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Abstract

This paper presents a method of estimating the parameters of an electromag-

netic transducer without sensors. The proposed method utilizes the measured

admittance of the electromagnetic transducer, and therefore position, veloc-

ity, and/or acceleration sensors are not necessary in this framework. Novel

impedance models are proposed based on the basic physical principles of elec-

tromagnetics; in particular, the effect of eddy currents has been included in these

proposed models. The validity of the proposed estimation method and models

was experimentally demonstrated by comparing the parameter estimation and

vibration control capabilities of the proposed models with three conventional

models.

Keywords: Electromagnetic transducer, Parameter estimation, Modeling,

Eddy currents, Shunt damping

1. Introduction

An electromagnetic transducer can act as an actuator by utilizing the Lorentz

force generated from the current flowing through the magnetic field [1, 2, 3]. It

can also act as a sensor by utilizing the motional electromotive force generated
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from the motion of a coil in the magnetic field [4]. Application examples of the5

electromagnetic transducer include but are not limited to position control [5, 6],

sound amplification using loudspeakers [7, 8, 9, 10, 11], vibration isolation [12],

valve actuation [13], load support magnetic bearings [14], magnetic levitation

[15], vehicle suspension [16, 17, 18], and energy harvesting [19, 20, 21].

Electromagnetic shunt damping is an interesting technique that makes use of10

actuation and sensing capabilities simultaneously [22, 23, 24, 25, 26, 27, 28, 29,

30, 31, 32, 33, 34, 35, 36, 37]. This technique uses a shunted circuit connected

across the terminals of an electromagnetic transducer for vibration control and

does not use position, velocity, and/or acceleration sensors. In previous studies

[22, 23], the resonant shunt circuit is designed to be analogous to a dynamic15

absorber, which is effective in providing nominal performance but is fragile when

system parameters such as the natural frequency vary. Hence, precise modeling

and accurate parameter estimation are crucial for the design of the shunt circuit.

In previous works, the electrical system in the electromagnetic transducer

has been simply modeled by a series connection of the impedance in the coil,20

the internal resistance, and the motional electromotive force in the coil. The

impedance in the coil is typically modeled by the self-inductance [15, 16, 20, 21,

22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37]. Among the previously

published studies, a few consider eddy currents to model the impedance either

by adding a shunt resistance in parallel to the self-inductance [8, 9] or by the25

distributed model presented in [10, 11]. However, these impedance models do

not fully represent the measurement data, as will be shown in this paper, and

practical applications continue to require more accurate impedance models, such

as that presented here.

This paper presents a method for the sensorless parameter estimation of30

an electromagnetic transducer; in this method, the parameters of the mechani-

cal, electromechanical coupling, and electrical system models are simultaneously

estimated. This framework is consistent with that of electromagnetic shunt

damping. The terminal voltage and current of the electromagnetic transducer

are measured; specifically, the admittance is measured using an LCR meter35
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or an impedance analyzer, but position, velocity, and/or acceleration sensors

are not used. The parameter estimation is formulated by the weighted nonlin-

ear least-squares method; in addition, the selection of the initial estimates for

the numerical optimization is discussed in detail. The preliminary idea of this

paper has been presented in [38, 39], in which the method for the sensorless40

parameter estimation of an electromagnetic transducer is introduced only for

the self-inductance to construct the impedance model. Inspired by the previous

works [8, 9, 10, 11, 40], the present paper introduces novel impedance models

that consider eddy currents. The basic physical principles of electromagnetics,

such as Ampere’s circuital law, Gauss’s law for magnetism, Faraday’s law of45

induction, and Ohm’s law are applied to model the impedance, and then, the

partial differential equation with variable coefficients is obtained. It is diffi-

cult to convert this equation to a transfer function, and therefore, two types

of physical simplifications are considered. One impedance model is derived by

using spatially uniform parameters and spatially distributed eddy currents. The50

other impedance model is derived by using spatially nonuniform parameters and

spatially lumped eddy currents. The effectiveness of the proposed parameter es-

timation method and the validity of the proposed models are demonstrated by

performing experiments related to both parameter estimation and shunted vi-

bration control, comparing the results obtained by the proposed method with55

those obtained by three conventional models, as described below.

The remainder of this paper is organized as follows. We start by present-

ing an overview of the conventional modeling techniques of an electromagnetic

transducer for shunted vibration control and then propose novel impedance

models that consider eddy currents in Section 2. We then proceed to describe60

the development of the parameter estimation method in Section 3. We report

the demonstration of the proposed parameter estimation method through ex-

periments in comparison with those of the conventional models in Section 4.

In Section 5, we present the application of the parameter estimation results to

shunted vibration control experiments to evaluate the proposed models and the65

accuracy of parameter estimation. Finally, we make some concluding remarks
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in Section 6.

2. Modeling

2.1. Conventional modeling technique for a composite electromechanical system

This subsection introduces a conventional modeling technique for the design70

and analysis of a composite electromechanical system. The composite system

consists of three subsystems: a mechanical system, an electromechanical cou-

pling system, and an electrical system.

In many vibration control systems, a mechanical system is modeled by a

simple mass-spring-damper system coupled to an electromagnetic transducer

[22, 31, 38, 39], as shown in Fig. 1. The equation of motion is given by

m
d2x

dt2
+ c

dx

dt
+ kx(t) = fd(t) + fl(t), (1)

where m [kg] is the mass, c [Ns/m] is the damping coefficient, k [N/m] is the

spring constant, x(t) [m] is the displacement of the mass-spring-damper system,75

fl(t) [N] is the Lorentz force generated from the electromagnetic transducer,

and fd(t) [N] is the disturbance force.

An electromechanical coupling system is given by the following pair of equa-

tions under suitable assumptions [22, 23, 31, 36, 38, 39]:

fl(t) = ϕ ie(t), (2)

vemf(t) = ϕ ẋ(t), (3)

where ϕ [N/A or Vs/m] is the electromechanical coupling coefficient, ie(t) [A]

is the current flowing through the electromagnetic transducer, and vemf(t) [V]

is the motional electromotive force.80

An electrical system is modeled by the series connection of the impedance

of the coil, Zc(s)[Ω], internal resistance in the coil, R0[Ω], and motional electro-

motive force, vemf(t), as shown in Fig. 2. The circuit equation is given by

ve(t)− vemf(t) = R0ie(t) + vc(t), (4)
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Electromagnetic transducer

Figure 1: Simple mass-spring-damper system coupled to an electromagnetic transducer [38].

where ve(t) [V] is the voltage across the electromagnetic transducer, and vc(t)

[V] is the voltage across Zc(s). By taking the Laplace transformation, the

impedance of the coil, Zc(s)[Ω], is defined by

Zc(s) :=
ṽc(s)

ĩe(s)
, (5)

where the tilde represents a signal in the Laplace domain.

