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Variety of the Wave Change in Compound  
Muscle Action Potential in an Animal Model 
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Study Design: Animal study.
Purpose: To review the present warning point criteria of the compound muscle action potential (CMAP) and investigate new criteria 
for spinal surgery safety using an animal model. 
Overview of Literature: Little is known about correlation palesis and amplitude of spinal cord monitoring.
Methods: After laminectomy of the tenth thoracic spinal lamina, 2–140 g force was delivered to the spinal cord with a tension gage to 
create a bilateral contusion injury. The study morphology change of the CMAP wave and locomotor scale were evaluated for one month. 
Results: Four different types of wave morphology changes were observed: no change, amplitude decrease only, morphology change 
only, and amplitude and morphology change. Amplitude and morphology changed simultaneously and significantly as the injury force 
increased (p<0.05) Locomotor scale in the amplitude and morphology group worsened more than the other groups. 
Conclusions: Amplitude and morphology change of the CMAP wave exists and could be the key of the alarm point in CMAP.
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Introduction

Presently, non-compound muscle action potential specific 
criteria, such as somatosensory evoked potential (SSEP) 
criteria (an amplitude decrease ≥50% and ≥10% latency), 
are often used as the criteria for the warning point of 
compound muscle action potential (CMAP) [1,2]. Sev-
eral studies have addressed the definition of alarms, with 
no consensus reached. We have reviewed conventional 
CMAP alarm points and classified CMAP waveform 
changes into four grades as novel criteria. Grade 0 is de-
fined as a normal waveform, grade 1 as an amplitude de-

crease ≥50% and ≥10% latency, grade 2 as multi-phasing 
of waveform, and grade 3 as loss of amplitude [3]. The 
waveform changes from grade 1 to grade 3 in proportion 
to the severity of injury. The following reports our basic 
review of the waveform changes using Sprague-Dawley 
rats.

Materials and Methods

1. Modeling of spinal injuries 

Forty-one 8-week-old Sprague-Dawley rats (200–230 g) 



Variety of the wave change in CMAPAsian Spine Journal 953

were used. After anesthesia from ether inhalation and 
intraperitoneal administration of ketamine (100 mg/kg) 
and xylazine (10 mg/kg), T10 of the spine of each rat was 
laminectomized to expose the dura mater, which was 
pressed with a tension gage (Fig. 1). To create single crush 
and sustained crush models, stepwise compressions were 
performed at intensities of 2–140 g for 1–150 seconds. 
The bladders of the rats were manually voided twice a day 
for a week after the injury. To prevent infection, 1.0 mL of 
Bactramin (Roche, Basel, Switzerland) was mixed in 500 
mL of bottled water provided for hydration for 2 weeks 
following spinal cord injury. Food was provided on the 
cage floor, and the rats had no difficulty reaching their 
water bottles. All animals were treated and cared for in ac-
cordance with the Nagoya University School of Medicine 
Guidelines pertaining to the treatment of experimental 
animals.

2. Measurement of control waveform

The cranial bones were exposed and bores were drilled 3 
mm lateral and 2 mm posterior to the bregma where bi-
polar stimulating needles were inserted. A Nihon Koden 
Neuropack 8 (Nihon Koden Corp., Tokyo, Japan) was 
used as the stimulator. Except for the stimulus intensity, 
the stimulus conditions were approximately the same as 
actual spinal surgery (a train of four pulses at 2-ms inter-
vals, stimulus intensities of 10–60 mA, and 20 additions 
with a phase switch after 10 additions). A Nihon Koden 
Neuropack (MEB-2200, ver. 04.02) used in spinal surgery 
was used to derive the control waveform by inserting 

bipolar needles in both perifemoral muscles (Fig. 1). The 
ground electrode was placed subcutaneously between the 
coil and the recording electrodes.

 
3. Derivation and review of CMAP waveform

Derivation was started immediately after the infliction of 
injury at every 30 seconds for up to 15 minutes under the 
same conditions as the foregoing waveform measurement. 
We reviewed amplitude decrease and morphology change. 
Morphology change was having occurred in the event of 
any of the following: change in the number of waves in the 
waveform, prolonged duration, and shift in the location 
of the peak latency. For convenience, integrated intensity 
was defined as compression time multiplied by compres-
sion intensity.

