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A well-known Taylor problem in the theory of forced magnetic reconnection is investigated in the

framework of the Hall-Magnetohydrodynamics. In the first part of the paper, we deal with the lin-

ear theory of the Hall-mediated forced reconnection. Then, in the second part, these results are

used for demonstrating how the secondary tearing (plasmoid) instability can develop in the course

of this process. Published by AIP Publishing. https://doi.org/10.1063/1.4996982

I. INTRODUCTION

Magnetic reconnection, which is a change in the connec-

tivity of magnetic field lines in a highly conducting fluid,

plays a crucial role in various phenomena occurring in space

and laboratory plasmas (solar flares, magnetospheric sub-

storms, tokamak disruptions, etc.). This paper investigates a

particular model problem of forced magnetic reconnection

suggested by J. B. Taylor and known as the “Taylor problem.”

Being by itself of considerable intrinsic interest in the plasma

physics theory, this model has also many important implica-

tions for laboratory and astrophysical plasmas. Therefore,

since a pioneer paper by Hahm and Kulsrud1 (hereafter HK),

it has been studied in quite a large number of publications

(see, e.g., the list of references in Ref. 2).

More recently, this model attracted a renewed interest

because of its relevance to study of the secondary tearing

(plasmoid) instability3,4 as a mechanism leading to fast

magnetic reconnection. The latter is a primary focus in the

research field of magnetic reconnection, which is to explain

why the observed rate of reconnection is usually much faster

than predicted by conventional magnetohydrodynamics

(MHD) models with a large Lundquist number. It is realized

now that highly elongated current sheets (CSs), which are

typically formed in a course of magnetic reconnection under

a large Lundquist number, cannot persist. The secondary

tearing instability breaks the initially long current sheet into

a chain of magnetic islands (plasmoids), whose subsequent

nonlinear evolution paves the way to fast reconnection.5–7

Therefore, the issue of the plasmoid-mediated fast reconnec-

tion is presently a hot topic with a significant number of

related publications. Most of them are numerical simula-

tions, because self-consistent description of this process is

not a simple task: it requires following an entire current sheet

evolution, which at some point brings about the onset of the

secondary tearing instability.8

However, in order to get deeper understanding of the

issue, in particular, on how the process scales with the plasma

and magnetic field parameters, one needs some tractable ana-

lytical models. Here is where the Taylor model comes to help.

Thus, development of the plasmoid instability in the process

of forced reconnection was first observed in the numerical

simulation.9 Then, the standard single-fluid MHD analytical

theory of nonlinear forced reconnection and the onset of plas-

moid instability was presented in Ref. 10. However, such a

scheme is not applicable when, as it is often the case, the

Lundquist number is so large that the current sheet thickness

becomes comparable or smaller than the ion inertial skin-

depth di ¼ c=xpi. In this situation, the flow of electrons and

ions inside the current sheet is strongly decoupled, which

manifests itself as the Hall-effect. Therefore, in this paper, our

goal is to explore the Taylor model in order to find out how

the Hall-effect changes the process of forced magnetic recon-

nection and the associated onset of the plasmoid instability.

The first step is to derive analytical theory of the Hall-MHD

Taylor problem. Quite surprisingly, such an analogue to the

standard MHD analysis of HK still remained outstanding. A

few relevant results available so far are either numerical simu-

lations11,12 or some heuristic theoretical estimates.13 Then,

this theory is used as a foundation for a self-consistent analyti-

cal study of the plasmoid instability in an evolving current

sheet. In this respect, our approach is profoundly different

from the previous publications14,15 concerned with the Hall-

mediated plasmoid instability. Unlike our case, at the starting

point, there is the secondary tearing instability of a pre-

existing magnetic configuration with the parameters chosen

more or less arbitrarily. Moreover, in Ref. 14, it was the

Sweet-Parker current sheet, which, as is now well understood

(see, e.g., Ref. 8), cannot be realized in any real system.

In what follows, we use the force-free modification16 of

the Taylor’s model, when a uniform plasma with the initial

magnetic field

~B
ð0Þ ¼ ð0;B0 sin ax;B0 cos axÞ (1)

is confined between the two perfectly conducting boundaries

located at x ¼ x
ð6Þ
b ¼ 6a. Here, a is a constant which deter-

mines the local current density~j
ð0Þ ¼ c

4pðr� ~B
ð0ÞÞ ¼ c

4pa~B
ð0Þ

,

while the degree of the “non-potentiality” of the magnetic con-

figuration as a whole is characterised by a non-dimensional

parameter l� aa. This equilibrium is subjected to a boundary

deformation as

x
ð6Þ
b ¼ 7ðaþ d cos kyÞ; (2)
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with d
a�1. In the linear approximation with respect to this

small parameter, there are two new equilibria consistent

with the deformed boundaries. In terms of the flux-function

Wðx; y; Þ, they can be written as

~B
ði;rÞ ¼ ð~rWði:rÞ � ẑÞ þ aWði;rÞẑ;

Wði;rÞ ¼ Wð0ÞðxÞ þ wði;rÞ1 ðxÞ cos ky: (3)

Here, Wð0ÞðxÞ ¼ B0

a cos ax corresponds to the initial magnetic

field (1), while two functions related to the perturbation are

equal to

wðiÞðxÞ ¼ B0d
sin aa

sin ja
j sin jxj; wðrÞðxÞ ¼ B0d

sin aa

cos ja
cos jx:

(4)

It is assumed that j2 ¼ a2 � k2 > 0 (as explained below,

long-wave perturbations with k � a are most interesting).

