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Chapter 1

Introduction

1.1 Background

Since the introduction of the first mass produced vehicle, the Ford Model T in 1908,

the automotive has been a vector of movement for millions of persons. Motor vehi-

cles enable effortless and comfortable transportation to any road paved destination

at affordable cost. Long distance transportation, that was luxury for centuries, be-

came reachable by almost anybody. Up to this day, the enthusiasm for the property

of personal vehicles led to a non-stopping increase of the number of vehicles on the

planet (see Figure 1.1). City infrastructures, businesses, law and entire parts of the

economy have been reshaped by this invention.
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Figure 1.1: Historical trend of worldwide vehicle registrations. Data extracted from
[1].
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The global interest toward motor vehicles rapidly extended to a reflection on

broader topics, such as city urbanization and planning, and infrastructures manage-

ment. On the end of the twentieth century, a change of focus took place toward safety

and pollution concerns. It has to be noted that the freedom provided to individuals

became a right acquired with years, forbidding to solve pollution problems by simple

removal of vehicles. In the meantime, the democratization of Internet provided alter-

nate methods to shorten distances between individuals. Nevertheless, it is likely that

the use private vehicles will still be a central element in our way exchange with the

world for the coming generations.

The above mentioned topics lead the creation of a rich literature on fundamental

reflections on the analysis of human perception and cognition, on the understanding

and modeling of traffic flows, and on the possible improvement of the vehicles them-

selves. Based on these research works, application studies proposed point-of-views

and technical solutions to facilitate the creation of road infrastructure, to develop-

ment safer and less polluting cars, and to improve vehicle’s overall design.

A way to discover new technologies, to improve vehicle usability, to better in-

tegrate vehicles to the environment and to propose solutions to reduce the carbon

footprint left by cars on the planet is to better understand the human driver. By

doing so, realistic traffic flow models can be generated, vehicle dynamics can be op-

timized to reduce energy consumption, and advanced driver assistance systems can

be embedded with harmony in the driver environment. These topic are the source of

inspiration of this thesis.

A topic worth mentioning due to its potential to revolutionize the way to conceive

complex systems is the notion of virtual conception. Virtual conception of complex

systems goes further than bringing some elements of expertise or some physical rules

into an existing creation framework. Virtual conception describes a way to engineer

products by virtually estimating the entire functioning of a system. To do so, all the

individual models describing a system have to communicate to work as one entity.

They also have to be able to evaluated all possible realistic scenarios. As such, the

modeling of the systems is not only descriptive but also predictive. A way to cover all

possible scenarios is to change a part of the modeling approach from a deterministic

to a probabilistic approach. In the case of vehicles design, the inputs of the system

are provided by the driver and the outside world scenario. While the outside world

2



scenarios are well known and can be modeled without much difficulty, the modeling

human driver modeling is uniquely challenging.

An applied example to virtual conception is the design of vehicle powertrain . Con-

strained by regulatory emission standards [4,5], car manufacturers have to find clever

solutions to reduce the emitted pollutants of their machines. Embedded systems

are nowadays becoming complex, and powertrain technology varied. The conversion

of stored energy can be done by combustion engines technologies, electric motors,

fuel cells, hydraulic systems, or their combination [6–8]. To be able to handle such

complex system, provide flexibility and to shorten development cycle duration, de-

sign with hardware-in-the-loop, and design performance comparison by simulation

is commonly used. From this point of view, driving behavior modeling is a central

topic. This domain enables to verify the good functioning of designed vehicle pow-

ertrain based on real-usage simulations. As for today, it could be used together with

hardware-in-the-loop (HIL, see Figure 1.2) integrations, and it would allow increased

flexibility in development and testing abilities.

Figure 1.2: Example of system composed of four physical modules, including one
replaced by a hardware-in-the-loop module.

Finally, modern vehicles integrate a growing number of advanced driver assistance

systems (ADAS), such as emergency braking systems, adaptive cruise control systems

(ACC) (see Figure 1.3), or lane keeping systems. Driver behavior personalization of

these systems is a way to bring confidence and better acceptability by the user. These

systems can also be used by the vehicles to better understand the driver and other

vehicles behavior, and thus help to avoid dangerous situations by predicting their own
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or other vehicles trajectories.

Figure 1.3: Illustration of an two vehicles following each other with an adaptive cruise
control system.

Inspired by these topics, this doctoral research is focused on the understanding and

the modeling of the human personalized driving behavior in car-following situation.

The car-following situation has been selected for its ability to scale to the widest range

of problems: it can be used for human cognition understanding, trends analysis, traffic

flow modeling, advanced driving assistance systems, and vehicle powertrain design.

In this study, driving behavior understanding has been done by:

� collecting driving measurement data,

� analyzing driving behavior dynamics,

� selecting and designing driver modeling frameworks,

� the implementation a novel system parameters identification method.

Driver behavior modeling has been tackled by creating a framework for identification

and validation of the driver behavior simulation, using a data centric approach and

the unique abilities of multi-mode dynamical system models (see Figure 1.4).
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Figure 1.4: Perspective on data centric modeling.

The completeness of this approach enabled us to have a global understand of

the possibility of human driver behavior analysis and modeling. As a result of this

research, several application models are proposed. At first a behavior personalized

cruise-control ADAS framework has been designed [9] to test the most classic traffic

flow models in a unified environment. Then a driver personalized energy consump-

tion evaluation method has been developed [10] to show the unique abilities of joint

usage of system identification and multi-mode dynamic modeling. Finally, a novel

parameters identification scheme has been proposed to describe and understand sub-

tle drivers’ personalized behavior [11,12].

1.2 Previous works

Before going into more detailed explanations about the elements of this research, this

section proposes a literature review of the state of the art driver models, and some

details about specific features of human drivers’ behavior.
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1.2.1 Driving behavior modeling

Modeling of driver behavior has been approached since the 50’s. At first, number

of researches have been undertaken to understand the biological and psychophysi-

cal behavior of human [13–17]. These approaches, focused on the human-machine

interaction, were mostly inspired from aeronautic and space developments. In the

50’s and 60’s, most modeling studies were focused on geometrical and control ap-

proaches [18–20]. Biological centered studies by Rashevsky concluded that clear-cut

separation of the mechanical and the human entity would be difficult to understand.

The car and the driver constitute a complex feedback system, such that they should

not be separated in two distinct components [21,22].

Nevertheless, most of the modern understanding and modeling methods of the

driver behavior dates from the 80’s. Analysis of longitudinal driver behavior has

been done by two approaches: understanding of the human performance, and un-

derstanding of the driver behavior. Human perception and sensory performance has

been analyzed and a few general models were proposed [2, 23–25]. These studies do

analyze the sensory limitations of humans, and they discuss the decision making struc-

ture that should be used (as an example, see Figure 1.5). Regarding the longitudinal

driving task, numerous studies focused on the understanding and the reproduction of

specific driving tasks, such as emergency braking, following behavior and velocity in

curve [26–33]. These research works provide interesting models, but they are focused

on very specific purposes.
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Figure 1.5: Block diagram of a cognitive model representative of the tasks carried
out while driving. The driver is processing data from the upcoming road geometry
and from the vehicle dynamics to proving the steering wheel angle and the pedal
operation. Figure from [2].

Longitudinal motion of vehicles has also widely been investigated for traffic flow

study and modeling. Traffic flow modeling is usually separated in two classes: macro-

scopic traffic flow modeling and microscopic traffic flow modeling [34]. Macroscopic

traffic flow modeling is focused on the simulation of the behavior of complete road sec-

tions, while microscopic modeling approaches the problem by modeling each vehicle

independently. The second approach the most interesting for driver behavior repro-

duction. The first microscopic traffic flow simulation papers appeared in the 50’s, and

have been followed by numerous measurement campaigns, analysis papers and model

propositions [3, 35–38]. Most of the modeling propositions fit a microscopic scale ve-

hicle dynamic model to statistically observed traffic flow dynamics. These models are

usually focused on two main tasks: free driving and car-following tasks (see Figure

1.6). While the each individual vehicle of the traffic flow is modeled, validation of the

model is done statistically, with specific traffic flow metrics, such as the speed vs den-

sity, and the speed vs flow graphs [34]. Some of the most popular models, due their

simplicity to represent driving dynamics from a single equation, are the stimulus-

7



response Gazis-Herman-Rothery (GHR) model, also called GM models [39], and the

linear Helly models [40]. These minimalistic approaches allow to represent first or-

der individual driver behavior, but do not allow to reproduce detailed nonlinear and

stochastic human behavior. To improve model’s accuracy without overcomplicated

formulations more recent researches proposed multi-modal approaches. The main

contenders of such model type are the Gipps collision avoidance model [41], and the

Wiedemann psychophysical (also named action-point) model [42]. More details about

these models are available in the following sections. Some studies highlight the limi-

tations of all aforementioned methods, as they usually neglect human task scheduling

and attention management phenomenons [43–45]. These remarks are interesting and

should be considered for the future development of human driver modeling as they

do not seem to be much integrated in research studies to this day.

Figure 1.6: Essential notations in microscopic car-following traffic flow models.

Recent research on driver modeling extensively uses optimal control theory, with a

specific focus on model predictive or quadratic controllers. These researches propose

different driving modeling methods, with complex feedback systems, linear and non-

linear control laws, preview abilities. These models can be fit to measured data thanks

to system identification methods [2,46–49]. These methods can include advanced neu-

romuscular dynamics, sensory dynamics, physical and biochemical limitations, lead-

ing to complex neuro-physiological processes models (see Figure 1.7). They provide

an interesting understanding of the human behavior, but they have the drawback to

usually required large sets of recording data, leading to an averaged-over-time behav-

ior reproduction. Optimal non-linear vehicle control is another frequent approach to

driver modeling [49–51]. Finally optimal control and stochastic optimal control can

be used to optimize some aspects of the driving such as the energy consumption of

the vehicles based on the road topology and the vehicle powertrain [52–58]. These
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optimal control based methods can provide good specialized models, and perform

well for energy consumption minimization and professional driver behavior reproduc-

tion. Nevertheless their efficiency can be limited when dealing with non-professional

drivers, whom most important input stimuli and driving motivation can drastically

vary [2].

Figure 1.7: Diagram representative of the main neurophysiological processes involved
in driving task. ”Stimuli” are the human system input and ”Response” the human
system output. Figure from [2].

Lastly, numerous researches are studying driving behavior modeling based on di-

rect identification from recorded data. These approaches are not going as deep as

former researches on the understanding of the human behavior, but instead use con-

ventional modeling methods, such as Hybrid Dynamical Systems Models (HDSM),

fuzy logic approaches, Hidden Markov Models (HMM) and Neural Networks Mod-

els (NNM) [59–65]. Hybrid dynamical system models are an extension of dynamical

system model, using dynamical system models together with a mode switching strat-

egy (decision taking process) to model system where the different states are ruled

by different physical laws, or different inputs/outputs relationships. HMSMs can be

seen as grey box models, where the structure is globally understandable and designed

upon the analysis of the modeled system, and where the parameters are identified

automatically based on data. The identification of grey box models can lead to the

understanding of the physical meaning of the model’s parameter if their number is

sufficiently low [59]. NNMs and HMMs are usually classified as a black box model
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as few prior model structure is assumed, and the resulting set of parameters auto-

matically identified based on data does not provide much information on the model’s

processing manner. HDSMs are used for modeling complete system dynamics, includ-

ing the decision taking processes. NNMs can be used both for situation modeling,

implemented in a recursive form, and for decision taking tasks. Finally, fusy logic

models and HMMs are commonly used for decision taking tasks.

Figure 1.8 shows simple representations of a three modes hybrid system models

and of a neural network model composed of three input neurons and four neurons on

a single hidden layer.

Figure 1.8: Simple representation of a general hybrid system model and an artificial
neural network model.

A summary of this literature review of the driver behavior understanding and

modeling field is proposed with the diagram of Figure 1.9. This diagram is modeling

oriented. It includes the main modeling methods and the most encountered keywords

observed in the literature, organized in a way to assist the reader to understand the

ability of each modeling method. The included methods are focused toward dynamical

systems, thus not including classification and clustering methods.
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Figure 1.9: Vision of the main modeling methods for driver behavior analysis and
reproduction. The horizontal axis represents increasing driver behavior comprehen-
sion abilities toward the right direction, and the vertical axis represents the model’s
structure complexity increasing upward.

In the following section, the most significantly influential models on the devel-

opment of this doctoral thesis are detailed. At first traffic flow type models are

presented represented by the microscopic traffic flow models Gipps model and Wiede-

mann model, followed by some sophisticated dynamical system models represented

by the Piecewise Autoregressive eXogenous model and the Probability-weighted Au-

toregressive eXogenous model.

1.2.2 Microscopic traffic flow modeling

Microscopic traffic flow models show interesting properties that can be used to repro-

duce driver personalized longitudinal dynamics. Among the available types of traffic

flow models presented in the previous section, the action-point and psychophysical

models are seen as the most interesting and applicable They are detailed bellow.

Both of these model can be classified as expert models, or statistical data analy-

sis non-linear hybrid system models. They can both reproduce drivers dynamics in

classic driving situations. They are composed of modes representing typical driving
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situations, and have tuning parameters representative of the main characteristics of

driving behavior. The transition between modes is based on fuzzy logic.

1.2.2.1 Collision avoidance model

The main collision avoidance model in microscopic traffic flow field in the Gipps

model [41], created in 1981 by PG. Gipps. This model is discrete in time and contin-

uous in space. This models is categorized as a collision avoidance or safety distance

model. It means that a minimization is done between a velocity term representative

of free driving and a safety braking term representative of car-following behavior de-

signed based on safety criterion [3].

The basic concepts behind this model are that each driver plans its driving speed

for the next time step after reaction delay treac, such that a safe stop can be achieved

even in the event of a sudden braking of the leading vehicle. This model has been

developed based on data measured on highway with average congestion levels [66].

According to the original publication [41], the model has been created with the

following goals:

� The model should mimic the behavior of real traffic flow

� The model parameters should correspond to obvious characteristics of drivers

and vehicles, so to be easy to calibrate

� The model should be calculated at a frequency equal to the inverse of the drivers

action delay time.

Gipps model equation system is described in Equation 1.1:

vn(t+ treac) = min{va, vb}, with
va = vn(t) + 2.5a(n)maxtreac(1− vn(t)

vn0
)
√

0.025 + vn(t)
vn0

vb = bntreac +

√
b2
nt

2
reac + bn

[
2(sn0 −∆s(t)) + vn(t)treac + vn−1(t)2

b(n−1)max

] (1.1)

where v(t) is the vehicle number n velocity, ∆s(t) the relative distance between

vehicles, and the other parameters as in Table 1.1. As several models will be proposed

in this thesis, the original notations of this model is preserved. Thus Gipps model

parameters notations have meaning only in this section.
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Table 1.1: Gipps model notations

Desc.
Desired
velocity
[m/s]

Stopping
distance
to lead
vehicle
[m]

Reaction
time [s]

Maximal
accel-
eration
[m/s2]

Desired
decel-
eration
[m/s2]

Maximal
decel-
eration
[m/s2]

Variable vn0 sn0 treac a(n)max bn b(n−1)max

The acceleration equation va of the Gipps model is based on data fitting, and the

deceleration equation vb is an interpretation of driving maneuvering.

� The first equation of the model has been determined to fit the acceleration/ve-

locity envelope of moderate traffic arterial road data.

� The second equation of the model has been designed to enable a stopping safety

distance, with a driver reaction time treac and a delay safety margin θ.

Stopping location of the vehicle is based on the deceleration coefficient b. See

Equation 1.2:

s∗ = s(t)− v(t)2

2 ∗ b
(1.2)

where s∗ is the stopped location, s(t) the initial braking position, v(t) the initial

braking velocity, and b the braking deceleration (negative value).

By adding the driver reaction time treac, Equation 1.2 becomes:

s∗ = s(t)− v(t+ treac)
2

2 ∗ b
+
v(t) + v(t+ treac)

2
∗ treac (1.3)

The value s∗ in Equation 1.3 can represent the minimum following distance. Gipps

model adds a safety delay θ during which the vehicle does not start to slow down.

The new formulation is showed in Equation 1.4.

s∗ = s(t)− v(t+ treac)
2

2 ∗ b
+
v(t) + v(t+ treac)

2
∗ treac + v(t+ treac) ∗ θ (1.4)

where θ in a safety delay.

The purpose of this formulation is to avoid impact, thus the model should fulfill

the inequality 1.5:

s∗n−1 ≥ s∗n + sn0 (1.5)

where n corresponds to the vehicle number and sn0 to the desired stopping distance

to the front bumper of the lead vehicle.
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Equation 1.5 leads to Equation 1.6:

sn−1(t)−vn−1(t)2

2 ∗ bn−1

≥ sn(t)−vn(t+ treac)
2

2 ∗ bn
+
vn(t) + vn(t+ treac)

2
∗treac+vn(t+treac)∗θ+sn0

(1.6)

bn−1 cannot be assessed directly, and is replaced by a maximal observed deceler-

ation b(max)n. θ = treac
2

is a sufficient model stability condition if b(max)n ≤ bn−1 and

bn ≤ 0 [67, 68]. Obtaining vn(t+ treac) involves resolving a second or inequality. The

negative velocity term is rejected.

Equation 1.6 then becomes Equation 1.7:

vn(t+ treac) ≤ bntreac +

√
b2
nt

2
reac + bn

(
2 [sn0 −∆s(t)]− vn(t)treac − vn−1(t)2

b(max)n

)
with ∆s(t) = sn−1(t)− sn(t)

(1.7)

∆s represents the range (distance) between the leading vehicle and the following ve-

hicle.

Finally, in Gipps model, Equation 1.1, vb is considered to be the high boundary

of vn(t+ treac) in Equation 1.7.

Gipps microscopic traffic flow model is used in commercial traffic flow simulation

software, and it has been discussed, calibrated, and survey by numerous scientific pa-

pers [3,34,66,67,69,70]. This number of studies enables to have a good understanding

of its functioning. This model is used in Section 3 and Section 5.

1.2.2.2 Psychophysical model

Psychophysical microscopic traffic flow models are a class of models based on the un-

derstanding of the human behavior. Instead of finding a global equation representing

the average behavior of the dynamics of a driver-vehicle entity, the model is composed

of modes representatives of the different driving tasks. In this section the Wiedemann

model is introduced, as an example of trade-off between psychology inspired driver

modeling and simplicity due to the traffic flow modeling usage.

The Wiedemann model has been create by R. Wiedemann in 1974 [42]. It has been

object to numerous scientific researches, calibrations studies, and is now integrated

in a commercial traffic flow simulation software [3, 71–73]. This model considers
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that the driver is influenced by two main factors: the distance to the leading vehicle

(range) ∆s = sn−1 − sn or R, and the relative velocity (range-rate) to the leading

vehicle ∆v = vn−1− vn or RR. Based on this two-dimensional space, hyperplanes are

defined as mode boundaries, and vehicle dynamics lows are defined for each model

based on statistical observation of the driver dynamics. An interesting aspect of the

original formulation of this model is that the author defines parameters of these mode

separations and modes equations as random variables. The functioning of the model

is illustrated in Figure 1.10.

Figure 1.10: States diagram of Wiedemann car-following model.

Wiedemann model is constituted of five main driving modes representative of four

driver states (see Figure 1.10). The ”no reaction” mode correspond to free driving.

The driver drives without taking information from the other vehicles in the flow. At

low enough range, if the range-rate decrease, the ”reaction” mode corresponds to a

smooth deceleration task of the driver to adjust its velocity. If the range to the leading

vehicle is too low, the ”deceleration” mode represents a driver task to decelerate the

vehicle. If the range is very low, a ”collision avoidance” mode is activated to express

the strong braking task of the driver.

Mode separation and driving dynamics of Wiedemann model are defined by non-

linear equations, adjusting the vehicle acceleration depending on the environment.

These equation have been defined based on observation of driving data, and correla-

tion analysis between the influence of the environment to the driver response. Modes
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parameters are described as random variables, and are sampled at each mode jump so

to represent the human stochastic nature. Unfortunately, due to the high number of

parameters involved in this model (11), and the non-linear nature of the mode sepa-

ration and modes dynamics equations, this model is difficult to identify directly from

short-duration driving measurement data. Moreover, stability analysis and model

output discontinuity are hard to overcome. Nevertheless, the Wiedemann model is a

good inspirational source for behavior personalized driver modeling.

