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Abstract The present paper describes a solution to a

non-parametric shape optimization problem of a brake

model to suppress squeal noise. The brake model con-

sists of a rotor and a pad, between which Coulomb fric-

tion occurs. The main problem is defined as a complex

eigenvalue problem of the brake model obtained from

the equation of motion. As an objective cost function,

we use the positive real part of the complex eigenvalue

generating the brake squeal. The volume of the pad is

used as a constraint cost function. The Fréchet deriva-

tive of the objective cost function with respect to the

domain variation, which we refer to as the shape deriva-

tive of the objective cost function, is evaluated using

the solution of the main problem and the adjoint prob-

lem. A scheme by which to solve the shape optimization

problem using an iterative algorithm based on the H1

gradient method (the traction method) for reshaping

is presented. Numerical results obtained using a simple

rotor-pad model reveal that the real part of the target

complex eigenvalue decreases monotonically, thus sat-

isfying the volume constraint.
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1 Introduction

Brake squeal is a vibration phenomenon in the fre-

quency range of between 1 and 15 kHz caused by fric-

tion between the rotor and the pad. Brake squeal causes

customer dissatisfaction, and so a method for prevent-

ing brake squeal during the design stage is strongly de-

sired.

A number of studies have been conducted in order to

clarify the brake squeal phenomenon. Mills (1938) ex-

plained brake squeal using the stick-slip vibration phe-

nomenon caused by the friction force. North (1972) in-

troduced a simple model of a rotor and a pad between

which Coulomb friction occurs and considered the brake

squeal to be a self-excited vibration induced by the fric-

tion force. Based on these findings, Millner (1978) re-

vealed that the stiffness matrix becomes asymmetric in

the rotor and pad model with Coulomb friction and

that the natural vibrations are determined by solutions

of a complex eigenvalue problem. He also reported that

if the real part of a complex eigenvalue is positive, since

the amplitude of the natural vaibration increases with

respect to time, a dynamic instability occurs. A number

of studies have analyzed dynamic instability by means

of the asymmetric stiffness matrix using the finite el-

ement method (Matsushima et al. (1997); Joo et al.

(2006)).

Moreover, since the 2000s, research to determine

the optimum shape to minimize the positive real part

of the complex eigenvalue has been started. Lee and

Kikuchi (2003) and Guan et al. (2006) presented for-

mulations of the parametric optimization problem by

choosing eigenvalues of the components in the brake

model as the design variables and by choosing the real

part of the complex eigenvalue that generates the brake

squeal as the objective cost function. Moreover, they
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presented numerical examples. Based on the assump-

tion that the ideal eigenvalues reducing the positive real

part of the complex eigenvalue were determined for the

components in the brake model, Goto et al. (2010) pre-

sented a method by which to find the shapes of the

components as a solution of the non-parametric shape

optimization problem using the error of the eigenvalues

from the ideal values as the objective cost function.

In recent years, non-parametric optimization meth-

ods have been applied to optimum design problems in

the brake model to suppress the brake squeal. Nela-

gadde and Smith (2009) presented a method by which

to obtain optimum shapes of the components of the

brake model in order to increase the frequency separa-

tion between the critical modes, while constraining the

frequency separation between other selected modes us-

ing commercial software. Soh and Yoo (2010) analyzed

the optimum shape of the caliper housing by the topol-

ogy optimization method using the real part of the com-

plex eigenvalue as the objective function. However, an

approach based on a formulation of the non-parametric

shape optimization problem using the real part of the

complex eigenvalue as the objective function has not

yet been presented.

The objective of the present paper is to formulate a

non-parametric shape optimization problem of a brake

model using the real part of the complex eigenvalue

as the objective function, to derive the shape deriva-

tive of the real part of the complex eigenvalue theo-

retically, and to show the solution of the problem by

the H1 gradient method. The brake model is assumed

to consist of a rotor and a pad, between which the

Coulomb friction occurs. The solution of the problem

is presented by using an iterative algorithm based on

the H1 gradient method for reshaping. The H1 gradi-

ent method was proposed by the authors as a reshap-

ing algorithm for non-parametric shape optimization

problems. This method was called the traction method

in the early years (Azegami (1994); Azegami and Wu

(1996); Azegami and Takeuchi (2006)). The reason why

we call the method the H1 gradient method was intro-

duced in a previous paper (Azegami et al. (2013a)), and

the primary reason for using this method and the com-

parison with other techniques are described in another

paper (Azegami et al. (2013b)). The basic idea of the

gradient method in a Hilbert space was presented by

Lions (1971).