The first of the above-given solutions, wðiÞðxÞ, represents the

ideal MHD perturbed equilibrium, which preserves the

topology of the initial field (1) but acquires discontinuity at

x ¼ 0: the magnetic field component By ¼ �@W=@x has

there a finite jump

Byf g � Byj0þ � Byj0 ¼ �2B0jd
sin aa

sin ja
: (5)

On the other hand, the solution wðrÞ is a regular one, but

topology of the respective equilibrium differs from that of

the initial filed: magnetic field lines reconnect and form mag-

netic islands located at the plane x ¼ 0. The magnetic flux

confined inside a single island is equal to

DwðrÞ ¼ 2wðrÞðx ¼ 0Þ ¼ 2B0d
sin aa

cos ja
: (6)

Of course, such a model of forced reconnection makes physi-

cal sense only if the initial magnetic configuration (1) is

MHD stable. As shown in Ref. 16, this is the case when the

non-potentiality parameter l � aa < p=2, which is, there-

fore, assumed in what follows. Note also that since the value

of l determines the ratio of the magnetic field components

B
ð0Þ
y and Bð0Þz , it is sometimes called the guide-field parameter

(with l� 1 corresponding to the limit of a strong guide-

field Bð0Þz ).

As demonstrated by HK, forced reconnection is a pro-

cess of the transition from the ideal MHD equilibrium to the

reconnected one, which takes place when a small but finite

plasma resistivity is present. The dynamics of forced recon-

nection is determined by the evolution of the central current

sheet located at x ¼ 0. If plasma thermal pressure is not too

small (namely, the parameter b � 8pP=B2
0 > S�2=5, where

S � aVA=g� 1 is the relevant Lundquist number), in the

resistive Hall-MHD magnetic reconnection, the plasma flow

inside the current sheet may be considered as incompress-

ible.17 Then, by representing the magnetic field and the

plasma velocity as

~Bðx; y; tÞ ¼ ~rWðx; y; tÞ � ẑ þ Bzðx; y; tÞẑ;
~Vðx; y; tÞ ¼ ~rUðx; y; tÞ � ẑ þ Vzðx; y; tÞẑ;

where U is a stream-function of the flow in the ðx� yÞ plane,

equations of motion for U and Vz take the form

q
d

dt
ðr2UÞ ¼ 1

4p
~rW� ~rðr2WÞ
h i

� ẑ; (7)

q
dVz

dt
¼ 1

4p
ð~rBz � ~rWÞ � ẑ: (8)

These should be complemented with the Maxwell’s equations

@~B

@t
¼ �cð~r � ~EÞ; ~j ¼ c

4p
ð~r � ~BÞ; (9)

where the electric field ~E is equal to

~E ¼ � 1

c
ð~Ve � ~BÞ þ 1

r
~j ¼ � 1

c
ð~V � ~BÞ

� 1

4pne
~B � ð~r � ~BÞ
h i

þ c

4pr
ð~r � ~BÞ; (10)

[note that the bulk velocity of electrons, ~Ve ¼ ~V � ~j
ne ¼ ~V

� c
4pne ð~r � ~BÞ)].

It follows then from (9) and (10) that

@W
@t
¼ ð~rW� ~rUÞ � ẑ þ gr2Wþ c

4pne
ð~rW� ~rBzÞ � ẑ;

(11)

@Bz

@t
¼ ð~rBz � ~rUÞ � ẑ � ð~rVz � ~rWÞ � ẑ þ gr2Bz

þ c

4pne
ð~rr2W�r

*

WÞ � ẑ; (12)

with g � c2=4pr being the plasma magnetic viscosity.

Thus, our analysis of the Hall-MHD forced magnetic

reconnection is based on Eqs. (7) and (8) and (11) and (12),

and the paper is organized as follows. Section II is devoted

to the linear theory, results of which are then used in Sec. III

for demonstrating how the onset of the plasmoid instability

is affected by inclusion of the Hall effect. A brief summary

of the results and discussion is presented in Sec. IV.

