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Abstract

The present paper describes a numerical solution to topology optimization problems of do-
mains in which boundary value problems of partial differential equations are defined. Density
raised to a power is used instead of the characteristic function of the domain. A design vari-
able is set by a function on a fixed domain which is converted to the density by a sigmoidal
function. Evaluation of derivatives of cost functions with respect to the design variable appear
as stationary conditions of the Lagrangians. A numerical solution is constructed by a gradient
method in a design space for the design variable.
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1. Introduction

A problem finding the optimum layout of holes in
domain in which boundary value problem is defined is
called the topology optimization problem of continua [1].
In the present paper, the Poisson problem is considered
as a boundary value problem for the simplicity.
One of the most natural expressions of a topology opti-

mization problem uses the characteristic function of the
domain as a design variable. Let D be a fixed domain in
Rd, d ∈ {2, 3}, ΓD ⊂ ∂D be a fixed subboundary, define
ΓN = ∂D \ Γ̄D, and let functions f , p, and uD be fixed
functions on D. Denoting the characteristic function for
Ω ⊆ D by χΩ ∈ X = {χ ∈ L∞(D;R) | 0 ≤ χ ≤ 1 a.e. in
D}, the normal by ν, and ∂ν = ν ·∇, we can write the
topology optimization problem as follows.

Problem 1 (Topology optimization problem)
For each χΩ ∈ X, let u ∈ H1(D;R) satisfy

−∇ · (χΩ∇u) = f in D,

χΩ∂νu = p on ΓN, u = uD on ΓD.

Find χΩ such that

min
χΩ∈X

{J0(χΩ, u) | J(χΩ, u) ≤ 0},

where J0 and J = (J1, . . . , Jm)⊤, J l ∈ C0(X ×H1(D;
R);R) are cost functions.

However, it has been shown that Problem 1 does not
always have a solution [2].
To avoid the non-existence of a solution, the idea of

assuming that D consists of a micro-structure having
rectangular holes was presented [3]. In this formulation,

χΩ is substituted by a function evaluated by homoge-
nization theory. A numerical scheme was demonstrated
using the finite element method [4].
Moreover, it has been found that introducing a den-

sity ϕ : D → [0, 1] and a constant α > 1, and replacing
χΩ by ϕα obtains a similar result to that from the micro-
structure model. This method is called the SIMP (solid
isotropic material with penalization) method [1, 5]. The
meaning of the penalization is that the intermediate den-
sity is weakened by the nonlinear function ϕα.
However, numerical instabilities such as checkerboard

patterns or mesh-dependencies are observed if the pa-
rameters of micro-structure or the density is constructed
by a constant function in each finite element and they
are varied using a gradient method [6,7]. If the design pa-
rameters are approximated by continuous functions [8],
it is known that a numerical instability, such as the so-
called island phenomena, is observed [9]. In addition, al-
though many numerical schemes have been proposed to
overcome such numerical instabilities [10,11], regularity
in the sense of functional analysis has not been shown.
In the present paper, a regular solution which is free

of numerical instability is presented, where the meaning
of regular is as follows. First, the admissible set of a
design variable is defined. Then, a solution is regular if
any point obtained by the solution from a point in the
admissible set also belongs to the admissible set.

2. Admissible set of design variable

To define a boundary value problem, the Lipschitz
boundary is required for a domain. Accordingly, to de-
termine a boundary from a level set of density ϕ, ϕ has
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to be an element ofW 1,∞(D;R), whereD also has a Lip-
schitz boundary. To avoid the restriction of the range of
ϕ to [0, 1], we introduce a function θ belonging to

S = {θ ∈ H1(D;R) | θ ∈ W 1,∞(D;R), ∥θ∥1,∞ ≤ M}

as a design variable and relate it to the density ϕ by a
sigmoidal function, for which