After this literature review on general driving behavior research, the following sec-

tion proposes a summary of the general aspects of the human driving behavior based

on the literature and on the author’s experience, and an overview at the importance

of data collection for the understanding of the human driving behavior.

1.3 Essential elements on the human driving be-

havior

This section proposes a summary on the human driving behavior, a discussion on

naturalistic driving data collection in a real-world environment, and finally a selec-

tion of the driver modeling approach. More information about the collected data is

provided in Chapter 2.

1.3.1 Perspective on the human driving behavior

As explained previously, the human driver includes a number of characteristics that

have to be modeled. According to former studies (see section 1.2) and to the analysis

of the numerous measurement campaigns done for this research work (see sections 2.2

and 2.3), it can be found that the key points of the human driver behavior are the

following:

(a) The driver’s decisions and commands are related to the environment after a

reaction delay.

(b) The driver’s decisions and commands are continuous in time.

(c) The driver’s behavior is not perfectly consistent: two actions at close in time

might not lead to the exact same driver response.

(d) The driver’s behavior can significantly vary over long driving durations.
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The characteristics (a) and (b) are related to the dynamical nature of driving.

Driving is a process based on past-time and current environment information and on

the past-time and current internal driver states. As explained in the literature review,

commands requested by the driver are prone to three main different types of delays:

the information acquisition delay from the environment, the brain processing delay,

that correspond to the command of the next operation based on the current driver

state and the external information, and the physical command operation delay, that

correspond to the ability of the driver to apply the desired operation to the vehicle

by steering and pushing the pedals. These delays are the reason of the past-time

relationship between an control action required by the driver at a time t and the ob-

servation of the outside world at time t− τ , τ representing a simplified reaction time

of the driver. Moreover, driving is a continuous in time process. The driver’s actions

evolution are based on the driver’s ability to adapt his current mindset. This means

that each new action taken by the driver is based on the decision he is taking based

on the external information, and on the current action he was doing. As such, it can

be said that the driver’s operations are related to the environment information after

a reaction delay, and that the driver’s vehicle command is related to the previous

driver’s commands.
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Figure 1.11: Example of collected data of start and stop situation at traffic lights.
One driver, one vehicle, total recording duration 20 minutes. Dashed lines indicate
free driving, continuous lines car-following situation.

The human driver characteristic (c) has an influence on the method of the model

validation. In the case of the modeling of a systematic process, direct comparison

of the model output to the reference data can be done. In the case of the human
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driver modeling, as it can be observed in Figure 1.11, human drivers tend to have a

significant dispersion in the making of simple driving tasks. A statistical approach

or a reference index has to be selected to be able to represent the performance of the

generated model. In the case of this study, focus is done on the selection of a refer-

ence index: the vehicle energy consumption. This indicator lead to the generation of

a value averaged over time, and representative of the vehicle usage on varied scenarios.

The final proposed item (d) regulates the amount of data that can be used to iden-

tify a model, as long duration data measurement are prone to behavioral changes.

The data packets used for model identification have do be kept short in time.

Dependency of the driver behavior to the driven vehicle has also been studied in

this thesis. A data measurement campaign (see Section 2.3.2) including three vehi-

cles types and four different drivers had been conducted. No significant difference

of recorded driving dynamics could be related to the vehicle type. This study lead

us to the conclusion that after a duration, corresponding to the vehicle’s dynamics

understanding by the driver, the driver can compensate the vehicle’s dynamical re-

sponse. As driver’s driving intention cannot be differentiated from the the vehicle’s

dynamical response in our recorded data, in this study the driver-vehicle behavior is

modeled as a single entity [16].

1.3.2 Measurement data collection

To be able to analyze driving behavior, measurement data collection has to be done.

The following challenges are faced in the naturalistic data collection:

(a) The driver should have a natural driving behavior.

(b) The measurement equipment should not be intrusive.

(c) The scenarios should be stable in time.

(d) The external factors data should be collected.

To fulfill (a), the examinee should be comfortable with driving. A beginner driver,

in learning process, is not a good candidate for our work. The examinee should ex-

perience the driven course and the driven vehicle for a certain amount of time. Once

that the examinee does not need to focus on directions and when he feels comfortable
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with the vehicle dynamics, the recording of experimental data can be start. In the

lead experimental campaigns (see Chapter 2), 20 to 40 minutes were necessary for the

examinee to get comfortable with the driving environment and the vehicle dynamics.

In (b), to be able to get naturalistic measurement data, measurement equipment

should not disturb the examinee’s behavior. The data collection equipment should

not be in the driver’s field of view, nor should the driver feel intrusively watched over.

To do so, our equipped vehicles had environment sensors out of the field-of-view of

the examinee, and apart from one vehicle, no camera was pointing at the driver.

Moreover, the examinee were left alone in the vehicles.

The item (c) is related to the confidence interval of the measured data. A stable

environment is required to be sure that the measured data is only correlated to the

driver behavior. Environment stability is defined by the consistency of the environ-

ment impact on the measured vehicle dynamics duration over time. This element

dictates the measurement duration and the experiment location. Short measurement

durations somehow ensure a situation consistency over time. The experiment location

has to be chosen so to be representative of a type of environment, while having periods

of the day with consistent traffic flow density and composition. To ensure that these

points where fulfilled in our experiments, locations were thoughtfully investigated,

and recommendations where asked to traffic-flow modeling field scientists.

The external factors of the item (d) are represented by the road type and topology,

the traffic flow, the examinees’ condition and the sensor’s limitations. The road type

is related to the applied driving rules, especially the maximal driving speed, and the

road topology represents the road geometrical aspects: turning angle, width, lane

marking, traffic signs. The traffic flow represents the other vehicles on the road. The

examinees’ condition represent the mental state of the recorded drivers. Finally, the

sensor’s limitations represent the accuracy of the collected data, expressed as the

amount of noise, and the validity of the data in complex situations (for example in

leading vehicle distance measurement).

1.3.3 Importance of the selection of the driving situation

This thesis is focused on the reproduction of human driver’s behavior, with a focus

on personalized energy consumption. Based on this target, it has been important to

specify clearly the context of the study and the represented situation.
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The data recorded for this study being located in Japan, we will focus on Japanese

roads topology. Japan has a specific road topology, laws and demographics. Most of

the speed limits are kept low (40 kph within town, 50 to 70 kph for main multiple

lanes road in town, 80 to 100 kph for highways), and roads at speed are mostly com-

posed of strait lines within cities (see Figure 1.12). It could be observed that most

of the collected data has low lateral acceleration (see Section 2.3). Moreover, due to

the high density of the traffic flow in metropolitan areas, most of the collected data

is falls under the car-following situation. Due to the modeling difficulty of low speed

maneuvering, and its low impact on vehicle energy consumption, only driving above

five meters per second has been kept. Based on these observations, the work done in

this thesis is focused on car-following situation with no consideration of road topol-

ogy on driving maneuvering. This point of view enabled us to analyze and model

accurately large city streets and highway situations.

Figure 1.12: Example of Japanese city centers. From left to right, maps of: Kyoto,
Nagoya, Tokyo. © OpenStreetMap contributors.

We believe that the structure of the driver-vehicle model should be comprehen-

sive, and as each individual driver behavior tends to be influenced by different internal

and external factors, the model should be flexible enough to learn and adapt to every

driving sensibility [2, 16, 34, 38]. Thus the modeling approach should be compatible

with the dynamical aspects of driving task, and parameters should be identified di-

rectly from measurement data to fit as much as possible to drivers personal behavior.

Based on these elements, the modeling process used in this research is hybrid dy-

namical system models (see Section 2.4). The model inputs are carefully selected

based on correlation analysis between the represented situation observable data and

the desired model output. The modes of the hybrid model have been selected in such
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a way to represent the main states of the represented situation. By combining these

two design rules and by keeping the hybrid dynamical model order low enough, it

has been made possible to model comprehensively the driver-vehicle in car-following

situation.

In the following section, the driving behavior modeling works studied during this

doctoral research are detailed.

1.4 Goals and applications of the thesis

The three years of doctoral research lead to a thorough work on the understanding

the human driving manner thanks to the measurement of driving data collection, to

work on the modeling of personalized driving behavior, and finally it enables us to

propose a method to analyze the stochastic nature of human driving.

The first achievement of this research work has been the development of a general

framework for personalized advanced driver assistance system (ADAS). The second

research outcome has been the development of a method for the evaluation of driver

behavior personalized energy consumption. Finally, the last research deliverable has

been a model identification method for understanding the driver’s behavior through

the study model parameters evolution over time.

In the following sections, summaries of the main research topics are proposed.

1.4.1 Advanced driver assistance system

Due to the financing of the doctoral thesis, the research work has quickly been ori-

ented toward application propositions. Thus, the most straightforward approach has

been to benchmark the abilities and range of applications of famous driver models,

and of hybrid dynamical systems, on a simple application.

The first paper presented in the thesis proposes a framework for driving behavior

personalized adaptive cruise control (ACC) [9]. The created framework enables to

use any car-following model, and it is compared to classical ACC models used by

the car industry and by commercial traffic flow models. As a conclusion, it can be

observed that the use of hybrid dynamical system in the scope of ADAS is promising.

It provides more advanced driver adaptation than classical models, and it is easily

implementable as an online system in a real vehicle.
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1.4.2 Energy consumption evaluation

Following to this first part, work has been focused on the understanding of hybrid

dynamical system models, on the collection and processing of the experimental data,

and on the research of relevant inputs and outputs to model driving behavior.

The second paper proposes an approach to reproduce driver personalized energy

consumption in the car-following task [10]. The study is based on the works done

on the multi-mode dynamical system Probability Weighted ARX model, extended

toward driver-personalized modeling abilities. Data used for model parameters iden-

tification has been recorded by using a driving simulator and by doing real world

experiments, with varied driver types. As a conclusion, the driving dynamics could

be reproduced accurately, and the generated energy consumption values were repre-

sentative of the driving behavior.

1.4.3 Driver behavior analysis

Finally, the last part of the research work has been focused on proposing a novel way

to analyze and understand stochastic human driving behavior. This research lead

us to benchmark existing ways to identify multi-mode model parameters, to analyze

trends in data, and to combine time-dependent filtering and sub-optimal optimization.

The last paper proposed a new method for data-based model identification, where

the parameter identification process can uncouple data frequency ranges [12]. The

goal of this approach is to be able to identify the time evolution of model parame-

ters, to then understand the behavior evolution of drivers over time. The proposed

approach is based on a Markov Chain Monte Carlo and a genetic sampling method

called Sequential Monte Carlo to estimate Bayes’ rule. As a result of this study, the

time-dependent parameters of PWARX models could be identified successfully, and

the application to driving behavior analysis is discussed in [11].

1.5 Organization of the thesis

This thesis is organized in six main parts:

� Chapter 1: Introduction of the thesis. The first chapter is a presentation of

the research background, including the literature review, and the perspective of
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the author on driver modeling. It also includes a short description of the main

achievements of this doctoral thesis.

� Chapter 2: Description of the data based approach, of the measurement cam-

paigns and of the multi-mode dynamical system models. The second chapter

explains the purpose of data collection, the experiments and the data use for

model identification. It also describes the two multi-mode dynamical system

models used in this research.

� Chapter 3: Driving behavior personalized adaptive cruise control. This chapter

is the first conference paper published by the author of this thesis (see Section

1.4.1).

� Chapter 4: Driving behavior personalized vehicle energy consumption evalua-

tion. This chapter is the first journal article published by the author of this

thesis (see Section 1.4.2).

� Chapter 5: Filtered Bayesian mode identification approach for driving behavior

analysis. This chapter is the second journal article published by the author of

this thesis (see Section 1.4.3).

� Chapter 6: Conclusions of the thesis.
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Chapter 2

Data centric approach and
multi-mode dynamical systems

2.1 Introduction

The goal of this thesis is to understand and to model the human driving behavior

based on measurement data. The emphasis done on the data is due to its nature to

shape the entire research. Studies based on statistical understanding of data or on

psychophysical understanding of the human behavior can propose interesting models,

but they are subject to a significant bias due to the author’s understanding of the

data (see Chapter 3).

To reduce this modeling bias, we opted for hybrid dynamical modeling, identified

from measurement data. To lead to this approach, large data sets have been used to

select a mathematical modeling framework, including decision making processes and

dynamical system modeling, and then smaller data sets representative of individual

drivers’ behavior have been used to automatically identify these models. The result-

ing driving behavior models, hybrid model composed of a decision making process

and a dynamical system models, can reproduce the recorded data as well as allowed

by the identification algorithm and the model structure.

This approach enabled us to generate personalized driver models automatically, with-

out requiring an individual understanding of each driving style. Due to the variability

of the factors that determine driving manner, the flexibility proposed by this model-

ing approach could be difficult to achieve with other existing modeling methods.

As such, the data used in this approach is used for:

(a) Analysis of the driving behavior,
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(b) Identification of model parameters,

(c) Validation of the model.

The item (a) involves two processes: selection of the appropriate model type and

selection of the model inputs and outputs. This step is critical and it is the main

possible author’s bias of this approach. Selection of the model type has to be done

based on the nature of the modeled process, and selection of the model structure (e.g.

model order, decision making process type) can be done automatically by defining

modeling scores. Selection of the model outputs has to be done based on the nature

of the modeled situation, and selection of the model inputs can be done based on a

inputs/outputs correlation study on a large data sets. In the case of car-following

driving, the modeled situation being dynamical, the model has to be dynamical, and

the presence of different driving states (driving situations) led the author to use hy-

brid type models (see Chapter 4).

The item (b) is related to two main elements: data processing and identification

process. Data processing is important due to the automatic nature of the model

identification. In the case of real world data, a particular attention has to be done on

the data outlayers removal and on the signals filtering process. Data outlayers rep-

resent exceptional data, not representative of the desired model situation, that can

induce wrong behavior of the model on certain situations. Signal filtering enables to

preserve the representative dynamic of the recorded signal (e.g. reducing the level of

noise in the learning data). These data processing items have a significant impact on

the convergence rate of the identification process and on the quality of the final iden-

tified model. The identification process represents the mathematical approach used

to find the model parameters to reduce the difference between the recorded data and

the model output. Numerous approaches exist for system identification (see Chapter

5), and detailed analysis of some important criteria have to be done to select the

appropriate method. To select the method, the user has to know if an optimal or

suboptimal method has to be used, if the problem is globally convex or has numerous

local optima, the problem size, and the required identification accuracy. Based on

these elements, it is possible to select a model identification process with efficient

identification duration and appropriate parameters accuracy.

Finally the item (c) is about the model validation. In data-based approaches,

validation of the generated model can be done automatically. In machine learning
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field, a randomly picked set of the measured data is usually used for the model iden-

tification (training set), and the remaining part of the data is used for the model

validation (test set). In the case of dynamical systems, a random selection of the

data for learning and validation data cannot be done, due to the fact that time has to

be considered in the creation of data segments. Moreover, hybrid dynamical models

require an initial state, thus short time duration segments should be avoided to reduce

the chance of overestimation of the model performance. In the case of car-following

modeling, it could be observed that recordings time duration should be short to avoid

having a large variation of the driver’s behavior. As a result, driving model validation

is more complex than in classical machine learning problems. In this study, the model

validation is done by using a unique identification data set (training set identical to

the test set), and by doing relative comparison of two identified models outputs on a

single scenario (see Chapter 4). This approach allows to verify the good average per-

formance of the identified model on known data, and its ability to represent relative

behavior of different parameter sets on a single scenario.

Driving simulator and real-world measurements have been undertaken in this re-

search. Measurement types, strong and weak points of the measurement methods,

and usage of the data are detailed in the following sections.

2.2 Driving simulator measurements

The driving simulator (DS) enables to virtually reproduce a driving environment

where all environment variables are controlled. The DS enable to get driving data

without sensor noise nor undesired traffic flow interactions, and with scenarios that

can be perfectly repeated. This last feature is important for behavior analysis, to be

able to measure a single driver multiple times on a single scenario, and to evaluate

the behavior of several drivers on a similar scenario.

Nevertheless, usage of the DS has some drawbacks, starting by the absence of driver’s

feeling of the vehicle acceleration. The lack of acceleration feeling can lead to lower

driving consistency, and to velocity oscillatory behavior at while cruising. The second

main drawback is the lack of feel of danger, that sometimes lead to more aggressive

driving manners.
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Based on these considerations, the data provided by the driving simulator exper-

iments has been used for the testing of the parameter identification schemes, and for

the validation of the model choices. Nevertheless the DS has not been used exten-

sively for driver’s behavior analysis and comparison.

The following sections present the experimental setup and two driving simulator

measurement campaigns.

2.2.1 Experimental setup

The driving simulator is composed of three large projected screens covering a lateral

field of view of 180 degree. The inside and outside mirrors are created with portable

screens. The driver seat is positioned inside a commercial compact vehicle cockpit,

and the steering wheel is also extracted from a commercial vehicle (see Figure 2.1).

Figure 2.1: Global view of the driving simulator structure.

The driving simulators runs on a custom software setup based on the vehicle

dynamics simulator CarSim. The visual environment is generated by the localization

of CarSim’s vehicle in a custom-designed 3D environment (see Figure 2.2). Sound

is generated based on the vehicle’s engine state. Data collection of the dynamical

information of all the vehicles in the simulation is done at 100Hz.
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Figure 2.2: Examinee during a DS experiment.

For research purpose, two virtual environments have been used: a low velocity

suburban environment and a high velocity highway environment. The suburban ex-

periment has been done jointly with a real world experiment for comparative evalua-

tion of the DS data quality. The highway driving DS experiment has been used to get

data for driver model identification and comparative evaluation of driver’s behavior.

The most realistic results were provided by the highway environment due to the fact

that highway driving is less prone to longitudinal accelerations, leading to a situation

close to the real-world driving.

All experiments has been done in three phases:

� The examinee gets used to the vehicle for 15 minutes

� The examinee is recorded once

� The examinee is recorded a second time for driving behavior consistency verifi-

cation.

The following sections provide details about the two DS experiments.

2.2.2 Suburban experiment

A first DS experiment has been done to verify the range of validity of the DS data.

This experiment represents as accurately as possible the low velocity suburban ex-

periment (see section 2.3.1). Figure 2.3 shows the road topology similarity between

this DS experiment and the real-world experiment in section 2.3.1.

For this experiment, four driver were recorded. The driving scenarios were:
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� Following driving. In this scenario, the driver was following a vehicle on the

road. The data for the generation of this vehicle has been extracted from the

experiment in section 2.3.1.

� Free driving. In this scenario, the driver was driving by himself on the open

road.

Figure 2.3: Comparison between suburban modeled environment and real environ-
ment. The blue spot represents the starting point of the experiment

As a result, the recorded driving dynamics were compared between both exper-

iments. Concerns regarding the importance of physical feeling of the vehicle accel-

eration and importance of the notion of danger could be confirmed, as acceleration

values differed between DS and real world measurements, and drivers were no careful

at intersections. Thereby, it has been concluded that the type of scenario expressed

in this experimental campaign was not compatible with this type driving simulator,

and the measurement data from this experimental campaign has not been used for

driving behavior modeling purpose.

2.2.3 Highway experiment

The DS highway experiment has been done jointly with the highway real-world ex-

periment (see section 2.3.3) to collect driving following data for model identification.

The highway driving situation seem to be one of the best scenario in DS to get driving

data representative of real-world driving situation: the acceleration of the vehicle are

low, and the driver spends most of time looking ahead. As explained previously, the

main advantages of using this type of experiment on DS are the repeatability of the

experiment and the avoidance of undesired external phenomena that would disrupt

the experiment. Moreover, the time-efficiency of this type of experiment is much
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higher than a conventional experiment.

The designed environment was a 7 km long multi-lane highway oval loop, repre-

senting a large city airway. The leading vehicle dynamics represented typical driving

patterns, such as truck driving, with velocities between 80 and 110 km/k, and passen-

ger vehicle driving, with velocities between 90 and 130 km/h. Drivers were following

this a vehicle by redundant sessions of 10 minutes.