The remainder of the present paper is organized as

follows. In Section 2, we define the initial domains of

the brake model and choose mapping from the initial

domain of the pad to the varied domain as a design

variable. Using the definition of mapping and initial do-

main, in Section 3, we formulate the complex eigenvalue
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Fig. 1 Brake model

problem of the natural vibrations as the main problem

in the shape optimization problem. In Section 4, using

the solution of the main problem, we formulate a shape

optimization problem using the real part of an eigen-

value as an objective function and the volume of the

pad as a constraint function. The evaluation methods

for the shape derivatives of the cost functions are shown

in Section 5. Using these shape derivatives of the cost

functions, in Section 6, we present a method by which

to obtain the domain mappings that decrease the cost

functions. A scheme for solving the shape optimization

problem with constraints is presented in Section 7. Fi-

nally, in Section 8, we present the numerical results for

shape optimization of a simple brake model.

2 Brake model

Let us define the initial domains for a brake model as

depicted in Fig. 1. Let ΩR0 and ΩP0 be d ∈ {2, 3}-
dimensional bounded domains of linear elastic continua

denoting a rotor and a pad, respectively. ΓR0 and ΓP0

denote contact boundaries on the boundary of rotor

∂ΩR0 and the boundary of pad ∂ΩP0, respectively. Let

ΓD0 ⊂ ∂ΩR0 ∪ ∂ΩP0 be the homogeneous Dirichlet

boundary. Let νR and νP be the normals, and let τR
and τP be the tangents on ΓR0 and ΓP0, respectively.

In the present paper, we assume that ΩP0 is variable.

In order to define a shape optimization problem of ΩP0,

∂ΩP0 is required to be a Lipschitz boundary and piece-

wise class C1,1.
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In the present paper, we use the notation W s,p(Ω0;

Rd) to denote the Sobolev space for the set of func-

tions defined in Ω0 and having values in Rd that are

s ∈ [0,∞] times differentiable and p ∈ [1,∞]-th order

Lebesgue integrable and refer to its smoothness as the

W s,p class. The notation Hs
(
Ω0;Rd

)
and Cs,α for α ∈

(0, 1] are used as W s,2
(
Ω0;Rd

)
and W s+α,∞ (

Ω0;Rd
)
.

Moreover, we define design variable in shape opti-

mization problem by domain variation ϕ, with which

varied domain is created by continuous one-to-one map-

ping i+ ϕ : ΩP0 → Rd by

ΩP (ϕ) = { (i+ ϕ) (x) | x ∈ ΩP0}

as shown on Fig. 2. The symbol i is used as the identity

mapping in the present paper. To keep the property of

continuous one-to-one mapping, we define the admissi-

ble set of ϕ as

D =
{
ϕ ∈ Y

∣∣ ∥ϕ∥Y < σ, ϕ = 0Rd on ΓP0 ∪ ΓD0

}
, (1)

where Y is defined by W 1,∞ (
Rd;Rd

)
, and σ > 0 is

chosen such that ϕ becomes bijection. The domain of

ϕ can be extended to Rd by Calderón’s extension the-

orem. In the present paper, X = H1
(
Rd;Rd

)
⊃ Y is

used as the Banach space for the perturbation φ of ϕ in

order to define the Fréchet derivatives of cost functions

with respect to the domain variation as shown later.

3 Main problem

Using the domains described above for the brake model,

let us define the main problem for brake squeal. First,

let us consider the natural vibration of the brake model

of Fig. 1.

Let u be the displacement expressing natural vibra-

tion, the admissible set of which is given for q > d as

U =
{
u ∈ H1

(
R;W 2,2q

(
Rd;Rd

)) ∣∣
u = 0Rd on ΓP0 ∪ ΓD0

}
. (2)

The condition whereby u belongs to class W 2,2q will be

used in the process of deriving the shape derivative of

the objective cost function after converting u into the

eigenmode ûk for k ∈ {1, 2, · · · } belonging to S defined

in (5).