The impedance of the coil, Zc(s)[Ω], has been typically modeled by the self-

inductance, L0 [H], in [15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,

33, 34, 35, 36, 37]. In order to distinguish from the other impedance models,

the impedance model

ZI
c(s) = L0s (6)

is hereafter called the conventional model I. The superscript in Zc(s) indicates

the name of the models such as the conventional models or proposed models, as

will be shown later.

In addition, the impedance in the coil has also been modeled by adding

a shunt resistance, Rµ, in parallel to the self-inductance, L0, in [8, 9]. This
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Figure 2: Electrical system model of the series connection of the impedance of the coil, Zc(s),

the internal resistance in the coil, R0, and the motional electromotive force, vemf(t).

shunt resistance was considered to be largely due to eddy current loss [8]. This

impedance model, which is hereinafter called the conventional model II, is then

given by

ZII
c (s) =

RµL0s

L0s+Rµ
. (7)

2.2. Impedance modeling considering eddy currents85

2.2.1. Spatially nonuniform parameters and spatially distributed eddy currents

Although the conventional model I is widely recognized in previous works,

this model neglects the electrical conductivity of the iron core. This approxima-

tion may be valid in a low-frequency range, but is not valid in a high-frequency

range because of the eddy currents induced within the iron core, which are90

generated by the time-varying magnetic flux in the iron core [41]. In the con-

ventional model II, the eddy current is lumped, whereas the eddy currents are

typically recognized as spatially distributed [10, 41]. In fact, the experimental

results that will be presented in Section 4 indicate that the conventional mod-

els I and II are not consistent with the actual frequency responses in mid- and95

high-frequency ranges.
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Magnetic flux

Eddy currents

Cross-sectional view

Figure 3: Schematic of a simple electromagnetic transducer modeled by pairing a toroidal

iron core and a coil. The dashed box shows the schematic of the cross section of the coil and

iron core with the infinitesimal cylindrical elements, D, and with the circumferential gap, G,

between the coil and iron core. The circumferential gap is critical to the model because the

coil moves relative to the iron core.

This subsection presents a novel approach for modeling Zc(s) by considering

the spatially nonuniform parameters and spatially distributed eddy currents

within the iron core. For simplicity of analysis, the electromagnetic transducer

is modeled by a pair of a toroidal iron core and a coil, as shown in Fig. 3. Nc100

is the number of turns of the coil around the toroidal iron core. The effect

of the permanent magnet in the electromagnetic transducer is negligible in the

following modeling procedure because vc(t) is not affected by the direct-current

component of the magnetic flux according to Faraday’s law of induction. Then,

the eddy currents flow circularly within the iron core, in planes perpendicular105

to the magnetic flux. For further simplicity of analysis, the iron core is divided

into infinitesimal cylindrical elements in the region along the magnetic flux, and

an infinitesimal cylindrical element, D, with the radius of r is selected, as shown

in Fig. 3.

Next, Zc(s) is derived based on the basic physical principles of electromag-

netics [42, 43]. According to Gauss’s law for magnetism, the magnetic flux in

the iron core and that in the gap are continuously connected. According to

Ampere’s circuital law, a line integral of the magnetic field passing though D

around a closed curve, C, is proportional to the total current passing through

7



a surface enclosed by the closed curve:

σ(r)B(t, r) = Ncie(t) +

∫ rmax

r

J (t, ξ)l(ξ)dξ, σ(r) :=
l(r)

µ0µs(r)
+

d(r)

µ0
, (8)

where B(t, r) [T] is the magnetic flux density, J (t, r) [A/m2] is the eddy current

density flowing in D along the circumferential direction, µ0 [H/m] is the mag-

netic permeability of vacuum, µs(r) [-] is the relative magnetic permeability, l(r)

[m] and d(r) [m] are the magnetic path lengths of the iron core and the air gap

in the axial direction respectively, and rmax [m] is the maximum radius of the

iron core. According to Faraday’s law of induction, the induced electromotive

force, E(t, r) [V], in D along the circumferential direction is determined from

the time derivative of the total magnetic flux inside D and is therefore given by

E(t, r) = − ∂

∂t

∫ r

0

2πξB(t, ξ)dξ. (9)

According to Ohm’s law, J (t, r) is also given by

J (t, r) =
E(t, r)
2πρ(r)r

, (10)

where ρ(r)[Ωm] is the electrical resistivity of the iron core. It follows from (8),

(9), and (10) that B(t, r) satisfies the following partial differential equation:

∂B(t, r)

∂t
=

1

r

∂

∂r

(
ρ(r)r

l(r)

∂σ(r)B(t, r)

∂r

)
(11)

with the boundary conditions:

σ(rmax)B(t, rmax) = Ncie(t), (12)

lim
r→0+

r
∂σ(r)B(t, r)

∂r
= 0. (13)

Note that a circumferential gap, G, exists between the coil and iron core because

the coil moves relative to the iron core, as shown in Fig. 3; in addition, the coil

is wound around a plastic cylinder in the following experimental setup shown

in Fig. 8. Eddy currents are not generated in G, and therefore, the magnetic

flux density Bg(t) = Ncie(t)/σg, σg := (lg +dg)/µ0 is generated in G, where the

subscript g in the variable or constant indicates that the symbol is related to the
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circumferential gap. According to Faraday’s law of induction, the electromotive

force, vc(t), is given by

vc(t) = Nc
d

dt

(
NcSg

σg
ie(t) +

∫ rmax

0

2πξB(t, ξ)dξ

)
, (14)

where Sg [m2] is the cross-sectional area of G. In summary, the governing110

equation is the partial differential equation in (11), the boundary conditions are

given by (12) and (13), and the output equation is given by (14).

2.2.2. Spatially uniform parameters and spatially distributed eddy currents

Because it is difficult to convert (11) to a transfer function, we assume that

the physical parameters σ(r), ρ(r), and l(r) are the positive constants σ, ρ, and

l, respectively, in this subsection. This assumption indicates that the material

of the iron core is uniform and the magnetic flux leakage is negligible. Based on

this assumption, (11), (12), and (13) are rewritten as follows:

∂B(t, r)

∂t
=

σρ

l

1

r

∂

∂r

(
r
∂B(t, r)

∂r

)
. (15)

σB(t, rmax) = Ncie(t), (16)

lim
r→0+

r
∂B(t, r)

∂r
= 0, (17)

By taking the Laplace transformation of (15) with respect to t, this equation is

reduced to an ordinary differential equation with respect to r.

sB̃(s, r) =
σρ

l

1

r

∂

∂r

(
r
∂B̃(s, r)

∂r

)
, (18)

where B̃(s, r) is the Laplace transform of B(t, r). By combining the ordinary

differential equation in (18) with the boundary conditions in (16) and (17), the

solution of the ordinary differential equation is given by

B̃(s, r) = β′ J0
(√

−α′r2s
)

J0

(√
−α′r2maxs

) ĩe(s), (19)

where α′ := l/(σρ), β′ := Nc/σ, and Jν(z) are the Bessel functions of the first

kind for a real number ν. By taking the Laplace transformation of (14) and

9



substituting (19) into the transformed equation of (14), the electromotive force

in the Laplace domain, ṽc(s), is given by

ṽc(s) =

(
Lgs− β

√
−s

J1
(√

−αs
)