II. LINEAR REGIME OF THE HALL-MHD FORCED
RECONNECTION

In the linear approximation, the governing Eqs. (7)–(12)

take the form

@

@t
r2Uð Þ ¼ � 1

4pq
dWð0Þ

dx
� @
@y
r2W1

� �
� d3Wð0Þ

d3x
� @W1

@y

" #
;

(13a)

@Vz

@t
¼ 1

4pq
dBð0Þz

dx
� @W1

@y
� dWð0Þ

dx
� @Bð1Þz

@y

 !
; (13b)

@W1

@t
¼ � dWð0Þ

dx
� @U
@y
þ gr2W1

þ c

4pne

dWð0Þ

dx
� @Bð1Þz

@y
� dBð0Þz

dx
� @W1

@y

 !
; (13c)
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@Bð1Þz

@t
¼ � dBð0Þz

dx
� @U
@y
� dWð0Þ

dx
� @Vz

@y
þ gr2Bð1Þz

þ c

4pne

d3Wð0Þ

d3x
� @W1

@y
� dWð0Þ

dx
� @
@y
r2W1

 !
;

(13d)

where U;Vz;W1;B
ð1Þ
z are perturbations proportional to the first

power of a small parameter ðd=aÞ. Since reconnection takes

place inside a narrow central current sheet with a thickness

Dx� a (as well as Dx� k�1—a wavelength of the external

boundary perturbation), in what follows one can simplify

dB
ð0Þ
z

dx ; dWð0Þ

dx / sin ax� ax, and assume that r2ðW1;U;Bð1Þz Þ
� @2ðW1;U;Bð1Þz Þ=@2x. Furthermore, it is useful to introduce

non-dimensional variables by scaling all lengths with a, time

with the Alfven time-scale sA ¼ a=VA ¼ a
ffiffiffiffiffiffiffiffi
4pq
p

=B0, and, for

the perturbations: velocity Vz with the Alfven speed as

VAðd=aÞ, stream-function U with aVAðd=aÞ ¼ VAd, flux-

function W1 with aB0ðd=aÞ ¼ B0d, and Bð1Þz with B0ðd=aÞ.
These transform Eq. (13) into the following:

@

@t

@2U
@2x

� �
� lx

@

@y

@2W1

@2x

� �
; (14a)

@Vz

@t
� lx

@

@y
Bð1Þz � lW1

� �
; (14b)

@W1

@t
� lx

@U
@y
þ 1

S

@2W1

@2x
� ldix

@

@y
Bð1Þz � lW1

� �
; (14c)

@Bð1Þz

@t
� l2x

@U
@y
þ 1

S

@2Bð1Þz

@2x
þ lx

@Vz

@y
þ ldix

@

@y

@2W1

@2x

� �
;

(14d)

where S � aVA

g is the Lundquist number, and d � di=a is the

scaled ion inertial length. In what follows, it is assumed that

S� 1 and d � 1, which is the case for a vast majority of

applications.

Consider now symmetry properties of the perturbations.

As far as the flux-function W1 is concerned, that is imposed

by the boundary deformation (2): W1ðx; y; tÞ ¼ wðx; tÞ cos ky,

with wðx; tÞ being an even function of x. Then, according to

(14a), Uðx; y; tÞ ¼ /ðx; tÞ sin ky, where / is an odd function

of x. The magnetic field component Bð1Þz is, according to

(14d), a superposition of both modes

Bð1Þz ðx; y; tÞ ¼ b1ðx; tÞ cos kyþ b2ðx; tÞ sin ky; (15)

where b1 and b2 are, respectively, even and odd functions of

x. The appearance of the latter is entirely due to the Hall-

effect: the second term on the r.h.s. of Eq. (15) represents a

quadrupole magnetic structure which is a signature of the

Hall-mediated magnetic reconnection.18 Then, a straightfor-

ward inspection of Eqs. (14c) and (14d) reveals that b1ðx; tÞ
¼ lwðx; tÞ; so, according to (14c), this part of Bð1Þz does not

affect evolution of the flux-function W1. Finally, Eq. (14b)

yields Vzðx; y; tÞ ¼ vðx; tÞ cos ky; where v is an even function

of x, and one gets the following set of evolution equations

for the above-introduced functions w;/; b2; v:

@

@t
/00 ¼ �lkxw00; (16a)

@v

@t
¼ lkxb2; (16b)

@w
@t
¼ lkx/þ 1

S
w00 � lkdxb2; (16c)

@b2

@t
¼ �lkxvþ 1

S
b002 � lkdxw00: (16d)

The last terms on the r.h.s. of Eqs. (16c) and (16d), which are

proportional to the parameter d, are due to the Hall effect.

The limit d ¼ 0 corresponds to the standard single-fluid

MHD, when b2 ¼ v ¼ 0. Thus, we aim to derive a threshold

value of d, above which the Hall effect makes a difference,

and to investigate the resulting process of the Hall-mediated

forced magnetic reconnection.

As demonstrated by HK, the boundary deformation (2)

leads to the formation of the current sheet (CS) located

around the plane x ¼ 0, the thickness of which is decreasing

with time. Under the conditions d � 1; S� 1, the initial

stage of this process can be described in terms of the ideal

single-fluid MHD as follows. Let DðtÞ � ðDxÞ=a be the

scaled thickness of this CS, so that at x 	 D one gets

Bð1Þy 

x

D
) wi 


x2

D

 D) @wi

@t

 dD

dt
; w00i 


1

D
; (17)

(a symbol wi here indicates the ideal MHD flux-function). It

follows then from (16a) that

@

@t
/00 
 @

@t

/

D2

� �

 lk) / 
 lktD2: (18)

