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Abstract—Robust channel estimation scheme is essential for
pulse-shaping OFDM systems in the multipath mobile environ-
ment. This paper proposes three types of channel estimation
schemes for the general class of pulse-shaping OFDM systems.
The first two types are suboptimal low-complexity maximum
likelihood estimators. The last type is adaptive Kalman filter
channel estimator. We numerically evaluate the performance of
each estimator using computer simulation.

Index Terms—pulse-shaping OFDM, BFDM/OQAM, channel
estimation and tracking, Kalman filter.

I. INTRODUCTION

Recently, there has been an increased interest in using
OFDM systems in a mobile environment. They are con-
sidered to be promising candidates for the next generation
mobile communications. The mobile environment causes time-
frequency dispersion. A signal distortion caused by the time-
frequency dispersion depends crucially on the time-frequency
localization of the pulse-shaping filter [1]. For instance, con-
ventional OFDM systems that use rectangular-type pulse with
guard interval can prevent intersymbol interference (ISI), but
do not combat intercarrier interference (ICI). The design of
time-frequency well-localized pulse-shaping OFDM filter is,
therefore, an active area of research [1],[2].

By introducing well-localized transmitter pulse-shapes, it
is possible to reduce the ISI/ICIs [3]. The performance of
such pulse-shaping OFDM system in dispersive time-varying
channels depends critically on the time-frequency localization
(TFL) of the transmitter and receiver filters. Ideally, the system
should use time-frequency well-localized transmitter pulse
while keeping maximal spectral efficiency. For large number
of subcarriers the spectral efficiency ρ of the OFDM system
may be approximated by ρ = 1/(T F) symbols per second
per Hertz, here T is a symbol period and F is a subcarrier
separation. From Balian-Low theorem [4], it is obvious that
maximal spectral efficiency is ρmax = 1. However, at the
maximal spectral efficiency, it is hard to find a system with
both of transmitter and receiver (dual) pulses have good TFL.

A number of interesting pulse-shaping OFDM systems are
proposed recently to deal with the problem. Biorthogonal Fre-
quency Division Multiplexing systems based on Offset QAM
(BFDM/OQAM) allow the construction of well-localized dual
pulses at the maximal spectral efficiency ,i.e. T F = 1, which
is desirable in high data-rate applications [2], [5], and [6].

BFDM/OQAM relaxes orthogonality condition and uses lin-
early independent subcarriers. As a result, it allows a broader
class of pulse-shapes, particularly the Gaussian transmitter
pulse, which has the best TFL. Therefore, we can consider
BFDM/OQAM as a generalization of pulse-shaping OFDM.

The use of time-frequency well-localized transmitter pulses
for BFDM/OQAM systems results in a decrease in ISI/ICI,
and the ISI/ICI may be neglected in some practical cases [3],
[7]. However, in highly mobile environments ISI/ICIs increase
and can no longer be neglected. A careful investigation of
statistical properties of ISI/ICIs and proper channel estimation
schemes thereof are needed for further improvement of the
systems [8].

Optimal bayesian channel estimation scheme is consid-
ered in [8]. However, it appears to be computationally pro-
hibitively complex. This paper proposes three suboptimal low-
complexity estimation scheme. Firstly, we propose estimators
that employ time-frequency separated impulses as a training
sequence. However, the training sequence becomes too long
deteriorating overall system efficiency. We can decrease the
separation between impulses to increase the efficiency. How-
ever, with this type of estimation scheme, we pay large cost
in computational complexity to achieve little increase in the
efficiency. To deal with this problem we propose indirect
estimator which uses only one training OFDM symbol. It
estimates the actual physical channel and then calculates so-
called channel parameters with analytic formulae. Lastly, we
construct adaptive channel estimation and tracking schemes
based on Kalman filter. The idea behind this scheme is similar
with indirect estimator.

Formulation of the problem in our paper is quite general,
thus, the proposed estimation schemes can be applied to any
class of OFDM systems.

