially small additive error. We
have therefore shown the existence of a sampling problem that
can be exactly solvable by a realistic nonuniversal quantum
computer but cannot be solved by a classical computer
even with a multiplicative or an exponentially small additive
error.

We have considered the output probability distribution
of the measurements on all qubits. It is an open problem
whether we can reduce the number of measured qubits to
one. Furthermore, we want to improve our consequence,
BQP ⊆ SBP, to a more unlikely one such as the collapse of
the polynomial hierarchy, but at this moment we do not know
how to do it.

Finally, to conclude this paper, let us discuss roles of
entanglement in NMR quantum computing. In Ref. [49], a
criterion on the initial polarization below which the system
becomes a separable state was derived, and it was pointed
out that states used in NMR experiments are separable
states. It sounds like NMR quantum information processing
has no quantum power, and in fact some researchers have
insisted that NMR quantum information processing is useless.
The conclusion is, however, wrong. In fact, a polynomially
small purity keeps the state outside the separable ball [44].
Furthermore, as is shown in the present paper, NMR quantum
computing can demonstrate quantum supremacy for some
sampling problems. Finally, in the first place, entanglement
is not directly connected to the quantum speedup: recently
it was shown that a larger entanglement does not necessarily
mean a quantum speedup [50,51], and that quantum computing
whose register always has a small bipartite entanglement
can solve any BQP problem [52]. Interestingly, even if we
consider a much weaker model, which we call separable
quantum computing, where the register is always separable
during the computation, its classical simulatability is not so
obvious. For example, even if the register is always separable,
it seems to be hard to find a separable decomposition after

every local unitary gate operation, since after a local unitary
gate operation, some pure states in the mixture can be
entangled. Furthermore, although any discord-free quantum
computation (with one- or two-qubit gates) is classically
simulatable [53], a separable state can have nonzero quantum
discord.
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APPENDIX A

It is easy to see that the exact calculation of the output
probability distribution of our model is #P hard (actually, GapP
complete), because the ability of the exact calculation of the
output probability distribution of the model allows us to exactly
calculate the output probability distribution of the one clean
qubit model, which contains (in an exponentially small rate)
the output probability distribution of any (polynomial-time)
quantum computing [44]. It is known that the exact calculation
of the output probability distribution of (polynomial-time)
quantum computing is #P hard (actually GapP complete) [54].

APPENDIX B

Here we show that, if the output probability distribution of
the one clean qubit model is efficiently sampled classically
with the multiplicative error c = 1 − 1

2n , then NQP (nonde-
terministic quantum polynomial time) is in NP, which causes
the collapse of the polynomial hierarchy to the second level.
We follow the argument in Refs. [16,55]. Let us assume that
a language L is in NQP, which means that there exists a
uniformly generated family {Vx} of polynomial-size quantum
circuits such that, if x ∈ L then 0 < p < 1, and if x /∈ L then
p = 0, where p is the acceptance probability. It was shown
in Ref. [55] that from Vx , which acts on n − 1 qubits, we
can construct an n-qubit one clean qubit circuit such that the
probability p̃ of obtaining 1 when the clean qubit is measured
in the computational basis is p̃ = 4

2n−1 p(1 − p). Therefore if
x ∈ L then p̃ > 0, and if x /∈ L then p̃ = 0. Let us assume that
there exists a classical polynomial-time probabilistic algorithm
whose acceptance probability q satisfies |p̃ − q| � (1 − 1

2n )p̃.
Then, if x ∈ L we have q � p̃

2n > 0, and if x /∈ L then
q � (2 − 1

2n )p̃ = 0. Therefore, NQP is in NP, which causes
the collapse of the polynomial hierarchy to the second level.
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APPENDIX C

Here we show that the bound (2−r ,2−r−1) of SBP can be
replaced with (a2−r ,b2−r ) for any 0 � b < a � 1 such that
a − b � 1

q
, where q > 0 is a polynomial.

Since a � b + 1
q

� 1
q

, there exists a polynomial k � 0 such

that a > 1
2k . Let Vx be the original circuit of SBP. We define

the modified circuit V ′
x in the following way: it first runs the

original circuit Vx , and then accepts with probability 1
a2k if Vx

accepts. If x ∈ L, the acceptance probability of V ′
x is pacc �

a2−r

a2k = 1
2r+k . If x /∈ L, it is

pacc � b2−r

a2k

= 1

2r+k

a − (a − b)

a

= 1

2r+k

(
1 − a − b

a

)

� 1

2r+k

(
1 − 1

q

)
.

We run V ′
x q times and accept if all results accept. If x ∈ L,

the acceptance probability is p
q
acc � 1

2(r+k)q . If x /∈ L, it is

pq
acc � 1

2(r+k)q

(
1 − 1

q

)q

= 1

2(r+k)q

[(
1 + 1

q − 1

)q]−1

� 1

2(r+k)q

1

2
,

where we have used(
1 + 1

q − 1

)q

=
q∑

j=0

(
q

j

)(
1

q − 1

)j

� 1 +
(

q

1

)
1

q − 1

= 1 + q

q − 1

� 2.
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