Figure 2.4: Example of highway driving data used for the leading vehicle.

The data collected in this experiment has been used for model identification in

the articles [9, 10,12].

2.3 Real-world measurements

Real-world experiments represent experiments done in open world environment in or

around Nagoya city. These experiment have been done to analyze the human driving

behavior, to select modeling frameworks, and to identify parameters of the selected

models.

Three main real-world measurement campaigns have been done for this doctoral the-

sis:

� A suburban low-velocity experiment. The goal of this first experiment was to

learn about the process of doing real-world experiments, to get a basic under-

standing of human driving dynamics in a residential area, and to be able to do

a real-world/DS comparative study.
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� A multiple-drivers multiple-vehicles multiple-environments experiment. The

goal of this experiment was to create a comprehensive evaluate the influence of

the driver, the vehicle and the environment on the driving behavior.

� A highway driving experiment. The goal of this experiment was to get good

quality recording data, with repeatable leading vehicle velocity patterns on sim-

ple environment, with the aim to use this collected data for model identification.

These real-world experiments took place in environments representative of the

most usual driving situations, ensuring that the researcher had a proper insight of

driving behavior in common situations.

In the following sections, the aforementioned experiments are details, including infor-

mation about the experimental plan and setups, the type of collected data, and the

experiments results and interpretations.

2.3.1 Suburban experiment

The goal of this first experimental campaign was to learn about the process of doing

real-world experiments, to have a basic understanding of human driving dynamics in

a residential area, and to compare real world and DS measurement data.

For this experiment, a micro-mobility electric vehicle, the Toyota Autobody COMS,

has been instrumented by the members of Suzuki laboratory. The vehicle has been

equipped with:

� A front robotic-type Lidar, for leading vehicle range detection.

� A Mobileye system for on line localization, traffic signs detection and leading

vehicle type detection.

� A GPS sensor for absolute position localization.

� A steering angle sensor and pedal position sensors for precise turning and fine

control measurement.

� Right and left wheel encoders for precise longitudinal dynamics measurements.

The data from this measurement was collected though a compact data acquisition

module connected to an integrated PC.
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Figure 2.5: Micro-mobility electric vehicle instrumentation.

In this experiment, five examinees have been recorded on a short track, with

various driving situation. The examinees have been recorded free driving and while

following a leading vehicle. They also had to drive freely with eco-friendly and ag-

gressive manners (see Figure 2.6).

Figure 2.6: Observation of the difference between an eco-friendly behavior and ag-
gressive behavior on the same path in a Toyota Autobody COMS.

This experiment could be used successfully to compare DS and real-world driver
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dynamics, as seen in section 2.2.2. This measurement has also been rich of under-

standing about the making of an experimental setup. In this experiment, defaults in

leading vehicle sensing did not enable us to use this data for driving following model

identification. The issue has been identified as being the Lidar setup, and this sensor

has not been used for the following measurements.

2.3.2 Behavior comprehension experiment

The goal of the behavior comprehension experiment was to understand the impact of

the vehicle and the environment on different driving behaviors, and to get a global

perspective on driving behavior in typical driving locations around Nagoya city. To

do so, four different drivers have been driving three vehicles on three varied environ-

ments over more than a week, resulting in 36 different recorded situations and 60

data packages.

In the following paragraphs, first the experimental setup and planning is explained,

then the type of measurement data gathered are shown and interpreted, and finally

conclusions are drown.

2.3.2.1 Planning and experimental setup

Three main elements have been considered for the design of this experiment:

� The experimental setup should not influence the driving behavior.

� The drivers should be accustomed to the driving environment and to the driver

vehicle.

� Driving durations should be kept short to avoid driver’s tiredness that could

lead to behavioral change.

These elements lead to the installation of non intrusive measurement instruments,

to insure the naturalistic nature of the recorded data, some preparatory session to

help the drivers to feel accustomed to the driving environment, and driving session

not longer than 30 minutes.

The three driving environments were representative of city-center driving, mixed-

urban driving and countryside driving. All routes were designed to last between 20

to 25 minutes depending on the density of traffic flow.
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The mixed-urban route was composed of a large mix of road types, from single

lane single way to four lanes arterial roads. It is representative of the variety of road

that could be used by a commuting driver in Japan. These situations are depicted in

Figure 2.7.

Figure 2.7: Overview of the mixed-urban route.

The countryside road was composed of single lane double way without road lines,

and two lanes roads. It can represent the type of road used by persons living outside

major cities in Japan. These situations are depicted in Figure 2.8.

Figure 2.8: Overview of the countryside route from on-board camera.

The city-center route was composed of various roads from single lane one way

roads to arterial roads. It represents most driving situations in a Japanese city-

centers. These situations are depicted in Figure 2.9.
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Figure 2.9: Overview of the city-center route from on-board camera.

Figure 2.10: Routes maps. From left to right, the mixed-urban, the countryside and
the city-center routes from on-board camera.

Table 2.1: Routes basic information.

Figure 2.10 provides the route map of the selected driving environments, and Ta-

ble 2.1 their basic characteristics.

The vehicles of this experimental campaign have been selected to represent the

main types of drivetrain available on the Japanese market. Thus choice has been done
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to use an automatic gearbox internal combustion engine vehicle, the Toyota Auris, a

hybrid vehicle, the Toyota Prius, and a vehicle used in pure electric mode, the Toyota

Plug-in Prius (see Figure 2.11). This last vehicle is not a pure electric vehicle, but

pure electric mode can be forced, and the battery allows more than 15 kilometers of

electric range, and normal acceleration abilities.

Figure 2.11: Vehicles used for the experiment.

The population of this experiment is composed of four examinee with large age

and driving style variations. All of the drivers were used to driving, to enable good

consistency along the driving experiments. Description of the examinee is given as

follows:

� Age: 30, Gender: Female, Driving for more than 5 years.

� Age: 25, Gender: Male, Driving for more than 5 years.

� Age: 35, Gender: Male, Driving for more than 15 years.

� Age: 60, Gender: Male, Driving for more than 30 years.

The planning was composed for 6 full days of experiment, as one day was required

to record two drivers on one environment on the three vehicles. The planning of one

day of recording is shown in Table 2.2. The morning sessions were used for route

learning and driver adaptation to the vehicles. Afternoon sessions were dedicated to

data recording. The examinee could drive the electric vehicle only once due to the

capacity limitation of the vehicle’s batteries.
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Table 2.2: One-day experiment timetable. IC stands for internal combustion engine
vehicle, H for hybrid vehicle and EV for electric vehicle.

Two types of sensing platform were installed in the vehicles:

� Prius:

The prius has been equipped with a millimeter-wave radar in the front, small

cameras to record low definition video of the environment, a CAN acquisition

system, a Mobileye sensor, a GPS measurement unit and a CAN acquisition

system.

� Plug-in Prius and Auris:

These vehicles have been equipped with dual front facing cameras, a Mobileye

sensor, an acceleration sensor, an GPS sensor and a CAN bus acquisition system.

The main difference between these setups is that only the Prius is equipped with a

good quality relative distance measurement tool. Mobileye system provides interest-

ing line positioning information, but very partial information on the road situation.

As this experiment is focused on the comparison on vehicle dynamics data, all vehicle

were equipped with similar acceleration and velocity sensing abilities. The internal

combustion engine vehicle’s setup is shown in Figure 2.12.
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Figure 2.12: Internal combustion engine vehicle sensing setup.

2.3.2.2 Results and interpretation

In this measurement campaign, data has been recorded on 3 environments with 3

different cars with 4 different drivers. The number of repetitions for each recording

is 2. Based on this data, interpretation of the influence on the environment and the

vehicle on the driving behavior has been done. Nevertheless, the population of drivers

is not large enough to use statistical methods to analyze the driving styles.

A few analysis have been done to try to understand:

� The influence of the vehicle type on the driving behavior.

� The influence of the environment on the driving behavior.

� Low velocity driving behavior.

Influence of the vehicle type on the driving behavior

Analysis of the influence of the vehicle type on the driving dynamics has been done

from the observation of the histogram of the velocity, histogram of the longitudinal

acceleration, and an acceleration/velocity 2d histogram mapping. This statistical
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approach that does not directly analyses the driving signal but the frequency of

occurrence of the situation.

For example the velocity space has been divided in 5km/h cells, and the amount of

data in each cell is analyzed.

This analysis has been repeated on 4 drivers in 2 different environments.

Figure 2.13: Example of histograms used for this analysis. On the left velocity his-
togram of a driver on a route for 3 different vehicles. On the right, acceleration/ve-
locity 2D histogram.

Data observation lead to the following interpretation:

� EV vehicle seemed to be driven slightly slower.

� IC vehicle usage lead to slightly higher accelerations at low velocity. This much

be due to the more brutal behavior of the automated gearbox compared to the

electric and hybrid powertrains.

Conclusion: The type of driven vehicle did not influence much the driving dynamics

and behavior of the examinees. Once the learning phase is finished, drivers tend to

apply their own driving style on all selected vehicles.

Influence of the environment on the driving behavior

The same approach has been used to understanding the impact of the driving

environment on the driving behavior. Longitudinal velocity, and longitudinal and

lateral acceleration have been investigated. General statistics have also been extracted

from the data (see Table 2.3). The used data is based on 3 environment and 4 drivers

with the hybrid Prius vehicle.
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Table 2.3: Statistical of driving dynamics in the studied environments.

The conclusions are:

� In Japan, car are stopped 50% of the time in city center, 30% of the time in

the mixed urban environment, and 15-20% in the countryside environment.

� There is less low accelerations in city center. This must be due to the fact that

these low accelerations often happen at higher velocities.

� There is more lateral acceleration in countryside environment, due to the road

shape at driving velocity.

Nevertheless, the longitudinal acceleration behavior of the drivers did not seem to

be impacted by the type of environment.

Low velocity driving behavior

Take off and end of braking situations are zones sensible to the driver behavior,

and to the vehicle powertrain. These phases certainly have a strong influence the

way a hybrid or start&stop system works. This investigation has been done to verify

if implementation of a specific model for low velocities is required in driver model-

ing. The sample data includes 3 types of vehicles, with the 4 drivers on 2 different

environments. Only the behavior in the longitudinal direction is studied.

Figure 2.14: Data processing used to automatically extract low velocity driving statis-
tics from the data recordings.
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Each measurement recording has been filtered to remove sensor noise and seg-

mented (see Figure 2.15) to represent acceleration and deceleration phases. Then

statistical values could be extracted based on these acceleration segments. This pro-

cess is shown in Figure 2.14.

Figure 2.15: Example of driving segments automatically extracted from driving data.

The results of this analysis have been done based on the analysis of the average

acceleration focused on several cases: users, vehicles and environments.

The values show in the following graphs are:

� Mean: mean of the average values of segments on a single experiment.

� Mean−|Zsc| > 1: mean of the average values of segments on a single experiment

after removing the data segments whose mean value Z-score was over one.

� Mean/item: mean of the means for all the experiments cases used for the anal-

ysis of the item.

� Zmean/item: mean of the ”Mean−|Zsc| > 1” for all the experiments cases used

for the analysis of the item.

Removal of data with Z-score over one is done to avoid to consider data outliers

segments. The values analyses from this experiment are the Zmean/user, hallowed

in yellow. Then are supposed to be representative of the average driving behavior on

the studied item.
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� Analysis by driver

Figure 2.16: Mean acceleration and deceleration statistics per driver.

As observed in Figure 2.16, the driver type has a high influence on the average

acceleration and deceleration. It is easily possible to identify aggressive and soft

drivers.

� Analysis by environment

Figure 2.17: Mean acceleration and deceleration statistics per environment.

As observed in Figure 2.17, it is not clearly possible to observe an influence of

the environment on the low velocity driving dynamics.
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� Analysis by vehicle type

Figure 2.18: Mean acceleration and deceleration values per vehicle type.

As observed in Figure 2.18, only the IC vehicle acceleration phase shows spe-

cific values. This phenomenon has already been observed on the Influence of

the vehicle analysis. This is due to the behavior of the automated gearbox.

Otherwise, EV and H show similar driving dynamics.

2.3.2.3 Conclusion

From this experimental campaign, it can be remembered that:

� Different drivers show different accelerations and decelerations profiles, and high

and low velocities.

� The type of powertrain in the driven vehicle does not influence much the driving

style. Once the learning phase over, drivers drove with their own personal

driving behavior, as long as the vehicle could provide the desired dynamics.

The only observation of vehicle dynamics change due to the powertrain type is

a low velocity, and was due to the behavior of automatic gearbox.

� The type of environment did not show any impact on the driving style.

2.3.3 Highway experiment

The goal of the highway experiment has been done to get good quality vehicle-

following recording data with repeatable leading vehicle velocity patterns on a simple
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environment for model identification.

To do so, the following experimental setup has been selected:

� The selected environment has been a free highway section with few traffic flow

and large possible velocities oscillations.

� The leading vehicle was a large van (for easy radar detection by the following

vehicle) equipped with a target velocity profile display system detailed bellow.

The selected leading vehicle velocity profile had large velocity and acceleration

amplitudes to cover most driving dynamics and thus facilitate model parameters

identification (see Figure 2.19).

� The following vehicle was the hybrid Toyota Prius detailed in section 2.3.2.1,

equipped with a GPS position sensor, a vehicle dynamics sensor, and a leading

vehicle relative distance radar sensor.

Five drivers have been recorded over two days with requested natural, soft and

aggressive behaviors. Each recorded lasted about 10 minutes and has been repeated

twice, for a total of 30 measurements. Nevertheless a few of these measurements had

to be discarded due to the behavior of traffic flow vehicles.

Figure 2.19: Leading velocity pattern used for the Highway experiment.

As explained above, an online target velocity display system has been created for

this experiment. This tool enabled to have obtain a well designed leading vehicle

velocity profile, to facilitate model identification. This system was composed of a

program coded in Matlab using an USB GPS sensor to record and display a target

velocity based on the GPS position and the curvilinear abscissa on the recorded path.

This program was interfaced to the driver by a remote desktop system displayed on

a smartphone on the dashboard of the leading vehicle.
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This system is explained schematically in Figure 2.20, and by some images in Figure

2.21.

Figure 2.20: Functional diagram of the target velocity display program.
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Figure 2.21: Example of target velocity display usage. On the left usage in a car, on
the right displayed information. Current velocity in red, target velocity in black and
future target velocity in orange.

The data recorded during this experiment has been used in the conference publi-

cation [11] and the journal article [12].

Now that the purpose of measurement data collection and the measurement cam-

paigns have been described, the following section details the two multi-mode dynam-

ical system models used in this research for driving behavior modeling.
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2.4 Multi-mode dynamical system models

Multi-mode dynamical systems models are an extended class of dynamical systems

models. Dynamical system models can be defined as functions describing the geo-

metrical representation of a set of points in a finite geometrical space over time. The

extension of this model class to multi-mode system models enable discrete or contin-

uous switch between several dynamical system models. When the mode switching is

discrete, multi-modes dynamical models are named hybrid dynamical models. This

allows to represent both discrete- and continuous-in-time behavior of a dynamical

system, and discrete- and continuous-switching between several models. Applications

of multi-mode dynamical system models are broad. They can for example be used for

the representation of physical phenomenons involving environment related physics

(control of an air/water drone), a mixture of digital and analog electronic compo-

nents, or robotic systems involving decisions taking mechanisms [74–76]. The family

of hybrid dynamical system models includes Hybrid Automata [77], where the model

system state is explicitly expressed by a continuous and a discrete signal, partition of

the continuous state deciding of the current discrete state (hybrid system mode), and

Switching Systems, systems composed of differential equations selected by a switching

signal [78].

Depending on the studied point of view, different notations are used for multi-

mode dynamical systems. Signal processing and robotics fields tend to define the

multi-mode systems in its state-space form with observable and process functions,

and to define the model configuration with states variables [75, 79]. In dynamical

systems and system identification fields, multi-mode dynamical system models are

usually defined by input-output functions systems, and the model configuration is

defined by the system output and the model parameters [59,80,81].

In this thesis, the multi-mode dynamical models are studied in the context of

system modeling from measurement data, thus involving a detailed parameter identi-

fication phase. Thus the multi-mode systems are described using their input-output

functions system form.

2.4.1 Piecewise autoregressive exogenous model

An archetype hybrid (discrete multi-mode switching) dynamical system model is the

PieceWise AutoRegressive eXogenous (PWARX) model. This model has been exten-
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sively used in data based system modeling due to its ability to reproduce the behavior

of complex dynamical systems by using several simple ARX models. ARX models use

past knowledge of the model output (autoregressive input) and external data input

(exogenous input) to calculate the model output. Operations between the inputs and

outputs are linear.

The general piecewise hybrid dynamical system model framework [80] is can be

described as 
y(k) = f 1 (r1(k), θ1) + e1(k) if µ(k) = 1

...
y(k) = fM

(
rM(k), θM

)
+ eM(k) if µ(k) = M

(2.1)

where r is the model input, y is the output data, fm is a dynamical system model

with m ∈ {1, 2, ...,M} the mode index number, k ∈ {1, 2, ..., K} is the discrete time

step, θm ∈ Θm is the parameter vector of the mode m, Θm the parameter space of

the modem, em is the modeling error, and µ ∈ {1, 2, ...,M}K is the mode index vector.

Based on these notations, the PWARX model can be formulated as

ŷ(k)=f(r(k)),
r(k)=[ŷ(k − 1) . . . ŷ(k − na) u(k) . . . u(k − nb)]>,

f(r(k))=


θ1>

[
r(k)

1

]
if r(k) ∈ X1 ⇔ µ(k) = 1

...

θM
>
[
r(k)

1

]
if r(k) ∈ XM ⇔ µ(k) = M

(2.2)

where r is the regression vector (input vector), ŷ is the model output, and u is the

exogenous input. (na, nb) ∈ N∗2 are the ARX models orders. M defines the number

of mode. These last three variables are supposed to be known.

The data partitions Xm are assumed to be bounded convex polyhedra, described

by

Xm = {r ∈ Rnpw |Hmr ≤ hm} (2.3)

where Hm and hm are the real valued matrix and vector describing the mode par-

titioning. X = ∪Mm=1X
m is assumed to be a bounded convex polyhedron, and
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∀(i, j) ∈ {1, 2, ...,M}2, i 6= j,H i ∩Hj = ∅.

PWARX models combine the simplicity of linear models identification and the

ability to model dynamical systems, thus showing non-linear output properties. Using

multiple ARX model, the PWARX model allows to increase the level of nonlinearity

of the modeled phenomenon by using ARX models in a mathematical neighborhood

of the model state-space. Numerous modes switching strategies have been developed,

such as hierarchical segmentation [82], stochastic mode switching [60] or probilities

weightening [59] such as explained in the following section. Moreover, this type of

model attracted a large attention on the driver-modeling community, especially for

driver tasks analysis and driving behavior understand [61, 83–85]. As a composition

of dynamical linear models together with modes switching processes, numerous mode

identification schemes can apply to PWARX models [86–90]. A comparative review

of the identification methods can be found in the reference paper [81].

2.4.2 Probability weighted autoregressive exogenous model

The Probability weighted AutoRegressive eXogenous (PrARX) model is a multi-mode

ARX model introducing a mechanism for continuous soft mode switching [59]. The

mode switching mechanism is based on logistic regression and on probability estima-

tion methods (see Figure 2.22). This soft mode transition methods avoids to have a

binary decision in mode switching as in a PWARX model. Moreover the introduc-

tion of soft mode switching enables to get rid the discontinuity in the model output

derivative at mode transition for low auto-regression order models. PrARX model

parameters can be identified by calculating independently the ARX and the logistic

function parameters, or with a method enabling simultaneous identification of both

the model ARX model parameter and the logistic function parameters. Moreover,

parameters of a PrARX model can be converted into PWARX model parameters.

Figure 2.22: Diagram of the PrARX hybrid dynamical system model.
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As expressed above, the main difference with the PWARX model is the mode

switching mechanism. The PrARX model uses a logistic function to generate weights

associated with the modes output. The model output is then calculated by summing

of the ARX modes outputs multiplied by their mode probability.