This paper is organized as follows. Section II introduces
statistics of the typical mobile wireless channel. Next, Section
III briefly reviews the for general class of pulse shaping OFDM
system, defines channel parameters, Then, Sections IV and V
present the proposed estimators. Lastly, Section VI discusses
numerical study.

II. MOBILE MULTIPATH CHANNEL

In this paper we consider a Rayleigh mobile channel with
exponentially decaying multipath intensity profile, with Jakes’
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Doppler power spectrum. The maximum Doppler shift is fd =
fcv/c, where fc is carrier frequency, v is vehicle speed, and c is
the speed of light. If transmitted low-pass signal has bandwidth
W ! fd , then we can consider low-pass frequency response
of the channel within the band (− 1

2W ; 1
2W ). Then, it is easy

to see that the time-varying impulse response h(τ; t) can be
approximated as the tapped-delay-line:

h(τ; t) =
M

∑
m=1

hmξm(t)δ
(

τ − m
W

)
(1)

where, hms are tap weights, ξm(t) is a flat fading process at
each tap, and δ (τ) is the delta function. We make a standard
assumption of wide-sense stationary uncorrelated scattering
(WSSUS). Each tap weights are complex gaussian random
variables with average energy:

∑
m:τm∈(τ ,τ+dτ)

E{|hm|2} =
1
τ0

e−τ/τ0dτ (2)

where E{·} is the mathematical expectation, τ0 is root mean
square delay spread. Autocorrelation and crosscorrelation
functions of the fading processes ξm(t) = ξ R

m (t)+ jξ I
m (t) are

all identical and given by [9]:

RξR
m ξR

m
(∆t) = E{ξ R

m (t +∆t)ξ R
m (t)} = J0(2π fd∆t)

RξI
m ξI

m
(∆t) = E{ξ I

m (t +∆t)ξ I
m (t)} = J0(2π fd∆t)

RξR
m ξI

m
(∆t) = RξI

m ξR
m

(∆t) = 0 (3)

where, J0(·) is 0-order Bessel function of the first kind.

III. BFDM/OQAM SYSTEM,
ISI/ICI AND CHANNEL PARAMETERS

Let us define a set G that consists of the pairs of translations
and modulations of a real-valued transmitter pulse g(t):

G =
{

gR
k,l(t) = g(t − lT )e j2πFkt

gI
k,l(t) = g(t − lT +T/2)e j2πFkt

where, T is the symbol period, F is subcarrier separation, k∈Z
is subcarrier number, and k ∈ Z is symbol number. From the
Gabor theory [4], if T F ≥ 1 and g(t) ∈ L2 then there exist a
set W (dual bases), constructed as G, using pulse w(t)

W =
{

wR
k,l(t) = w(t − lT )e− j2πFkt

wI
k,l(t) = w(t − lT +T/2)e− j2πFkt

that satisfies the biorthogonality conditions in [2]. For more
detail discussions on this topic, please refer to [4], and [5].

The baseband BFDM/OQAM signal can be expressed as:

x(t) =
K−1

∑
k=0

∞

∑
l=−∞

{
cR

k,lg
R
k,l(t)+ jcI

k,lg
I
k,l(t)

}
(4)

where, K is the number of subcarrier, and cR
k,l ,c

I
k,l are real

and imaginary parts of the transmitted symbols ck,l , respec-
tively. Transmitted signal propagates through mobile multipath

Fig. 1. BFDM/OQAM system, w̃(t) = w(−t)

channel described in Section II. Received noisy signal may be
written as:

s(t) =
√

Es ∑
m

hmx
(

t − m
W

)
ξm(t)+n(t) (5)

where Es is signal energy per channel use, ξm(t) is flat fading
process of the m-th path and n(t) is additive white Gaussian
noise (AWGN) within signal bandwidth with the variance
N0/2 per complex dimension.