On the other hand, Eq. (16c) yields

dD
dt

 lkD � lktD2 ) DðtÞ 
 ðlktÞ�1; (19)

in accordance with HK. Thus, such shrinking of the CS would

bring about (though only asymptotically in time) the singular

ideal MHD equilibrium given by Eqs. (3) and (4). However,

this process comes to the end when, eventually, a finite

plasma resistivity or the Hall effect intervenes. Consider first

a role of the resistivity. The respective term in Eq. (16c)

can be estimated to be S�1w00i 
 S�1D�1 
 S�1lkt, and it

becomes comparable with
@wi

@t 
 dD
dt 
 ðlkÞ�1t�2 at

t 
 tS 
 ðlkÞ�2=3S1=3: (20)

A similar derivation for the Hall effect is as follows. One can

use Eqs. (16d) and (17) to estimate generation of the quadru-

pole field b2 in the CS: @b2

@t 
 kd ) b2 
 lkdt, so the Hall

term in Eq. (16c) is of order of lkdxb2 
 lkd2. By compar-

ing it with the l.h.s. term
@wi

@t 
 dD
dt 
 ðlkÞ�1t�2, one con-

cludes that the Hall effect comes into play at

t 
 tH 
 ðlkdÞ�1; (21)

when, according to (19), the CS thickness Dðt 
 tHÞ 
 d.
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Therefore, an interplay between the two effects depends

on the relation between these two time-scales, tS and tH.

Consider first the case when the resistivity comes first, i.e.,

tS � tH , which implies that

d < d1 
 ðlkÞ�1=3S�1=3: (22)

It turns out that in this case the Hall effect does not play any

role at all in the process of forced reconnection.

In order to demonstrate this, consider now what happens

at t > tS, when, according to HK, the system evolves in the

so-called “constant-W” regime.19 Indeed, the amount of recon-

nected magnetic flux, wr, is equal to wðx ¼ 0Þ, hence, as it fol-

lows from Eqs. (16c), (17), and (19), at t 	 tS

dwr

dt
¼ 1

S
w00i 
 S�1D�1 
 S�1lkt) wr 
 S�1lkt2:

Thus, at t 
 ðlkÞ�2=3S1=3 
 tS the reconnected flux becomes

comparable to the total variation of the magnetic flux func-

tion inside the CS, which is given by Dw ¼ wiðx 
 DÞ
�wið0Þ ¼ wiðDÞ 
 D 
 ðlktÞ�1

. Therefore, at t > tS, the

“constant-W” approximation holds, and temporal evolution

of the reconnected flux, wrðtÞ, and the CS thickness, DðtÞ,
can be obtained in the following way. First, as long as the

reconnected flux is still small compared to its terminal value,

i.e., wr � 1, the discontinuity of B
ð1Þ
y across the CS persists,

so w00 � D 
 1: Second, in this regime, the convective and

resistive terms in Eq. (16c) should be comparable, which

yields S�1w00 
 S�1D�1 
 lkx/ 
 lkD/) / 
 S�1ðlkÞ�1

D�2. By inserting this expression for / into Eq. (16a), one

gets

@

@t
/00 
 @

@t

/

D2

� �

 lkxw00 
 lkDw00 
 lk) D


 S�1=4ðlkÞ�1=2t�1=4: (23)

As seen from (23), the CS shrinking continues, and, accord-

ing to (16c), it yields the reconnection rate

dwr

dt

 1

S
w00 
 1

SD

 S�3=4ðlkÞ1=2t1=4 ) wr


 S�3=4ðlkÞ1=2t5=4: (24)

Thus, it follows then from (24) that the reconnected flux

becomes of order of unity at

t � sr 
 S3=5ðlkÞ�2=5; (25)

which, in accordance with HK, is the standard MHD recon-

nection time.

Now one can estimate the magnitude and, hence, signifi-

cance of the ignored so far Hall term in Eq. (16c). In order to

do so, it is necessary first to evaluate the quadrupole field,

b2, generated in the CS by the Hall effect [see Eq. (16d)]. It

turns out that at t > tS, the respective last term on the r.h.s.

of (16d) is balanced by the resistive diffusion of b2, hence

lkdxw00 
 lkd 
 b002
S

 b2

SD2
) b2 
 lkdSD2 
 dðS=tÞ1=2:

Inserting this expression for b2 into the Hall term in

Eq. (16c), one gets lkdxb2 
 lkdDb2 
 ðlkÞ1=2d2S1=4=t3=4,

which at t > tS is small compared to other terms in this equa-

tion. Indeed, its ratio to dwr=dt [see Eq. (24)] reads

d2S

t

 d

ðlkÞ�1=3S�1=3

 !2

� tS

t
� 1 under the condition 22ð Þ:

In this context, it is worth noting that, contrary to a common

wisdom, the Hall effect could remain insignificant even

when in a course of reconnection the CS thickness, D, gets

smaller than d. Indeed, according to (23) and (25), Dðt 
 srÞ

 ðlkÞ�2=5S�2=5, which could be smaller than d even under

the constraint (22).