In the present paper, let uR and uP denote the dis-

placements u in ΩR0 and ΩP (ϕ), respectively. Let

E (u) = (eij (u))ij =
1

2

(
∇uT +

(
∇uT

)T)
,

S (u) = CE (u) =

 ∑
(k,l)∈{1,··· ,d}2

cijklekl (u)


ij

denote the strain tensor and the Cauchy stress tensor,

respectively, where

C = (cijkl)ijkl ∈ W 1,∞ (
Rd;Rd×d×d×d

)
is the stiffness of material. In the present paper, let

( · )T denote the transpose. Moreover, let α denote the

stiffness on the relation between the rotor and the pad,

and let µ denote the coefficient of the Coulomb fric-

tion. Finally, let ρR and ρP denote the densities of the

rotor and the pad, respectively. In the present paper,

we assume that α, µ, ρR, and ρP are given as positive

constants for simplicity.

Based on these definitions and the notation ˙( · ) for
the time derivative, let us define the equations of motion

for the brake model.

Problem 1 (Free vibration problem) For ϕ ∈ D,

initial displacement ū0 ∈ W 2,2q
(
Rd;Rd

)
, and initial ve-

locity v̄0 ∈ W 2,2q
(
Rd;Rd

)
, find u such that

ρRüR − (∇ · S (uR))
T
= 0Rd in ΩR0 × R,

ρPüP − (∇ · S(uP))
T
= 0Rd in ΩP (ϕ)× R,

S (uR)νR = 0Rd on
(
∂ΩR0 \ Γ̄R0

)
× R,

S (uP)νP = 0Rd on
(
∂ΩP (ϕ) \ Γ̄P0

)
× R,

S (uR)νR = α {(uR − uP) · νR}νR on ΓR0 × R,
S (uR) τR = µα {(uR − uP) · νR} τR on ΓR0 × R,
S (uP)νP = α {(uP − uR) · νP}νP on ΓP0 × R,
S (uP) τP = −µα {(uP − uR) · νP} τP on ΓP0 × R

(3)

uR = uP on (ΓR0 ∪ ΓP0)× R,
u = ū0 in ΩR0 ∪ΩP (ϕ)× {0} ,
u̇ = v̄0 in ΩR0 ∪ΩP (ϕ)× {0} ,
u = 0Rd on ΓD0 × R.

Here, the negative sign on the right-hand side of (3)

in front of the coefficient of the Coulomb friction makes

the strain energy term in the weak form of Problem 1

asymmetric with respect to u and its adjoint function.

Then, the eigenvalue problem for the natural vibrations
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of the brake model becomes a complex eigenvalue prob-

lem. Since this brake model is a linear system with re-

spect to u, the form of separation of variables is given

for some s ∈ C as

u (x, t) = estû (x) + es
ctûc (x) , (4)

where ( · )c denotes complex conjugation. Based on the

definition of U in (2), the admissible set for û is given

by

S =
{
û ∈ W 2,2q

(
Rd;Cd

) ∣∣ û = 0Rd on ΓP0 ∪ ΓD0

}
.

(5)

By substituting (4) into Problem 1, we have a complex

eigenvalue problem for natural vibrations. For compact

expression of the weak form, we define the Lagrange

function of the complex eigenvalue problem as

LM (ϕ, sk, ûk, v̂) = h (sk, ûk, v̂
c) + h (sck, û

c
k, v̂) (6)

for (sk, ûk, v̂) ∈ C× S × S for k ∈ {1, 2, · · · }, where

h (s, û, v̂c) = aR (ûR, v̂
c
R) + s2bR (ûR, v̂

c
R)

− cR (ûR − ûP, v̂
c
R)− dR (ûR − ûP, v̂

c
R)

+ aP (ûP, v̂
c
P) + s2bP (ûP, v̂

c
P)

− cP (ûP − ûR, v̂
c
P) + dP (ûP − ûR, v̂

c
P) , (7)

and, for ( · ) ∈ {P,R},

a( · ) (û, v̂) =

∫
Ω( · )(ϕ)

S (û) ·E (v̂) dx,

b( · ) (û, v̂) =

∫
Ω( · )(ϕ)

ρ( ·)û · v̂dx,

c( · ) (û, v̂) =

∫
Γ( · )0

α
(
û · ν( · )

) (
v̂ · ν( · )

)
dγ,

d( · ) (û, v̂) =

∫
Γ( · )0

µα
(
û · ν( · )

) (
v̂ · τ( · )

)
dγ.