The PrARX model is formally defined by:

ŷ(k) = fPrARX(r(k)) =
∑M

m=1 P
mθm>φ(k)

r(k)=[ŷ(k − 1) . . . ŷ(k − na) u(k) . . . u(k − nb)]>
(2.4)

where r defines the regression vector, φ(k) = [r(k)>1]>, u is the exogenous

input, ŷ(k) the model output, θm the identified vectors defining the ARX mode

m ∈ {1, 2, ...,M}, (na, nb) ∈ N∗2 are the ARX models orders, and M defines the

number of modes. Pm is the vector expressing the mode probability of the mode m

output. Pm is defined by the following softmax function:

Pm =
exp(ηm>φ(k))∑M
m=1 exp(ηm>φ(k))

(2.5)

where ηm is the identified parameter defining the probabilistic partition of the

mode m.

Figure 2.23: Example of single output three modes PrARX model.

The article by Okuda et al. presenting the PrARX model is focused on the anal-

ysis of personalized driving behavior. In this article, car-following driving behavior is

identified from driving simulator data, classification of the recorded data situations,
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interpretation of the model parameters and synthetic data reproduction are proposed.

The following chapter proposes a framework for the creation of a personalized

adaptive cruise control system, and an applicative comparison between the developed

model and the classical cruise control models.
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Chapter 3

Behavior personalized adaptive
cruise control

3.1 Introduction

Adaptive cruise control (ACC) systems have been studied and implemented on cars

in recent years, and they are part of the first steps to vehicle automation [36]. As an

extension of classic cruise control, most of these systems have been designed to keep

a minimum predefined time headway to the leading vehicle. This functionality can

reduce fatigue of the driver, fuel consumption, and traffic flow congestion [91].

In the past years, ACC models and vehicle maneuver planning systems have been

created taking into account the limited resources of fail-safe vehicles electronic archi-

tectures [92]. In these cases, the ACC assistance is based on a simple risk evaluation

index such as time headway, and the user has to manually predefine the value. This

type of system is designed considering the average behavior among users, and it is

cannot be entirely personalized. Taking advantage of classic low computing power

ACCs and behavior learning, researchers created adaptive cruise control systems able

to calculate and use the correct time headway as a reference for the control pro-

gram [91].

The view point taken in this paper is different. Recent evolutions of embedded sys-

tems enables us to implement a control method with more complexity and higher

computational load. Moreover, due to the increase of passenger vehicles connectiv-

ity, heavy computational tasks can be performed in the cloud. Thus personalized

parameter identified based dynamical systems can considered as a serious candidate

for on-line vehicle control.

In recent years, driving behavior has been approached through multi-mode dynam-

ical systems and investigated by numerous researches. The main idea is to observe
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the human as a controller. It can be done by using linear or non-linear control the-

ory [47], stochastic models, hybrid models, or implying neural networks or hidden

Markov chains [62–64].

Based on this knowledge, this paper proposes an ACC system able to use system iden-

tification based following systems. Emphasis is done on the use of the Probability-

Weighted ARX model [59]. This paper proposes a demonstration of the created model

dynamics in typical driving situations, and a modeled vehicle dynamics comparison

with typical car-following models and an industry grade ACC model.

Section 3.2 presents the concept of the novel ACC system and its basic operating.

Section 3.3 details architecture of the model. Sections 3.3.1 and 3.3.2 explain in detail

the used vehicle following models: the multi-mode PrARX model, and the GHR car

following model. Section 3.4 demonstrates the use of the created ACC structure.

Section 3.5 compares the results with classic ACC and traffic flow model, and section

3.6 proposes a possible model use.

3.2 The virtual leading vehicle adaptive cruise con-

trol concept

In this first section, the concept, the macroscopic architecture, and the main working

situations of the presented adaptive cruise control are exposed.

3.2.1 Model concept

The concept behind this model is to create a simple structure able transform multi-

mode vehicle following models in ACC models. The car following model used in this

study is the PrARX model [59], which is a multiple ARX model with soft mode transi-

tions abilities. This vehicle following model, once correctly calibrated, can reproduce

accurately the driver dynamics, following distance and response time. Nevertheless

this ARX model needs to follow a lead vehicle at any time to be able to calculate

an output, and this can be done thanks to the here exposed Virtual Leading Vehicle

ACC system (Vlv-ACC).

As smart cruise control systems, ACCs have to be able to deal with two main

situations. Cruising at constant velocity when there is no leading vehicle in the way,

or follow a leading vehicle with the right safety distance. Moreover an ACC must be

able to handle correctly transition phases.
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To be able to tackle these issues, the concept of virtual leading vehicle (VLV) was

created. The virtual leading vehicle replaces the real leading vehicle (RLV) as soon

as the real leading vehicle following conditions are not satisfied (see Figure 3.1). The

VLV is driven at the cruise control desired velocity, and a set of VLV/RLV switching

rules enable to change the leading vehicle smoothly. Thus the following vehicle (FV)

driven by a standard car following model gets the ACC functionality.

Figure 3.1: Two lanes highway driving. The FV is following the VLV.

The Vlv-ACC uses the selected following model to follow both the VLV and RLV

at any time. Then based on the vehicles relative positions and on the VLV and RLV

following models outputs, the switching mechanism can select which target vehicle the

FV has to follow. The following rules used to switch between situations only works

with sufficiently sophisticated following models. Indeed the selected following model

must have a natural reaction to the distance and relative velocity between vehicles.

3.2.2 Model situations definition

In this configuration, two main situations and four switching cases can occur. The

two main situations have already been introduced: following the virtual leading ve-

hicle (VLV) or following the real leading vehicle (RLV). The VLV following situation

is the basic state when the ACC is activated.

Then the four possible switching situations are the following:
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3.2.2.1 Soft vehicle cut-in

Figure 3.2: ”Soft RLV cut-in” situation. Initially, the FV is following the VLV. A
RLV is slowing down, and is smoothly replacing the VLV, when the models outputs
(FV acceleration) values intersect.

The ”Soft RLV cut-in” switching case (see Figure 3.2) modifies the situation from

following the VLV to following the RLV.

Soft RLV cut-in expresses the fact that while following the VLV, a slower than VLV

and far away RLV vehicle is in the current lane. After a certain time, this RLV

will overlap the VLV and eventually collide the FV. To avoid this situation, both

following models output for the RLV and VLV are constantly computed, and when

these models outputs (in our case vehicle acceleration) intersect, the transition from

following VLV to RLV is done.
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3.2.2.2 Soft vehicle out

Figure 3.3: ”Soft RLV out” situation. Initially, the FV is following a RLV. The RLV
accelerates. When RLV velocity is higher that the cruise control desired velocity, the
RLV is replaced by the VLV.

The ”Soft RLV out” switching case (see Figure 3.3) modifies the situation from fol-

lowing the RLV to following the VLV.

Soft RLV out expresses the fact that while following a RLV, the RLV accelerates to

a velocity higher than the ACC desired velocity. When the RLV reaches the cruise

control desired velocity, the RLV is replaced by an overlapping VLV. Another switch-

ing solution is to virtually superpose the RLV and VLV, but force the VLV velocity

to the ACC velocity for the following model output calculation. Then the transition

can be triggered using the same technique as Soft RLV cut-in, with following models

output values crossing.
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3.2.2.3 Hard vehicle cut-in

Figure 3.4: Example of a possible ”Hard RLV cut-in” situation. Initially, the FV
followed the VLV. A RLV inserts on the VL lane with a high negative differential
velocity. ay has to be lower than ax to trigger the ”Hard RLV cut-in” situation.

The ”Hard RLV cut-in” switching case (see Figure 3.4) modifies the situation from

following the VLV to following the RLV.

”Hard RLV cut-in” expresses the fact that a RLV inserts between the FV and the

VLV, and its velocity is low enough so the FV driver would need to brake. In this

case, output of the following models are switched in a time corresponding to a fraction

of the initial time headway, avoiding any safety related issue as well as acceleration

discontinuity. The output switch occurs only if the replacing following model output

value is lower than the previous one.

3.2.2.4 Hard vehicle out

The ”Hard RLV out” switching case (see Figure 3.5) modifies the situation from fol-

lowing the RLV to following the VLV.

”Hard RLV out” expresses the fact that while following the RLV, this vehicle quickly

exits from the current lane (lane change, highway exit ). The RLV is replaced by the

VLV. The VLV velocity is increased from RLV velocity to the cruise control desired

velocity with an acceleration corresponding to the average observed driver accelera-

tion during the learning phase.
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Figure 3.5: Example of ’Hard RLV out’ situation. Initially, the FV is following the
RLV. When the RLV exits the lane, it is replaced by a VLV at the previously known
RLV position and velocity.

The proposed switching conditions are only one possible interpretation of the

model. These conditions have shown good results with the hybrid dynamical PrARX

following models [59], but can be too broad for some basic car following models.

3.3 Implementation of the proposed adaptive cruise

control model

This section is dedicated to the explanation of the model structure from the point

of view of implementation. Simulink has been used to build the model. It enables

easy replacement of the vehicle following model, and a connection can be done with

vehicle simulation softwares.

Figure 3.6: Diagram of the adaptive cruise control model architecture.
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As explained in section 3.2, the Vlv-ACC runs two instances of the selected vehicle

following model in parallel. This is required to be able to have smooth mode switching

in case of soft RLV in. This transition condition is based on both following models

output comparison. In figure 3.6, the upper and lower vehicle following branch use the

same following model. Only the inputs are different. S1 represents the leading and

following vehicles locations and dynamics signals, and a virtual leading vehicle reset

signal, S2 represents the virtual vehicle location and dynamics signals, S3 the real

leading vehicle location and dynamics signals, S4 the following vehicle location and

dynamics signals, S5 the virtual leading vehicle and following vehicle positions and

dynamics signals at the next time step, and S6 the real leading vehicle and following

vehicle positions and dynamics signals at the next time step. Details of the signals

are proposed in Figure 3.7.

Figure 3.7: Example of Simulink integration of the model.

The upper branch of Figure 3.7 is dedicated to the VLV and to the vehicle fol-

lowing the VLV. The ”Virtual vehicle” bloc is used to the generation of the virtual

leading vehicle. This bloc inputs are composed of signals required to generate the

VLV and an initial position signal. The signals to generate the VLV are the adaptive

cruise control velocity, the position of the leading vehicle at the previous time step,

the position of the following vehicle at the previous time step and a ”reset” signal.

If the ”reset” signal is activated, the output signal is equal to the ”Lead position”
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signal. If the ”reset” signal is disabled, the output signal is equal to the ”Lead po-

sition” signal added to the distance traveled by the VLV vehicle in one time step at

the ACC velocity. The initial virtual vehicle position is set based on data correlation

between the leading and following relative position at defined velocities and relative

accelerations.

The lower branch of Figure 3.7 is dedicated to the RLV. In a real world situation,

the RLV information would be extracted from on vehicle sensors such as a Radar,

Lidar or camera system, and the flow vehicle information could be communicated to

the following model (see Section VIII.b). However, in the case of this simulation,

the RLV position is read from a vehicle position file. IPG Carmaker with on vehicle

sensors and traffic flow would also be a solution.

3.3.1 Behavior personalized modeling by probability weighted
ARX model

The multi-mode dynamical system model used to demonstrate the ability of the ACC

system is the Probability Weighted autoregressive exogenous (PrARX) model 2.4.2.

This model is sued to reproduce the driver-vehicle entity dynamics.

Reproduction of the driving behavior depends not only on the structure of the

model (here PrARX), but also on the selection of explanatory variables of the model.

The selected input vector is composed of acceleration of the driven vehicle, distance

between the driver and leading vehicles (range), relative velocity between the vehicles

(range-rate), and the inverse of the time headway (velocity/range) [93]. This set of

inputs enables to give vehicles dynamic information and surrounding vehicles relation

characteristics.

The output of the model is the desired acceleration of the vehicle.

A delay of 300ms is applied between the input and the output of the model, to insure

a cognition time matching the average human brain capacity [16]. The driven pa-

rameters identification process is done by optimizing independently the ARX modes

parameters based on pre-clustered data. Supervised clustering of the learning data

enables robustness in the parameter identification, and the mode separation parame-

ters are calculated uses multinomial logistic regression. The data used for parameter

identification has been measured in the driving simulator (see section 2.2).
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The selected mode data clustering is:

- A mode for the 20% most negative accelerations.

- A mode for the 15% highest accelerations.

- The last mode for the rest of the data.

This combination provided a stable and safe reproduction of the vehicle/driver dy-

namics.

3.3.2 Gazis-Herman-Rothery car following model

The Vlv-ACC is a flexible platform able to receive different types of car following

models. While some very basic following models can need some adjustments on the

ACC switching conditions, most of the classic car-following models work without any

problem. To show the flexibility of the Vlv-ACC, the Gazis-Herman-Rothery (GHR)

following model [3] was implemented. This model is a classic car-following model for

microscopic traffic flow modeling.

The Gazis-Herman-Rothery (GHR) car-following model is one of the most well-known

models and was developed in the early sixties at the General Motor Research labs in

Detroit. It is based on the assumption that the drivers acceleration is proportional to

the velocity difference and to the following distance. The model is expressed in the

simple following formula (3.1).

a ghrn(t) = cvmn (t)
∆v(t− T )

∆xl(t− T )
(3.1)

a ghrn represents the nth vehicle acceleration, vn the nth vehicle velocity, ∆v the

differential velocity between the vehicle n and the vehicle n− 1, and ∆x the distance

between the vehicle n and the vehicle n − 1. C, m and l are the driver parameters.

Due to the variety of models in this thesis, these parameters notations is kept from

the original paper [3], and their meaning only has value in this section.

Then the following correction formula is applied to the GHR model:

an(t) = a ghrn(t)+
(

∆x(t−T )−dfollow−q
r

)
∗ tanh

((
∆x(t−T )−dfollow

p

)2
)
∗(

1−
(

tanh
(

∆v(t−T )
s

))4
) (3.2)

where dfollow is the desired average following distance, and p half of the dead-zone

size on the relative distance axis, q the offset of the correction curve on the relative

distance axis, r the proportional coefficient value on the relative distance, and s the

limiting coefficient based on the relative vehicles velocity.
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The first term of the correction formula (3.2) enables to keep a correct relative dis-

tance between the vehicles by modifying the acceleration value. The second term

represents the zone of action based on the relative distance, and the third term rep-

resents the zone of action based on the relative velocity. The last two terms enable

to avoid conflict between the GHR car following model and the relative distance cor-

rection during high dynamical phases.

As this model was developed in the sixties, it has been used in numerous studies

and several parameter sets have been determined [3] to represent global driver behav-

ior. In order to improve accuracy, we a set of parameters determined by Ozaki in 1993

was used. This set includes different parameters for acceleration and deceleration sit-

uations. The additional term in (3.2) has been added to the equation to force the

following model to stay within a certain range of distance behind the leading vehicle.

Indeed, the original GHR model cannot correctly handle the leading vehicle relative

distance discontinuity. This term is only active during low dynamics phases, if the

differential velocity between the vehicles is low. Thus it does not interfere with the

GHR model during acceleration and braking phases (see Figure 3.8). The selected

distance is 60m, and is a coherent value regarding the driving data collected in section

3.3.1. Selected parameters of the model can be observed in table 3.1.

Table 3.1: GHR model values, from Ozaki (1993) model calibration [3]
Variable c m l dfollow p q r s

Value if an ≤ 0 1.1 0.9 1 60 10 10 50 1
Value if an > 0 1.1 -0.2 1 60 10 10 50 1
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Figure 3.8: Corrective coefficients to the GHR model.

3.4 Comparison of models in the Vlv-ACC frame-

work

This section is dedicated to the comparison between the PrARX model and the GHR

model, both implemented in the Vlv-ACC framework. Three main driving situations

are proposed. The following driving situations are representing classic use, with

soft switching cases on Figure 3.9, hard vehicle in Figure 3.10, and hard vehicle out

situation in Figure 3.11.
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Figure 3.9: 30 m/s Vlv-ACC example with PrARX car following model on the top,
with modified GHR car following model on the bottom.
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Figure 3.10: 30m/s Vlv-ACC with PrARX following model on the top, with modified
GHR model on the bottom. ’Hard RLV cut-in’ event at t = 160s.
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Figure 3.11: 30 m/s Vlv-ACC with PrARX following model on the top, with modified
GHR model on the bottom. ’Hard RLV out’ event at t=70s.
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We can see on Figure 3.9 that both following models are able to handle soft

switching conditions without any issue. For t = [0, 40] and t = [130, 190] seconds,

ACC model is following the virtual vehicle, otherwise, it is following the real leading

vehicle. The lead following vehicle can be understood by looking at the relative dis-

tance graph. The model response in green on the acceleration curve differs slightly but

the global behavior of the vehicles are similar. There is no major discontinuity due to

the lead vehicle switch, the obtained results dynamics can be considered as satisfying.

The noise observed on the GHR results are due an instability in the GHR real vehicle

following model output when the RV is following the VLV. This is due to a feedback

delay issue in the Simulink implementation and does not alter the results of the study.

Figure 3.10 shows the response of the models to the insertion of a RLV during a

VLV following phase (cut-in), at t = 160s. We can see that the PrARX based Vlv-

ACC responds correctly, by decelerating the vehicle to keep a correct safety distance.

In the case of the GHR based Vlv-ACC, we can see that no measure is taken by the

model to insure a correct safety distance. It shows that the RLV insertion has not

been detected, and the Hard RLV in case has not been triggered. This is due to

the conception of the GHR model, based on the differential velocity divided by the

differential distance. This model cannot handle lead car position discontinuities to

adapt the following vehicle behavior. The GHR model is not a good candidate with

the selected state switching rules.

Figure 3.11 shows the exit of a RLV at t=70s. This case can represent the de-

parture of the leading vehicle from the highway. The PrARX based model react in

a logical manner, by following the VLV. However the GHM based model does not

handle the situation correctly. This is due to the fact than despite the distance sepa-

rating the following car and the RLV, the model output is lower for the RLV following

than the VLV following. Thus the models switches back to RLV following mode and

the result becomes meaningless.

We could observe in the previous comparison that the logic switching has to be

adapted to the selected following model. The switching logic has been developed based

on human reactions. The PrARX car following model can be correctly reproduce

human reactions, and therefore lead to a coherent model behavior. Nevertheless, the

GHR model is not adapted to this iteration of the Vlv-ACC. Adaptation to the cruise

control logic would have to be done to insure correct situation selection.
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3.5 Comparison between a Vlv-ACC model and

standard cruise control models

In this section, the comparison between the PrARX based Vlv-ACC and two classic

ACC models is done. The goal is to show the main following characteristics of the

PrARX model next to industry standard models.

3.5.1 Comparison with Gipps model

The Gipps model, presented in section 1.2.2.1, is a classic collision avoidance model

type [3, 72]. It means that this type of model seeks to find a safe following distance

to the lead vehicle.

vn(t+ treac) = min{va, vb}, with
va = vn(t) + 2.5a(n)maxtreac(1− vn(t)

vn0
)
√

0.025 + vn(t)
vn0

vb = bntreac +

√
b2
nt

2
reac + bn

[
2(sn0 −∆x(t)) + vn(t)treac + vn−1(t)2

b(n−1)max

] (3.3)

where vn(t) is the velocity of vehicle number n, ∆x(t) the relative distance between

vehicles, and the other parameters as in Table 3.2. Gipps model parameters notations

have meaning only in this section.

Table 3.2: Gipps model parameters.