Block diagram of the BFDM/OQAM system is shown in
Figure 1. w̃(t) = w(−t) can be seen as the matched filter to the
transmitter pulse g(t). If (g(t) and w(t)) appear to be equal,
then the system simply turns to be the conventional pulse-
shaping OFDM/OQAM.

Within the coherence time of the channel, time variance
of the channel parameters can be neglected. Then received
symbols dk,n = dR

k,n + jdI
k,n can be rewritten as [8]:

dR
k,n = ∑

i, j

{
hk,R

i, j,RcR
k&i,n− j +hk,R

i, j,I cI
k&i,n− j

}
+nR

k,n (6)

dI
k,n = ∑

i, j

{
hk,I

i, j,RcR
k&i,n− j +hk,I

i, j,I cI
k&i,n− j

}
+nI

k,n (7)

where, & is a modulo-K subtraction, hk,R
i, j,R , hk,R

i, j,I , hk,I
i, j,R , and

hk,I
i, j,I are so-called channel parameters, nR

k,n and nI
k,n are the

noise components. The summations in (6) and (7) are taken
over some rectangular area [8]: −θ ≤ i ≤ θ and −γ ≤ j ≤ γ .
The channel parameters show amount of interference and are
expressed [8]:

hk,n,R
i, j,R =

∫ ∞

−∞
dtℜ

{
∑
m

hmξm(t)e j2πF(k−i)(t− α
2 −

m
KF ) (8)

e− j2πFk(t− α
2 )

}
g(t − (n− j)T − m

KF
)w(t −nT ) (9)

The other channel parameters are expressed in the similar way.

IV. PROPOSED CHANNEL ESTIMATORS

We have derived the second-order statistics of the channel
parameters in [8]. As long as the channel parameters are gaus-
sian random variables, we can fully describe their prior joint
distribution. Therefore, it is natural to consider the maximum
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a posteriori (MAP) method for the channel estimation. In [8]
we have derived an optimal MAP estimator. However, due
to large number of the channel parameters, its computational
complexity appeared to be prohibitively complex. Specially,
calculation of the correlation matrix of the channel parameters
take huge computational resources. Therefore, in this section
we propose two types of low complexity estimators.

A. Low Complexity Direct Estimators

In this subsection, we derive low complexity estimators
that employ time-frequency well separated impulses. With this
kind of training sequence, MAP estimation algorithm requires
only a few number of elements of the correlation matrix
R of channel parameters, defined in Subsection 4.2 of [8].
We choose separations of the training impulses in the time-
frequency lattice, so that every single received symbol during
training period will be interfered by only one impulse.

Firstly, we derive double-term estimator. Let us assume that
a pulse with amplitude 1+ j is transmitted at node α,β on the
time-frequency lattice, We assume that any received symbol is
interfered by only one transmitted symbol. That is, all of the
adjacent symbols cα+k,β+l are equal to zero, at least within
the square −2ψ ≤ k ≤ 2ψ and −2φ ≤ l ≤ 2φ . Then, real part
of the received symbol (6) is expressed as:

dR
α+k,β+l = hα−k,R

k,l,R +hα−k,R
k,l,I +nR

α+k,β+l (10)

and, MAP estimates can be checked:

ĥα−k,R
k,l,R =

2dR
α+k,β+l(σ1 +ρ√σ1σ2)

N0 +2(σ1 +σ2 +ρ√σ1σ2)

ĥα−k,R
k,l,I =

2dR
α+k,β+l(σ2 +ρ√σ1σ2)

N0 +2(σ1 +σ2 +ρ√σ1σ2)
(11)

where,σ1 = E{hα−k,R
k,l,R

2
}, σ2 = E{hα−k,R

k,l,I
2
},and

ρ = E{hα−k,R
k,l,R hα−k,R

k,l,I }/√σ1σ2. Other channel parameter
estimates can be derived in the same way. We observe that
estimation requires 6(2γ +1)(2θ +1)K elements of R.