ϕ (θ) =
1

π
tan−1 θ +

1

2
(1)

is used in the present paper. Because M is initially fixed,
the set S is weakly compact in H1(D;R). If ∥θ∥1,∞ =
∥θ∥W 1,∞(D;R) ≤ M becomes active, let this condition be
included among the constraints. In the present paper,
let M be sufficiently large for simplicity.
To avoid loss of regularity on ∂ΓD and a set Υ ⊂ ∂D

on which u /∈ Hk+2(D;R) and vl /∈ H3−k(D;R), l ∈
{0, 1, . . . ,m}, k ∈ {0, 1}, in Problems 2 and 6 respec-
tively, we provide a fixed neighborhood Ur = {x ∈ D |
|x− y| < r, y ∈ ∂ΓD ∪Υ} for a small positive constant
r, and Dr = D \ Ur.
We call S the admissible set of the design variable. We

callH1(D;R) the design space with respect to S because
a Hilbert space is required for the gradient method.

3. SIMP problem

Let us consider a topology optimization problem of
SIMP type by using θ ∈ S. First, we define a boundary
value problem as follows.

Problem 2 (Poisson problem) For some k ∈ {0,
1}, let f ∈ Hk(D,R), p ∈ Hk+1/2(ΓN;R) and uD ∈
Hk+2(D;R) be fixed functions, and ϕ(θ) as in (1). Find
u ∈ H1(D;R) such that

−∇ · (ϕα(θ)∇u) = f in D,

ϕα(θ)∂νu = p on ΓN, u = uD on ΓD.

From the assumptions for Problem 2, we have u|Dr be-
longs to Hk+2(Dr;R). Moreover, Problem 2 gives the
Lagrangian as

L BV(θ, v, w)

=

∫
D

ϕα(θ)∇v ·∇w dx−
∫
D

fw dx

−
∫
ΓD

wp dγ −
∫
ΓD

(v − uD)ϕ
α(θ)∂νw dγ

−
∫
ΓD

wϕα(θ)∂νv dγ (2)

for all v, w ∈ H1(D;R) [12]. If u is a stationary point
such that

L BV(θ, u, w) = 0

for all w ∈ H1(D;R), u is the solution to Problem 2.
Using θ and u, we define cost functions. Let us use the

following notation: ( · )θ = ∂( · )/∂θ and ( · )u = ∂( · )/∂u.
Definition 3 (Cost functions) For (θ, u) ∈ S ×H1(
D;R) = Y and S ×H1(Dr;R) = Yr, let g

l ∈ C1(Y ;L1(
D;R)) and jl ∈ C1(Y ;L1(∂D;R)), l ∈ {0, 1, . . . ,m}, are
given functions such that glθ ∈ C0(Yr;H

1(Dr;R)), glu ∈
C0(Y ;H1−k(D;R)), k ∈ {0, 1} used in Problem 2, jlθ ∈

C0(Yr;H
3/2(∂Dr;R)) and jlu ∈ C0(Y ;H3/2−k(∂D;R)).

We call J0 and J = (J1, . . . , Jm)⊤,

J l(θ, u) =

∫
D

gl(θ, u) dx+

∫
∂D

jl(θ, u) dγ + cl,

the cost functions, where J0 is the objective function and
J are the constraint functions.

We assume that constants cl, l ∈ {0, 1, . . . ,m}, are set
such that some θ ∈ S satisfies J ≤ 0.
Based on the definitions above, we consider a SIMP

problem as follows.

Problem 4 (SIMP problem) Let u be the solution
to Problem 2 for θ ∈ S. Find θ such that

min
θ∈S

{J0(θ, u) | J(θ, u) ≤ 0}.

4. θ derivatives of J l

To solve Problem 4 by a gradient method, the Fréchet
derivatives of J l with respect to θ are required. Let ρ ∈
H1(D;R) be a variation of θ and denote

θρ = θ + ρ

as an updated function of θ. Also, let uρ be the solution
to Problem 2 for θρ.