4. Evaluation of the motor function of the lower limbs 

The locomotor performance of 16 animals was analyzed 
using the Basso, Beattie and Bresnahan (BBB, 0–21 pts) 
open-field score for 4 weeks (1 day, 3 days, 5 days, 1 week, 
2 weeks, 3 weeks, and 4 weeks) [4]. The evaluations were 
made by two blind observers for all analyzed rats.

5. Statistical analyses

Statistical analyses were performed with an unpaired two-
tailed Student’s t-test for single comparisons and one-way 
analysis of variance (ANOVA) for multiple comparisons. 
For the locomotor performance scores, repeated measures 
ANOVA and the Mann-Whitney U-test were used. In 
all statistical analyses, values of p<0.05 were considered 
to indicate significance. To obtain the data for statistical 
analyses, the investigators were blinded to the genotypes 
in all procedures.

Results

1. Types of waveform change

Four different types of waveforms were obtained: no 
change, amplitude decrease only, morphology change 
only, and amplitude and morphology change. In the 
50 limbs of 25 animals, type 1 accounted for 14% (7/50 
limbs), type 2 for 36% (18/50 limbs), type 3 for 18% (9/50 
limbs), and type 4 for 32% (16/50 limbs) (Fig. 2). No 

Fig. 1. Spinal cord injury and protocol of compound muscle action po-
tential.
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change of latency was seen in any rat. 

2. Stimulus intensity and waveform change

While the integrated intensity was naturally low in the 
group with no change, the amplitude group and the mor-
phology group produced their respective waveforms at 
approximately the same level of intensity. At high intensi-
ties, numerous waveforms were derived that exhibited 

amplitude decrease and morphology change (Fig. 3). In a 
box plot, the amplitude group and the morphology group 
were significantly correlated with high intensities (p<0.05) 
(Fig. 4).

1) Evaluation of lower limb motor function
At 4 weeks after spinal cord injury, the best result was 
found in the no change group according to the BBB score 
(20). While the amplitude and morphology group (BBB, 
13.5) exhibited the strongest degree of paralysis due to its 
highest integral intensity, there was no significant differ-
ence between that group and the amplitude group (BBB, 
16.1) or the morphology group (BBB, 16.5) using repeated 
measure ANOVA (p=0.07). However, the amplitude and 
morphology group exhibited a significantly higher degree 
of paralysis up to the third day (Fig. 5).

Discussion

The CMAP alarm point for stopping surgery remains 
equivocal [5-8]. Luk et al. [2] applied the same criteria 
as those for SSEP (amplitude decrease ≥50% and ≥10% 
latency), Langeloo et al. [9] defined an amplitude decrease 
≥50% or more in any muscle as an alarm point, and Sala 
et al. [10,11] defined waveform loss as an alarm point. 
Quinones-Hinojosa et al. [12] discussed morphologi-

Fig. 2. The results of wave type.

Fig. 3. Relationship between the wave type and the injury force.
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cal change, defining waveform change from a biphase to 
a monophase as an alarm point. We proposed defining 

morphology change as an alarm point [3]. Some authors 
also reported on a basic study of electrophysiology. How-

Fig. 5. Relationship between the wave type and Basso, Beattie and Bresnahan (BBB) score.
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Fig. 4. Relationship between the wave type and the injury force in a box plot. NS, not significant.
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ever, the data only concerned the stimulation method, 
SSEP alarm point, and electromyography potential [13-
15]. So, it is clinically unclear and difficult to demonstrate 
what degree of injury and paralysis of the spinal cord 
causes morphology change or amplitude decrease. In this 
study, we used an animal testing model to demonstrate 
the foregoing. 

We were able to classify the waveform into four types. 
Eighteen percent of the animals exhibited morphology 
change only without amplitude change. These waveforms 
were caused by approximately the same force causing the 
amplitude decrease. This is a novel observation and we 
believe morphology change should be considered when 
discussing CMAP alarm points. Additionally, relatively 
severe injuries tend to be accompanied by amplitude de-
crease and also morphology change, indicating more criti-
cal conditions. Presently, particularly severe paralysis was 
evident immediately after the injury in the amplitude and 
morphology groups. This indicates that the concurrence 
of morphology change and amplitude decrease should be 
interpreted as a higher level of alarm. 

A limitation of this study is the difficulty to explain the 
mechanism of each waveform. More electrophysiological 
experiments are needed before clinical applications can be 
contemplated.

 

Conclusions

Change in the morphology and amplitude was accompa-
nied by significant aggravation of paralysis immediately 
after the injury. It is suggested that morphology change 
can potentially be one of the alarm points.
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