We may also derive so-called single-term (ST) estimator. It
sends impulses 1 and j separately (DT estimator sends 1 and j
simultaneously as 1+ j). ST estimator are more accurate and
simpler. However, it uses twice longer training sequence. To
save space we omit derivation of the ST estimator.

Due to structure of employed training sequence, operational
complexities of ST and DT estimators (11) are considerably
low compared with the optimal estimator derived in [8].
However, the use of time-frequency separated impulses results
in a long training sequence, degrading the overall efficiency
of a system. This is the main shortcoming in the estimators.
Making the separation shorter the received symbol will be
interfered with more than one transmitted impulses, and es-
timation requires off-diagonal elements of R. If we still use
the same estimator for this case, the estimation error increases
inevitably. The optimal point should be carefully investigated.
In Section VI we numerically evaluate how the separation of
the impulses affects the estimation error.

B. Low Complexity Indirect Estimator

A proposed estimator in this subsection estimates the
channel parameter indirectly. Firstly, we estimate a weight
vector htap = [h1ξ1(0), · · · ,hMξM(0)]T of the tapped-delay-line
model, assuming the estimation is conducted at t = 0. Then the
channel parameters are calculated by (8) using the estimate of
htap. As training signal we use a conventional OFDM signal
(i.e. g(t) is rectangular) with cyclic prefix greater than M/W .
We transmit one OFDM symbol ctr = [c0, · · · ,cN−1]T with the
cyclic prefix. It is easy to check that, the received symbol at
carrier k can be expressed:

dk =
M

∑
m=1

hmξm(0)cke− j 2π
N mk +nk = Hkck +nk (12)

where, Hk is the k-th element of the N-point FFT of htap,
nk is a additive noise component with the variance N0/2 per
complex dimension.

Again, we employ the MAP method to estimate H =
[H0, · · · ,HN−1]. Then, the estimate can be expressed as:

Ĥ = argmin
H

(
H∗Q−1H+

|d−Hctr|
N0

2
)

(13)

where, d = [d0, · · · ,dN−1]T and Q = E{HHH} is the correla-
tion matrix of H with diagonal elements qii, i = 0, · · · ,N −1.
The solution of (13) verifies:

Ĥ = d
(

N0

2
Q−1 +diag(q̄1, · · · , q̄N−1)

)−1

(14)

where, q̄i = qiiN0/2+ ci.

V. KALMAN FILTER CHANNEL ESTIMATION AND
TRACKING

In this section we propose a channel estimation scheme for
the BFDM/OQAM system based on a Kalman filter. The idea
behind our estimation scheme is to track the time-variance, i.e.
fading process ξm(t), of each tap of the channel and recalculate
channel parameters with analytic equations (8) as for the case
of indirect estimators. For the state vector of the Kalman filter
we take samples of the fading process on each tap of the
channel within a certain time window of fixed length.

A. Process Equation

We consider the following forward linear predictor on the
fading process hmξm(n):

ξ̂m(n+1) = hm

L−1

∑
i=0

ωiξm(n− i) = !ωT x̄m(n), (15)

!ω = [ω0,ω1, · · · ,ωL−1]T ,

x̄m(n) = [hmξm(n), · · · ,hmξm(n+1−L)]T ,

Optimal values (minimum mean-square error) of the tap
weights can be calculated using Wiener-Hopf equation S!ω = s,
where

S = E{x̄m(n)x̄m(n)H}, s = E{x̄m(n)ξm(n+1)∗}, (16)
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It is obvious that, as long as ξm(n)s (for all m) have the same
autocorrelation function, the tap weights are identical for all m,
no matter of the value hm. If we denote the forward predictor
error with em(n+1) = hmξ̂m(n+1)−hmξm(n+1), then

x̄m(n+1) = F̄mx̄m(n)+ ν̄m(n+1), (17)

F̄m =





ω0 ω1 · · · ωL−2 ωL−1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0




,

ν̄m(n+1) = [em(n+1),0, · · · ,0]T (18)