Definition 5 (θ derivative of J l) For J l(θ, u(θ)) :

H1(D;R) ⊃ S ∋ θ 7→ J l ∈ R, if J l′(θ, u)[ρ] such that

J l(θρ, uρ) = J l(θ, u) + J l′(θ, u)[ρ] + o(∥ρ∥1,2)

is a bounded linear functional for all ρ ∈ H1(D;R), we
call J l′(θ, u) ∈ H1′(D;R) the θ derivative of J l at θ, and

denoting as J l′(θ, u)[ρ] = ⟨Gl(θ, u), ρ⟩ with the notation
of dual product, Gl(θ, u) ∈ H1′(D;R) the θ gradient.

Let us evaluate Gl(θ, u). The Lagrangian for J l(θ, u)
subject to Problem 2 is defined by

L l(θ, u, vl) =

∫
D

gl(θ, u)dx+

∫
∂D

jl(θ, u)dγ + cl

− L BV(θ, u, vl),

where vl ∈ H1(D;R) is used as the Lagrange multiplier
for Problem 2, and L BV( · , · , · ) is as in (2).
If u is the solution to Problem 2, the stationary con-

dition such that L l
vl(θ, u, v

l)[w] = L BV(θ, u, w) = 0 for
all w ∈ H1(D;R) is satisfied.
The stationary condition such that

L l
u(θ, u, v

l)[w]

= ⟨L l
u(θ, u, v

l), w⟩

=

∫
D

gluw dx+

∫
∂D

jluw dγ −
∫
D

ϕα(θ)∇w ·∇vl dx

+

∫
ΓD

ϕα(θ)w∂νv
l dγ +

∫
ΓD

ϕα(θ)vl∂νw dγ

= 0

for all w ∈ H1(D;R) is satisfied if vl ∈ H1(D;R) is the
solution of the following adjoint problem.

Problem 6 (Adjoint problem for J l) For the solu-
tion u to Problem 2 at θ ∈ S, find vl ∈ H1(D;R) such
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that

−∇ ·
(
ϕα (θ)∇vl

)
= glu(θ, u) in D,

ϕα(θ)∂νv
l = jlu(θ, u) on ΓN, vl = 0 on ΓD.

Since glu ∈ H1−k(D;R) and jlu ∈ H3/2−k(∂D;R), k ∈
{0, 1} as in Problem 2, we have vl|Dr ∈ H3−k(Dr;R).
If u and vl are the solutions of Problems 2 and 6, re-

spectively, for θ ∈ S, the θ derivative of L l with respect
to ρ ∈ H1(D;R) is given by

L l′(θ, u, vl)[ρ] = L l
θ (θ, u, v

l)[ρ]

= ⟨Gl, ρ⟩

=

∫
D

(Gl
g +Gl

a)ρdx+

∫
∂D

Gl
jρdγ (3)

and agrees with J l′(θ, u)[ρ], where

Gl
g(θ, u) = glθ, Gl

j(θ, u) = jlθ,

Gl
a(θ, u, v

l) = −αϕα−1ϕθ∇u ·∇vl.

Therefore, we have the following result.

Theorem 7 (θ derivative of J l) For the solutions u
and vl of Problems 2 and 6, respectively, for θ ∈ S,

J l′(θ, u)[ρ] = ⟨Gl, ρ⟩

holds for all ρ ∈ H1(D;R), where Gl
∣∣
Dr

, Gl
g

∣∣
Dr

, Gl
a

∣∣
Dr

and Gl
j

∣∣
∂Dr

of (3) belong to H1′(Dr;R), H1(Dr;R)s and
H3/2(∂Dr;R), respectively.

5. H1 gradient method

Since Gl
∣∣
Dr

belongs to the dual space H1′(Dr;R) of

H1(Dr;R), ⟨Gl, ρ⟩ is well defined in Dr. However, θ
ϵGl

=
θ+ϵGl for a small ϵ > 0 does not belong to the admissible
set S. This is considered to be the cause of the numerical
instabilities discussed in the Introduction.
To avoid irregularity, we propose using an H1 gra-

dient method, which is an application of the traction
method [13–15] to the SIMP problem, to determine a
variation ρlG ∈ H1(D;R) from θ ∈ S with Ḡl which is
an extension of Gl

∣∣
Dr

to H1(D;R).