J0
(√

−αs
)) ĩe(s), (20)

where Lg := N2
c Sg/σg, α := lr2max/(σρ), and β := 2πN2

c rmax

√
ρ/(σl) are pos-

itive constants. Now, the model of the impedance that considers spatially

Uniform parameters and spatially Distributed eddy currents, ZUD
c (s), which

is called the UD model in short, is given by

ZUD
c (s) = Lgs− β

√
−s

J1
(√

−αs
)

J0
(√

−αs
) . (21)

In this model, Lg, α, and β are unknown parameters, which will be determined

by performing experiments, and the number of unknown parameters is three.115

Distributed modeling has also been discussed in [10, 11]. The conventional

model of Zc(s) presented in these works, which is hereinafter called the conven-

tional model III, is given by

ZIII
c (s) = −β

√
−s

J1
(√

−αs
)

J0
(√

−αs
) . (22)

From (22), it can be seen that the conventional model III does not include Lgs,

which represents the self-inductance component caused by the circumferential

gap, G, shown in Fig. 3. Therefore, the UD model is a natural extension of

the conventional model III. Moreover, the UD model is considered to be more

suitable than the conventional model III because the UD model includes the gap120

between the coil and iron core, which is critically important to relative motion.

2.2.3. Spatially nonuniform parameters and spatially lumped eddy currents

In mid- and high-frequency ranges, the UD model better matches the ex-

perimental results of frequency responses than the conventional models, as will

be shown later; however, there is still a mismatch in the phase of the frequency125

responses in the mid-frequency range. This mismatch may be caused by the

assumption made in Section 2.2.2 for the UD model.
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Figure 4: Schematic of the cross section of the iron core divided into n rings, where Dj denotes

the j-th ring numbered from the inside.

This subsection presents another novel approach for modeling Zc(s) by dis-

cretizing the model described in Section 2.2.1. The cross section of the iron core

is supposed to be divided into n rings, and Dj , j = 1, · · · , n denotes the j-th

ring numbered from inside, as shown in Fig. 4. The magnetic flux in Dj , Φj(t)

[Wb], is defined by

Φj(t) :=

∫ rj

rj−1

2πξB(t, ξ)dξ. (23)

By substituting (8) into (23), we have

Φj(t) = Nc

∫ rj

rj−1

2πξ

σ(ξ)
dξie(t) +

∫ rj

rj−1

2πξ

σ(ξ)

∫ rmax

ξ

J (t, ξ′)l(ξ′)dξ′dξ. (24)

By approximating the interval of integration [ξ, rmax] as [rj−1, rmax], we have

Φj(t) = NcPjie(t) + Pj

n∑
k=j

Ik(t), (25)

where the magnetic permeance, Pj [H], and the lumped eddy current, Ij(t) [A],

are defined by

Pj :=

∫ rj

rj−1

2πξ

σ(ξ)
dξ, (26)

Ij(t) :=
∫ rj

rj−1

J (t, ξ)l(ξ)dξ. (27)
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By substituting (23) into (9), we have

E(t, rj) = − d

dt

j∑
k=1

Φk(t). (28)

By substituting (10) into (27), we have

Ij(t) =
∫ rj

rj−1

l(ξ)E(t, ξ)
2πρ(ξ)ξ

dξ. (29)

By approximating E(t, ξ) in (29) as a piecewise constant function, we have

RjIj(t) = E(t, rj), (30)

where the electric resistance, Rj [Ω], is defined by

Rj :=

(∫ rj

rj−1

l(ξ)

2πρ(ξ)ξ
dξ

)−1

. (31)

By substituting (23) into (14), we have

vc(t) = Nc
d

dt

NcSg

σg
ie(t) +

n∑
j=1

Φj(t)

 . (32)

From (25), (28), (30) and (32), the circuit equation is given in the matrix form

as follows:  vc(t)

0

 = L
d

dt

 ie(t)

I(t)

+

 0 0

0 R

 ie(t)

I(t)

 , (33)
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where the components of vectors and matrices are given by

L =


L0 M01 · · · M0n

M10 L1 · · · M1n

...
...

. . .
...

Mn0 Mn1 · · · Ln


:=

 N2
c

(
Pg +UTPU

)
NcU

TPDT

NcDPU DPDT

 , (34)

Pg :=
Sg

σg
=

Lg

N2
c

, (35)

P := diag
[
P1 · · · Pn

]
, (36)

R := diag
[
R1 · · · Rn

]
, (37)

I(t) :=
[
I1(t) · · · In(t)

]T
, (38)

U :=
[
1 · · · 1

]T
∈ Rn, (39)

D :=


1
...

. . .

1 · · · 1

 ∈ Rn×n. (40)

From (33), it might be possible to infer that the lumped eddy currents in (27)

flow in the fictitious coils in the iron core. Figure 5 shows the equivalent circuit

diagram of Fig. 4. Here, L0 can be recognized as the self-inductance of the coil;

Lj , 1 ≤ j ≤ n, the self-inductances of the fictitious coils in the iron core; Mij ,

0 ≤ i, j ≤ n, the mutual-inductances between the coils; and Rj , 1 ≤ j ≤ n, the

internal resistance of the fictitious coils in the iron core. Note that the number

of discretization, n, is to be appropriately selected in modeling experiments. In

addition, the magnetic energy stored in the inductor is positive and the resistiv-

ity of the iron core is positive. It follows that L is symmetric positive definite

and Rj is positive, and therefore, the circuit is passive[44]. Now, by taking

the Laplace transformation of (33), the model of the impedance considering

spatially Nonuniform parameters and spatially Lumped eddy currents, ZNL
c (s),
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Figure 5: Equivalent circuit diagram of Fig. 4, where L0 can be recognized as the self-

inductances of the coil; Lj are the self-inductances of the fictitious coils in the iron core;

Mij are the mutual-inductances between the coils; and Rj are the internal resistances of the

fictitious coils in the iron core.

which is called the NL model in short, is given by

ZNL
c (s) = N2

c

(
Pg +UTPU

)
s−N2

cU
TPDT

(
DPDTs+R

)−1

DPUs2.

(41)

In this model, Pg, Pj , andRj are unknown parameters, which will be determined

by performing experiments, and the number of unknown parameters is 2n+ 1.