If we denote, x̄(n + 1) = [x̄1(n + 1)T , x̄2(n + 1)T , · · · , x̄M(n +
1)T ]T , ν̄(n + 1) = [ν̄1(n + 1)T , ν̄2(n + 1)T , · · · , ν̄M(n + 1)T ]T
and F̄ = diag{F̄1, F̄2, · · · , F̄M} then it can be checked that,

x̄(n+1) = F̄x̄(n)+ ν̄(n+1), (19)

One can easily see that (19) gives us that process equation
for a Kalman filter with state vector x̄(n). Similar construction
is proposed in [10]. However, it uses additional RLS filter
to estimate !ω . Our approach is to employ linear forward
predictor. For convenience which will be clear in the next
subsection, we define the state vector of the Kalman filter by
merging the vector x̄(n+1) with its conjugate:

x(n) = [x̄(n)T , x̄(n)H ]T (20)

Then, from (19) the process equation for the Kalman filter can
be expressed as:

x(n+1) = Fx(n)+ν(n+1), (21)

where, F = [F̄, F̄∗] is the transition matrix, and ν(n + 1) =
[ν̄(n+1)T , ν̄(n+1)H ]T is a noise component.

B. Measurement Equation

We rewrite channel parameters in (8) as:

hk,R
i, j,R = ℜ

{
∑
m

hmξm(n)e− j 2π
K (k−i)mgw(m, i, j)

}
(22)

gw(m, i, j) = e jπFiα
∫ ∞

−∞
e− j2πFit · ·g(t + jT − m

KF
)w(t)dt

The channel parameters hk,I
i, j,R , hk,R

i, j,I and hk,I
i, j,I can be ex-

pressed in the same way using similar notion of gwT/2(m, i, j),
gT/2w(m, i, j), and gT/2wT/2(m, i, j), respectively.

Then, from (6) and (7) it can be checked that:

dk,n −nk,n = ∑
m

hmξm(n)ãk,m(n)+∑
m

h∗mξm(n)∗b̃k,m(n) (23)

where, dk,n = dR
k,n + jdI

k,n, nk,n = nR
k,n + jnI

k,n, and

ãk,m(n) =
√

Es

2 ∑
i, j

e j 2π
K (k−i)m

{
cR

k&i,n− j[gw(m, i, j)

+ jgwT/2(m, i, j)]− cI
k&i,n− j[gT/2wT/2(m, i, j)

− jgT/2w(m, i, j)]
}

b̃k,m(n) =
√

Es

2 ∑
i, j

e− j 2π
K (k−i)m

{
cR

k&i,n− j[gw(m, i, j)∗

+ jgwT/2(m, i, j)∗]+ cI
k&i,n− j[gT/2wT/2(m, i, j)∗

− jgT/2w(m, i, j)∗]
}

We can rewrite (23) in matrix form,

d(n)−n(n) = Ã(n)!ξ (n)+ B̃(n)!ξ ∗(n) (24)

where,
d(n) = [d1,n,d2,n, · · · ,dK,n]T ,n(n) = [n1,n,n2,n, · · · ,nK,n]T ,

Ã(n) = {ãk,m(n)}1≤k≤K,
1≤m≤M

, B̃(n) = { ˜b(n)k,m}1≤k≤K,
1≤m≤M

,

!ξ (n) = [h1ξ1(n),h2ξ2(n), · · · ,hMξ2(M)]T ,

Define K×ML matrices A(n) = Ã(n)⊗ [1,0, ...,0] and B(n) =
B̃(n)⊗ [1,0, ...,0], where ⊗ is the Kronecker product. Then,
using (24), we derive a measurement equation:

d(n) = A(n)x̄(n)+B(n)x̄∗(n)+n(n) = C(n)x(n)+n(n)

where, C(n) = [A(n),B(n)] and x(n) is the state vector defined
in (20).

Since we have defined the state vector, and derived the
process and measurement equations, we are ready to construct
a Kalman filter to estimate the state vector x(n).

