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Figure 1. Discharge patterns in VI. 
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ABSTRACT 
In order to develop higher voltage vacuum interrupters (VIs), electrical insulation 

performances in vacuum should be improved. The discharge in VI has various and 

complex patterns, such as breakdown in vacuum gap and surface flashover on a solid 

insulator. In this paper, we investigated three discharge patterns: the discharge in 

vacuum gap, the discharge in vacuum gap via shield, and the surface flashover on solid 

insulator, respectively. By measuring shield potential and insulator surface potential, 

we analyzed the discharge characteristics for various patterns, and clarified the 

relevant discharge development process. We found that the breakdown development 

process in vacuum gap depends on the gap length and the surface flashover 

development process on a solid insulator depends on the applied voltage and surface 

distance.       

   Index Terms — Vacuum, breakdown, floating electrode, surface flashover, alumina 

ceramics  

 

1   INTRODUCTION 

 WITH the development of vacuum insulation technology, 

vacuum circuit breakers (VCBs) / vacuum interrupters (VIs) 

have been utilized worldwide up to the 84 kV class in 

medium voltage systems and distribution power networks. 

For higher voltage class VIs, electrical insulation 

performances in vacuum should be improved [1]. When the 

internal insulation fails in VI, the discharge has various and 

complex patterns, such as the breakdown in vacuum gap 

between main contacts, or between contacts and shield, and 

the surface flashover on a solid insulator [2, 3]. Reference 

[3] shows the voltage shape characteristics of various 

discharge patterns in VI, however, the relationship between 

discharge waveforms (voltage, current, shield potential) and 

breakdown or surface flashover development process in 

vacuum has not been clarified enough.  

In the present paper, we proposed several simple 

electrode configurations to investigate the discharge 

patterns which can occur in VI as shown in Figure 1. The 

cathode-anode (c-a) pattern represents the breakdown in 

vacuum gap between main contacts, the cathode-shield- 

anode (c-s-a) pattern represents the breakdown in vacuum 
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(a) Cathode-anode (c-a). 
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(b) Cathode-shield-anode (c-s-a). 
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(c-1) Cathode-insulator-anode (c-i-a) with grounded back electrode 
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(c-2) Cathode-insulator-anode (c-i-a) with high voltage probe 

Figure 3. Electrode configurations for various discharges. 

 

gap via center shield (floating electrodes), and the cathode-

insulator-anode (c-i-a) pattern represents the surface 

flashover on a solid insulator.  Here, we focused on the 

discharge development process for different discharge 

patterns in order to understand the fundamental discharge 

mechanisms in vacuum. We measured the electrical 

parameters (e.g. applied voltage, anode current, shield 

potential, surface potential on insulator, etc.), and the 

discharge characteristics and mechanisms for various 

discharge patterns in vacuum were investigated.  

 

2   EXPERIMENTAL SETUP 

2.1 TEST CIRCUIT 

Figure 2 shows the experimental circuit with 

measurement systems. The vacuum pressure in the chamber 

is set at 10
−5

 Pa order. The impulse generator provides a 

standard negative lightning impulse voltage (−1.2/50 μs). 

We applied the negative impulse voltage between electrodes 

to be described in section 2.2. We measured the applied 

voltage waveform with a voltage divider, the anode current 

with a high frequency current transformer (CT). We also 

measured the shield potential and surface potential on a 

solid insulator by high voltage probe in the cases of c-s-a 

and c-i-a, respectively. In addition, the still image of 

discharge is observed with a digital camera and the light 

intensity with a photomultiplier tube (PMT). 

2.2 ELECTRODE CONFIGURATIONS 

Based on the possible discharge patterns in Figure 1, 

three electrode configurations are assembled as shown in 

Figure 3. For each configuration, the cathode and the anode 

are rod shape with of a diameter of 2 mm, whose material is 

stainless steel. The shapes of shield and insulator are 

rectangular plate. We applied the negative impulse voltage 

to the cathode, and the anode is grounded. 