2.2.4. Spatially uniform parameters and spatially lumped eddy currents130

Following the procedure used in Sections 2.2.1 and 2.2.2, we consider an

assumption that the physical parameters σ(r), ρ(r), and l(r) in Section 2.2.3

are supposed to be positive constants σ, ρ, and l, respectively. From (26) and

(31), we have

Pj =
π

σ

(
r2j − r2j−1

)
, (42)

Rj =
2πρrj

l(rj − rj−1)
, (43)

where the integrand in (31) is approximated by l/2πρrj . The cross-sectional

areas of Dj are considered to be equal for simplicity, and then, rj is given by

rj =

√
j

n
rmax. (44)
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By substituting (44) into (42) and (43), Pj and Rj are given by

Pj =
πr2max

σ

1

n
=

√
αβ

2N2
c

1

n
, (45)

Rj =
2πρ

l

(
j +

√
j(j − 1)

)
=

β

N2
c

√
α

(
j +

√
j(j − 1)

)
, (46)

where the right-hand sides of (45) and (46) are represented in terms of α and

β. The model of the impedance considering spatially uniform parameters and

spatially lumped eddy currents is obtained by substituting (35), (45), and (46)

into (41). This impedance model can be recognized as the discretized form of

the UD model in (21). Note that this impedance model includes three unknown135

parameters: Lg, α, and β. The selection of the initial values for the nonlinear

numerical optimization are detailed in Appendix A.

3. Parameter estimation method

3.1. Appropriate range of frequency domain measurements

This subsection discusses whether the parameters in the proposed models

can be really estimated without using position, velocity, and/or acceleration

sensors, i.e., by measuring ve(t) and ie(t) but without measuring x(t). In the

parameter estimation, it is suitable to assume that the disturbance force is zero,

i.e., fd(t) = 0. By taking the Laplace transformation of (1)-(5), the admittance

of the electromagnetic transducer, Ye(s) [S], is given by

Ye(s) :=
ĩe(s)

ṽe(s)
=

(
Zc(s) +R0 +

ϕ̄2s

s2 + 2ζω0s+ ω2
0

)−1

, (47)

where ω0 :=
√
k/m is the natural frequency of the mechanical system, ζ :=140

c/
√
4mk is the damping ratio, and ϕ̄ := ϕ/

√
m is the electromechanical coupling

coefficient normalized by the mass; more specifically, Y I
e (s), Y II

e (s), Y III
e (s),

Y UD
e (s), and Y NL

e (s) are given by substituting ZI
c(s), Z

II
c (s), ZIII

c (s), ZUD
c (s),

and ZNL
c (s) into Zc(s) in (47).

The frequency response of the admittance, Ye(jω), can be directly measured145

by using an LCR meter or an impedance analyzer. The problem here is to
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Figure 6: Bode admittance diagrams of Y I
e (jω) (red solid line) and Y I

0 (jω) (blue broken line)

for the parameters listed in Table 1, where Y I
e (jω) includes the effect of the mechanical system

and Y I
0 (jω) does not. Y I

e (jω) and Y I
0 (jω) are different in the vicinity of the natural frequency

of the mechanical system, i.e., ω ≃ 50[rad/s], whereas they are similar outside of this region.

simultaneously estimate all the parameters of the mechanical, electromechanical

coupling, and electrical systems. Let us compare Y I
e (s) with Y I

0 (s) := (L0s +

R0)
−1, which is obtained by substituting ϕ̄ = 0 into (47). Figure 6 illustrates

the Bode diagrams of Y I
e (jω) and Y I

0 (jω) for the parameters listed in Table 1,150

which will be obtained later in the estimation experiments. It is interesting

to observe that Y I
e (jω) and Y I

0 (jω) are different in the vicinity of the natural

frequency of the mechanical system, i.e., ω ≃ 50[rad/s], and they are similar

outside, i.e., ω ≤ 40[rad/s] or ω ≥ 70[rad/s]. Because Y I
0 (jω) exhibits a low-pass

characteristic, R0 is dominant in the low-frequency range and L0 is dominant155

in the high-frequency range. This suggests that the parameter estimation can

be carried out from Ye(jω) when ω covers a sufficiently wide range that includes

the natural frequency of the mechanical system.

3.2. Parameter estimation from frequency domain measurements

This subsection presents a framework for estimating parameters from the fre-

quency domain measurements of the admittance, Ye(jω). The measured data are
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the complex values of the admittance denoted by Ys(jωs[k]), k = 1, 2, · · · , Ns,

where ωs[k] is the k-th sampled angular frequency and Ns is the number of sam-

pling points. As discussed in (47), we estimate the parameters in the impedance

model, given by (6), (7), (22), (21), or (41), as well as ω0, ζ, ϕ̄, and R0. The

parameters can be written in the vector form for each impedance model as

follows:

θnls :=



[
ζ, ω0, ϕ̄, R0, L0

]T
Eq. (6)[

ζ, ω0, ϕ̄, R0, L0, Rµ

]T
Eq. (7)[

ζ, ω0, ϕ̄, R0, α, β
]T

Eq. (22)[
ζ, ω0, ϕ̄, R0, Lg, α, β

]T
Eq. (21)[

ζ, ω0, ϕ̄, R0, Pg, Pj , Rj

]T
,

(j = 1, · · · , n) Eq. (41)

(48)

Then, Ye(s) is rewritten as Ye(s;θnls) to express the parameter dependence.

The parameter estimation problem is now formulated by the weighted nonlinear

least-squares method in the frequency domain.

min
θnls

Ns∑
k=1

∣∣∣∣( 1

Ye(jωs[k];θnls)
− 1

Ys(jωs[k])

)
Wnls(jωs[k])

∣∣∣∣2 , (49)

where Wnls(jωs[k]) is the weighting function.160

Considering the sensitivity of parameters to different frequency ranges, the

problem in (49) is solved in two steps. Recall that R0 is dominant in the

low-frequency range and L0 is dominant in the high-frequency range. In the

first step, all the parameters, θnls, are calculated by solving (49) using the

weighting function Wnls(s) = 1/s, and then, R0 and ω0 are determined. In165

the second step, the other parameters are calculated by solving (49) using the

weighting function Wnls(s) = 1. This two-step estimation procedure is effective

in improving the convergence properties of nonlinear numerical optimization in

(49). The selection of the initial values for the nonlinear numerical optimization

are detailed in Appendix A.170

17



4. Parameter estimation experiments

4.1. Experimental setup

The experimental demonstration of the proposed estimation method is de-

scribed in this section. The experimental setup is common to the one in [38]

and is shown in Fig. 7. The electromagnetic transducer consists of the moving175

coil, two permanent magnets, and the iron core, and its schematic diagram is

shown in Fig. 8. The iron core with two permanent magnets is fixed. The

moving coil is wound around the plastic cylinder, which is coupled to the mass-

spring-damper system. The number of turns of the coil around the iron core

is Nc = 480. The motion of the mass-spring-damper system is restricted to180

horizontal movements by the linear motion bearing. The exciter is used in the

vibration control experiments (described in Section 5), and the terminals of the

exciter are opened during the parameter estimation experiments (described in

this section). The frequency response of the admittance, Ye(jω), is measured

by using the LCR meter (3522-50, HIOKI); specifically, 2000 angular frequency185

points are selected from the range 101-105 [rad/s] in the log-scale.

4.2. Experimental results

The natural frequency of the mechanical system is roughly estimated by ob-

serving the motional electromotive force generated by free vibration and/or by

observing the impedance measurement obtained using the LCR meter. Accord-190

ingly, the estimated value is found to be nearly 50 [rad/s].

