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Abstract

The present paper describes a method by which to formulate a shape optimization problem of a
linear elastic continuum for minimizing the maximum value of a strength measure, such as the
von Mises stress. In order to avoid the irregularity of the shape derivative of the maximum
value, the Kreisselmeier–Steinhauser function of the strength measure is used as the cost
function. In the cost function, a parameter is used to control the regularity of the shape
derivative. In the present paper, we propose a rule by which to appropriately determine the
parameter. The effectiveness of the proposed rule is confirmed through a numerical example
of a cantilever problem.
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1. Introduction

In the design of parts of machines or mechanical struc-
tures, strength is one of the most important factors. In
practice, the maximum von Mises stress is evaluated at
all times and all locations for parts constructed from
ductile metal, which is modeled as a linear elastic body,
and is used as a measure of the strength. Hence, in order
to find the optimum shape of a linear elastic body while
maximizing the strength, we must construct a shape op-
timization problem involving the minimization of the
maximum von Mises stress, which we refer to as the min-
imax shape optimization problem. However, this prob-
lem is irregular because we cannot define the Fréchet
derivative with respect to domain variation, which we
refer to as the shape derivative, of the cost function,
such as the maximum value of the von Mises stress.
In order to avoid irregularity, the Kreisselmeier–

Steinhauser function [1], which is referred to hereinafter
as the KS function, with respect to a strength measure
such as the von Mises stress has been used instead of
the maximum value of a strength measure. We can de-
fine the shape derivative of the KS function and obtain
a numerical solution by the finite element method, as
shown in [2].
However, in the KS function, a parameter p ∈ (0,∞)

is used to control the regularity of the shape deriva-
tive of the KS function. When p → ∞, the value of
the KS function approaches the maximum value of the
strength measure, while the regularity worsens simulta-
neously. Actually, convergence phenomena are affected
by the value of p. An appropriate value of p has been
determined empirically.
In the present paper, we propose a rule by which to

determine the value of p. Using this rule, we construct

a shape optimization problem with the KS function as
a cost function. The method for computing the shape
derivative of the cost function is given as an adjoint vari-
able method considering the rule for p. A solution to this
new problem is presented based on the algorithm of se-
quential quadratic programming using the H1 gradient
method for reshaping in order to maintain the smooth-
ness of the boundary [3–6]. The effectiveness of the rule
for p is confirmed based on a numerical solution to a
cantilever problem.

2. Admissible set of design variables

First, let us define the admissible set of design vari-
able for the shape optimization problem. Let D0 and
Ω0 ⊂ D0 be d ∈ {2, 3} dimensional domains with Lip-
schitz boundaries, which are denoted by ∂D0 and ∂Ω0.
On ∂Ω0, ΓD0 ⊂ ∂Ω0 and ΓN0 = ∂Ω0 \ Γ̄D0 (Γ̄D0 =
ΓD0∪∂ΓD0) denote the Dirichlet boundary and the Neu-
mann boundary, respectively. Moreover, let Γp0 ⊂ ΓN0

be a non-homogeneous Neumann boundary. We assume
thatD0 and Ω0 are fixed and that mapping ϕ : D0 → Rd

included in a Banach of

Y =W 1,∞ (D0;Rd
)

(1)

is a design variable in the shape optimization problem.
Moreover, we let

D =
{
ϕ ∈ Y

∣∣ ∥ϕ− ϕ0∥W 1,∞(D0;Rd) < 1,ϕ (Ω0) ⊆ D0,

piecewise C2 class on Γp0,

ϕ = ϕ0 on ΓC0

}
(2)

be the admissible set of design variable ϕ, where ΓC0 ⊂
∂Ω0 denotes a boundary on which domain variation
is constrained due to design considerations. In (2),
∥ϕ − ϕ0∥W 1,∞(D0;Rd) < 1 is used to assure one-to-one
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Fig. 1. Initial domain Ω0 and variation domain Ω(ϕ).

mapping. In the present paper, we use the notation
Ω(ϕ) for {ϕ(x) |x ∈ Ω0} and ∂Ω−(ϕ) for the open
set ∂Ω(ϕ) \ Θ(ϕ), where Θ(ϕ) denotes the set of cor-
ner points of measure 0.