Using the above definitions, we define the weak form

of the eigenvalue problem for natural vibrations of the

brake model and its Lagrange formulation for conve-

nience of later description as follows. Here, we define

U = H1
(
Rd;Rd

)
as the Banach space for the pertur-

bation v of u ∈ S.

Problem 2 (Natural vibration problem) For ϕ ∈
D, find (sk, ûk) ∈ C× S for k ∈ {1, 2, · · · } such that

LM (ϕ, sk, ûk, v̂) = 0

for all v̂ ∈ U .

4 Shape optimization problem

Using the solution sk of Problem 2, let us define a

shape optimization problem for the brake model. In

the present paper, referring to previous studies using

the positive real part of the complex eigenvalue, we as-

sume that the mode number k is given, and define an

objective cost function as

f0 (ϕ, sk) = 2Re [sk] = sk + sck. (8)

Moreover, we define a constraint cost function by the

volume of the pad as

f1 (ϕ) = −
∫
ΩP(ϕ)

dx+ c1, (9)

where c1 is a positive constant for which there exists

ΩP (ϕ) such that f1 (ϕ) ≤ 0.

Using these cost functions, we define the shape op-

timization problem as follows.

Problem 3 (Shape optimization problem) Let D
and S be defined in (1) and (5). For ϕ ∈ D, let (sk, ûk) ∈
C × S be the solution of Problem 2 for a given k. Let

f0 and f1 be defined in (8) and (9), respectively. Find

ΩP (ϕ) such that

min
ϕ∈D

{f0 (ϕ, sk) | f1 (ϕ) ≤ 0,

(sk, ûk) ∈ C× S, Problem 2} .

5 Shape derivative of cost functions

In order to solve Problem 3 by the gradient method, the

Fréchet derivatives of the cost functions with respect to

the domain variation, which we refer to as the shape

derivatives, are required. Then, let us derive the shape

derivatives of f0 and f1 here.

Since the objective cost function f0 (ϕ, sk) contains

sk, we must consider the main problem to be the equal-

ity constraint. Hence, we set

L0 (ϕ, sk, ûk, v̂0)

= f0 (ϕ, sk)− LM (ϕ, sk, ûk, v̂0) (10)

as the Lagrange function for f0, where LM is defined

in (6), and v̂0 is used as the Lagrange multiplier for f0.

The shape derivative of L0 with respect to arbitrary

domain variation φ ∈ X can be obtained by apply-

ing the formulae of shape derivatives for domain and
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boundary integrals (Sokolowski and Zolésio (1992)), as

follows:

L̇0 (ϕ, sk, ûk, v̂0) [φ, s
′
k, û

′
k, v̂

′
0]

= L0ϕ (ϕ, sk, ûk, v̂0) [φ] + L0sk (ϕ, sk, ûk, v̂0) [s
′
k]

+ L0ûk
(ϕ, sk, ûk, v̂0) [û

′
k]

+ L0v̂0
(ϕ, sk, ûk, v̂0) [v̂

′
0] , (11)

where (s′k, û
′
k, v̂

′
0) ∈ C×U×U denote the shape deriva-

tives of (sk, ûk, v̂0) with respect to domain variation

φ ∈ X.

The fourth term of the right-hand side of (11), which

is written as

L0v̂0
(ϕ, sk, ûk, v̂0) [v̂

′
0] = −hv̂0

(sk, ûk, v̂
c
0) [v̂

′
0]

− hv̂0
(sck, û

c
k, v̂0) [v̂

′
0]

= −h (sk, ûk, v̂
c′
0 )− h (sck, û

c
k, v̂

′
0) , (12)

becomes 0, if (sk, ûk) is the solution of Problem 2. On

the other hand, the second term of the right-hand side

of (11) is written as

L0sk (ϕ, sk, ûk, v̂0) [s
′
k] = f0sk (ϕ, sk) [s

′
k]

− hsk (sk, ûk, v̂
c
0) [s

′
k]− hsck

(sck, û
c
k, v̂0) [s

c′
k ]

= s′k + sc′k − 2sks
′
kbR (ûk, v̂

c
0)− 2scks

c′
k bP (ûk, v̂

c
0)

= s′k (1− 2skbR (ûk, v̂
c
0)) + sc′k (1− 2sckbP (ûk, v̂

c
0)) .