The initial estimates are determined from the weighted linear least-squares

in (A.2). The measurements of Ye(jω) in the range 10-300 [rad/s], which covers

the natural frequency of 50[rad/s], are tested. Note that a low-frequency range

is selected because the effect of the eddy currents is not preferred in the initial195

estimation. In the case of the conventional model I, the initial estimates given

in (26)-(30) of [38] are applied to determine ζ, ω0, ϕ̄, R0, and L0. In the case of

the conventional model II, (A.8) is applied to determine ζ, ω0, ϕ̄, R0, L0, and

Rµ. In the case of the conventional model III, (A.14) is applied to determine ζ,
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Electromagnetic transducer
Permanent
magnets

MassExciter Spring Coil

Iron core

Figure 7: Photograph of the experimental setup composed an exciter, a spring, a mass, and

an electromagnetic transducer comprising two permanent magnets, an iron core, and a coil

[38].

Permanent magnet

Moving coil

Mass

Iron core

Plastic cylinder

N
S

N
S

Spatially movableSpatially fixed

Figure 8: Schematic of an electromagnetic transducer comprising a moving coil, two permanent

magnets, and an iron core. The moving coil is wrapped around the plastic cylinder, which is

connected to the mass in the mechanical system, and this group of components is spatially

movable. The group of components that includes the iron core and two magnets is spatially

fixed. Hence, the moving coil is movable relative to the iron core and the two magnets.
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ω0, ϕ̄, R0, α, and β. In the case of the UD model, (A.19) is applied to determine200

ζ, ω0, ϕ̄, R0, Lg, α, and β. In the case of the NL model, (A.19), (35), (45),

and (46) are applied to determine ζ, ω0, ϕ̄, R0, Pg, Pj , and Rj . The number

of discretization, n, in (41) is determined based on the Hankel singular values

of 1/(ZNL
c (s) + R0), which is obtained by removing the term representing the

mechanical system, ϕ̄2s/(s2 + 2ζω0s+ ω2
0), from Ye(s).205

The estimates are determined from the weighted nonlinear least-squares in

(49) for each model. The two-step estimation procedure described in Section 3.2

is applied for each model, and the command, lsqnonlin, in the Optimization

Toolbox of MATLAB [45] is used to carry out the numerical optimization in

each step.210

The measurements of Ye(jω) in the range 10-105 [rad/s] are tested. First,

we determine n as follows. The Hankel singular values of 1/(ZNL
c (s) + R0) are

first computed for a large n; in this work, n is selected as 7. Figure 9 shows

the computational result of the Hankel singular values, where the number of

states corresponds to n+1. As shown in this figure, the Hankel singular values215

drastically drop between state 6 (n = 5) and state 7 (n = 6); we have selected

n = 5.

Tables 1, 2, 3, 4, and 5 list the estimated parameters. The estimated values of

ζ, ω0, ϕ̄, and R0 for each model are similar. Figure 10 shows the Bode diagrams

of the measured data and estimated models. The results for all of the model esti-220

mates match the measured data in the low-frequency range (ω < 102) including

at 50 [rad/s]; however, the results for the conventional models I, II, and III do

not match the measured data in the mid- and high-frequency ranges (102 < ω).

This implies that the conventional models are insufficient to represent the effect

of the eddy currents in the high-frequency range. The results for the UD and225

NL models match the measured data in the high-frequency range (104 < ω);

in particular, the phase converges to −70 [deg], but the UD model results do

not match the measured data in the mid-frequency range (102 < ω < 104).

The physical reason for this is that the material of the iron core is supposed to

be uniform and the magnetic flux leakage is neglected in the UD model. The230
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Figure 9: Hankel singular values of 1/(ZNL
c (s) + R0) when the number of state is 8 (n = 7).

The number of state is selected as state 6 (n = 5) because the Hankel singular values drastically

drop between state 6 (n = 5) and state 7 (n = 6).

computational reason for this is the difference in the number of parameters;

only three parameters are included in ZUD
c (s), whereas eleven parameters are

included in ZNL
c (s). Therefore, the NL model is more suitable than the conven-

tional and UD models to represent the effect of the eddy currents. Modeling

the actuator is obviously important for control, and the accurate modeling of235

the electromagnetic transducer in high-frequency ranges would be helpful in in-

creasing the control bandwidth and improving the response of control systems

for vibration and noise control, motion control, robotics, and other applications.

We note that it is possible to estimate the values of m, c, k, and ϕ instead of ζ,

ω0, and ϕ̄. This optional estimation method is presented in Appendix B.240
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Table 1: Estimated parameter values of the conventional model I.

ζ [-] ω0 [rad/s] ϕ̄ [N/A/kg
1
2 ] R0 [Ω] L0 [H]

0.00847 50.8 1.66 2.57 1.65×10−3

Table 2: Estimated parameter values of the conventional model II.

ζ [-] ω0 [rad/s] ϕ̄ [N/A/kg
1
2 ] R0 [Ω] L0 [H] Rµ [Ω]

0.00875 50.8 1.69 2.57 1.97×10−3 295

Table 3: Estimated parameter values of the conventional model III.

ζ [-] ω0 [rad/s] ϕ̄ [N/A/kg
1
2 ] R0 [Ω] α [s] β [H/s

1
2 ]

0.00896 50.8 1.71 2.57 7.00×10−5 5.29×10−1

Table 4: Estimated parameter values of the UD model.

ζ [-] ω0 [rad/s] ϕ̄ [N/A/kg
1
2 ] R0 [Ω]

0.0100 50.8 1.83 2.57

Lg [H] α [s] β [H/s
1
2 ]

7.86×10−4 3.74×10−4 2.87×10−1

5. Shunted vibration control experiments

5.1. Design of the RC-shunt circuit

This section describes a shunted vibration control experiment using the RC-

shunt circuit [31], which is sensitive to the estimated parameters and is effective

in evaluating the accuracy of the estimated models presented in the previous245

section.
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Table 5: Estimated parameter values of the NL model.