3. Main problem

Using the design variable ϕ ∈ D, let us define the
main problem as a shape optimization problem. In the
present paper, we consider a linear elastic problem as
the main problem. We have the following assumptions.

(H1) For q > d, b ∈ L2q(D0;Rd), p ∈ W 1,2q

(D0;Rd), uD ∈ W 1,2q(D0;Rd), and C ∈ W 1,∞

(D0;Rd×d×d×d) denote the volume force, the trac-
tion force, and the given displacement and stiffness,
respectively. For C, we assume that there exist pos-
itive constants α and β such that X · (CX) ≥
α∥X∥2, |X · (CY )| ≤ β∥X∥∥Y ∥ for all X,Y ∈
{X ∈ Rd×d |X = XT} and Cijkl = Cklij at almost
all of D0.

(H2) For ∂Ω(ϕ), opening angles at corner points Θ(ϕ)
and the boundary of mixed boundary conditions
∂ΓD(ϕ) are less than π and π/2, respectively (see
Fig. 1).

Under the assumptions, we let

S =
{
u ∈W 2,2q

(
D0;Rd

)
| ϕ ∈ D

}
(3)

be the admissible set for displacement u. Let T (u) =
CE(u) and E(u) = [∇uT + (∇uT)T]/2 denote the
stress and strain, respectively. Moreover, we use ν as
the outer unit normal on the boundary.

Problem 1 (Linear elastic problem) For ϕ ∈ D,
let (H1) and (H2) be satisfied. Find u ∈ S such that

−∇TT (u) = bT in Ω(ϕ) ,

T (u)ν = p on Γ−
p (ϕ) ,

T (u)ν = 0 on Γ−
N (ϕ) \ Γ̄p (ϕ) ,

u = uD on ΓD (ϕ) .

For use in Section 5, we here define the Lagrange func-
tion for the main problem (Problem 1) as

LM (ϕ,u,v)

=

∫
Ω(ϕ)

(−T (u) ·E (v)+b · v) dx+

∫
ΓN(ϕ)

p · v dγ

+

∫
Γ−
D(ϕ)

[(u−uD) · T (v)ν+v · T (u)ν] dγ, (4)

where v ∈ S is introduced as the Lagrange multiplier.
With LM(ϕ,u,v), if u is the solution of Problem 1, then

LM(ϕ,u,v) = 0

holds for all v ∈ S.

4. Shape optimization problem

Using the solution u of Problem 1 for ϕ ∈ D, we define
the cost functions as follows. In the present paper, we are
attempting to construct a cost function for the strength
of a linear elastic body. Here, we let σ : Rd → R be
a function of u representing a measure of strength. In
the present paper, we use the von Mises stress for the
measure given by

σ (u) =

√
3

2
TD (u) · TD (u),

where TD(u) denotes the deviator stress, which is de-
fined as

TD (u) = T (u)− 1

3
tr (T (u)) I,

and I denotes the unit tensor.
As a cost function of strength, we set the objective

function as follows:

f0 (ϕ,u, p) =
1

p
ln


∫
Ω(ϕ)

epσ(u)dx∫
Ω(ϕ)

dx

 . (5)

In (5), p ∈ (0,∞) is assumed to be a constant in the
previous papers [1,2]. However, in the present paper, we
assume that

p =

∫
Ω(ϕ)

dx∫
Ω(ϕ)

σ (u) dx

− 1

c0
(6)

holds, where c0 denotes a positive constant, which indi-
cates maxx∈Ω0 σ(u(x)) with the solution u of Problem
1 for Ω0. Moreover, p is considered to be the deviation of
the inverse of the maximum value of the strength mea-
sure from the inverse of the average value of the strength
measure. In this sense of p, the index pσ(u) in (6) refers
to a normalized index for the deviation of the strength
measure.
On the other hand, as a cost function that has a trade-

off relation with respect to f0, we define the following
constraint function for the mass:

f1 (ϕ) =

∫
Ω(ϕ)

ρdx− c1, (7)

where ρ ∈ W 1,∞(D0;R) is the density, and c1 is a pos-
itive constant such that there exists some ϕ ∈ D that
satisfies f1(ϕ) < 0.
Using the cost functions, we construct the shape op-

timization problem as follows.