Thus, for realization of the Hall-mediated regime of

forced reconnection, it is necessary (but, as shown below,

not sufficient) that the inequality opposite to (22) holds

d > d1 
 ðlkÞ�1=3S�1=3; (26)

which implies that tH < tS, so the Hall effect comes into play

before a finite plasma resistivity intervenes. Therefore, in

this case what initially follows at t > tH 
 ðlkdÞ�1
is a phase

of the ideal Hall-MHD, when the evolution of w and b2 is

governed entirely by the Hall terms in Eqs. (16c) and (16d).

It results in a further shrinking of the CS, which can be

derived in the same way as explored in Eqs. (17)–(19). Thus,

Eq. (16d) now yields

@b2

@t

 lkdDw00 
 1

tH
) b2 
 t=tH; (27)

and, by inserting it into Eq. (16c), one gets

@w
@t

 dD

dt

 lkdxb2 
 D

t

t2H
) DðtÞ 
 d exp ð�t2=t2

HÞ: (28)

Such exponential shrinking of the CS [which is much faster

than that in the standard MHD, see Eq. (19)] is caused by the

dispersive character of the Hall-MHD waves (whistlers).

This ideal phase of evolution holds until the resistivity inter-

venes at some time t 
 t�, when the CS thickness becomes

sufficiently small: Dðt�Þ � d. This instant can be obtained

by equating the resistive and Hall terms in Eq. (16c)

1

S
w00 
 1

SDðt�Þ

 lkdDðt�Þb2ðt�Þ: (29)

Then, since temporal variation of D is, according to (28),

much stronger than that of b2 in (27), with a logarithmic accu-

racy the sought after time is t� 
 tH. Therefore, b2ðt�Þ 
 1,

and it follows than from (29) that

Dðt�Þ � DH 
 S�1=2ðlkdÞ�1=2 
 S�1=2t
1=2
H ; (30)

[note that the anticipated inequality, DH � d, is satisfied

indeed due to the condition (26)].

The subsequent resistive Hall-MHD reconnection is quite

similar to the standard MHD case discussed earlier, albeit

advection of the magnetic field into the CS is now provided
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by the Hall effect rather than by the plasma inflow. First, one

can verify that, as before, reconnection proceeds now in the

“constant-W” regime. Indeed, in the course of the CS shrink-

ing, its internal magnetic flux is decreasing with time [see Eq.

(17)] as Dw ¼ wiðx 
 DÞ � wið0Þ ¼ wiðx 
 DÞ 
 D; hence,

Dwðt�Þ 
 DH. On the other hand, the reconnected flux wr is

growing with time as

dwr

dt
¼ 1

S
w00 
 1

SDH
) wrðt�Þ 


t�
SDH


 tH

SDH
;

hence, it becomes comparable to Dwðt�Þ with DH given by

Eq. (30). Thus, the set of relations governing the subsequent

temporal evolution of D, b2, and wr is as follows:

D � w00 
 1—the required discontinuity of B
ð1Þ
y across the

CS;
1
S w00 
 lkdxb2 ) 1

SD 
 lkdDb2—balance of the resistive

and Hall terms in Eq. (16c);
1
S b002 
 lkdxw00 ) b2

SD2 
 lkdDw00 
 lkd—balance of the

resistive and Hall terms in Eq. (16d). These yield D 
 DH;
b2 
 1 and

dwr

dt
¼ 1

S
w00 
 1

SD

 S�1=2ðlkdÞ1=2 ) wrðtÞ


 S�1=2ðlkdÞ1=2t: (31)

Therefore, if this regime proceeded until full completion of

the process of forced reconnection, i.e., when wr � 1, the

respective reconnection time, according to (31), would be

equal to

sðHÞr 
 S1=2ðlkdÞ�1=2: (32)

Note that the scaling (32) yields the reconnection time that

does not involve the ion mass mi. Indeed, S is proportional

to m
�1=2
i , d / m

1=2
i , and the unit of time imposed in (32),

sA / m
1=2
i . Therefore, it corresponds to the electron-MHD

limit in the theory of forced magnetic reconnection.20

It turns out, however, that this is the case only when the

Hall parameter d exceeds a certain second threshold, d2 (see

below), which is much higher than d1 given in Eq. (26).

Otherwise, at some time, ~t � sðHÞr , the Hall regime (31) gives

way to the standard MHD reconnection, and the overall

reconnection time becomes equal to sr defined in Eq. (25).

The reason lies in a double-layer structure of the internal

solution during the resistive phase of the Hall-MHD recon-

nection.21,22 Thus, the resistive region, x 	 DH, is surrounded

by a much wider layer, DH < x < xH, where the plasma resis-

tivity plays no role, but the poloidal magnetic field described

by the flux function w is still advected towards the reconnec-

tion site by the Hall effect [the last term on the r.h.s. of Eq.