Figure 3a shows the electrode configuration of c-a.  The 

gap length g is set from 0.25 to 0.75 mm. In addition, we 

put a floating electrode as a shield below the vacuum gap, 

and the distance d between the vacuum gap and the shield 

was set from 18.5 to 38.5 mm. The shield is made of 

stainless steel, whose dimension is 120 mm × 60 mm × 2 

mm
t
. The shield potential is measured by a high voltage 

probe (input impedance: 100 MΩ). 

Figure 3b shows the electrode configuration of c-s-a. 

The shield is placed below the rod electrodes with a gap of 

0.25 mm. The shield potential is also measured by the high 

voltage probe. 
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Figure 2. Experimental setup with measurement systems. 



 

 
 

Figure 4. Still image of breakdown for c-a (VBD= − 20.8 kV, g=0.25 

mm, d=28.5 mm) 

 

Breakdown initiation

TBD

Applied voltage

Anode current

Shield potential (original)

Shield potential (w/o induced potential)

VBD

VS

0

0

 
Figure.5 Discharge waveforms of breakdown for c-a (VBD= − 20.8 kV, 

g=0.25 mm, d=28.5 mm). 
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Figure.6 Breakdown development time TBD for various gap in c-a 

breakdown. 
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Figure.8 Relation between VS / VBD and d for c-a breakdown. 
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Figure.7 Relation between VS and VBD for c-a breakdown. 

Figure 3c-1 shows the electrode configuration of c-i-a. 

The insulator is alumina ceramics (Al2O3, purity: 92%), 

whose dimension is 150 mm × 150 mm × 5 mm
t
. The gap 

length g between the cathode and the insulator is 0 to 0.5 

mm, and the anode and the insulator are contacted. The 

surface distance d between the cathode and the anode is set 

from 20 to 60 mm. A grounded back electrode is set behind 

the insulator. In addition, in order to investigate the 

flashover development process, we set a high voltage probe 

behind the insulator as shown in Figure 3c-2. The high 

voltage probe is set in the midpoint between the cathode 

and the anode, which enables us to measure the surface 

potential of insulator. The high voltage probe can be 

considered as a floating electrode, because it has a high 

input impedance of 100 MΩ. 

 

3   EXPRIMENTAL RESULTS AND 

DISCUSSION 

3.1 BREAKDOWN IN VACUUM GAP 

Figure 4 shows the still image of breakdown between 

cathode and anode (c-a). Figure 5 shows the discharge 

waveforms in the case of c-a breakdown. Once the 

breakdown initiates, the applied voltage decreases rapidly, 

and simultaneously the anode current increases up to about 

150 A. We define the time from breakdown initiation to the 

first peak of anode current as the breakdown development 

time TBD. In this period, the discharge is initiated by the 

plasma produced at the cathode surface [4]. Figure 6 shows 

the breakdown development time TBD for various gap 

lengths. We can find that TBD became long proportionally 

with the increase in the gap length. The breakdown 

development time depends on the cathode plasma expansion 

velocity. In Figure 6, the slope represents that the cathode 

plasma velocity is 3.1×10
4 

m/s, which agrees with the 

cathode plasma expansion velocity of 1-3×10
4
 m/s in the 

process that the cathode plasma reached the anode [5, 6].  

The transition of shield potential is also shown in Figure 

5, where the induced potential by the applied voltage due to 

the capacitance between shield and ground before 

breakdown is deducted. Once the breakdown occurs, the 

negative shield potential appears because the electron flow 

produced by the discharge reaches the shield [7]. In Figure 

7, the shield potential peak VS increases proportionally with 

the increase in breakdown voltage VBD, which indicates that 

the electron quantity produced by the discharge depends on 

VBD. In Figure 8, we focus on the relation between VS / VBD 

and the distance d. We can find VS / VBD decreases with 

increasing d. It is because that, if electrons spread 

isotropically from the gap toward the surrounding vacuum 

space [8], the number of electrons reaching the shield 

depends on the solid angle of the shield seen from the 

vacuum gap. Less electrons reached the shield for the larger 

d with a smaller solid angle.  