Problem 8 (H1 gradient method) Let a : H1(D;
R) × H1(D;R) → R be a coercive bilinear form such
that there exists β > 0 that satisfies

a(y, y) ≥ β∥y∥21,2
for all y ∈ H1(D;R). For Gl as in (3), find ρlG ∈
H1(D;R) such that

a(ρlG, y) = −⟨Ḡl, y⟩

for all y ∈ H1(D;R).
By the Lax-Milgram theorem, there exists a unique

solution ρlG to Problem 8. From Theorem 7, it is guaran-
teed that ρlG

∣∣
Dr

belongs to H3(Dr;R) ⊂ W 1,∞(Dr;R)
and an extension ρ̄lG of ρlG

∣∣
Dr

belongs to W 1,∞(D;R).
Moreover, since

J l(θϵρ̄
l
G , uϵρ̄l

G)− J l(θ, u)

= ⟨Gl, ϵρ̄lG⟩+ o(ϵ∥ρ̄lG∥1,2)

≤ −ϵa(ρ̄lG, ρ̄
l
G) + o(ϵ∥ϵρ̄lG∥1,2)

≤ −ϵβ∥ρ̄lG∥21,2 + o(ϵ∥ρ̄lG∥1,2)

< 0

for a sufficiently small positive number ϵ, ρ̄lG is a regular
vector toward to a descent direction of J l.
In the present paper, we use

a(y, z) =

∫
D

(∇y ·∇z + cyz) dx (4)

as a coercive bilinear form in Problem 8, where c is a
positive constant.

6. Solution to SIMP problem

Let us consider a solution to Problem 4 by using a
sequential quadratic approximation problem.

Problem 9 (SQ approximation) Let G0 and G =
(G1, . . . , Gm)⊤ be θ derivatives of J0 and J , respectively,
for a θ ∈ S, a( · , · ) be given as in (4), and ϵ be a small
positive constant. Find ϵρ such that

min
ρ∈B

{Q(ϵρ) | J(θ, u) + ⟨G, ϵρ⟩ ≤ 0},

where B = {ρ ∈ H1(D;R) | ∥ρ∥1,2 = 1}, and

Q(ϵρ) =
1

2ϵ
a(ϵρ, ϵρ) + ⟨G0, ϵρ⟩.

The Lagrangian of Problem 9 is defined as

L SQ(ϵρ,λ) = Q(ϵρ) + λ · (J(θ, u) + ⟨G, ϵρ⟩),

where λ = (λ1, . . . , λm)⊤ ∈ Rm are the Lagrange multi-
pliers for the constraints. The Karush-Kuhn-Tucker con-
ditions for Problem 9 are given as

1

ϵ
a(ϵρ, y) + ⟨(G0 + λ ·G), y⟩ = 0, (5)

J(θ, u) + ⟨G, ϵρ⟩ ≤ 0, (6)

diag(λ)(J(θ, u) + ⟨G, ϵρ⟩) = 0, (7)

λ ≥ 0, (8)

for all y ∈ Y .
Here, let ρ0G and ρG = (ρ1G, . . . , ρ

m
G )⊤ be the solutions

to Problem 8 using a( · , · )/ϵ instead of a( · , · ), and ρG =
ρ0G + λ · ρG,

ρ = ρ0 + λ · ρ =
ρG

∥ρG∥1,2
. (9)

Then, it is confirmed that ρG = ϵρ satisfies (5). If the
all constraints in (6) are active, we have

⟨G, ϵρ⊤⟩λ = −J(θ, u)− ⟨G, ϵρ0⟩. (10)