(16c)]. Therefore, by using Eqs. (16c) and (31), one can eval-

uate the required quadrupole field component as

b2 ¼ �
1

lkdx

@w
@t

 S�1=2ðlkdÞ�1=2

x

 DH

x
: (33)

On the other hand, the very same field (33) also generates,

according to Eq. (16b), the z-component of the plasma veloc-

ity, v

@v

@t
¼ lkxb2 
 lkDH ) v 
 lkDHt:

Furthermore, in Eq. (16d), the Hall term is balanced by the

first term on the r.h.s. of this equation, which is due to this

velocity component. Therefore, lkdxw00 
 lkxv; hence, the

electric current in this layer, w00, can be estimated as

w00 
 ðlkÞd�1DHt 
 d�2DHðt=tHÞ: (34)

This current accelerates the poloidal plasma flow at the rate

given by Eq. (16a)

@

@t
ð/00Þ 
 lkxd�2DH

t

tH
) /00 
 d�3DHx

t

tH

� �2

) /


 DH
x

d

� �3 t

tH

� �2

:

Finally, by inserting this expression into Eq. (16c), one can

estimate the width xH of the ideal Hall-MHD sublayer by

requiring that at x 
 xH the advection of the magnetic field

by the plasma flow becomes comparable to that by the Hall

term. Hence,

lkxH/ðxHÞ 
 lkdxHb2ðxHÞ 
 lkd ) xH 
 d
t

tH

� ��1=2

;

(35)

so at x > xH the Hall effect is not important, and the standard

MHD description applies.

Therefore, the Hall-MHD regime of reconnection

described by Eq. (31) holds as long as the width of the resis-

tive sublayer, DH , is smaller than xH, i.e., according to (30)

and (35), t < ~t 
 Sd2. This leaves one with the following

two possibilities. If

d > d2 
 S�1=5ðlkÞ�1=5; (36)

[note that d2 � d1 
 S�1=3ðlkÞ�1=3
], ~t � sðHÞr 
 S1=2t

1=2
H ;

hence, the Hall-MHD regime has enough time to complete

the reconnection process. If otherwise, i.e., when d1 < d <
d2; at t � ~t a transition from the Hall-MHD regime (31) to

the standard MHD reconnection (24) occurs. At this point,

the amount of already reconnected magnetic flux is still

small: indeed, according to (31), wrð~tÞ 
 ðd=d2Þ5=2 � 1;

hence, the main part of reconnection is completed in the

standard MHD regime. It is worth emphasizing here that this

transition from the Hall- to the standard MHD occurs when

the thickness of the resistive CS is much smaller than the ion

inertial length. Moreover, the former reduces even further in

the course of the subsequent standard MHD reconnection

[see Eq. (23)]. Finally, note that these results confirm simple

preliminary estimates given in Ref. 13, but disagree with the

respective linear Hall-MHD scaling presented in Ref. 11.

III. ONSET OF THE PLASMOID INSTABILITY

According to Ref. 10, in the framework of the standard

single-fluid MHD, the onset of plasmoid instability during
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forced magnetic reconnection is possible only when the

amplitude of the external perturbation is large enough

d=a > S�1=3: (37)

In this case, a central role is played by the nonlinear equilib-

rium with the CS of thickness Dx 
 d;, which is formed at

the time t ¼ t1 
 sAðd=aÞ�1 � tS. In this section, we revert

to dimensional units and assume, for the sake of simplicity,

that the guide-field strength parameter l 
 1, and the pertur-

bation wave-length is comparable to the spatial scale of the

system, i.e., ka 
 1. Thus, consider first what difference, if

any, is caused by the Hall effect in the plasmoid instability

of this CS. First of all, note that its very formation is due to

the nonlinear torque in the vorticity Eq. (7) [see Ref. 10];

therefore, it can happen only before the Hall effect comes

into play, i.e., when t1 < tH 
 sAðdi=aÞ�1
[see Eq. (21)];

hence, it requires di < d. It turns out, however, that even

under this restriction, the Hall effect could be significant. In

order to demonstrate this, one may find helpful a brief sum-

mary of the resistive tearing instability theory in the standard

MHD,19,23 and in the Hall-MHD17 frameworks, applied to

the CS of thickness l, length L� l, and magnetic field B.

These parameters define the respective Alfven velocity V
ðlÞ
A ,

the Alfven transit time sðlÞA ¼ l=V
ðlÞ
A , and the Lundquist num-

ber Sl ¼ lV
ðlÞ
A =g. Then, the standard MHD yields the instabil-

ity growth rate

csðlÞA 
 SðlÞ½ ��3=5ðqlÞ�2=5; (38)

where q is a wave-number of the unstable tearing mode.

Expression (38), which assumes the “constant-w” approxima-

tion, is valid only for a wave-length k ¼ 2p=q in the interval

l < k < k� 
 lS
1=4
l (it is assumed that Sl � 1). In the

non-constant-w case, when k > k�, the growth rate falls

sharply,23 which makes such modes of no interest. Therefore,

as seen from (38), the most unstable mode (the one with a

maximum growth rate c) corresponds to a wave-length k
¼ min fk�; Lg8 (clearly, the CS of a finite length L cannot

accommodate perturbations with k > L). Thus, it has the fol-

lowing implication to the nonlinear CS under consideration,

for which l � d; L � a;B � B0ðd=aÞ, hence V
ðlÞ
A � VAðd=aÞ;

sðlÞA � sA; Sl � Sðd=aÞ2 [note that this Sl � 1 due to condition

(37)]. Therefore, the ratio k�
a 
 S1=4ðdaÞ

3=2
, so the most unsta-

ble appropriate mode is the one with k 
 k�, if ðd=aÞ
< S�1=6, and with k 
 a if otherwise. As pointed out in Ref.

