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Osmotic mechanism of the loop extrusion process
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The loop extrusion theory assumes that protein factors, such as cohesin rings, act as molecular motors that
extrude chromatin loops. However, recent single molecule experiments have shown that cohesin does not show
motor activity. To predict the physical mechanism involved in loop extrusion, we here theoretically analyze the
dynamics of cohesin rings on a loop, where a cohesin loader is in the middle and unloaders at the ends. Cohesin
monomers bind to the loader rather frequently and cohesin dimers bind to this site only occasionally. Our theory
predicts that a cohesin dimer extrudes loops by the osmotic pressure of cohesin monomers on the chromatin fiber
between the two connected rings. With this mechanism, the frequency of the interactions between chromatin
segments depends on the loading and unloading rates of dimers at the corresponding sites.
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I. INTRODUCTION

Chromatin conformation capture and related techniques
have shown that chromosomes in a cell nucleus form so-
called topologically associated domains (TADs), contiguous
regions of enriched contact frequency that are isolated from
neighboring regions [1]. A recent theory predicts that TADs are
composed of stochastic chromatin loops, which are produced
by the loop extrusion mechanism; a protein factor, called a loop
extrusion factor (LEF), acts as a molecular motor that extrudes
a stretch of a chromatin fiber to form a loop and the loop size
is limited by proteins, called boundary elements (BEs), that
stop the motion of LEFs [2]. This theory predicts that the
interactions of chromatin in TADs are local and stochastic, in
agreement with experiments [1], for a window of parameters
involved in the processivity of LEFs and the average distance
between LEFs.

It has been proposed that cohesin, one of the SMC
(structural maintenance of chromosomes) proteins, act as
LEFs and CTCF acts as BEs [2]. While the roles of CTCF
as BEs seem to be consistent with experiments [1,3], recent
single molecule experiments showed that cohesin rings diffuse
randomly along DNA, in contrast to the expectation of
cohesin as a molecular motor [4-6]. Whether the diffusion
constant of cohesin depends on the concentration of ATP is
controversial [4-6]. These experiments also showed that a
cohesin ring can contain only one chromatin fiber in its pore
and thus must form dimers to mediate chromatin interactions.
In view of these experimental results, how can cohesin rings
extrude loops and ensure the locality and stochasticity of
chromatin interactions, provided that cohesin rings indeed
produce chromatin loops? Here we analyze the dynamics of
cohesin rings that do not show motor activity on a chromatin
fiber to predict a possible mechanism of the loop extrusion
process.
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II. MODEL

Single molecule experiments have shown that cohesin rings
are (1) preferentially loaded to chromatin fibers at specific
sites, occupied by loader proteins (such as Nipbl) and are (2)
topologically bound to chromatin fibers for a relatively long
time by using ATP [4,5]. In some cases, these proteins are (3)
preferentially unloaded at another specific site, occupied by
unloader proteins (such as Wapl) [7].

We treat a stretch of chromatin fiber as a 1D lattice of
binding sites (of size a), which can be occupied by cohesin
rings. The loading site is in the middle of the fiber stretch
(z = 0) and the unloading sites are at its two ends (z = £M)
(see Fig. 1). We assume that cohesin rings are usually loaded
as monomers and are only occasionally loaded as dimers.
Cohesin dimers transiently associate two segments of the fiber.
Both cohesin monomers and dimers do not dissociate from the
fiber until they reach the unloading site. The latter unloading
condition is to simplify the model and is not essential. In the
Supplemental Material (SM), we treat cases in which cohesin
rings are unloaded on the track with a uniform rate [8]. The
region in between the two unloading sites is bound by two BEs
(such as two CTCEF proteins of converging orientation) so that
cohesin rings do not diffuse out from the region. Once loaded
on the fiber, cohesin monomers cannot stick together to form
dimers; this ensures the locality of the chromatin interactions
(shown in Ref. [2]).

The flux Jy, of cohesin monomers has the form

Jn = =D (@) = 2 L@, (1)

where 1,(z) is the probability of finding a cohesin monomer
at the zth binding site (—M < z < M), D, is the diffusion
constant of cohesin rings, kg is the Boltzmann constant,
and T is the absolute temperature (see the SM for the
derivation [8]). [Tosm(= —kgT log[1 — ¥m(2)]) is the osmotic
pressure generated by monomers [this returns to the ideal
gas form for v,(z) < 1]. It has the dimension of energy
because it acts parallel to the 1D lattice. The first term on
the right-hand side of Eq. (1) is the thermal diffusion of
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FIG. 1. (a) Chromatin fiber with a loading site for cohesin rings
in the middle (magenta) and corresponding unloading sites at the
ends (blue). Cohesin rings (green) topologically bind to the fiber
as monomers or dimers. The two ends of this fiber stretch feature
boundary elements (triangles) beyond which the cohesin rings cannot
diffuse. (b) In our model we treat the chromatin fiber as a 1D lattice
along which the cohesin monomers and dimers diffuse.

monomers and the second term is the flux generated by the
osmotic pressure I[Tosm(z). We assumed that cohesin dimers
bind to the chromatin fiber only rarely.