Desc.
Desired
velocity
[m/s]

Stopping
distance
to lead
vehicle
[m]

Reaction
time [s]

Maximal
accel-
eration
[m/s2]

Desired
decel-
eration
[m/s2]

Maximal
decel-
eration
[m/s]

Variable vn0 sn0 treac a(n)max bn b(n−1)max

Value 30 5 0.3 1.5 -1.5 -2.5

We can observe in Figure 3.12 that the Gipps model represents correctly the driver

behavior. The response time, the following distance and the acceleration are close

to the PrARX Vlv-ACC. Nevertheless the model output have the disadvantage to be

discontinuous. Thus filtering should be applied, implying an undesired increase in

the model response time.
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Figure 3.12: Following situation with the PrARX Vlv-ACC on the top, and with the
Gipps model on the bottom.
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3.5.2 Comparison with IDM model

IDM is a time-continuous car-following model, developed to improve older models as

Gipps model [94, 95]. It has been used as base for the implementation of an ACC in

a Volkswagen vehicle in the INVENT project.

v̇(s, v,∆v) = a

[
1−

(
v
v0

)4

−
(
s∗(v,∆v)

d

)2
]

s∗(v,∆v) = s0 + vtreac + ∆v
2
√
ab

(3.4)

with v the vehicle velocity, ∆v the relative velocity with the leading vehicle, s the

relative distance with the leading vehicle. Parameters in Table 3.3 have been identified

to match the PrARX model behavior. IDM model parameters notations have meaning

only in this section.

Table 3.3: IDM model parameters.

Description
Desired
velocity
[m/s]

Jam dis-
tance [m]

Safety
time [s]

Maximal
acceleration
[m/s2]

Desired de-
celeration
[m/s2]

Variable v0 s0 treac a b
Value 30 2 2 1.4 2

It can be observe on Figure 3.13 that despite the correct setting of the IDM pa-

rameters, the model has a very different behavior from the identified PrARX based

Vlv-ACC. The vehicle accelerations are smoother but act later, focusing on the preser-

vation of the correct safety distance. It can clearly be seen at [200-250] seconds, where

the PrARX based model slows the vehicle down depending on the distance and rel-

ative velocity to the lead vehicle, while the IDM model only acts to reach the ideal

safety distance. It is realistic to believe that the early braking behavior of the PrARX

Vlv-ACC model enables the driver to understand the behavior of the ACC, and thus

to have a good confidence in the system.
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Figure 3.13: Following situation with the PrARX Vlv-ACC on the top, with the IDM
algorithm on the bottom. Static safety distance represents s∗ without the relative
velocity term.
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3.6 Real-world application

In this section, possible implementation in a real vehicle is exposed.

3.6.1 Computation complexity

To be able to use the PrARX Vlv-ACC, tree main steps have to be followed. At first

the driving data has to be measured, then the driver has to be identified, and finally

the PrARX model is able to reproduce the driver behavior. Both measurements and

reproduction of the drivers behavior are very light processes in terms of computation

power and can be executed in a low-power ECU of the car. The driver parameters

identification algorithm is heavier, due to a process of optimization using a gradient

descent algorithm. Parameter identification can be done on a remote server through

network communication (see Figure 3.14). In case there is a need to adapt parameters

definition on-line, a low-power version of the algorithm has also been developed [96].

Each iteration of following behavior estimation takes about ten micro-seconds,

while the full identification operation can take a few minutes on a modern computer.

If the algorithm runs at 10Hz, we see that there should not be any issue with current

vehicle computation speed capacity.

Figure 3.14: Proposition of vehicle implementation for PrARX models parameters
identification.
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3.6.2 Implementation of the developed cruise control model

Various driver models can be used in the Vlv-ACC architecture. ARX models and

other autoregressive systems are sensible to information delay. This delay can act

as a gain in the closed-loop system or can lead to instability. Moreover, the selected

multi-mode dynamical system model, PrARX, reproduces the combination of the

driver and vehicle behavior. Thus, the driven vehicle should not be in the control

loop.

To avoid any of this situation from happening, separating the model in two dis-

tinct control loops is advised. As shown on Figure 3.15, the real vehicle is controlled

based on a simulated vehicle. When using the PrARX Vlv-ACC model, the model

calculated vehicle is simply the integration for the Vlv-ACC output, with real vehicle

dynamical limits (i.e. max accelerations). Thus it can be used to frame the model

dynamics, but does not cost any calculation time. The real vehicle is then controlled

from the modeled vehicles position. The required relative distance to the leading

vehicle can be corrected to represent the distance between the modeled vehicle and

the lead vehicle.

Figure 3.15: Proposition of in-vehicle Vlv-ACC implementation.

The following chapter proposes a novel approach to evaluate driver personalized

energy consumption. The method consists of identifying driver-vehicle dynamics us-

ing a multi-mode dynamical model and then of reproducing driver-vehicle behavior

in vehicle-following task. The energy consumption of the vehicle is estimated from

the velocity profile calculated by using the driver-vehicle model. The explanation

about the modeling framework and the obtained results are followed by application

examples.
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Chapter 4

Evaluation of behavior
personalized vehicle energy
consumption

4.1 Introduction

Analysis and evaluation of mobility solutions energy consumption is one of the key

issues to realize environment-aware transportations. Numerous studies have been ded-

icated to energy consumption analysis of road and rail vehicles, at microscopic and

macroscopic scales, in order to reduce energy losses [54, 72, 97–99]. Based on these

energy estimation models, many researchers and developers have used optimization

theory to establish the control method for vehicle motion control to minimizes the

energy consumption of single or networked vehicles [100–106].

Although these works could successfully estimate the energy consumption in each

application domain, the accuracy of road vehicles energy optimization was limited

due to the lack of precise information on the driving characteristics of each driver. In

order to improve the modeling and estimation accuracy of the energy consumption,

driving characteristics of each individual driver must be explicitly represented.

From these considerations, this chapter proposes a modeling framework to esti-

mate the energy consumption of a vehicle personalized on the individual behavior of

the driver. To achieve this goal, research has been conducted on the selection of an

appropriate modeled situation and of a mathematical model to reproduce this situ-

ation. Then an input-output combination used to provide the lowest the modeling

error is proposed in combination with a model identification method for robust model

fitting. Once these elements shown, the model accuracy assessment is done by com-
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paring measured and simulated data based simulations of vehicle energy consumption.

This chapter is organized as follows: in section 4.2, the developed energy con-

sumption evaluation perspective is explained. In section 4.3, the implementation of

the PrARX model to represent the driver-vehicle dynamics is described in detail.

Modeling method, inputs, output, and the identification process are also explained.

Section 4.4 introduces the experimental setups to collect the driving data. Section

4.5 describes the energy consumption evaluation method in detail, and in section 4.6

results of the energy consumption evaluations are discussed for various situations.

Finally section 4.7 is dedicated to application proposals.

4.2 Personalized energy consumption evaluation

In this study, the driver and vehicle are considered as a single entity. This choice has

been taken based on prior study analysis such as MacAdam work [16], and based on

the data analysis done in section 2.3.2. Indeed, we could find that for equivalent type

of vehicles with different powertrains, the driving dynamics was mostly driven by the

desires of the human, the vehicle acting like a limiting factor. The selected situation

is the car-following situation. This situation has been selected due to the fact that it

is the most encountered situation in crowded areas, most likely to suffer from vehicle

pollution issues.

Figure 4.1 depicts the overall architecture of the proposed energy consumption

evaluation system. The proposed system explicitly includes the driver-vehicle model

which has two main inputs: a specific set of parameters depending on the driver,

and a velocity pattern of the leading vehicle. Definition of the driver-vehicle model is

described in section 4.3.1. The ego-vehicle velocity profile is calculated as the output

of the driver-vehicle model. Finally, the vehicle energy consumption is estimated by

using a detailed car model (in this work, IPG Carmaker is used).
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Figure 4.1: Driver personalized vehicle energy consumption evaluation framework.
Comparison of the estimation of the energy consumption of a vehicle based on a
recorded vehicle velocity profile and a simulated vehicle velocity profile.

As shown in Figure 4.1, the driver-vehicle model is validated by comparing exper-

imental energy consumption to simulated driver-vehicle energy consumption. Thus,

the proposed framework enables us to evaluate the energy consumption of different

drivers, depending on the choice of the leading vehicle velocity pattern and depending

on a vehicle powertrain.

Obviously, careful selection of the driver-vehicle model is a central issue in this

framework. The driver model should be simple enough to be used in optimization

procedures, and precise enough to realize accurate reproduction of the driver-vehicle

behavior. Model selection, definition and implementation are detailed in the following

section.

4.3 Definition of the driver-vehicle model

This driver-vehicle model is based on the probability weighted autoregressive exoge-

nous (PrARX) model (see section 2.4.2). ARX class model have been selected for

their ability to model a large variety of driving styles. The model inputs and output

configuration can be designed based on large data-sets correlation analysis, and then

each individual driver behavior can be represented by the value of the ARX model

parameters [59]. Nevertheless, a single ARX model is not able to represent accurately

all driving situations precisely, thus multi-mode ARX models are introduced. The

PrARX model is a modified version of piecewise autoregressive exogenous (PWARX)

with a mode switching mechanism based on a probability density function. Unlike a
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PWARX model, with discrete mode switching, the PrARX model soft (continuous)

switching mechanism has been selected to represent the decision process of a real

driver. By using the PrARX as a driver model, we aim to be able to represent as

precisely as possible a large variety of driving styles, by reproducing the main driving

dynamics of each individual driving situation by ARX models, as well as the decision

making process by probabilistic mode switching. This study focuses on the analysis of

a single following vehicle. Vehicle platooning modeling would require more in-depth

analysis of information propagation on the modeled string.

The above sections describe the model inputs, output, model order and the iden-

tification procedure. These elements have been uniquely designed to fulfill the re-

quirements of vehicle energy consumption evaluation.

4.3.1 Probability Weighted ARX model setup

The goal of this study is to reproduce personalized vehicle behavior in vehicle-

following task. The PrARX model is used to model the integrated behavior of the

driver and vehicle dynamics. The measured data of leading vehicle and the model

output are used to create the regression vector (see Figure 4.2). The PrARX model is

used to predict the outputs of the integrated behavior at k + τ based on the current

input at time k. A delay τ is applied to the model input to represent the drivers’

cognitive reaction time (300ms [16, 41]). Then, the output of each ARX model and

the mode probabilities (weighting parameters) are calculated by using the PrARX

model. The PrARX model with input-delay is given by:

ik = finputs(uk, ŷk)
rk = ik−τ

ŷk = fPrARX(rk)
(4.1)

where uk is the exogenous input, ik is the regression vector without delay, rk is the

regression vector, finputs is the function to calculate the PrARX model inputs, and yk

represents the PrARX model output.
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Figure 4.2: Driver-vehicle model, expressed as the feed-back implementation of a
PrARX model with input-delay. Relation between inputs and outputs.

Definition of the driver-vehicle model is given as follows:

ik = finputs(uk, ŷk)with

finputs(uk, ŷk) =


ak
Rk

RRk
1

1+THWk

=


ŷk
uk
u̇k∑k

i=0(ŷi)+v0

sk+
∑k
i=0(ŷi)+v0

rk = ik−τ
ŷk = fPrARX(rk)

THWk = RK
vk

= uk∑k
i=0(ŷi)+v0

(4.2)

where a refers to the vehicle acceleration, R refers to the range, RR refers to the

range-rate, THW refers to the time headway, vk for the vehicle velocity at time k.

The choice of variables in 4.2 is discussed in 4.3.2.

4.3.2 Model parameters identification

Original parameter identification of the PrARX model is based on a steepest descent

method [59], with a cost function is defined by the Euclid norm of the output error.

Although both parameters in the ARX model and the softmax function can be iden-

tified simultaneously by a single algorithm, this identification scheme is a non-convex

optimization problem. In order to increase the level of reliability and accuracy of

the identified of the PrARX model, a two-stage identification process is newly devel-

oped in this work. In the first stage, a classification technique is applied to the data,
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and PrARX hyperplanes parameters are identified. The set of data is separated into

subsets depending on the preferable mode separation, and the mode separation pa-

rameters η are identified with a multinomial logistic regression method. In the second

stage, the parameters of the ARX models θ are identified using a steepest descend

method. The advantage of using classification over clustering in the case of applying

a multi-mode model to analyze realistic driving data lies in the nature of the observed

data. If constancy in the physical understanding of the modes parameter is desired,

data clusters must have high margin hyperplanes separation, enabling similar data

clusters formation for every identification. Unfortunately, the available data does not

show clear separation pattern. Thus, in this work, subjective prior-knowledge about

the data classification is assumed, based on the vehicle acceleration, to describe the

following driving situations: acceleration, deceleration, and constant speed.

4.3.2.1 Choice of the regression vector

Reproduction of the driving behavior depends not only on the structure of the model,

but also on the selection of explanatory variables of the model. The regression vec-

tor must have strong relation with the output of the ARX models. In addition, the

regression vector must be able to distinguish the driving modes, i.e. to represent

the partition between modes. In this work, the output of the model is set to be

the longitudinal acceleration of the vehicle because our goal is the evaluation of the

energy consumption. Generally, it seems natural to select the range between leading

vehicle, and range-rate as elements of regression vector in the case of vehicle following

task. In addition, some indexes have also been considered as variable, which express

the feeling of the driver (KDB [93], PRE (Perceptual Risk Estimate) [109]). These

indexes are commonly used to trigger emergency systems (e.g. emergency braking),

however, it is difficult to use them for behavior reproduction. In this work, we tried

to find explanatory variables that can be linked as simply as possible to the output

of the system (vehicle acceleration). To understand the necessary input variables for

ARX models, multivariable linear regression statistical tests were performed in each

mode based on real world recorded data. According to the values of the standard

error of the coefficient estimate and on the p-values, it was observed that the past

acceleration and range-rate were the two most significant variables to estimate the

current acceleration value. The range-rate is a fundamental variable to calculate the

output acceleration of the vehicle (consistent p-value lower than 10−8). This result is

also reported in the Gazis-Herman-Rothery (GHR) model [3]. The past acceleration

is obviously linked to the current acceleration due to the low dynamics of the car
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(lower than 0.5Hz), and the fact that the model is running at 10Hz. Time headway

(time to collision) also has shown strong importance. The range was not directly

linked to the model output, but is used in the mode determination process. Note

that the magnitude of the linkage between some variables and output highly depends

on driver and on the driving mode.

Thus, the selected inputs are the acceleration of the driven vehicle [m/s2], dis-

tance between the driver and leading vehicles (range [m]), relative velocity between

the vehicles (range-rate [m/s]), and an adjusted inverse of the time headway ((ve-

locity+1)/range) [1/s] [110, 111]. The inverse of the time headway was adjusted to

provide information even when the vehicle is stopped. Time headway provides an

improved stability to the output model response as stated later. The identified pa-

rameters of the corresponding variable can be interpreted to represent the driving

characteristics of each driver. For example, aggressive drivers tend to base their judg-

ment on the range and the range-rate, while soft drivers rely mostly on the time

headway.

To provide more information about the effectiveness of the selected input pa-

rameters, Figure 4.3 shows the verification results of the driver-vehicle model with

input delay in the cases of different regression vector choice. The regression vectors

definition are in Table 4.1:

Table 4.1: Regressor vectors definition for Figure 4.3
Name

wo RR a R adjTHW−1

wo R a RR adjTHW−1

wo THW a R RR
wo RR a R RR adjTHW−1

where wo stands for without, RR for range-rate, R for range, adjTHW−1 for ad-

justed inverse of time headway, and RegV for the final regression vector.
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Figure 4.3: 3 modes PrARX input-delay model output depending on the selected
learning regression vector. The label Recorded represents the reference recorded ve-
hicle following profile. Definition of the labels is in Table 4.1.

Figure 4.4: Acceleration error of the input-delay model output on the left, and velocity
error on the right, depending on the type of regression vector. The error is the Euclid
norm of the difference between the reference data and the identified 3 modes PrARX
input-delay model output.
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4.3.2.2 Data classification for mode definition

Classification is used to determine the modes of the PrARX model. According to

the distribution of the recorded driving data and to the energy estimation error of

the resulting model, we decided to classify the data into three clusters based on

the vehicle acceleration. The defined mode definition is shown in Table 4.2. This

segmentation implies to differentiate low-band dynamical driving mode and high-band

dynamical driving modes. High-band dynamical driving modes are representative of

the acceleration and deceleration phases. To avoid sudden mode changes and take

advantage of the smooth mode switching of the PrARX model, overlapping between

the simple clusters is considered on a 0.1 m/s2 range of the acceleration data.

Table 4.2: Learning data clusters definition
Acceleration [m/s2] Cluster name Mode number

(−∞,−0.35] Deceleration cluster (high-band) 1
[−0.45, 0.45] Low-band dynamics cluster 2
[0.35,+∞) Acceleration cluster (high-band) 3

Figure 4.9 shows the velocity and acceleration profile of the output of simulation

using the 3-modes PrARX model with input-delay, which is identified from real-world

data. It can be observed that the behavior reproduction is successfully made, and it

is expected to play a key role for precise energy consumption evaluation. The Mode

probability graph in Figure 4.9 illustrates the instantaneous mode probability which

is used as a weighting factor for the calculation of PrARX model output.

Without range or range-rate, the driver-vehicle behavior becomes unstable par-

ticularly in high-band dynamics domain. The time headway helps to stabilize the

behavior. To get more information about the precision of the reproduced vehicle

dynamics, Figure 4.4 shows the error in terms of reproduced accelerations and repro-

duced velocities, that is Euclid norm of the difference between the recorded vehicle

data and the output of the simulation using driver-vehicle model. According to the

error bar graphs, we can see that the selected regression vector (i.e., RegV) provides

the best acceleration and velocity reproduction performance among the considered

set. Since the selected regression vector does not depend on the absolute velocity of

the vehicle, different driver models can be identified depending on various velocity

spans, congestion states or road types.
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4.3.2.3 Overall flowchart of identification process

Overall flowchart of the identification process is depicted in Figure 4.5. Two types of

data sets are used during the identification process. The first one is for the param-

eter identification, and the other one is for the model verification (simulation). The

first data set contains as much information as possible. This data set is manually

preprocessed to remove noise and outliers. Then data is decimated to reduce the

computation burden of the identification process, while ensuring to have enough data

in each cluster. The identification step takes about 3 minutes on a personal computer

(CPU i7 870, RAM 8Gb). The second data set (velocity profile of leading vehicle) is

used to run the simulation using PrARX model with input-delay. The velocity profile

of the leading vehicle used for verification can be any velocity profile, as long as the

underlying dynamics are coherent with the first data set.
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Figure 4.5: Flowchart of the PrARX input-delay model identification process.

4.4 Experimental data

In order to get data from different driving styles in various situations, two types of

experimental setups were used for data collection. At first, data was collected by using

a driving simulator (see section 2.2), which enabled us to control all the environmental

parameters. Then a real world experiment was executed to get realistic driver-vehicle

dynamics (see section 2.3).
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Four examinees drove in the driving simulator. The leading vehicle ran according

to three different velocity patterns designed to represent typical driving scenarios (See

Figure 4.6):

- 30 to 70 km/h pattern: representing city use.

- 80 to 110 km/h pattern: representing extra-urban/Japan highways.

- 100 to 150 km/h pattern: representing European highways.

Figure 4.6: Velocity patterns of the leading vehicles used in the DS experiments.
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For the real-world measurement, data of the highway experiment has been used.

The experimental setup as has been introduced in section 2.3.3. This experimen-

tal measurement setup and situation enabled us to get large variations of driving

dynamics with a consistent leading vehicle velocity profile for all examinees.

4.5 Energy consumption evaluation

The energy consumption of the vehicle is estimated by inputting a vehicle velocity

pattern, which is calculated by using the driver-vehicle model, to the car dynamics

simulation software Carmaker (IPG Automotive), as shown in Figure 4.1. Carmaker

is known to be able to calculate the fuel consumption with high accuracy based on

the different car losses, including the engine efficiency mapping of the vehicle. This

software is industry standard, and it is used by the biggest manufacturers to model

car dynamics and powertrains. The fuel consumption volume flow ˙volf is calculated

by

˙volf =
ṁF (ωEng, T rqEng) + |PEng|

ζF ∗ 3.6 ∗ 109
(4.3)

where ṁF (ωEng, T rqEng) is the specific mass flow extracted from the engine map-

ping (see Figure 4.7), ωEng the engine frequency of rotation, and TrqEng the torque

load at the crank shaft. ζF is the petrol density (0.75 kg/L), and PEng is the engine

output power. (4.3) is provided by IPG Carmaker.