10, whatever the case, their growth rate is sufficient for the

plasmoid instability development during the CS life-time

ðDtÞ 
 d2=g 
 sASðd=aÞ2.

In the Hall-MHD case, the situation is even more

favourable to the plasmoid instability development. Indeed,

the Hall effect makes the secondary tearing instability faster

by providing additional inflow of magnetic flux into the

reconnection site, but leaves intact the CS resistive life-time

ðDtÞ: Therefore, now the question to answer is how a finite

value of di affects the most unstable tearing mode, in particu-

lar, its wave-length. The latter is important parameter which

determines a number of plasmoids initially generated during

the linear phase of the plasmoid instability. Thus, for the

Hall-mediated tearing mode, a summary, analogous to the

one given above for the standard MHD case, reads as fol-

lows.17 For a mode with a wave-number q, transition to the

Hall regime of instability occurs when

di=l > S
�1=5
l ðqlÞ1=5; (39)

which in the constant-w approximation brings about the

growth rate

csðlÞA 
 S
�1=2
l ðdi=lÞ1=2ðqlÞ�1=2: (40)

This expression holds for

l < k < kðHÞ� 
 lS
1=3
l ðdi=lÞ1=3; (41)

and the growth rate falls sharply for the non-constant-w
modes with k > kðHÞ� . By applying these results to the partic-

ular CS under consideration ½l 
 d; L 
 a;B 
 B0ðd=aÞ�, one

should also recall two constraints that are necessary for the

formation of this CS: ðd=aÞ > S�1=3; di < d: Thus, consider

first the case when S�1=3 < ðd=aÞ < S�1=6, for which in

the above discussed standard MHD framework a large num-

ber of plasmoids is initially formed: Np 
 ða=k�Þ 
 S�1=4

ðd=aÞ�3=2 > 1. If a similar multiple-plasmoids regime takes

place in the Hall-MHD, the following two conditions must

be met. First, the optimal wave-length kðHÞ� , given by Eq.

(44), must be shorter than L, which in our case translates into

kðHÞ� 
 dS1=3 d
a

� �2=3
di

d

� �1=3

< a) di

d
< S�1 d

a

� ��5

: (42)

Second, di should be large enough to bring about the Hall-

mediated reconnection [see Eq. (39)]; hence,
di

d > S�1=5ðdaÞ
�2=5ð d

kðHÞ�
Þ1=5 ) di

d > S�1=4ðdaÞ
�1=2

. These two

inequalities are compatible if ðd=aÞ < S�1=6:, while for

ðd=aÞ < S�1=5, the validity of (42) is guaranteed by the

requirement di < d. Therefore, in the Hall-MHD scenario,

the multiple-plasmoids regime survives when S�1=3 < ðd=aÞ
< S�1=5. Within the interval S�1=5 < ðd=aÞ < S�1=6, there

are two possibilities. The multiple-plasmoids case realizes if

the inequality (42) still holds; otherwise, the most unstable

mode is the one with k 
 a, i.e., the number of the initially

generated plasmoids is just a few. The latter is also the case

when ðd=aÞ > S�1=6. Indeed, the Hall-reconnection condi-

tion (39) then takes the form

di

d
> S�1=5 d

a

� ��2=5
d
a

� �1=5

) di

d
> S�1=5 d

a

� ��1=5

;

[it guarantees that the inequality opposite to (42) holds],

which is also compatible with the requirement di < d:
Thus, the impact of the Hall effect on the plasmoid insta-

bility of the CS formed at the nonlinear stage of the ideal

MHD evolution is two-fold. The instability develops faster,

and a wave-length of the most unstable mode becomes lon-

ger, which means a reduced number of the initially generated

plasmoids. These changes, however, are not dramatic, as the

overall scenario is basically the same as in the standard MHD

case.
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A very different situation is possible when the ion iner-

tial length is large enough, so that the Hall-effect becomes

instrumental during the entire resistive phase of the forced

reconnection process. According to Sec. II, this is the case

when

di > aS�1=5; d < di: (43)

The point is that in the standard MHD framework, the plas-

moid instability cannot develop at this stage: the system slips

into the Rutherford regime of slow magnetic reconnection9,10

even under quite a small perturbation amplitude. However,

this effect is irrelevant in the Hall-MHD, where magnetic field

is advected to the reconnection site by the Hall-generated

electric current rather than by the plasma flow. Therefore, the

situation becomes more favourable to the plasmoid instability

development.