In steady state, J,, does not depend on the positions z and
is equal to both the loading rate of cohesin monomers at the
loading site, k. c[1 — ¥, (0)], and the unloading rate of these
monomers at the unloading site, kj¥m(M) (k7 and kJj; are
the rate constants that account for the loading and unloading of
monomers, respectively, and c is the concentrations of cohesin
in solution). These boundary conditions highlight the fact that
cohesin rings are topologically bound to the chromatin fiber
for a relatively long time by using ATP; cohesin rings are
unloaded at a site far away from the loading site, breaking
the detailed balance. With these boundary conditions, Eq. (1)
leads to the probability 1,(z) in the form

Im
Ym(z)=1-— <1 — T>efm(ZM)/DC’ @)
koff
where the flux Jy, is determined by the relationship
Jn\ _
off

The flux Jy of cohesin dimers has the form

D Mm@, @)
kT dalZ 9z osm{Z),

where 14(z) is the probability of finding a cohesin dimer at z.
Equation (4) is derived by assuming that the two rings of each
dimer diffuse independently (see the SM for the derivation [8])
and by neglecting the contributions of the conformational
entropy of the chromatin fiber (see also the SM [8]). The
first term on the right-hand side of Eq. (4) is due to the thermal
diffusion of cohesin dimers and the second term is due to the

0
Ja = —Dca—Wd(Z) —
z
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FIG. 2. The probability distribution ¥4(z) of dimers [rescaled by
kS D./(kM™>M)] is shown as a function of the rescaled position z/M
for Mk} c/D. = 3.4 (cyan), 150.6 (black), and 1092.0 (magenta).
We used Mk%;/ D, = 0.5 and Mk™:/D. = 5.0. The solid and broken
curves are derived by using Eq. (5) and Eq. (S12) in the Supplemental
Material [8], respectively.

osmotic pressure [1osm(z) generated by cohesin monomers. For
simplicity, we assumed that the diffusion constant of cohesin
dimers is equal to the diffusion constant of cohesin monomers.

In steady state, the flux J4 does not depend on the position
z and is equal to both the loading rate of dimers at the
loading site, k4 c*[1 — ¥,(0)]?, and the unloading rate of
dimers at the unloading site, k% ya(M) (k. and kS are the
rate constants that account for the loading and unloading of
dimers, respectively). These boundary conditions highlight the
fact that cohesin rings are topologically bound to the chromatin
fiber for a relatively long time by using ATP; cohesin rings are
unloaded at a site far away from the loading site, breaking
the detailed balance. With these boundary conditions, Eq. (4)
leads to the probability ¥4(z) in the form

V@) = (1 — e D, )

with the flux of dimers Jq = k% J2/k™2 and introducing a
factor a(= 1 — Jn/ k).

III. RESULTS AND DISCUSSION

The probability distribution 4(z) corresponds to the
average frequency of contacts between the chromatin segments
at z and —z. The distribution function 1/4(z) is a monotonically
increasing function of the position z for & < 0, in contrast
to the prediction of simple thermal diffusion (see the solid
curves in Fig. 2). This is because the motions of cohesin
dimers are driven by the osmotic pressure generated by cohesin
monomers [see the second term of Eq. (4)]. Hi-C experiments
have shown that in many cases, the contact frequency of
chromatin segments has a peak at the bases of the loop [1].
This implies that the probability ¥4(z) is a steeply increasing
function of the position z; the factor « is negative and the
length scale aD./(JM) of dimer distribution (a is the size
of a binding site, which we use for consistency, but does
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FIG. 3. Diagram of states defined by the sign of the factor o [see
Eq. (5)] is shown as a function of the rescaled monomer loading
rate k. cM /D, and the rescaled dimer unloading rate kgﬁM /D.. The
boundary is shown for the values of the rescaled monomer unloading

rate ki M /D, = 0.5 (blue), 1.0 (black), and 2.0 (magenta).

not matter in the following calculations) is smaller than the
order of 3.4 um (=~10 kbps). This corresponds to cases in
which the loading and unloading rates k¢, and kY; of dimers
is relatively small and the loading and unloading rates k7, and
kg of monomers is large [see Eq. (5)]. More quantitatively, for
a’D, ~ 1 pm?/min [4,6] and aM ~ 340 pum (~1 Mbps) [9],
the monomer flux J;, must be larger than the order of
1073 min~! so that aD./(JmM) < 3.4 um (=10 kbps) and
the unloading rate k%; of dimers must be smaller than the
monomer flux. Our theory predicts that cohesin rings extrude
loops, even without motor activity, due to the osmotic pressure
generated by monomers. The stochasticity of chromatin
interactions in TADs is ensured by the fact that dimers are
loaded to the chromatin fiber only occasionally.