ζ [-] ω0 [rad/s] ϕ̄ [N/A/kg
1
2 ] R0 [Ω] Pg [H]

0.0109 50.8 1.91 2.56 3.43×10−9

P1 [H] P2 [H] P3 [H] P4 [H] P5 [H]

4.09×10−9 3.84×10−9 3.73×10−9 4.77×10−9 4.28×10−9

R1 [Ω] R2 [Ω] R3 [Ω] R4 [Ω] R5 [Ω]

2.91×10−6 1.43×10−5 5.37×10−5 1.90×10−4 8.33×10−4
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Figure 10: Bode admittance diagram of Y I
e (jω) (green broken line), Y II

e (jω) (cyan broken

line), Y III
e (jω) (blue dashed line), Y UD

e (jω) (purple dashed line), Y NL
e (jω) (red solid line), and

experimental data (black dots) in the range of 101-105 [rad/s]. The estimations obtained by

all of the models match the measured data in the low-frequency range (ω < 102); however,

the results for the conventional models do not match the measured data in the mid- and

high- frequency ranges (102 < ω). The results obtained by the UD and NL models match the

measured data in the high-frequency range (104 < ω); however, the results obtained by the

UD model do not match the measured data in the mid-frequency range (102 < ω < 104)
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By using (1)-(5), the transfer function from fd(t) to x(t), G(s), is given by

G(s) :=
x̃(s)

f̃d(s)
=

1/m

s2 + 2ζω0s+ ω2
0 +

ϕ̄2s
Zc(s)+R0+Zs(s)

, (50)

where Zs(s) := −ṽe(s)/̃ie(s) is the impedance of the shunt circuit and will be

designed later. When the terminal of the electromagnetic transducer is open,

that is, ie(t) = 0, G(s) is denoted by Gopen(s) as follows:

Gopen(s) =
1/m

s2 + 2ζω0s+ ω2
0

. (51)

When the RC-shunt circuit is connected to the terminal of the electromagnetic

transducer, that is, Zs(s) = Rs +
1

Css
, G(s) is denoted by GRC(s) as follows:

GRC(s) =
1/m

s2 + 2ζω0s+ ω2
0 +

ϕ̄2s
Zc(s)+R0+Rs+

1
Css

, (52)

where Rs[Ω] is the resistance and Cs [F] is the capacitance in the RC-shunt

circuit [46].

For each estimated model, the problem of vibration control is formulated by

selecting Rs and Cs, which minimize the H∞ norm of GRC(s), ∥GRC∥∞.250

In the case of the conventional model I, the optimal values of Rs and Cs are

given by [22]

Ropt
s =

ϕ̄

4

√6L0 +
ϕ̄

ω0

√
2L0 +

√
6L0 −

ϕ̄

ω0

√
2L0

−R0, (53)

Copt
s =

2

2ω2
0L0 − ϕ̄2

. (54)

In the case of the UD or NL model, Rs and Cs are determined by numerical

optimization. The initial values are given by (53) and (54). Figure 11 shows

the contour map of 20 log10(∥GNL
RC∥∞/∥Gopen∥∞), which represents the gain

drop of GNL
RC(s) from Gopen(s), and the red cross denotes the optimal values

of Rs and Cs. Note that ∥GNL
RC∥∞ is sensitive to Rs and Cs, especially in the255

direction in which Rs decreases from the optimal solution. Figure 12 shows

the simulated frequency responses for GNL
RC(s) versus Gopen(s). The peak of

GNL
RC(jω) is separated into two peaks that are analogous to the dynamic vibration
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Table 6: Optimal designed parameters of the RC-shunt circuit from estimated results.

I II III UD NL

Ropt
s [Ω] −2.49 −2.48 −2.47 −2.43 −2.40

Copt
s [F] 0.345 0.281 0.240 0.135 0.0814

-23 -22 -21 -20-24

Figure 11: Contour map of 20 log10
(
∥GNL

RC∥∞/∥Gopen∥∞
)
and the optimal solution obtained

by the numerical optimization (red cross). The contour interval is 0.5 [dB]. ∥GNL
RC∥∞ is

sensitive to Rs and Cs, especially in the direction in which Rs decreases from the optimal

solution. The control performance of the RC-shunt circuit is shown to be sensitive to the

selections of Rs and Cs.

absorber, and the peak gain decreases to −24.7 [dB], where the peak gain of

Gopen(s) is normalized to 0 [dB]. The results of the UD model are similar and260

are omitted here.

Table 6 lists the designed parameters of Ropt
s and Copt

s for each model. The

results of Ropt
s are similar but those of Copt

s are different. As discussed in

Section 3.2, ζ, ω0, ϕ̄, and R0 are similar in each model, and the mismatch in the

estimated frequency responses of Ye(s) in Fig. 10 is caused by Zc(s). Therefore,265

the design parameter of Copt
s for each model depends on the model of Zc(s),

and Copt
s is different for each model.
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Figure 12: Simulated frequency response of the normalized gain from the disturbance force

to the displacement, in which the black dotted line represents Gopen(jω), whereas the red

solid line represents GNL
RC(jω). The peak gain of GNL

RC(jω) drops by −24.7 [dB] compared with

Gopen(s).

5.2. Experimental method for vibration control

Figure 13 shows the experimental setup [38]. The disturbance provided to

the mass-spring-damper system is generated by the exciter, which is connected270

to the current amplifier and function generator. The displacement of the mass-

spring-damper system is measured by the laser displacement meter (LB-080,

KEYENCE). The amplitude of the applied voltage is 0.7 [V], and the applied

voltage, which is swept from 25 [rad/s] to 75 [rad/s], is applied for 80 [s]. The

sampling frequency and the number of data points of the data logger are 200 [Hz]275

and 16384 points, respectively. It should be noted that the laser displacement

meter is only used for evaluating the vibration control performance and not for

control. For averaging the frequency response, vibration control experiments

are performed thrice for each model using the RC-shunt circuit. The frequency

response, GRC(jω), is computed by dividing the cross power spectral density of280

fd(t) and x(t) by the power spectral density of fd(t).

The shunt circuit is implemented using the synthetic impedance circuit [32,
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Figure 13: Schematic of the experimental setup used for shunt damping. A synthetic

impedance circuit is coupled with the electromagnetic transducer for damping, and a cur-

rent amplifier (AMP.) is coupled with the exciter for actuation [38].

Table 7: Parameters of the analog circuit.

Rin [Ω] Kin [-] Kout [-]

0.0996 99.23 0.9846

46], which consists of the controller, K(s), the instrumentation amplifier whose

gain is Kin, the power amplifier whose gain is Kout, and the resistor, Rin, as

shown in Fig. 13. The values ofKin, Kout, and Rin are estimated by experiments

and are summarized in Table 7. In this implementation, Zs(s) is given by

Zs(s) = Rin +RinKinKoutK(s). (55)

To implement the RC-shunt circuit, K(s) is determined as follows:

K(s) =
1

RinKinKout

(
Rs −Rin +

1

Css

)
. (56)

A digital signal processor (DSP, s-BOX, MTT Corporation) and MATLAB/Simulink

[47] are used to implement the controller, K(s), discretized by the bilinear trans-

formation. The sampling frequency of the DSP is 5000 [Hz].
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Figure 14: Frequency response of the normalized gain from the disturbance force to the

displacement in the experiments (open terminals: black dotted line; conventional model I:

green broken line; conventional model II: cyan broken line; conventional model III: blue dashed

line; UD model: purple dashed line; NL model: red solid line). The NL model provides the

most suitable modeling because its peak gain is the most attenuated. The UD model also

provides more suitable modeling in comparison with the conventional models.