The speed profile tracking function of Carmaker can realize very precise reproduc-

tion of any velocity pattern. The simulated environment is a flat straight line, and

the selected powertrain are 250hp and 130hp petrol engines for the DS and real-world

driving, respectively. The average velocity difference between the evaluated pattern

and the reproduced pattern is 0.3km/h and the median absolute deviation is 0.1km/h.
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Figure 4.7: Engine mapping of the 130hp petrol powertrain (IPG Carmaker). The
blue line represents the torque at full load, and colored dots the specific fuel con-
sumption.

Using the energy consumption evaluation scheme shown in Figure 4.1, the fuel

consumption of the different vehicles can be assessed and compared, considering the

variety of driving characteristics.

4.6 Results and analysis

In this section, results of fuel consumption analysis are shown and discussed.

Fuel consumption modeling error is calculated by comparing the fuel consumption

estimated from the driver-vehicle model, and the fuel consumption estimated from

the reference velocity profile used to train the driver-vehicle model. The formula is

detailed in equation 4.4.

errorFC [%] =
FCestimate − FCreference

FCreference
∗ 100 (4.4)

where FC stands for fuel consumption.

4.6.1 Results using data from driving simulator

Tables 4.3 and 4.4 show the fuel consumption estimation values and their estimation

errors, respectively.
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Table 4.3: DS experiment fuel consumption values [L/100km]
Recoded vehicles Simulated vehicles

City center
Aggressive driver

10.12 9.81

City center
Soft driver

8.63 8.11

Extra-urban
Aggressive driver

9.76 8.71

Extra-urban
Soft driver

7.45 7.15

European highway
Aggressive driver

10.75 10.46

European highway
Soft driver

8.37 8.24

Table 4.4: DS experiment fuel consumption estimation error [%]
Aggressive driver Soft driver

City center -3.1 -5.9
Extra-urban -10.7 -4.1

European highway -2.7 -1.6

Figure 4.8: Velocity of the driver-vehicle model output. DS European highway profile
with aggressive following. In black the leading vehicle, in blue the recorded ego
vehicle, in orange the driver-vehicle model simulated ego vehicle. The oscillatory
behavior of the aggressive driver during constant velocity phases is squared in grey.
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The estimation error of the fuel consumption varies from -10.7% to -1.6%, with an

average error of -4.6% and an absolute standard deviation of 3.4%. The energy con-

sumption value is underestimated due to the low-pass characteristics of ARX models.

The lack of acceleration feeling of vehicle in the DS makes the driver act quite aggres-

sively, and examinees struggled to follow the leading car with creating acceleration

oscillations in usual low dynamical band. Figure 4.8 shows these oscillations squared

in black. This behavior cannot be correctly modeled by the PrARX input-delay

model, due to the absence of correlation between the inputs and this output.

4.6.2 Results using data from real-world driving

Table 4.5 shows the fuel consumption evaluation values for three drivers on real-

world measurement. Lead vehicle represents the fuel-consumption of the leading

car. Due to the impossibility to exactly realize the desired leading vehicle velocity

profile (shown in Figure 2.19), leading vehicle energy consumption is calculated for

each driver-vehicle model using realized velocity profile. Follow recorded represents

the fuel consumption of the vehicle used for driver-vehicle model identification, and

PrARX input-delay represents the fuel consumption of the simulated driver-vehicle

model.

Table 4.5: Read world experiment fuel consumption evaluation [L/100km]
Driver 1 Driver 2 Driver 3

Lead vehicle 5.59 5.19 5.87
Follow recorded 6.02 5.59 5.81

PrARX input-delay 6.02 5.48 5.59
Error values -0.06 -1.8 -3.8

In Table 4.5, we can observe good results in energy consumption estimation. The

average estimation error is -1.9%, and the absolute standard deviation 1.5%. The

energy estimation error is much lower in real-world environment than in the driving

simulator experiment.

Figure 4.9 illustrates the driver-vehicle model dynamics reproduction ability based

on real-world recorded data. The low estimation error of energy consumption in real-

world experiment is due to the fact that examinees seem to drive the vehicle with lower

frequency dynamics in real world, so that the recorded and reproduced signals are no

more limited by the low pass behavior of the PrARX input-delay model. Moreover

88



the observed correlation between the leading vehicle and ego-vehicle is much better

than in the driving simulator.

Figure 4.9: Velocity, acceleration, and modes probability weight of an identified 3
modes PrARX input-delay model. ”Rec. leading vehicle” represents the recorded
leading vehicle used for simulation, ”Rec. following vehicle” represents a section of
the recorded ego vehicle of the learning phase, ”Feed-forward model” is the output of
the PrARX model when using pre-calculated learning data regression vector, without
feedback loop, ”Input-delay model” is the output of the driver-vehicle model by using
”Rec. leading vehicle” for the lead vehicle.

4.7 Application examples

It could be observed in the previous sections that the PrARX input-delay model is

able to provide ego-vehicle dynamics with enough precision to evaluate first order

energy consumption of the vehicle. The computation cost of the PrARX input-delay

model being very low, online use in a vehicle is possible. Although the parameter

identification process requires high computational cost, thanks to the increase of

V2X communication in recent years, parameter identification can be done remotely

on most cars without any implementation on the vehicle computer system. Based

on this information, two in-vehicle and one traffic flow model oriented applications

are proposed in this section. The first application can be described as a customer

decision assistance system for the choice of an appropriate powertrain in buying new
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vehicle. The second application aims to help the driver to reduce his fuel or electricity

consumption by challenging his behavior with somebody elses. The last application

is a method to evaluate energy consumption of vehicles embedded in a traffic flow

model.

4.7.1 Customer decision assistance for powertrain choice

The first application of the developed driver-vehicle model with energy consumption

estimation is based on the ability of the model to reproduce a users behavior on

a variety of lead velocity patterns, as long as driving situation is equivalent. Each

different vehicle powertrain has specific high and low efficient zones. Depending on

the human driving manner, different types of powertrains will be adapted to different

users. The goal of this application is to help customers to select an appropriate vehicle

powertrain depending on their individual driving habits.

The typical situation places a customer comparing some possible new vehicles. The

parameters of customers vehicle-following behavior model have already been identified

during daily driving. These parameters can then be applied to classic regulatory cycles

or any usual velocity pattern. Knowing that every manufacturer is able to provide

the powertrain performance map of their vehicles, the customer will be able to receive

a personalized estimation of the energy consumption of the vehicle depending on his

personal behavior.

4.7.2 Social eco-driving challenge

The second proposed application of the behavior personalized energy consumption

estimation model is based on the ability of the driver-vehicle model to reproduce dif-

ferent driving behaviors under identical lead velocity pattern. The idea behind social

eco-driving challenge is based on the concept of social games [112]. The aim of this

application is to get people interested in eco-driving by challenging them to outper-

form others. Setting goals to reach their best results in the form of eco-indicators is

the main focus to obtain good efficiency results [113]. Thus the combination of goal

reaching and the interest of social game could assist the development of a platform

which proposes advice to help drivers to reduced energy consumption.
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Figure 4.10: A leading vehicle from real-world, followed by two different PrARX
input-delay models. The PrARX input-delay models are representative of an aggres-
sive and a soft driver. These models have been identified from distinctive driving
measurements.

The PrARX input-delay model can be used to calculate the reaction of differ-

ent drivers online, and thus compare in real time the energy consumption of virtual

drivers. As an example, comparison of behavior in the cases of using aggressive driver

model and soft driver model is shown in Figure 4.10. The estimated energy consump-

tion are simulated and compared based on two leading vehicle velocity patterns. The

driver-vehicle parameters have been identified from city-center driving situation in

section 4.6. The selected leading vehicle velocity patterns are: a DS recorded velocity

profile, and a velocity pattern measured in real-world (R-W) experiment.

Table 4.6: Comparison of FC of D-VMs following DS recorded vehicle 1
Evaluated — Reference Aggressive Soft

Aggressive — 20.9%
Soft -17.3% —

Table 4.7: Comparison of FC of D-VMs following DS recorded vehicle 2
Evaluated — Reference Aggressive Soft

Aggressive — 20.0%
Soft -16.7% —

Tables 4.6 and 4.7 show the relative difference of fuel consumption between the

two driver-vehicle models (D-VMs) with different leading vehicle velocity patterns.
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The fuel consumption comparisons in Tables 4.6 and 4.7 show that the driver models

keep their own relative energy consumption behavior independently on the leading

vehicle velocity profile. The soft D-VM is consistently 17% more energy efficient than

the aggressive D-VM. Therefore, the PrARX input-delay model is a good candidate

to compare drivers based on a selected driving situation.

4.7.3 Estimation of vehicle energy consumption in traffic flow
model

Traffic flow models enable users to analyze wide road networks dynamical behavior

depending on the road topology, the traffic flow density, the basic vehicle characteris-

tics and other macroscopic parameters [72, 107, 114, 115]. Nevertheless, conventional

driver-vehicle models used in traffic flow simulation cannot provide realistic micro-

scopic behavior due to the lack of personalized driving characterization.

PrARX input-delay model can be used as an adaptive cruise control model when im-

plemented with the Virtual Leading Vehicle (Vlv-ACC) system [9]. Vlv-ACC system

is based on the philosophy of action-point microscopic traffic flow models. Thus, by

embedding the developed driver-vehicle model in the Vlv-ACC system, an interest-

ing traffic flow model can be developed. This model can provide more precise and

user personalized driver-vehicle dynamics of certain road sections, and as the results,

energy consumption of particular vehicles can be assessed in the context of traffic flow.

The following chapter presents a novel parameters identification method for hy-

brid dynamical system models, where parameters have stochastic and time-varying

characteristics. This method has been developed to allow the identification of per-

sonalized time-varying driver behavior.
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Chapter 5

Driving behavior analysis using a
filtered sequential Monte-Carlo
approach

5.1 Introduction

Thanks to the recent development of computer technology, data-centric system design

is attracting great attention [59–62, 80, 116]. In the field of system identification,

although numerous dedicated mathematical models have been proposed to represent

target systems [3, 16, 34, 107], discrete-continuous hybrid system modeling has great

potential to represent complex dynamical behavior including switching mechanisms

[75].

As a result of its high describability and understandability, hybrid system mod-

eling has been applied to various domains, such as communication systems, au-

topilot systems, automotive engine control, traffic control, and chemical processes

[10,59–62,75,80,116,117]. A promising application domain of hybrid system modeling

is the human behavior analysis and reproduction, due to the possibility to represent

both the decision making and the motion control aspects of human behavior.

From the viewpoint of data-centric modeling, the PieceWise AutoRegressive eX-

ogenous (PWARX) model is extensively used, and various parameters identification

have been developed [81]. The clustering approach is based on dynamics clustering

and on identification of each clustered data set [86]. The bounded-error approach al-

lows to define the maximal identification error [87]. The mixed-integer programming

approach guarantees to converge to a global optimum [88]. The algebraic approach

defines an analogy to the identification and decomposition of an algebraic variety [89].

Finally the Bayesian approach uses the Bayesian inference to identify both parameters

93



and mode partitioning of hybrid systems from noisy data [90].

From this perspective, several hybrid system modeling methods have been pro-

posed, especially focusing on applications to the human driving behavior analysis. A

Stochastic Switching ARX (SSARX) model has been developed by extending a con-

ventional Hidden Markov Model [60]. Hierarchical PWARX (Hi-PWARX) has been

developed with the idea to create a hierarchical structure of the data based on unsu-

pervised clustering technique [61]. Finally the Probability-Weighted ARX (PrARX)

model has been developed as a new hybrid system model wherein the mode switching

is represented by softmax function, which represents the probability of mode occur-

rence [59].

These works are focused on the identification of time-invariant hybrid system mod-

els. When analysis of the human driving behavior is considered, it has been shown

that stochastic and time-varying characteristics should be included in addition to de-

cision taking mechanisms [2]. Each driver shows a different response to a given stimuli,

leading a driver’s individual statistical dispersion in the reproduction of a given ac-

tion, and under long-time driving situations, drivers’ behavior can vary drastically.

The understanding of time-varying characteristics of driving behavior through hybrid

system model parameters can inform on driving consistency, expressed as short-term

variance, and long-term driving characteristics, expressed as global model parameters

variations. This can also be used as a new source of information for the design of

better driving assistance and health monitoring systems.

These considerations highly motivated us to develop a new identification technique

for time-varying parameters of hybrid system models. The parameter identification

process should identify time-varying parameters while complying to the parameters

dynamics.

In the case of fitting a driving model on real-world measured data, optimality of

the identified parameter is not the final goal. The model can never perfectly represent

the real situation, and noise in the measurement and time-variability characteristics

of the driving behavior are against the concept of optimal solutions. The major

concern in this type of identification process is the ability to avoid local minima,

and the ability to get parameters estimations within a known error margin. These

perspectives were lacking in the previous works [81,86–90,118–121].

To realize stochastic and time-varying hybrid system models parameters identifi-

cation, parameters are regarded as random variables and identified with a Bayesian

approach [90, 118, 119]. The parameters’ time dynamics are also bounded using a

time-smoothing technique.
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The proposed identification method differs from the conventional Bayesian ap-

proaches [90, 118, 119] in the sense that as far as we know, former studies did not

consider time-varying parameter explicitly. In the main reference article on this

topic [90], the prior knowledge of Bayes inference is based on the prior time step.

Thus the estimated parameter θ(k) at time step k depends on the prior time step

identified parameter θ(k − 1), on the observation (model output) z(k) and on the

probability density function (pdf) p. With this formulation, the identification process

directly imposes the parameter time-dynamics through the pdf p. The time-varying

dynamics of the parameter are considered implicitly. On the other hand, the method

introduced in this chapter has been developed to consider explicitly the time-varying

dynamics of the parameters in the identification process. The prior knowledge of

Bayes inference is based on the prior identification-step for each time step, such that

θi(k) depends on the same time step k but previous identification iteration θi−1(k),

where i the identification iteration-step, on the observation (model output) z(k) and

on the pdf p. A filtering process based on moving average with a pdf g is implemented

to explicitly control the identified parameters time-dynamics during the parameter

identification. This method enables us to separate the identification process from the

time-smoothing process.

In section 5.2 the hybrid dynamical system modeling definitions are introduced. In

section 5.3 the existing and novel parameter identification methods are detailed. Then

in section 5.4 the selected application models are presented, in section 5.5 examples

of parameters identifications are shown, and in section 5.6 driving behavior analysis

and modeling are discussed.

5.2 Modeling definitions

The identified models are piecewise hybrid dynamical systems models with time-

varying parameters. The usual hybrid dynamical system modeling framework [80] is

described as 
y(k) = f 1 (r1(k)) + e1(k) if µ(k) = 1

...
y(k) = fM

(
rM(k)

)
+ eM(k) if µ(k) = M

(5.1)

where r is the model input, a time-series vector composed of an external input time-

series vector u and of the observed output time-series vector y, such that r(k) =

[s(k), u(k− 1), ..., u(k− na), y(k− 1), y(k− 2), ..., y(k− nb)] where na ∈ N represents

the exogenous input order, and nb ∈ N∗ represents the autoregressive input order. fm
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is a set of functions with m ∈ {1, 2, ...,M} the mode index number, k ∈ {1, 2, ..., K}
is the discrete time step, em is the modeling error, and µ ∈ {1, 2, ...,M}K is the mode

index vector.

In signal processing field, filtering is usually applied to state-space models. For

using particle filtering in parameter identification, dynamical model parameters are

usually considered as model states [118, 119]. Expressed as a state-space simulation

model, mode equations of the hybrid dynamical system model (5.1) become{
xm(k) = hmp (xm(k − 1), rm(k))
ŷ(k) = hmo (xm(k), rm(k))

(5.2)

where x is the state vector (here observable), r the simulation model input, ŷ the sim-

ulation model output, hp is a process function, ho is an output function and m = µ(k)

the mode index number.

The difference between the dynamical systems expressed by the equation (5.1)

and the equation (5.2) is the formulation of the system state. In equation (5.1), the

dynamical system is expressed as a transfer function, where the state of the system is

implicitly expressed in the model output y, whereas in equation (5.2), the dynamical

system is expressed as a state-space system, where the states are explicitly expressed

by the state variable x. Thus state-space formulation enables the formulation of a

larger set of models, including hidden states models. The formulation (5.1) is the

most common for simple dynamical models such as the applications models of this

article, but this formulation does not allow to clearly express the model parameters.

Thus, the state-space formulation is introduced to explicitly represent how the iden-

tified parameters are included in the filtering problem. Moreover, this formulation

allows notations compliance with the reference articles [118,119]. In that way, equa-

tion (5.2) can be considered as a generalization of equation (5.1).

The parameter vector θ is then assimilated to a state of the state-space model

(5.2) to be identified by the particle filter as{
xm(k) = hmp (xm(k − 1), θm(k), rm(k))
ŷ(k) = hmo (xm(k), θm(k), rm(k))

(5.3)

where θ is the parameter vector extended as a model state.
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Finally, expressed as a transfer function hybrid dynamical system model, the

state-space simulation model (5.3) becomes
y(k) = f 1 (u1(k), θµ(k)) + e1(k) if µ(k) = 1

...
y(k) = fM

(
uM(k), θµ(k)

)
+ eM(k) if µ(k) = M

(5.4)

where θm(k) ∈ Θm is the parameter vector of the mode m at the time step k and Θm

the parameter space of the mode m.

The concept of mode output occlusion is also introduced in this section. As de-

scribed in Equation (5.4), the model output y is a composition of the modes m outputs

over the time steps k depending on the value of µ(k). Thus at each time step k, M−1

mode outputs are not observable. These non-observable mode outputs are called oc-

cluded mode outputs. During mode output occlusion, time-varying parameters of the

mode cannot be identified.

5.3 Parameter identification process

In this section, the method and the implementation of the identification process for

time-varying parameters are detailed.

In numerous application cases, modeling is a rough approximation of the real

measured data, and the reproduced situations are non-deterministic. Moreover the

raw data used for model fitting is often known within an error margin. In those cases,

as long as the parameter identification process error is lower than the modeling error

or than the raw data error margin, an optimal parameters identification scheme will

not bring any advantage over an metaheuristic scheme. Bayesians methods explicitely

enable to select the density probability of the estimated parameters, and thus to know

the error margin of the estimated parameter in case of identification convergence.

To be able to identify a wide range of hybrid system models, including non-

differentiable nonlinear heterogeneous hybrid system models, a suboptimal nonpara-

metric Bayesian method is selected. Parameters estimate (posterior) are calculated

based on prior parameters estimates, on the parameters estimation pdf and on an

observation. Parameters are estimated from the marginal distribution in (5.5) [122].

Nonparametric methods do not rely on a fixed functional form of the posterior, but

instead create an approximate of the posterior state by a finite number of parti-

cles. Thus nonparametric methods converge uniformly to the correct posterior as the

number of particles goes to infinity.
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Bayes rule used for parameter identification is expressed as follows:

p (θ(k)|z(1 : k)) =
p (z(k)|θ(k))p(θ(k)|z(1 : k − 1))

p (z(k)|z(1 : k − 1))
(5.5)

where θ(k) ∈ Rnθ is the estimated time-varying parameter vector and z(k) ∈ Rnz

is the observation. nθ and nz are the parameters and observation dimensions in N∗.
k ∈ {1, 2, ..., K} represents the current time and identification step.

To be able to identify several parameters per mode and to filter each individual

parameter time-variation to its time dynamic, a novel implementation scheme of

the Bayesian approach based on particle filtering combined with parameter time-

smoothing algorithm is proposed in this article.

5.3.1 Particle filtering for parameter identification

The particle filter (PF), also called Sequential Monte-Carlo (SMC), is a nonparamet-

ric Bayesian approach, creating a recursive Bayesian filtering by Monte-Carlo type

sampling [119], [79, 122–125]. The key idea in PF is to represent the posterior den-

sity by a set of random samples drawn from this posterior, to calculate associated

weights considering an observation, and then to compute the new estimates based on

these samples and weights. Markov assumption on the parameters is used in system

identification to make the calculation tractable. Particle filters have been used to

determine real-time nonlinear model parameters [118], hybrid system model (Piece-

wise ARX) constant parameters and modes estimation [90], and nonlinear non-hybrid

(NARX) time-varying parameters from a predefined finite parameter set [120]. This

literature uses a conventional implementation of the PF, and as far as we know, does

not consider the parameter time-variation explicitly

In this paper the Sample Importance Resample (SIR) scheme is selected over

the Sequential Importance Sampling (SIS) scheme, to avoid the degeneracy prob-

lem [119, 122]. Moreover no assumption is taken on the ergodicity of the parameter

time-variation, thus usage of SIS is not possible. The importance density and the

resampling algorithm must be carefully selected to avoid respectively a large variance

in the particles weights and sample impoverishment. The main steps of the SIR al-

gorithm are shown in Figure 5.1.