Thus, consider tearing stability of the CS formed at the

major phase of the Hall-MHD forced reconnection [see

Eqs. (30)–(32)] under the conditions (43). In this case,

the CS parameters are as follows: L 
 a; l 
 aDH 
 aS�1=2

ðdi=aÞ�1=2;B 
 B0ðd=aÞ, which yield

V
ðlÞ
A 
 VA

d
a
; sðlÞA 


l

V
ðlÞ
A


 sAS�1=2 di

a

� ��1=2
d
a

� ��1

;

Sl ¼
lV
ðlÞ
A

g

 S1=2 di

a

� ��1=2
d
a

� �
:

Then, according to (41), the wave-length of the most unsta-

ble tearing mode is equal to

kðHÞ� 
 lS
ð1=3
l

di

l

� �1=3


 aS�1=6 di

a

� ��1=6
d
a

� �1=3

; (44)

hence, kðHÞ� < a under the conditions (43). Therefore, this

mode can develop in the CS of length L 
 a and, hence, lead

to a multiple-plasmoids ðNp 
 a=kðHÞ� > 1Þ initial phase of

the instability, provided that its growth rate is sufficiently

high. In order to verify that the latter is the case, one should

compare the respective growth rate, cðHÞ� , with the life-time

ðDtÞ of this CS, which in this case is the Hall reconnection

time (33): ðDtÞ 
 sðHÞr 
 sAS1=2ðdi=aÞ�1=2
. Thus, according

to (40) and (44), cðHÞ� 
 ½sðlÞA �
�1S

�1=3
l ðdi

l Þ
2=3 
 s�1

A S2=3ðdi

aÞ
5=3

ðdaÞ
2=3

, which yields cðHÞ� � ðDtÞ 
 S7=6ðdi

aÞ
7=6ðdaÞ

2=3
. Therefore,

the plasmoid instability requirement, cðHÞ� � ðDtÞ > 1, reads
d
a > S�7=4ðdi

aÞ
�7=4

, which can be readily satisfied under the

conditions (43).

IV. SUMMARY AND DISCUSSION

The first part of the paper (Sec. II) presents the analyti-

cal theory of the Hall-MHD forced magnetic reconnection.

The role of the Hall effect in this process is determined by

the parameter d � di=a. Thus, it is shown that there are two

threshold values, d1 
 S�1=3 and d2 
 S�1=5, which separate

different regimes of reconnection. If d < d1, the Hall-effect

plays no role at all, so the reconnection time follows the stan-

dard MHD scaling:1 sr 
 sAS3=5. In the intermediate case,

when d1 < d < d2, initially the reconnection proceeds in the

Hall-MHD regime. However, it quickly gives way to the

standard MHD phase, and the overall reconnection time still

does not depend on the Hall parameter d. Only when the lat-

ter exceeds the second threshold, i.e., d > d2, the Hall effect

becomes dominant, and the reconnection time scales as

sr ¼ sðHÞr 
 sAS1=2d�1=2.

Two relevant points are due here. The first one is about

a widely accepted paradigm24 that transition from the

standard-to Hall-MHD occurs when the ion-inertial length di

exceeds the CS thickness Dx. Our results clearly demonstrate

that, generally speaking, this is not correct. Thus, consider

the intermediate case of Sec. II, namely, d1 < d < d2. It

implies that in the course of the CS shrinking during the ini-

tial ideal MHD phase of the system evolution, the transition

to the Hall-MHD does take place at the point when Dx � di

[see Eqs. (17)–(19)]. However, later on, the Hall effect

becomes insignificant, and the system reverses back to the

standard MHD evolution despite the fact that at this stage the

CS thickness Dx� di (see the last part of Sec. II). Note also

that in this case the CS thickness is, by definition, equal to a

length scale associated with resistive effects. Therefore, we

conclude that the paradigm under discussion holds only in

the ideal MHD limit [see Eq. (21)], but it may cause confu-

sion when the resistive effects become important. In the lat-

ter case, an interplay between now the two small parameters,

d � di

a � 1 and S � g
aVA
� 1, makes the situation much more

complicated.

The second point concerns the perturbation of the mag-

netic field component perpendicular to the reconnection

plane, Bð1Þz . A part of it, b2 [see Eq. (15)], has a quadrupole

symmetry, and is commonly considered as a signature of the

Hall-mediated magnetic reconnection.18 However, it has

been already pointed out25 that the overall structure of Bð1Þz

could be more complicated. It is shown here that although

this effect is weak in the case of a strong guide field,

ðl � aa� 1) b1 � b2Þ, it could be significant when

l 
 1, making then b1 
 b2.

The second part (Sec. III) deals with the onset of plas-

moid instability in the framework of the Hall-MHD. As

shown in Ref. 10, in the standard MHD case, the plasmoid

instability becomes involved in the process of forced mag-

netic reconnection via the nonlinear CS forming at the ideal

MHD stage of the system evolution. The main difference

made in this case by the Hall-effect is a reduction in the

number of initially generated plasmoids. This is because in

the Hall-MHD framework, the most unstable secondary tear-

ing mode has a longer wave-length: according to Eq. (39),

the Hall effect has stronger impact on a tearing perturbation

with a smaller wave-number q.

There is, however, another more significant change: the

onset of plasmoid instability in the course of the resistive

phase of the CS evolution. This is not possible in the stan-

dard MHD, because the system slips into the Rutherford

regime due to halting of the plasma flow. On the contrary, in

the respective Hall-MHD phase, this effect becomes irrele-

vant because in this case advection of the poloidal magnetic
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field is provided by the Hall-generated electric current rather

than by the bulk flow of the plasma. This enables a multiple-

plasmoids regime of the secondary tearing instability.
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