VI. NUMERICAL SIMULATION

As a measure for the mismatch of the proposed estimator
we choose a total mean square error(MSE) defined as:

MSE =
K−1

∑
k=0

∑
i, j

E{(ĥk,R
i, j,R −hk,R

i, j,R)2+ (25)

+(ĥk,I
i, j,R −hk,I

i, j,R)2 +(ĥk,R
i, j,I −hk,R

i, j,I )2 +(ĥk,I
i, j,I −hk,I

i, j,I )2}

where, ĥk,I
i, j,R , ĥk,R

i, j,R , ĥk,R
i, j,I , and ĥk,I

i, j,I are the estimates of the
channel parameters.

Transmitter pulse is the Gaussian pulse. The symbol period
is T = 3.2µs and T F = 1 (maximal spectral efficiency). The
number of subcarriers is K = 64. 200 simulation runs are aver-
aged to plot the total MSE. The length of the training sequence
for the single-term and double-term estimators with separation
between impulses [ψ,φ ]=[3,2] is 80 OFDM symbols and 40
OFDM symbols, respectively. On the other hand, the length of
the training sequence for indirect estimator is 1 OFDM symbol
plus cyclic prefix.

Fig. 2 shows the total MSE of the channel estimators versus
the speed of the vehicle, when SNR=30dB, the rms delay
spread is τ0 = 0.5µs. The time-frequency separations [ψ,φ ]
between impulses in the training sequence are [3,3] (curves
−∗−), [2,2] (curves −+−), and [2,1] (curves −!−). It can
be observed that for the indirect estimator, the total MSE
at speed 300km/h is 7.1dB higher than the one achieved at
the stationary channel. For the single-term and double-term
estimators the difference is 2.2dB and 4.2dB respectively.

Fig. 3 demonstrates the performance of Kalman filter chan-
nel estimation and tracking scheme. The channel is estimated
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Fig. 2. The total MSE of channel estimators versus the speed of the vehicle,
when SNR=30dB, τ0 = 0.5µs, time-frequency separation between impulses
[ψ,φ ] = [3,2], [2,2], and [2,1].

Fig. 3. The total MSE of channel estimators versus the time, when
SNR=30dB, τ0 = 0.5µs, L = 6.

every 10OFDM symbols. We set the depth of the linear
predictor L = 6. Dotted curves shows how the channel pa-
rameters deviates from their estimated values if no tracking is
implemented. Solid curves shows the total MSE performance
of the Kalman filter. In order to get faster convergence, we
firstly estimate the channel with indirect estimator. Then, as
an initial value for the state vector, we set all components of
x̄m(n) in (15) to the estimated values of hmξm(n). Thus, the
total MSE at time 0 is the same with indirect estimator case.
If converged, Kalman filter performs better than the indirect
estimator. One can observe, for instance, at v = 300km/h

the difference is 3dB. We believe, this is an effect of time
averaging (with some weights in Kalman gain vector) nature
the proposed Kalman filter.

VII. CONCLUSIONS

Optimal bayesian estimator for pulse-shaping OFDM sys-
tem, which we have studied previously appears to be com-
putationally prohibitively complex. To reduce complexity we
have proposed three estimators. Direct estimators that employ
time-frequency separated impulses as a training sequence.
However, these training sequences become long, deteriorating
system efficiency. In the direct estimators we can make the
training sequence somewhat shorter with considerable cost in
estimation accuracy and complexity. To tackle this problem we
have proposed an indirect estimator which requires only one
training symbol. Lastly, we have proposed adaptive estimation
and tracking scheme based on Kalman filter.

We have numerically analyzed the total MSE performance
of the estimators. As expected the single-term estimator is
most accurate. Surprisingly, the indirect estimators perform
well. Specially, in a high SNR region it performs better than
double-term estimator with shortened training sequence. In
high speed region the performance of the indirect estimator
deteriorates faster. Kalman filter channel tracking appears to
be reasonable alternative for the indirect estimator and if
converges, it performs better.
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