 

 
(a) Still image of partial breakdown for c-s 

A
p

p
li

ed
 v

o
lt

ag
e 

[5
 k

V
/d

iv
]

S
h

ie
ld

 p
o

te
n

ti
al

 [
5

 k
V

/d
iv

]

Time [500 ns/div]

A
n

o
d

e 
cu

rr
en

t[
5

0
 A

/d
iv

]
L

ig
h

t 
in

te
n

si
ty

 [
a.

u
./

d
iv

]
 

Partial breakdown (First)

Anode current

Shield potential

Applied voltage

Light intensity

0

0

VPB

Partial breakdown (Second)

 
(b) Waveforms of applied voltage, shield potential, anode current and 

light intensity 

Figure 9. Still image and transition of shield potential for partial 

breakdown via cathode-shield (c-s) (VPB= − 6.5 kV). 

 
(a) Still image of breakdown for c-s-a 
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(b) Waveforms applied voltage, shield potential, anode current and light 

intensity 

Figure 10. Still image and transition of shield potential for breakdown 

via cathode-shield-anode (c-s-a) (VPB= − 9.4 kV, VBD= − 16.4 kV). 

3.2 BREAKDOWN VIA FLOATING ELECTRODE 

For the c-s-a pattern, Figure 9 shows a still image of 

discharge and temporal development of shield potential for 

partial breakdown (PB) between cathode-shield (c-s). In 

Figure 9a, a weak light emission is observed at the gap 

between the cathode and the shield only, which infers that 

PB occurs between the cathode and the shield. As shown in 

Figure 9b, the shield potential increases rapidly up to the 

instantaneous applied voltage once PB occurs. Afterwards, 

in spite of quenching the discharge between c-s, the shield 

potential remains to a constant value, since the shield is a 

floating electrode. The second PB occurs at 320 ns after the 

first PB, which results in the enhancement of the shield 

potential. The anode current is not measured, because the 

discharge channel is not formed between the shield and the 

anode even after twice PB.  

Figure 10 shows the still image of discharge and temporal 

development of shield potential for breakdown (BD) via 

cathode-shield-anode (c-s-a). In Figure 10a, strong light 

emissions are observed both at the gaps of cathode-shield 

and shield-anode, which represents the breakdown occurred 

completely. Figure 10b represents that twice PB between 

cathode and shield occurred before BD. Then, the discharge 

channel was formed between shield and anode as well as 

between cathode and shield, and the anode current increased 

up to more than 100 A. Therefore, the shield potential 

development enabled us to clarify two kinds of discharge 

patterns (c-s, c-s-a) and to recognize that BD via c-s-a 

occurs subsequently to PB (c-s).   

3.3 SURFACE FLASHOVER ON INSULATOR 

For the c-i-a pattern, Figure 11 shows the still image of 

surface flashover and waveforms of applied voltage, anode 

current, light intensity for the electrode configuration in 

Figure 3c-1. In Figure 11a, the light emission is observed on 

the insulator surface between the cathode and the anode, 

which represents the surface flashover occurred. In Figure 

11b, surface flashover started with the explosive electron 

emission (EEE) at the cathode and the applied voltage 

began to fall down [9]. During the surface flashover 

development, the anode current increased to more than 

100A and the applied voltage fell to almost zero, which 

suggests that a conductive channel between cathode and 

anode was formed.  

Figure 12 shows the transition of surface potential on the 

insulator with the high voltage probe in Figure 3c-2 when 

surface flashover occurred. Before EEE, an induced surface 

potential is measured due to the capacitance of insulator. 

Once EEE occurs, because the secondary electron emission 

efficiency of the insulator is less than 1, the surface 

potential is negative and increases gradually to about −3 kV. 

Afterwards, the surface potential decreases with the 

formation of conductive channel on the insulator surface. 