5.3. Experimental results of vibration control285

Figure 14 shows the results of vibration control. The peak gains of the con-

ventional models, I, II, and III, the UD model, and the NL model drop by −15.5,

−16.3, −16.8, −19.3, and −22.0 [dB], respectively. The control performance is

sensitive to the designed parameters Rs and Cs, as discussed in Section 5.1. It is

obvious that the quality of the model has an effect on the control performance.290

Therefore, the NL model is the most suitable one, and the UD model is also

better than the conventional models.

6. Conclusions

In this paper, a method is presented for simultaneously estimating all the

parameters of an electromagnetic transducer by only measuring the frequency295

response of the admittance; the method does not require any additional sen-

sors. This paper also discusses the importance of the effect of eddy currents in
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impedance modeling. Two novel models have been presented; the UD model is

the impedance model that considers spatially uniform parameters and spatially

distributed eddy currents, whereas the NL model is the impedance model that300

considers spatially nonuniform parameters and spatially lumped eddy currents.

Both the proposed models improve the accuracy of the frequency response of

the admittance in the mid- and high-frequency ranges compared to the conven-

tional models. The UD and NL models play complementary roles; the tradeoff

is between a smaller number of parameters in the former and a higher esti-305

mation accuracy in the latter. The results of vibration control experiments

show that the accurate estimate provided by the proposed models improves the

control performance of shunt damping, which is sensitive to the parameters of

self-induction.
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Appendix A. Selection of an initial estimate

In the same way as [38], this section presents a method for selecting an initial

estimate of the nonlinear least-squares in (49). By rearranging the parameters

θnls in a new set of parameters θini, (47) can be rewritten in the fractional form

as

Ye(s) =
gnum(s;θini)

gden(s;θini)
, (A.1)

where gnum(s;θini) is a numerator polynomial of s and is affine to θini, and

gden(s;θini) is a denominator polynomial of s and is also affine to θini. By

multiplying the numerator polynomial, gnum(s;θini), with the cost function in

(49), the parameter estimation problem is reformulated by the weighted linear
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least-squares method in the frequency domain.

min
θini

Ns∑
k=1

∣∣∣∣(gnum(jωs[k];θini)

Ys(jωs[k])
− gden(jωs[k];θini)

)
Wini(jωs[k])

∣∣∣∣2 , (A.2)

where Wini(jωs[k]) is the weighting function given by Wini(jωs[k]) := 1/jωs[k].

The weighted linear least-squares in (A.2) can be rewritten in the matrix form

as

min
θini

∥Aθini − b∥2 . (A.3)

The optimal solution of (A.3) is given by

θiniopt =
(
A∗A+A∗A

)−1 (
A∗b+A∗b

)
, (A.4)

where A∗ is the complex conjugate transpose of A and A is the complex con-

jugate of A.315

The initial estimate and its detailed derivation for the conventional model I

given in (6) have been described in [38]. In the same manner, the initial esti-

mates and their detailed derivations for the other impedance models given in

(7), (22), (21), and (41) are described in the following subsections. We note

that it is not straightforward to determine θnls from the optimized θiniopt in320

(A.4) for the following reasons: (i) θini is nonlinearly coupled with θnls, (ii) θini

is generically redundant to determine θnls, and (iii) the conventional model III

and the UD model are not rational functions. Therefore, approximations are

carried out to determine θnls from θiniopt in each model.

Appendix A.1. Conventional model II325

In the case of the conventional model II given in (7), Y II
e (s) is represented

in the form of (A.1), and then, θII
ini is obtained as follows:

θII
ini :=

[
L0

Rµω2
0

,
1

ω2
0

(
1 +

2L0ζω0

Rµ

)
,
L0

Rµ
+

2ζ

ω0
,
L0

ω2
0

(
R0

Rµ
+ 1

)
,

R0

ω2
0

+
L0ϕ̄

2

Rµω2
0

+
2L0ζ

ω0

(
R0

Rµ
+ 1

)
,

L0

(
R0

Rµ
+ 1

)
+

ϕ̄2

ω2
0

+
2R0ζ

ω0
, R0

]T
. (A.5)
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The k-th row components of AII and bII, AII
k and bIIk , k = 1, · · · , Ns, are given

by

AII
k :=

[
(jωs[k])

2

Ys(jωs[k])
,

jωs[k]

Ys(jωs[k])
,

1

Ys(jωs[k])
,

−(jωs[k])
2, −jωs[k], −1, − 1

jωs[k]

]
, (A.6)

bIIk := − 1

jωs[k]Ys(jωs[k])
. (A.7)

By substituting (A.6) and (A.7) into (A.4), θII
iniopt is determined. By evaluating

the numerical orders, we have L0 ≪ 1, ζ ≪ 1, Rµ ≫ 1, and ω0 > 1 in practice,

and therefore, 2L0ζω0/Rµ ≪ 1, i.e., the second term in the second component

of (A.5) can be neglected. By equating (A.4) and (A.5), the initial estimates of

the nonlinear least-squares method for the conventional model II, ζ, ω0, ϕ̄, R0,

L0, and Rµ, are selected as follows:

ζ =
1

2
√
θ2

(
θ3 −

θ1
θ2

)
, ω0 =

1√
θ2

,

ϕ̄ =

√
θ6 − θ3θ7

θ2
+

θ1θ7 − θ4
θ22

, R0 = θ7,

L0 =
θ4 − θ1θ7

θ2
, Rµ =

θ4 − θ1θ7
θ1

. (A.8)

where θi, i = 1, · · · , 7, are the components of θII
iniopt.

Appendix A.2. Conventional model III

In the case of the conventional model III given in (22), it is difficult to

represent Y III
e (s) in the form of (A.1), and this term is therefore approximated.

The Maclaurin expansion of Jν(z) is given by

Jν(z) =
(z
2

)ν ∞∑
k=0

(−z2/4)k

k!Γ(ν + k + 1)
, (A.9)

where Γ(z) is the gamma function[48]. Equation (A.9) is substituted into ZIII
c (s)

in (22). By taking the first-order components of the numerator and the denom-

inator of ZIII
c (s), the first-order approximation of ZIII

c (s) is given by

ZIII
c (s) ≈

√
αβs

αs+ 8

4αs+ 16
. (A.10)
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Y III
e (s) is approximated by substituting (A.10) into (47). The approximated

Y III
e (s) is rewritten in the form of (A.1), and then, θIII

ini is obtained as follows:

θIII
ini :=

[
α

4ω2
0

,
1

ω2
0

(
1 +

αζω0

2

)
,
2ζ

ω0
+

α

4
,
α3/2β

16ω2
0

,

α

(
R0

4ω2
0

+

√
αβ

8ω0
ζ

)
+

√
αβ

2ω2
0

,

α

(
ϕ̄2

4ω2
0

+
R0ζ

2ω0

)
+
√
αβ

(
ζ

ω0
+

α

16

)
+

R0

ω2
0

,

√
αβ

2
+

R0

4

(
α+

8ζ

ω0

)
+

ϕ̄2

ω2
0

, R0

]T
. (A.11)

The k-th row components of AIII and bIII, AIII
k and bIIIk , k = 1, · · · , Ns, are

given by

AIII
k :=

[
(jωs[k])