Standard particle filtering method for parameter identification is expressed as

follow:
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Figure 5.1: Standard SIR particle filter identification process.

Algorithm 1 SIR Particle Filter

{θlr(k)}Lrlr=1 = SIR
[
{θlr(k − 1), r(k), ŷ(k)}Lrlr=1

]
for lr = 1 : Lr do

Step 1: Sampling
- Draw θls(k)∼p (θ(k)|θlr(k − 1))

end for
for ls = 1 : Ls do

Step 2: Importance weighting
- Calculate wls(k) = p (y(k)|θls(k), r(k))

end for
- Calculate total weight: wtot(k) =

∑Ls
ls=1wl(k)

for ls = 1 : Ls do
- Normalize: wls(k) = (wtot(tot))

−1 ∗ wls(k)
end for
Step 3: Resampling, using Algorithm 2 in [122]

{θlr(k)}Lrlr=1 =RESAMPLE
[
{θls(k), wls(k)}Lsls=1

]

In Algorithm 1, lr ∈ {1, 2, ..., Lr} is the resampled particle index, ls ∈ {1, 2, ..., Ls}
is the sampled particle index, k is the discrete time step, θ ∈ Θ the estimated param-

eter, w is the associated weight, r the model input, and y is the observation.

5.3.2 Smoothing algorithm

An algorithm of smoothing over time is implemented in the parameters identification

process to avoid the effect of noise on the parameter identification, and to be able to
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identify parameters time-variation within specified dynamics. Parameters dynamics

filtering can be done independently for each parameter, enabling dynamics decoupling

of the parameters during the identification process. Smoothing can be done directly

by solving the problem p(θ(k)|ŷ(1 : K))K∈N∗ , k ∈ {1, 2, ..., K}, but time-smoothed

particle filtering methods as presented in [125] tend to be complex to implement.

Thus a simple moving average method has been adapted in this work.

Parameter estimates profile is generated based on the maximum likelihood es-

timate (see (5.8)) at each time steps. This profile is time-smoothened by using a

moving average method (MA) weighted by the pdf g. The smoothened parameter

estimate profile is then used to attribute smoothing weights to all the particles of the

identification process based on the pdf p (see Figure 5.2).

Time step k
0 1 2 3 4 5 6 7 8

p
(

θ̄
(k
))

2

2.5

3

3.5

4

4.5

Figure 5.2: Example of Normal weighting distributions p(θ̄(k)) over the time steps k,
used to define smoothening particles weights. Black points represent the smoothened
parameter estimate θ̄(k), curves represent the probability distribution p(θ̄(k)) over
the possible particles values.

5.3.3 Algorithm initialization

In this section, two methods are proposed to initialize the parameter identification

algorithm.

Case A: Data classification is known without a-priori knowledge on parameters.

The minimum a-priori knowledge required to initialize the parameter identification

method is the modes partitioning of the hybrid system model. Numerous methods

can be used to segment the data [121]. Once the mode separation is obtained, initial
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particles can be spread uniformly over the candidate parameters space.

Case B: Prior knowledge from Bayesian parameter identification approach.

Initial parameters and modes partition can be determined using a conventional

method developed for the identification of hybrid systems parameters. The most suit-

able solution for nonlinear hybrid system models is the Bayesian online identification

method [90]. This method provides good results for single parameter identification,

and can also be used to provide a-priori knowledge for multiple parameter cases. Nev-

ertheless, the problem proposed in [90] is not well posed for multiple parameters cases.

In this algorithm, the particles weights would have to be determined based on a num-

ber of time steps at least equal to the number of identified parameters per mode. This

initialization method is only suitable for cases with clear mode separation in the data.

Regarding the applications of this paper, initialization of the identification process

based on real driving data is done using Case A.

5.3.4 Parameter identification scheme

In this section, the proposed parameter identification algorithm is described. In order

to identify time-varying parameters of hybrid dynamical system models with param-

eter smoothing over time, the particle filter is implemented as an iterative process

instead of a time dependent process (see Figure 5.3). Variables and indexes notations

are detailed in Tables 5.1 and 5.2.

The pseudocode of the proposed parameter identification method is detailed in

Algorithm 2, and the method is described as follows:

� Initialization: Particles representative of each parameter are initialized.

� Step 1: Sampling of the particles is done at each time step k using a standard

particle sampling scheme. A particle set Ξ = {θls, wls}ls∈{1,2,...,Ls} is generated

for each parameter of each mode at each time step, based on:

θils(k)∼p
(
θi(k)|θi−1

lr (k)
)
. (5.6)

� Step 2: If the mode output is not occluded, the particles weights are calculated

using

wils(k) = p
(
y(k)|θils(k), r(k)

)
, (5.7)

otherwise all particles representing a parameter have equal weights.
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Figure 5.3: Novel parameters identification scheme, composed of an iterative SIR
particle filter and a time-smoothing algorithm. θ̄i(k) represents the smooth parameter
estimate at iteration i and discrete time step k. Definition of θ̄i(k) is given in Equation
(5.9).

� Step 3: If the mode output is not occluded, the point estimate of θils(k) is

calculated for each parameter:

θ̂i(k) = argmax
θils(k)∈Ξ

(
wils(k)

)
. (5.8)

Otherwise θ̂i(k) is extrapolated from adjacent point estimates at non-occluded

time steps.

Then smooth parameters estimates are calculated from the point estimates and

the moving average weight function gn as follows:

θ̄i(k) =
K∑
j=1

[
θ̂i(j) · gn(j|k)

]
. (5.9)
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Smoothing weights are associated to each particles, and calculated based on the

pdf p, the smooth point estimates and the particles values:

sils(k) = p
(
θ̄i(k)|θils(k)

)
. (5.10)

Finally, particles weights are recalculated based on the particles weights (5.7)

and the smoothing weights (5.10):

wsils(k) = wils(k) ∗ sils(k). (5.11)

� Step 4: Particles are resampled using a standard particle resampling scheme,

based on the recalculated weights (5.11):

θilr(k) = RESAMPLE
[
θils(k), wils(k)

]
, (5.12)

and i is iterated:

i = i+ 1. (5.13)

The algorithm goes to Step 1 if it did not reach the end criteria (stability of the

modeling error e, Equation (5.4)).

Table 5.1: Identification scheme parameters and variables
θ One identified parameter
θl One identified particle
ν All parameters stacked in a vector
y Observation
r Model input
µ Mode index vector
w Particle weight
s Smoothing weight
ws Total weight

Table 5.2: Identification scheme indexes
k Discrete time step
i Identification iteration step
m Mode index number
n Parameter number index
lr Resampled particle number index
ls Sampled particle number index
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Algorithm 2 Time-varying parameters identification

Θi = Ident Params[Θi−1, r, y]
Step 1: Sampling
for k = 1 : K (time) do

for m = 1 : M (mode) do
for n = 1 : N (parameters) do

- Draw
{
θm,in,ls(k)

}Ls
ls=1
∼
{
p
(
θm,in (k)|θm,i−1

n,lr (k)
)}Lr

lr=1
end for

end for
end for
Step 2: Importance weighting
for k,m, ls (time, mode, sampled particles) do

if µ(k) == m then
- Calculate wm,ils (k) = p

(
y(k)|θm,ils (k), r(k)

)
else

- wm,ils (k) = Ls−1

end if
- Normalize wm,ils (k) over ls

end for
Step 3: Smoothing
for k,m (time, mode) do

if µ(k) == m then
- Point estimate index: l̂m(k) = argmax

ls

(
wm,ils (k)

)
else

- Extrapolate: l̂m(k)α
{
l̂m(µk− == m), l̂m(µk+ == m)

}
end if
- Estimate: θ̂m,i(k) = θm,i

l̂m(k)
(k)

end for
for k,m, ls (time, mode, sampled particles) do

- Smooth estimate: θ̄m,in (k) =
∑K

j=1

[
θ̂m,in (j) ∗ gn(j|k)

]
for ls = 1 : Ls (sampled particles) do

- Smoothing weights: sm,ils (k) = p
(
θ̄m,i(k)|θm,ils (k)

)
end for
- Normalize sm,ils (k) over l

end for
for k,m (time, mode) do

for ls = 1 : Ls (sampled particle) do
- Final weight: wsm,ils (k) = wm,ils (k) ∗ sm,ils (k)

end for
- Normalize wsm,ils (k) over ls

end for
Step 4: Resampling, using Algorithm 2 in [122]
for k,m (time, mode) do

-
{
θm,ilr (k)

}Lr
lr=1

= RESAMPLE
[{
θm,ils (k), wsm,ils (k)

}Ls
ls=1

]
end for 104



With this method, the modes of the hybrid dynamical system model are iden-

tified separately. Thus the parameters of each mode are different spaces and can

take similar values. In case of mode output occlusion, values of the parameters are

extrapolated thanks to the integrated time-smoothing process. Extrapolation of the

parameters could be improved by replacing the selected MA time-smoothing method

with a more sophisticated method.

The proposed parameter identification scheme has a few limitations. The first

limitation is the number of modes of the hybrid model. A high number of modes

induces frequent output occlusion, and thus results in low parameter identification

accuracy. The second limitation is the number of identified parameters. A high

number of identified parameters implies strong time-smoothing as explained in section

5.3.6, and thus it reduces the added value of this method over a constant parameter

identification method. Finally, very large problems are to avoid due to the high

number of required particles, involving long calculation durations. A typical problem

solved with this method would be composed of up to 15 parameters distributed in 3

modes.

5.3.5 Details on parameters tuning

The created model has two main tuning parameters: the particle filtering pdf p and

the smoothing pdf g. If the pdf are normal distributions, the tuning parameters can be

expressed as standard deviations. Be aware that normal distributions are not the best

distributions for weighting due to the quick drop to zeros of the pdf envelope. It can

be advised to use a weighting pdf pStep2 different from the sampling and resampling

pdf pStep1 and pStep4. For example, the weights wStep2 can be a negative power of the

modeling error.

The particle filtering distribution p is used to sample, weight and resample. For

filtering purpose, this pdf is usually associated to the signal noise. For parameter

identification, this parameter is usually associated to the input signal noise, to the

algorithm convergence speed and to the identified parameters precision. In the case

of the developed parameter identification scheme, the particle filtering pdf p is not

used to provide any knowledge from time-prior conditional probability. Thus the pdf

p is only related to the algorithm convergence speed and to the identified parameters

precision.

The smoothing distribution g proposed in the the developed parameter identifica-

tion scheme is used to generate a filtered point estimate for each parameter at each
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discrete time step k. Thus g is the tuning parameter related to the input noise and

to the parameters dynamics. Due to the creation process of the final weight ws, g

is also related to the algorithm convergence speed. Strong smoothening will have a

negative effect on the algorithm convergence speed.

5.3.6 Uniqueness of the solution

In this section, uniqueness of the identification equation system is verified. For a

defined mode m, the identification problem can be formulated as

ym(1) = h(rm(1), θm(1)) + eh(1)
...

ym(k) = h(rm(k), θm(k)) + eh(k)
...

ym(K) = h(rm(K), θm(K)) + eh(K)

(5.14)

where k ∈ {1, 2, ..., K} is the time step, ym is the mode output vector, h is a model,

rm is the mode input vector, θm is the mode parameters vector and e is the modeling

error.

The identification problem is formulated as

θ = argmin
θ

∑
k ‖eh(k)‖

= argmin
θ

∑
k ‖y(k)− h (r(k), θ) ‖. (5.15)

If the model parameters are considered as constant, ∀k ∈ {1, 2, ..., K}, θ(k) = θ,

and theoretically, if ‖eh(k)‖ = 0, as many system equations are the dimension of the

parameter vector ν are required to get a unique solution. Thus hybrid systems iden-

tification processes usually use large sets of data to get a good guess of the model

parameters values.

In the case of time-varying parameters identification, the assumption of constant

parameter is not valid. Thus each equation of the system (5.14) is independent. The

identification problems have dim(θ) − 1 degree of freedom. A solution to avoid this

issue is frequency decoupling. It can be considered that the identified parameters

have very different natural frequencies, and thus lower frequencies parameters can

be considered as constant. From this point of view, the problem is about solving a

system with dim(θ) = 1, and a unique solution exist. This frequency decoupling can

be applied in Algorithm 2 through the gn smoothing pdfs.
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5.4 Selected application models

This section details the selected application models. The application goal of this

research is to understand drivers variability and behavior modifications according

to models parameters’ evolution. Thus the selected application models must have

been used for driving modeling and must have physically understandable parameters

values.

Based on these considerations, PieceWise AutoRegressive eXogenous (PWARX)

and Gipps microscopic traffic-flow [41] models have been selected. The PWARX

model is a linear hybrid system model presented in section 2.4.1. It has been selected

due to the fact that physical meaning could be attributed to model parameters in

previous study [59]. The Gipps model has also been selected due to the fact that it

provides comprehensive and physical parameters, that can be used for driver behavior

identification. Gipps model is a nonlinear non-homogeneous hybrid model.

5.5 Parameters identification examples

In this section, validation of the developed parameters identification scheme is pro-

posed. To validate the identification procedure, PWARX and Gipps model are used.

This allows to cover linear and nonlinear cases, and single and multiple parameters

cases. The particle filtering pdf p = pStep1 = pStep4 is Gaussian with a mean equal

to zero and a standard deviation σp, weighting of the particles is done based on the

inverse of the square root of the modeling error, and the MA smoothing pdf g is

Gaussian with a mean equal to zero and a standard deviation σg.

Parameter identification examples are done with at most two simultaneously iden-

tified time-varying parameters per mode, and two modes per model. As expalined

in section 5.3.6, the number of parameters should be kept low in order to be able to

identify high frequency time-variations. The number of modes can be higher, but a

high number of modes implies frequent mode output occlusion, and thus reduces the

parameters identification precision.
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5.5.1 One identified parameter case, PWARX model

The test input, output and parameters are generated by the following system:

f(x) =


θ1(k)

>
[
r(k)

1

]
if µ(k) = 1

θ2(k)
>
[
r(k)

1

]
if µ(k) = 2 θ1(k)

>
=
[
0.5 + sin(k∗12)

4
0.5
]

θ2(k)
>

=
[
−1 + sin(k∗6)

6
2
]

r(k) = u(k) = [−2.5 − 2.49 . . . 2.5]

(5.16)

where k ∈ {1, 2, ..., K} is the discrete time step, and µ is the mode index vector.

Only the first parameter of each mode is studied. This parameter identification

example uses 10 particles per parameter, with a sampling coefficient of 10, σp = 0.05,

and σg = 2. Initialization is done with random particles in the [−2.5; 2.5] range. The

results of Figure 5.4 are obtained in 5 identification iterations.

As shown in Figure 5.4, the developed parameter identification method can filter

out noise in parameter values while preserve the parameters dynamics. It can be

observed that the parameters are correctly identified. The identification time was 62

seconds on an Intel i5@3GHz computer with 8GB or RAM.

5.5.2 Multiple identified parameters case, PWARX model

In this section, results from the PWARX model with multiple simultaneous time-

varying identification are shown. The problem definition is the same than in (5.16),

with the following time-varying parameters θ1(k)
>

=
[
1 + sin(k∗12)

4
0.5 + sin(k∗1.2)

8

]
θ2(k)

>
=
[
−1 + sin(k∗6)

6
2
]
.

(5.17)

This parameter identification example uses 10 particles per parameter, with a

sampling coefficient of 10, σp = 0.05, σ1
g = 2 and σ2

g = 20. Initialization is done with

random particles as shown in Figure 5.5. 10 iterations i are done.
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Figure 5.4: Parameter identification of a two modes one time-varying parameter per
mode PWARX model.
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Figure 5.5: Initial particles for two modes two parameters per mode PWARX model.
In orange crosses the initial particules for m = 1, in blue circles the initial particles
for m = 2 and in black dots the true parameters values.
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Figure 5.6: Parameter identification of a two modes two parameters per mode
PWARX model.
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Figure 5.7: Parameter identification error of a two modes two identified parameters
per mode PWARX model.

On Figures 5.4 and 5.6, unθ̂ represents the uncertanity of the parameter estima-

tion, based on σp and on mode output occlusion. θmn are the true parameter values

of parameters number n of mode m, θ̂m−NS the non-smoothened parameters estimate

values and θ̂mn are the final parameter estimates.
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As shown in Figure 5.6, simultaneous identification of multiple time-varying pa-

rameters could be realized. When parameters cannot be identified, values of the

parameters are extrapolated. Identification error can be observed, as the number

of particles is kept low to enable fast identification. Nevertheless, values of time-

varying parameters are closer to ideal than a constant parameter. In Figure 5.7,

em =
∑

k[µ(k)=m] ‖fm(θ(k))− fm(θ̂(k))‖1 represents the total modeling error per mode

m. When identification error stabilizes, the identification process convergence is as-

sumed. The modeling errors do not converge to zero due to the filtering and to the

extrapolation processes. The identification time was 118 seconds on an Intel i5@3GHz

computer with 8GB or RAM. This computation speed opens the method to online

parameters identification.

5.5.3 One parameter case, nonlinear model

In this section, the efficiency of the model is assessed with the heterogeneous nonlinear

car-following Gipps traffic flow model shown in section 1.2.2.1.

The identified parameter is b of the braking equation vb, corresponding to the mode

m = 2. Gipps model first runs with a known time-varying parameter b(k) to generate

a known output. Other Gipps model parameters are known and constant (see Table

5.3). The leading vehicle velocity and relative distance used for this example are

extracted from the real-world measurement presented in 2.3.3. The velocity of the

leading vehicle is showed in Figure 5.8.

Table 5.3: Gipps model parameters values.
Variable v0 s0 τreac a b bm

Value 20 6.5 0.3 1.7 θ(k) -3.2

Figure 5.8: Leading vehicle velocity data used in the generation of the example output
data and for the time-varying parameter identification.
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Figure 5.9: Low frequency parameter time-variation case.
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Figure 5.10: High frequency parameter time-variation case.
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On Figures 5.9 and 5.10, unθ̂ represents the uncertainty of the parameter estima-

tion, based on σp. b is the true parameter and b̂ is the final parameter estimate.

Figure 5.9 and 5.10 show the identification of the time-varying parameter b(k),

with different time-variation frequencies. As described in table 1.1, the parameter b

is in the braking mode, enabling parameter identification when µ(k) = 2.

It can be observed n Figure 5.9 and Figure 5.10 that the parameter b is correctly

identified. ε(k) = ‖θ(k) − θ̂(k)‖1 represents the time-varying parameter estimation

error. This parameter identification error is low as long as µ(k) = 2. Thus the

proposed parameter identification method can be used to interpret driving behavior

through model time-varying parameters. The identification time was 26 seconds on

an Intel i5@3GHz computer with 8GB or RAM. This speed of execution opens this

method to online parameter identification.

5.6 Driving behavior applications discussion

In this section, a discussion about the application for driver behavior analysis and

modeling is proposed.

A large variety of driver modeling methods have been researched in the past years.

Initial studies focused on the human psychophysical reactions [16], then an important

highlight has been done on the creation of microscopic traffic flow models from data

analysis [3, 34, 41, 107], and more recently a focus is done on the usage of machine

learning methods [59–62, 80, 116]. While most of these models can have parameters

attributed a physical meaning, understanding of the driver behavior from the point

of view of the parameters is not common practice. Different aspects of the driving

behavior could be investigated from the analysis of time-varying parameters: the

driver consistency expressed by high frequency parameters variations or a statistical

parameter variance, and the driver behavior modifications expressed by low frequency

parameters variations or global parameters changes [11]. Online analysis of the pa-

rameters could also be considered for indirect sensing of the human state during the

driving operation [59].