If the G1, . . . , Gm are linearly independent, (10) has a
unique solution λ. Using the λ, if there are inactive con-
straints l such that J l(θ, u) + ⟨Gl, ϵρ⟩ < 0 or λl < 0, let
us remove the constraints from (10), put λl = 0, and re-
solving (10). Then, we can obtain λ which satisfies from
(6) to (8). Since Problem 9 is a convex problem, λ is the
unique solution to Problem 9.
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To ensure the global convergence, we use the following
criteria for ϵ in Problem 9. Let L (θ, u,λ) = J0(θ, u) +
λ · J(θ, u) be the Lagrangian for Problem 4, and λϵρ

be the λ for (θϵρ, uϵρ) that satisfies the Karush-Kuhn-
Tucker conditions. For a constant ξ ∈ (0, 1), the Armijo
criterion [16] gives the upper limit of ϵ as

L (θϵρ, uϵρ,λϵρ)− L (θ, u,λ)

≤ ξ
⟨(
G0

(
u, v0

)
+ λ ·G(u,v)

)
, ϵρ

⟩
. (11)

For a constant µ ∈ (0, 1) such that 0 < ξ < µ < 1, the
Wolfe criterion [17] gives lower limit of ϵ as

µ⟨(G0(u, v0) + λ ·G(u,v)), ϵρ⟩

≤ ⟨(G0(uϵρ, v0 ϵρ) + λϵρ ·G(uϵρ,vϵρ)), ϵρ⟩. (12)

We propose a numerical solution as follows. Let
J(θ0, u0) ≤ 0 is satisfied for θ0 in the following.

(i) Set θ0 ∈ S, ϵ > 0, ξ and µ such that 0 < ξ < µ < 1,
ϵ0 > 0 and k = 0.

(ii) Compute J0, J , G0 and G at θ0.
(iii) Solve ρ0G = ρ0 k

G and ρG = ρk
G in Problem 8.

(iv) Solve λ in

⟨G,ρ⊤
G⟩λ = −⟨G, ρ0G⟩. (13)

• If (8) is satisfied, proceed to the next step.
• Otherwise, remove the constraints such that λl <

0, put λl = 0 and resolve (13) until (8) is satisfied.
(v) Using ρ defined by (9), compute J0 and J at θϵρ.

• Put λl = 0 for the inactive constraints such that
J l(θϵρ, uϵρ) < 0.

• If J(θϵρ, uϵρ) ≤ 0, proceed to the next step.
• Otherwise, set λ = λ0 and i = 0, solve δλ in

⟨G, ϵρ⊤⟩δλ = −J(θϵρ(λ
i), uϵρ(λi)) (14)

for the active constraints such that J l(θϵρ, uϵρ) ≥
0, replace λi+1 = λi + δλ and i + 1 with i, and
resolve (14) until J(θϵρ, uϵρ) ≤ 0 is satisfied.

(vi) Compute G0 and G at θϵρ.
• If (11) and (12) hold, proceed to the next step.
• If (11) or (12) does not hold, update ϵ with a

smaller or larger value. Return to (v).
(vii) Let θk+1 = θϵρ, λk+1 = λ, and judge terminal

condition by ∥θk+1 − θk∥1,∞ ≤ ϵ0.
• If the condition holds, terminate the algorithm.
• Otherwise, replace k+1 with k and return to (iii).

7. Numerical example

A SIMP problem for a three-dimensional linear elastic
continuum is solved by the method shown above. Let p
be a traction force and u be a displacement. Set uD = 0.
A mean compliance J0(θ,u) =

∫
ΓN

p · udγ and a mass

J1(θ) =
∫
D
(ϕ(θ) − 0.4) dx are used as cost functions.

We have G0
g = G0

j = 0 and G0
a = −αϕα−1ϕθσ(u) ·

ε(u) for J0, and G1
g = ϕθ and zeros of the other terms

for J1, where σ(u) and ε(u) denote the stress and the
strain. We use α = 2 and c = 1/(10L)2 in (4) for the
width L of D. Finite element model consists of eight-
node brick elements with three nonconforming modes
and a bubble mode of 120 × 160 × 1. Fig. 1 shows the
result of the density obtained by the present method.
We did not encounter any numerical instability.

¡D D

p

Fig. 1. Converged density (right) to the mean compliance mini-
mization problem with mass constraint for a linear elastic prob-
lem as cantilever (left).
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