Problem 2 (Strength maximization problem)
Let f0(ϕ,u, p) and f1(ϕ) be defined in (5) and (7),
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respectively. Find ϕ such that

min
ϕ∈D

{
f0 (ϕ,u, p) | f1 (ϕ) ≤ 0,

u ∈ S, Problem 1 and (6)
}
.

5. Shape derivative of the cost functions

Let φ ∈ Y be the domain variation from ϕ. We refer
to the Fréchet derivatives of f0 and f1 with respect to
arbitrary φ ∈ Y as the shape derivatives, and we denote
these derivatives as f ′0(ϕ,u, p)[φ,u

′, p′] and f ′1(ϕ)[φ],
respectively, where u′ and p′ denote the variations of u
and p, respectively, caused by φ that satisfy Problem 1
and (6).
The shape derivative of f1 is obtained using the for-

mula of the shape derivative for the domain integral [7]
as

f ′1 (ϕ) [φ] = ⟨g1,φ⟩ =
∫
∂Ω(ϕ)

ρν ·φdγ. (8)

On the other hand, the shape derivative of f0 is ob-
tained as follows. Let

L0 (ϕ,u,v0, p, q0)

= f0 (ϕ,u, p) + q0

p+ 1

c0
−

∫
Ω(ϕ)

dx∫
Ω(ϕ)

σ (u) dx


+ LM (ϕ,u,v0)

be the Lagrangian for f0, where v0 ∈ S and q0 ∈ R are
introduced as Lagrange multipliers. The shape derivative
of L0(ϕ,u,v0, p, q0) is written as follows:

L ′
0 (ϕ,u,v0,p,q0) [φ,u

′, p′]

= L0ϕ (ϕ,u,v0,p,q0) [φ] + L0u (ϕ,u,v0,p,q0) [u
′]

+ L0v0 (ϕ,u,v0,p,q0) [v
′
0] + L0p (ϕ,u,v0,p,q0) [p

′]

+ L0q0 (ϕ,u,v0,p,q0) [q
′
0] . (9)

Here, if u is the solution to Problem 1 and p is deter-
mined by (6), then the third and fifth terms in the right-
hand side of (9) become 0.
The fourth term in the right-hand side of (9) is calcu-

lated as

L0p (ϕ,u,v0, p, q0) [p
′]

=

− 1

p2
ln

∫
Ω(ϕ)

epσ(u) dx∫
Ω(ϕ)

dx

−

∫
Ω(ϕ)

epσ(u)σ (u) dx

p

∫
Ω(ϕ)

epσ(u) dx

+q0

 p′.

Then, the fourth term becomes 0, if q0 is determined by

q0 =
1

p2
ln

∫
Ω(ϕ)

epσ(u) dx∫
Ω(ϕ)

dx

+

∫
Ω(ϕ)

epσ(u)σ (u) dx

p

∫
Ω(ϕ)

epσ(u) dx

. (10)

Moreover, the second term in the right-hand side of
(9) is calculated as

L0u (ϕ,u,v0, p, q0) [u
′]

=

∫
Ω(ϕ)

epσ(u) ∂σ (u)

∂T (u)
· T (u′) dx

p

∫
Ω(ϕ)

epσ(u) dx

+ q0

∫
Ω(ϕ)

dx

∫
Ω(ϕ)

eσ(u) ∂σ (u)

∂T (u)
· T (u′) dx(∫

Ω(ϕ)

σ (u) dx

)2

+ LM (ϕ,u′,v0)

=

∫
Ω(ϕ)

Σ (u, p, q0) · T (u′) dx+ LM (ϕ,u′,v0) . (11)

Then, the second term becomes 0 if v0 is the solution to
the following adjoint problem.