Once analysis of drivers is done, we believe that modeling of the human stochas-

ticity could be done. This new class of modeling techniques could be implemented in

future driver models for more realistic traffic flow simulations, for naturalistic traffic

vehicles behavior prediction in autonomous cars, or for advanced driver-personalized
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driving assistance systems.

As a first example, identification of the deceleration parameter b of the Gipps

model based on real-world measured data is proposed in Figures 5.11, 5.12, 5.13 and

5.14. Data used for the model identification has been extracted from the real-world

measurement presented in 2.3.3. Two different drivers have been identified, these

two drivers driving respectively with their interpretation of a soft and an aggressive

driving style.
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Time-vaying identified parameters
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0
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Figure 5.11: Driver A, soft driving style. θ represents estimated parameter and µ the
engaged mode.
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Figure 5.12: Driver A, aggressive driving style. θ represents estimated parameter and
µ the engaged mode.
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Figure 5.13: Driver B, soft driving style. θ represents estimated parameter and µ the
engaged mode.
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Figure 5.14: Driver B, aggressive driving style. θ represents estimated parameter and
µ the engaged mode.

It can be observed in Figures 5.11, 5.12, 5.13 and 5.14 that the average aggres-

siveness of the driving style is well represented by the braking parameter of Gipps

model. Moreover, the aggressive driving styles show stronger braking parameter vari-

ations than the soft driving styles. As a further development of such experiment,

it would be interesting to limit the parameter identification to the situation of ac-

tual effectiveness. In this case the braking parameter b should be identified when

negative following vehicle acceleration in the safe distance equation. By doing so,

the model parameter is identified during usage, and its value can be used for driver

behavior interpretation. This first example proves the applicability of this parameter

identification method for driving behavior analysis.
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Chapter 6

Conclusion

The analysis and the modeling of human driving behavior is a process involving

proper understanding of the driver-vehicle dynamics, in relation to the environment

information, the use and the creation of flexible modeling frameworks adapted to

all types of drivers and able to reproduce non-linear time-dependent dynamics. All

these aspects make human driving behavior modeling a complex and engaging topic.

Once correctly understood, it becomes a powerful asset for applications such as traffic

flow modeling, ADAS systems creations and all types of driving behaviors prediction

applications.

In this research work, the understanding of the human driving behavior could be

tackled by in-depth data measurement and analysis. Based on this data analysis,

the modeling framework could be selected. Multi-mode dynamical models seemed

to be the best compromise between behavior flexibility and dynamics reproduction

abilities. In this model class, the PrARX model has been selected, with a specific

input-output, model order and parameter identification setup. The PrARX model has

been compared to classical car-following models, and it has been used for accurately

reproducing behavior personalized energy consumption. The real-world simulation

cases showed results with fuel consumption estimation errors from -0.06% to -3.8%

depending on the driving style. These results proved the ability of the developed

framework to model personalized driving dynamics.

These modeling works were followed by the desire to understand the human more

in detail, and to reproduce the human driving behavior by non-averaging methods.

To be able to observe driving consistency, also named behavior stochasticity, model

parameters have been considered as time-varying and these time-variations were iden-

tified. Short-time variations could be interpreted as action-wise driving consistency
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and longer-time variations could be interpreted as general behavioral consistency.

This ability to observe parameters variations over time became possible thanks to the

creation of a novel system identification method based on a genetic Bayesian method

called Sequential Monte-Carlo, or Particle Filtering.

Future works related to this study can lead to exciting application and publica-

tions. Related to the traffic flow research field, the developed car-following PrARX

model architecture has been integrated together with a constant-in-time version of

the developed model identification scheme. This identification and simulation model

enables to reproduce driver personalized traffic flow behavior. Once validated, this

model could provide a novel method for road infrastructure planning, city pollution

due to vehicle’s emissions estimation based on individual driver behavior. The time-

varying parameters identification method could also be used on larger measurement

data sets for driving behavior patters recognition and prediction. Finally, the combi-

nation of time-varying parameters implementation together with personalized driver

models open the way for novel behavior prediction, for short-time scales as used in

ADAS system, as well as for global traffic flow evolutions analysis. The application

of these methods are wide and diverse, and insure a large diversity of possible future

evolutions.
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Appendix: Time-varying
parameters identification Matlab
code

1 function particles_ident = fct_variating_ident(model , data

, particles_ident_ini , particles_new)

2 %fct_variating_ident Time -varying parameter identification

with multi -mode handling.

3 %

4 % Input:

5 % - model: information about the model and the

identification algorithm

6 % - data: data used for parameters identification

7 % - particles_ident_ini: initial particules population , if

existing

8 % - particles_new : parameters related to the generated

particle population

9 %

10 % it: iteration number

11 % k: time step number

12 % i: mode number

13 % p: parameter number

14 % l: particle number

15 %

16 % particles_ident(k,it) is the output structure including

the identified parameters

17 %

18 % Thomas WILHELEM 2016

19
20 %Parameters

21 sigma_e = particles_new.sigma_e;

22 sigma_filt = particles_new.sigma_filter;

23 nb_modes = model.s;

24 nb_param = particles_ident_ini (1).nb_parameters;
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25 nb_resample = particles_new.nb_resample; %Number of

resampled particles

26 nb_sample = nb_resample * particles_new (1).sample_mult; %

Number of sampled particles

27 k_max = size(data.y(1,:) ,2); %Number of time steps

28 it_max = model.varying_max_it; %Number of identification

iterations

29
30 %% Initial particles based on particles_ident_ini

31 if model.initialization_J == 0

32 disp('** Warning ** Juloski initialization not used')

33 end

34
35 for k=1: k_max %on time

36 for i = 1: nb_modes %on modes

37 for p = 1: nb_param %on parameters (line not required)

38 %Copy particles of each parameter

39 if model.initialization_J == 1 % If use initialization

result

40 particles_ident(k,1).mode(i).resample(p,:) =

particles_ident_ini(k).mode(i).resample(p,:);

41 else %If not use initialization results

42 % Put the same particles over all the time steps

43 particles_ident(k,1).mode(i).resample(p,:) =

particles_ident_ini (1).mode(i).init_theoEx(p,:);

44 end

45 end

46 end

47 end

48
49 %Matrix of presence in the mode

50 in_mode = zeros(nb_modes , k_max); %initialize

51 in_mode (:,1) = ones(nb_modes , 1); %low border

52 in_mode(:,k_max) = ones(nb_modes , 1); %high border

53
54 for k=1: k_max %on time

55 for i = 1: nb_modes %on modes

56 if model.initialization_J == 1 % If use initialization

result

57 if particles_ident_ini(k).mu == i

58 in_mode(i,k) = 1;

59 end

60 else

61 if data.mode(k) == i

62 in_mode(i,k) = 1;
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63 end

64 end

65 end

66 end

67
68 %Initial values

69 it = 1; %Iteration number

70 multiWaitbar( 'CloseAll ' );

71 multiWaitbar( 'Identification in progress: Time varying ',

0 );

72 tic

73
74 %% Main loop

75 while it <= it_max % Iteration number based end condition

76 it = it+1; %Iteration number increment

77
78 %Progress bar

79 multiWaitbar( 'Identification in progress: Time varying ',

'Value ', (it -2) / it_max );

80 multiWaitbar( '1- Sampling new particles ', 'Value ', 0 ,'

Color ', 'b' );

81 multiWaitbar( '2- Importance weighting ', 'Value ', 0 ,'

Color ', 'b' );

82 multiWaitbar( '3- Smoothing ', 'Value ', 0 ,'Color ', 'b' );

83 multiWaitbar( '4- Resampling the particles ', 'Value ', 0 ,'

Color ', 'b' );

84
85 % 1- Sample particles for all modes

86 for k = 1:k_max %on time step

87
88 multiWaitbar( '1- Sampling new particles ', 'Value ', k/

k_max );

89
90 for i = 1: nb_modes %on mode

91 for p = 1: nb_param %on parameter

92 ls = 1; %Sampled particle index

93 for l = 1: nb_resample %on resampled particle

94
95 particles_ident(k,it).mode(i).sample(p,ls:(ls -1+

particles_new (1).sample_mult)) =...

96 random('Normal ', particles_ident(k,it -1).mode(i).resample(

p,l), sigma_e , ...

97 1, particles_new (1).sample_mult);

98
99 ls = ls + particles_new (1).sample_mult;
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100
101 end

102 end

103 end

104 end

105
106 multiWaitbar( 'Identification in progress: Time varying ',

'Value ', (it -2 +0.25 ) / it_max);

107 multiWaitbar( '2- Importance weighting ', 'Value ', 0 );

108
109 % 2- Importance weighting

110 for k = 1:k_max %on time step

111 multiWaitbar( '2- Importance weighting ', 'Value ', k/k_max

);

112
113 for i = 1: nb_modes %on mode

114
115 % If in the mode

116 if particles_ident_ini(k).mu == i

117 esr = model.esr; %Use more data to regidify the system

118 for k_eq = max(1,k-esr*ceil(nb_param /2)):min(k_max , k+esr*

ceil(nb_param /2))

119 %particles_ident(k,it).mode(i).w is a row vector

120 particles_ident(k,it).mode(i).w_k_eq(k_eq).w = ...

121 fct_weight(data , data.x(:,k_eq), data.y(1,k_eq), ...

122 particles_ident(k,it).mode(i).sample , sigma_e);

123
124 %Normalize

125 particles_ident(k,it).mode(i).w_k_eq(k_eq).w_nf = ...

126 sum(particles_ident(k,it).mode(i).w_k_eq(k_eq).w); %

normalization factor

127 particles_ident(k,it).mode(i).w_k_eq(k_eq).w_norm = ...

128 particles_ident(k,it).mode(i).w_k_eq(k_eq).w ...

129 / particles_ident(k,it).mode(i).w_k_eq(k_eq).w_nf;

130 end

131
132 %Sum the weights

133 particles_ident(k,it).mode(i).w = ...

134 particles_ident(k,it).mode(i).w_k_eq(max(1,k-esr*ceil(

nb_param /2))).w;

135 for k_eq = max(1,k-esr*ceil(nb_param /2))+1 : min(k_max , k+

esr*ceil(nb_param /2))

136 particles_ident(k,it).mode(i).w = particles_ident(k,it).

mode(i).w + ...

137 particles_ident(k,it).mode(i).w_k_eq(k_eq).w;
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138 end

139
140 %Normalize

141 particles_ident(k,it).mode(i).w_nf = ...

142 sum(particles_ident(k,it).mode(i).w); %normalization

factor

143 particles_ident(k,it).mode(i).w_norm = ...

144 particles_ident(k,it).mode(i).w ...

145 / particles_ident(k,it).mode(i).w_nf;

146
147
148 else % if not in mode

149 %Same weight for all the particles

150 particles_ident(k,it).mode(i).w_norm = ones(1,nb_sample)/

nb_sample;

151
152 end

153 end

154 end

155
156 multiWaitbar( 'Identification in progress: Time varying ',

'Value ', (it -2 +0.5 )/it_max);

157
158
159 % 3- Smoothing -- Support update based on system dynamics

160
161 iw2_max_est = zeros(nb_param , k_max , nb_modes);

162
163 %Distribution max value

164 for k = 1:k_max %on time step

165 for i = 1: nb_modes %on mode

166
167 % If in the mode

168 if in_mode(i,k) == 1

169 %Pick up the max estimate

170 particles_ident(k,it).mode(i).iw2_max_est = ...

171 particles_ident(k,it).mode(i).sample(:,...

172 argmax(particles_ident(k,it).mode(i).w_norm));

173
174 else % if not in mode

175 %Linearly extrapolate on both temporal sides

176 % in_mode(mode ,time_step)

177
178 km = argmax(in_mode(i,1:k-1) .*[1:k-1]); %Last value with

mode availability
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179 kp = k + argmax(in_mode(i,k+1: k_max)./[k+1: k_max]); %Next

value with mode availability

180
181 particles_ident(k,it).mode(i).iw2_max_est = ...

182 ( particles_ident(km ,it).mode(i).sample(:,argmax(

particles_ident(km,it).mode(i).w_norm))*(kp-k) ...

183 + particles_ident(kp ,it).mode(i).sample(:,argmax(

particles_ident(kp,it).mode(i).w_norm))*(k-km) ...

184 ) / (kp -km);

185
186 end

187
188 %Copy the structure to a matrix for ease of use

189 % iw2_max_est(nb_param , k_max , nb_modes)

190 iw2_max_est (:,k,i) = particles_ident(k,it).mode(i).

iw2_max_est;

191
192 end

193 end

194
195
196 multiWaitbar( '3- Smoothing ', 'Value ', 0 );

197
198 for k = 2:k_max -1

199
200 multiWaitbar( '3- Smoothing ', 'Value ', k/k_max *3/4 );

201
202 % Weighting distribution over time steps values , for each

parameter

203 for p=1: nb_param

204 theo_dist_filter_k(p).dist = makedist('Normal ', 'mu', k, '

sigma ', sigma_filt(p));

205 values_dist_filter_k(p,:) = pdf(theo_dist_filter_k(p).dist

, [1:k-1 k+1: k_max]');

206 values_dist_filter_k_norm(p,:) = values_dist_filter_k(p,:)

/sum(values_dist_filter_k(p,:));

207 end

208
209 for i = 1: nb_modes

210
211 % Average max estimate of each parameter around step time

k

212 %avg_max_est_filter_k is a column vector

213 avg_max_est_filter_k = sum( values_dist_filter_k_norm .*

...
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214 squeeze(iw2_max_est (: ,[1:k-1 k+1: k_max],i)) , 2) ./ ...

215 sum( values_dist_filter_k_norm , 2 );

216
217 for p=1: nb_param

218
219 % Distribution over this average max estimate around step

k

220 theo_dist_update_k = makedist('Normal ', 'mu',

avg_max_est_filter_k(p), 'sigma ', sigma_e);

221
222 values_dist_update_k (:,k,i,p) = ...

223 pdf(theo_dist_update_k , [particles_ident(k,it).mode(i).

sample(p,:)]');

224 values_dist_update_k_norm (:,k,i,p) = values_dist_update_k

(:,k,i,p) / ...

225 sum(values_dist_update_k (:,k,i,p));

226
227 end

228
229 end

230 clear theo_dist_filter_k values_dist_filter_k

values_dist_filter_k_norm

231 end

232
233 clear iw2_max_est

234
235 %Sum over the parameters to have one weight by particle

set

236 for k = 2:k_max -1

237 multiWaitbar( '3- Smoothing ', 'Value ', k/k_max /4 + 3/4 );

238 for i = 1: nb_modes

239
240 for l = 1: nb_sample

241 particles_ident(k,it).mode(i).w2(l) = sum(

values_dist_update_k_norm(l,k,i,:) );

242 end

243
244 particles_ident(k,it).mode(i).w2_norm = ...

245 particles_ident(k,it).mode(i).w2 / ...

246 sum( particles_ident(k,it).mode(i).w2 );

247
248 end

249 end

250
251 % Adjust the weights
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252 for k = 2:k_max -1

253 for i = 1: nb_modes

254
255 particles_ident(k,it).mode(i).w_adj = ...

256 particles_ident(k,it).mode(i).w_norm .* ...

257 particles_ident(k,it).mode(i).w2_norm;

258
259 particles_ident(k,it).mode(i).w_adj_norm = ...

260 particles_ident(k,it).mode(i).w_adj / ...

261 sum( particles_ident(k,it).mode(i).w_adj );

262 end

263 end

264
265 % For the extreme k values , no filtering

266
267 k = 1;

268 for i = 1: nb_modes

269 particles_ident(k,it).mode(i).w_adj_norm = ...

270 particles_ident(k,it).mode(i).w_norm;

271 end

272
273 k = k_max;

274 for i = 1: nb_modes

275 particles_ident(k,it).mode(i).w_adj_norm = ...

276 particles_ident(k,it).mode(i).w_norm;

277 end

278
279
280 multiWaitbar( '3- Smoothing ', 'Value ', 1 );

281 multiWaitbar( 'Identification in progress: Time varying ',

'Value ',(it -2 +0.75 ) / it_max);

282 multiWaitbar( '4- Resampling the particles ', 'Value ', 0 );

283
284
285 % 4- Resampling of the particles

286 for k = 1:k_max

287 multiWaitbar( '4- Resampling the particles ', 'Value ', k/

k_max );

288 for i = 1: nb_modes

289 [~,rI] = sort( particles_ident(k,it).mode(i).w_adj_norm );

%Get the order of the elements

290 rI_flip = flip(rI); %To have the higher weights first

291 particles_ident(k,it).mode(i).resample = ...

292 particles_ident(k,it).mode(i).sample(:,rI_flip (1:

nb_resample));
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293
294 clear rI

295 clear rI_flip

296
297 %Max estimate

298 particles_ident(k,it).mode(i).estimate = ...

299 particles_ident(k,it).mode(i).resample (:,1);

300
301 %Error on the max estimate

302 if in_mode(i,k) == 1 % particles_ident_ini(k).mu == i

303 [ ~, particles_ident(k,it).mode(i).error_k , ~ ] = ...

304 fct_weight(data , data.x(:,k), data.y(1,k), particles_ident

(k,it).mode(i).estimate , sigma_e);

305 else

306
307 particles_ident(k,it).mode(i).error_k = 0;

308
309 end

310 end

311 end

312
313 particles_ident (1,it).error = 0;

314
315 for i = 1: nb_modes %On the modes

316
317 particles_ident (1,it).mode(i).error_i = 0; %Error in the

modes for each iteration

318
319 for k = 1:k_max %on the time step

320
321 particles_ident (1,it).mode(i).error_i = ...

322 particles_ident (1,it).mode(i).error_i + ...

323 abs(particles_ident(k,it).mode(i).error_k);

324
325 end

326
327 particles_ident (1,it).error = particles_ident (1,it).error

+ ...

328 particles_ident (1,it).mode(i).error_i;

329 end

330 end

331
332 toc

333
334 multiWaitbar( '4- Resampling the particles ', 'Close ' );
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335 multiWaitbar( '3- Smoothing ', 'Close ' );

336 multiWaitbar( '2- Importance weighting ', 'Close ' );

337 multiWaitbar( '1- Sampling new particles ', 'Close ' );

338 multiWaitbar( 'Identification in progress: Time varying ',

'Close ' );

339
340 % Generation of the error bars based on the particles_new.

sigma_e

341 for i = 1: nb_modes %On the modes

342 for k = 2:k_max -1 %on the time step

343 if in_mode(i,k) == 1

344 % If in the mode

345
346 particles_ident(k,end).e_bar(i) = sigma_e;

347
348 else %If not in the mode

349
350 km = k - argmax(in_mode(i,1:k-1) .*[1:k-1]); %Last value

with mode availability

351 kp = argmax(in_mode(i,k+1: k_max)./[k+1: k_max]); %Next

value with mode availability

352
353 particles_ident(k,end).e_bar(i) = min(km, kp) * sigma_e;

354
355 end

356 end

357 particles_ident (1,end).e_bar(i) = particles_new.sigma_e;

358 particles_ident(k_max ,end).e_bar(i) = particles_new.

sigma_e;

359 end

1 function [output , error , y_calc] = fct_weight(data , x_data

, y_data , theta , sigma_e)

2 %fct_weight Calculate the weight of the function based on

a normal distrib of sigma sigma_el

3 %theta(:,mode_nb)

4 %output(1,nb_sample)

5
6 size_theta = size(theta ,2); %Number of particles

7
8 % Calculate model output

9 for l = 1: size_theta

10 y_calc(l) = fct_PWARX_modeNb(x_data , theta(:,l), 1);

11 end

12
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13 % Difference data to calculation

14 error = y_data - y_calc;

15
16 c=0.5;

17 %% Output

18 output = (1./( abs(error)+1)).^c;

1 function y = fct_PWARX_modeNb(x, theta , mode_nb)

2 %fct_PWARX Calculates the output of a PWARX model based on

the mode number

3 %Several inputs , one output

4 % x is row vectors

5 % theta is a parameter matrix , with as many rows as modes

6
7 phi = [x ; 1];

8
9 y = sum(theta(:,mode_nb)' * phi);
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