Our theory predicts that the distribution function ¥4(z)
of cohesin dimers changes from a monotonically decreasing
function, o > 0, to a monotonically increasing function,
o < 0, with increasing the concentration ¢ of cohesin in the
solution (see Fig. 3). This is because the flux of monomers
increases with increasing the concentration ¢ [see Eq. (3)
and below Eq. (5)]. The peaks of the probability distributions
of monomers and dimers, characterized by the length scale
aD./(Jn M), become steeper as the concentration ¢ increases.
The contact probability of chromatin segments, which scales
as Jq/Jm, increases with increasing the concentration c¢. These
predictions may be accessible by single molecule experiments.

Recent experiments have shown that the diffusion constant
of cohesin rings changes with post-translational modifications
and/or accessory proteins [6]. Our theory predicts that the
parameter « decreases with increasing the diffusion con-
stant D, and that the width aD./(J,M) of the peak of
the distribution function ¥4(z) at the loop base (z = M)
increases with the diffusion constant D.. These predictions
may be experimentally accessible by using post-translational
modifications and/or accessory proteins (for cases in which
the modification changes the diffusion constants of monomers
and dimers in a similar manner).
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Our theory predicts that cohesin dimers extrude chromatin
loops due to the osmotic pressure of cohesin monomers, if (1)
both cohesin monomers and dimers are preferentially loaded
at the loading site and (2) they are loaded on chromatin
for a relatively long time by using ATP. The chromatin
interactions are stochastic and local, as predicted by the
loop extrusion theory, if (3) cohesin dimers are loaded to
the chromatin fiber only rarely and (4) cohesin monomers
do not assemble into dimers after they are loaded onto the
chromatin fiber. This is a possible mechanism behind the
loop extrusion process, provided that cohesin rings indeed
extrude chromatin loops. However, it cannot be excluded at
this time that other molecules actively extrude loops or that
cohesin shows motor activity in an unidentified condition.
Indeed, recent experiments indicate that condensin, another
SMC protein, has motor activity [10]. If their motion is driven
by the motor activity, the average speed of cohesin rings
does not depend on the position z along the chromatin fiber
(provided that the fiber is ideally uniform). Experimentally
measuring the speed of cohesin rings as a function of the
position z may provide useful information about the physical
mechanisms involved in the loop extrusion process.

We used a couple of assumptions to simplify the model.
First, cohesin rings are loaded on the chromatin fiber until they
are released by unloader proteins. Second, the conformational
entropy of the chromatin fiber does not drive the flux of cohesin
dimers. In the SM, we show that releasing these assumptions
makes the gradient of the distribution function ¥4(z) (with
respect to the position z) zero at z = M (because BEs stop the
motion of cohesin monomers and dimers) and produces a peak
at the loading site, but does not change the physics (see Secs. S2
and S3 in the SM [8]). Third, the two rings of each dimer diffuse
independently. If the two rings diffuse in registry, the dimer
diffusion constant is one-half times the monomer diffusion
constant [see Eq. (S12) in the Supplemental Material [8]].
Then, the peak of the distribution function ¥4(z) at z = M
is sharper than in the case where the two rings of each dimer
diffuse independently (see the broken curves in Fig. 2). Fourth,
we assumed that the diffusion constants of monomers and
dimers are equal. However, cohesin monomers can simply
diffuse along the chromatin fiber, whereas the conformational
dynamics of the chromatin fiber may be involved in the
diffusion of cohesin dimers. If this is the case, the diffusion
constant of dimers is equal to the Rouse diffusion constant [11]
and is much smaller than the diffusion constant of monomers.
The peak width of the contact frequency at the loop base is
thus much steeper than our prediction. Finally, our theory is
a mean-field theory and thus may not capture the correlation
involved in the fact that monomers cannot penetrate through
dimer rings and vice versa. We expect that the latter correlation
is not significant for cases in which the diffusion constants of
monomers and dimers are approximately equal.

Note added. Recently, we became aware of an arXiv
preprint, where it is also proposed that the loop extrusion
might be driven by an osmotic mechanism [12]. Unlike in
our model, there are only dimers which produce loops and
at the same time generate the osmotic pressure. If many
cohesin dimers are loaded on a chromatin loop so that the
osmotic pressure becomes significant, the loop may be tightly
bound by the dimers, in contrast to the fact that the contact
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frequencies in TADs are only moderate, with the exception of
the peak loci at the TAD boundaries [1,2]. If there are only
a few dimers, the osmotic pressure may not be significant
enough to produce a peak of the contact frequency at the
TAD boundaries. The window of parameters with which
the contact frequency shows a peak at the loop base may
thus be rather limited or even may not exist if the osmotic
pressure of dimers is the only mechanism to produce the
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peak. In contrast, by dividing the tasks of osmotic pressure
generation and loop formation to monomers and dimers, we
predict that the interaction frequency shows a peak at the loop
base in agreement with experiments [1], while the stochasticity
and locality of chromatin interactions are ensured. This theory
singles out the contributions of osmotic pressure and shows
quantitative predictions. These predictions may be useful to
elucidate the physical mechanism that stabilizes TADs.
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