Problem 3 (Adjoint problem for f0) Let u be the
solution to Problem 1, and let p and q0 be given by (6)
and (10), respectively. Find v0 ∈ S such that

−∇TT (v0) = −∇TΣ (u, p, q0) in Ω(ϕ) ,

T (v0)ν = 0 on Γ−
p (ϕ) ,

T (v0)ν = 0 on Γ−
N (ϕ) \ Γ̄p (ϕ) ,

v0 = 0 on ΓD (ϕ) ,

where Σ(u, p, q0) is defined in (11).

Considering the above conditions, if we use the so-
lutions of u and v0 of Problem 1 and Problem 3, re-
spectively, and p and q0 are determined by (6) and (10),
respectively, then (9) becomes

L0ϕ (ϕ,u,v0, p, q0) [φ]

= f ′0 (ϕ,u, p) [φ]

=

∫
∂Ω−(ϕ)

ζ∂Ων ·φdγ +

∫
Γ−
D(ϕ)

ζDν ·φdγ

+

∫
Γ−
N (ϕ)

(φ ·∇ζN + κζN)ν ·φdγ

+

∫
∂ΓN(ϕ)∪Θ(ϕ)

ζNτ ·φdς = ⟨g0,φ⟩ (12)

where

ζ∂Ω =
−1

p

∫
Ω(ϕ)

dx

+
epσ(u)

p

∫
Ω(ϕ)

epσ(u)dx

+
q0pσ (u)∫
Ω(ϕ)

dx

−
q0p

∫
Ω(ϕ)

σ (u) dx(∫
Ω(ϕ)

dx

)2

− T (u) ·E (v0) + b · (u+ v0)

ζD = T (u− uD) ·E (v0) + T (v0 − uD) ·E (u)

ζN = p · (u+ v0)

in which τ denotes the outer unit tangent of Γ−
N(ϕ) for

d = 2 and the outer unit tangent of Γ−
N(ϕ) and the outer

unit normal of ∂ΓN(ϕ)∪Θ(ϕ) for d = 3, and κ = ∇ · ν.
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Fig. 2. Boundary conditions in the cantilever problem.

6. Solution

The algorithm for solving Problem 2 based on the se-
quential quadratic programming is shown in previous
papers [5,6]. In this algorithm, the H1 gradient method
is used for reshaping with shape derivatives g0 and g1

in (12) and (8), respectively.

7. Numerical example

We developed a program based on an algorithm using
the finite element method. Using this program, we solved
a strength maximization problem of the cantilever as
shown in Fig. 2. We assumed Ω0 = (0, 1)× (0, 5)× (0, 1),
p = (0, 0,−1)Tψ with basis function ψ for the node at
the center of Γp(ϕ), and uD = 0 on ΓD(ϕ), as shown
in Fig. 2(a). The stiffness C was constructed with a
Young’s modulus of 7.1 × 1010 and a Poisson’s ratio of
0.33. In the domain variation, we assumed that the nor-
mal direction on ΓC0 in Fig. 2(b), the vertical direction
on the center lines of ΓC0, and the horizontal direction
at the center points of ΓC0 were constrained. The finite
element model of the cantilever was made with the P2
element.
The initial and optimized finite element models col-

ored according to von Mises stress are shown in Fig. 3.
The results indicate that the maximum value of the von
Mises stress is reduced. The iteration histories of cost
functions f0 and f1 normalized with the initial value
f0init and c1, respectively, are shown in Fig. 4. In this fig-
ure, the plots labeled “p in (6)” are the results obtained
by the present method. Using the present method, p was
found to be 6.96 for the initial shape and 6.18 for the
40th iteration of reshaping. Compared with the shown
results obtained using fixed values of p of 5 and 40, the
result obtained using the present method have good con-
vergence properties.
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