Therefore, we define the time from EEE to the formation 

of conductive channel as the surface flashover development 

time TFO. In addition, we define the voltage peak after EEE 

as Vp. Figure 13 shows the relation between TFO and Vp for 

various surface distance in Figure 3c-1. TFO decreased with 

increasing Vp for all d = 20-60 mm. Furthermore, we can 

find that TFO is proportional to Vp
-2

, which is consistent with 

the experimental data of the parallel plane electrodes 

configuration [10].  

After the EEE initiation, with electron-stimulated 

outgassing from insulator, the plasma density above the 

insulator surface increases with gaseous ionization, and 



 

      
(a) Still image of surface flashover for c-i-a 
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 (b) Waveforms of applied voltage, surface potential, anode current and 

light intensity 

Figure 12. Still image and discharge waveforms for surface flashover 

via cathode-insulator-cathode (c-i-a) with high voltage probe  

(Vp= − 18.8 kV, g=0.5 mm, d=60 mm). 

eventually leads to the formation of conductive channel [10-

12]. The electron-stimulated outgassing can be promoted 

with the higher voltage, which makes the shorter TFO. 

According to the electron-stimulated outgassing model in 

the parallel plane electrode configuration, the electron-

stimulated outgassing depends on the electric field Ey on the 

insulator surface perpendicular to the insulator which is 

produced by charge on the insulator surface, and TFO is 

reported to be proportional to Ey
-2

 from the theoretical 

calculation [10]. On the other hand, in our rod-plane 

electrode configuration in Figure 3c-1, we confirmed that 

the electric field strength on the insulator surface by applied 

voltage is higher than that by the measured surface charging 

potential, and its direction is almost perpendicular to the 

insulator surface. Thus, Ey is mainly decided by the applied 

voltage, i.e. Vp. Hence, TFO is proportional to Vp
-2

 in the rod-

plane electrode configuration.  

Figure 14 shows the relation between TFO and surface 

distance d for various Vp. TFO increased with increasing 

surface distance d for a certain Vp. Based on the relation 

between TFO and d, the surface distance can be estimated 

from the measurement of TFO and Vp. 

 

4   SUMMARY 

In this paper, according to the possible discharge 

phenomena in VI, we discussed discharge characteristics for 

various discharge patterns using several simple electrodes 

configurations. The main results are summarized as follows: 

(1) For the breakdown in pure vacuum gap (c-a), the 

breakdown development time TBD became longer when the 

gap length increased. In addition, we found that the shield 

potential near the vacuum gap increased once breakdown 

occurred, because electron flow produced by discharge 

spread to the shield. Furthermore, less electrons reached the 
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Figure 13.  Relation between surface flashover development time TFO 

and voltage peak Vp after EEE for electrode configuration in Figure 3c-1. 
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Figure 14. Relation between surface flashover development time TFO 

and surface distance d for electrode configuration in Figure 3c-1. 
 

     
(a) Still image of surface flashover for c-i-a 
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(b) Waveforms of applied voltage, anode current and light intensity 

Figure 11. Still image and discharge waveforms for surface flashover 

via cathode-insulator-cathode (c-i-a) with grounded back electrode 

(Vp= − 19.4 kV, g=0.5 mm, d=60 mm). 
 

 



 

shield with the increase in the distance between vacuum gap 

and shield, because the electrons can spread isotropically 

from the gap toward vacuum space. 

 (2) The breakdown in vacuum gap via shield (c-s-a) has 

two cases: partial breakdown (PB) and breakdown (BD). 

Firstly, PB occurred between cathode and shield (c-s) only. 

If the applied voltage is sufficiently high, the breakdown 

between shield and anode (c-s-a) occurred. In the PB, the 

shield potential increased up to the applied voltage rapidly. 

(3) For the surface flashover on a solid insulator with 

rod-plane electrodes (c-i-a), the surface flashover 

development time TFO is considered as conductive channel 

formation time. The conductive channel formation time 

becomes short with the increase in the perpendicular 

component of the electric field on the insulator surface by 

the applied voltage, because the higher electric field can 

promote electron-stimulated outgassing from the insulator 

surface. The surface flashover development time TFO 

increased with increasing surface distance d. We can 

estimate the surface distance based on the relation between 

TFO, Vp and d.  
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