2

Ys(jωs[k])
,

jωs[k]

Ys(jωs[k])
,

1

Ys(jωs[k])
, −(jωs[k])

3,

−(jωs[k])
2, −jωs[k], −1, − 1

jωs[k]

]
, (A.12)

bIIIk := − 1

jωs[k]Ys(jωs[k])
. (A.13)

By substituting (A.12) and (A.13) into (A.4), θIII
iniopt is determined. By eval-

uating the numerical orders, we have α ≪ 1, ζ ≪ 1, and ω0 > 1 in practice,

and therefore, αζω0/2 ≪ 1, i.e., the second term in the second component of

(A.11) can be neglected. By equating (A.4) and (A.11), the initial estimates of

the nonlinear least-squares method for the conventional model III, ζ, ω0, ϕ̄, R0,

α, and β, are selected as follows:

ζ =
1

2
√
θ2

(
θ3 −

θ1
θ2

)
, ω0 =

1√
θ2

,

ϕ̄ =

√
1

θ1

(
θ6 +

θ4
θ2

− θ2θ8

)
+

θ1θ8
θ22

− 2
θ3θ4
θ21

− θ3θ8
θ2

, R0 = θ8,

α =
4θ1
θ2

, β = 2
θ4
θ1

√
θ2
θ1

. (A.14)

where θi, i = 1, · · · , 8, are the components of θIII
iniopt.

Appendix A.3. UD model

In the case of the UD model given in (21), it is difficult to represent Y UD
e (s)

in the form of (A.1), and therefore, approximation is carried out. Equation
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(A.9) is substituted into ZUD
c (s) in (21). By taking the first-order components

of the numerator and the denominator of ZUD
c (s), the first-order approximation

of ZUD
c (s) is given by

ZUD
c (s) ≈ Lgs+

√
αβs

αs+ 8

4αs+ 16
. (A.15)

By substituting (A.15) into (47), Y UD
e (s) is rewritten in the form of (A.1), and

then, θUD
ini is obtained as follows:

θUD
ini :=

[
α

4ω2
0

,
1

ω2
0

(
1 +

αζω0

2

)
,
2ζ

ω0
+

α

4
,
4Lgα+ α3/2β

16ω2
0

,

α

(
R0

4ω2
0

+
4Lg +

√
αβ

8ω0
ζ

)
+

2Lg +
√
αβ

2ω2
0

,

α

(
ϕ̄2

ω2
0

+
R0ζ

2ω0
+

Lg

4

)
+
√
αβ

(
ζ

ω0
+

α

16

)
+

R0

ω2
0

+
2Lgζ

ω0
,

Lg +

√
αβ

2
+

R0

4

(
α+

8ζ

ω0

)
+

ϕ̄2

ω2
0

, R0

]T
. (A.16)

The k-th row components of AUD and bUD, AUD
k and bUD

k , k = 1, · · · , Ns, are

given by

AUD
k :=

[
(jωs[k])

2

Ys(jωs[k])
,

jωs[k]

Ys(jωs[k])
,

1

Ys(jωs[k])
, −(jωs[k])

3,

−(jωs[k])
2, −jωs[k], −1, − 1

jωs[k]

]
, (A.17)

bUD
k := − 1

jωs[k]Ys(jωs[k])
. (A.18)

By substituting (A.17) and (A.18) into (A.4), θUD
iniopt is determined. By eval-

uating the numerical orders, we have α ≪ 1, ζ ≪ 1, and ω0 > 1 in practice,

and therefore, αζω0/2 ≪ 1, i.e., the second term in the second component of

(A.16) can be neglected. By equating (A.4) and (A.16), the initial estimates of

the nonlinear least-squares method for the UD model, ζ, ω0, ϕ̄, R0, Lg, α, and
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β, are selected as follows:

ζ =
1

2
√
θ2

(
θ3 −

θ1
θ2

)
, ω0 =

1√
θ2

,

ϕ̄ =

√
θ7 − θ3θ8

θ2
+

θ1θ8 − θ5
θ22

+
θ4
θ32

(
θ3 −

θ1
θ2

)
, R0 = θ8,

Lg = θ1

(
θ8
θ2

− θ4
θ32

)
+

(
2

θ1
+

θ3
θ22

)
θ4 −

θ5
θ2

, α =
4θ1
θ2

β = 2

√
θ1
θ2

{
θ5
θ1

+
θ4
θ22

− θ8 −
θ4
θ1

(
θ3
θ2

+
θ2
θ1

)}
. (A.19)

where θi, i = 1, · · · , 8, are the components of θUD
iniopt.330

Appendix A.4. NL model

In the case of the NL model given in (41), the initial estimates of the non-

linear least-squares method for the NL model are determined by those of the

UD model. Specifically, the parameters ζ, ω0, ϕ̄, and R0 are the same as those

in (A.19). The parameters Pg, Pj , and Rj are determined by substituting the335

parameters Lg, α, and β in (A.19) into (35), (45), and (46).

Appendix B. Mechanical parameter estimation using additional mass

This section presents a method for estimating the values of m, c, k, and ϕ

instead of ζ, ω0, and ϕ̄. To this end, the additional mass, ∆m, is added to

the mass, m, and then, the frequency response of the admittance, Ye(jω), is340

measured again. Then, ζ, ω0, and ϕ̄ are changed to ζ ′ := c/
√

4(m+∆m)k,

ω′
0 :=

√
k/(m+∆m), and ϕ̄′ := ϕ/

√
m+∆m, respectively. The values of m,

c, k, and ϕ can be calculated by using ζ, ω0, ϕ̄, ω
′
0, and ∆m.

An additional measurement of Ye(jω) is performed by adding ∆m = −0.645

[kg], that is, by removing 0.645 [kg] from the mass. Table B.8 lists the estimated345

parameters of the NL model including the values of ζ ′, ω′
0, and ϕ̄′. Table B.9

lists the estimated values of m, c, k, and ϕ, which seem to be reliable because

the estimated values of R0, Pg, Pj , and Rj , which are not influenced by changes

in m, are quite similar to the ones listed in Tables 5 and B.8.
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Table B.8: Estimated parameter values when ∆m(=0.645kg) is removed.

ζ ′ [-] ω′
0 [rad/s] ϕ̄′ [N/A/kg

1
2 ] R0 [Ω] Pg [H]

0.00927 64.2 2.26 2.58 3.43×10−9

P1 [H] P2 [H] P3 [H] P4 [H] P5 [H]

4.16×10−9 3.84×10−9 3.73×10−9 4.78×10−9 4.28×10−9

R1 [Ω] R2 [Ω] R3 [Ω] R4 [Ω] R5 [Ω]

2.90×10−6 1.43×10−5 5.34×10−5 1.89×10−4 8.30×10−4

Table B.9: Estimated parameter values of the mechanical model and electromechanical cou-

pling coefficient.

m [kg] c [Ns/m] k [N/m] ϕ [N/A]

1.73 1.92 4.47×103 2.51
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