(13)

Moreover, the third term of the right-hand side of (11)

is written as

L0ûk
(ϕ, sk, ûk, v̂0) [û

′
k] = −hûk

(sk, ûk, v̂
c
0) [û

′
k]

− hûk
(sck, û

c
k, v̂0) [û

′
k]

= −h (sk, û
′
k, v̂

c
0)− h (sck, û

c′
k , v̂0) . (14)

Then, (13) and (14) become 0 if v̂0 is the solution of

the following weak form of the adjoint problem.

Problem 4 (Adjoint problem for f0) For ϕ ∈ D,

let (sk, ûk) be the solution of Problem 2 for k. Find v̂0
such that

h (sk, û
′
k, v̂

c
0) + h (sck, û

c′
k , v̂0) = 0, (15)

2skb (ûk, v̂
c
0) = 2sckb (û

c
k, v̂0) = 1 (16)

for all û′
k ∈ U .

For the solution v̂0 of Problem 4, from (16), we have

v̂0 = cûk for all c ∈ C. Moreover, using (15), we obtain

c =
1

2skb (ûk, ûc
k)

. (17)

Then, v̂0 is obtained by normalization of ûk with c

above.

Based on the results, if red(sk, ûk) and v̂0 are the so-

lutions of Problem 2 and Problem 4, respectively, then

L̇0 (ϕ, sk, ûk, v̂0) [φ, s
′
k, û

′
k, v̂

′
0] in (11) becomes

L0ϕ (ϕ, sk, ûk, v̂0) [φ] =

∫
∂ΩP(ϕ)\(Γ̄P0∪Γ̄D0)

g∂Ω0 ·φdγ

= ⟨g0,φ⟩ , (18)

where

g∂Ω0 = 2Re
[
S (ûk) ·E (v̂c0) + s2kρPûk · v̂c0

]
νP. (19)

Here, we used the condition φ = 0Rd on ΓP0 ∪ ΓD0, as

given in (1).

On the other hand, for f1 (ϕ), we have

f ′
1 (ϕ) [φ] =

∫
∂ΩP(ϕ)\(Γ̄P1∪Γ̄D0)

g∂Ω0 ·φdγ

= ⟨g1,φ⟩ , (20)

where

g∂Ω1 = νP. (21)

We refer to g0 and g1 as the shape derivatives of f0
and f1, respectively.

6 H1 gradient method

The H1 gradient method is proposed as a method for

finding the variation of the design variable, such as

the domain mapping or the density parameter that de-

creases the cost function, as a solution to a boundary

value problem of an elliptic partial differential equation

(Azegami and Takeuchi (2006); Azegami et al. (2011,

2013a)). For the case of shape derivative gi of a cost

function fi (ϕ) for i ∈ {0, 1}, the H1 gradient method

can be described as follows.

Problem 5 (H1 gradient method) Let X be a

Hilbert space of H1
(
Rd;Rd

)
, and let a : X × X → R

be a coercive bilinear form on X such that there exists

β > 0 that satisfies

a (w,w) ≥ β ∥w∥2X

for all w ∈ X. For gi ∈ X ′ (dual space of X), which is

a Fréchet derivative of cost function fi (ϕ) at ϕ ∈ X,

find φgi ∈ X such that

a (φgi,w) = −⟨gi,w⟩ (22)

for all w ∈ X.
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Problem 5 can be solved numerically using the stan-

dard finite element method by considering (22) to be a

weak form of a boundary value problem of an elliptic

partial differential equation. In the present paper, we

use

a (φ,ψ) = ca

∫
Ω(ϕ)

S (φ) ·E (ψ) dx (23)

for φ ∈ X and ψ ∈ X, where E ( · ) and S ( · ) are the

same as in Problem 2, and ca is a positive constant.

The coerciveness is secured by the Dirichlet condition

on ΓP0∪ΓD0 in (5). The strong form of the H1 gradient

method using (23) is written as follows.

Problem 6 (H1 gradient method for Problem 3)

For gi, find φgi such that

− ca∇TS (φgi) = 0T
Rd in ΩP (ϕ) ,

caS (φgi)ν = −g∂Ωi on ∂ΩP (ϕ) \
(
Γ̄P0 ∪ Γ̄D0

)
,

φgi = 0Rd on ΓP0 ∪ ΓD0.

Figure 3 shows the boundary condition of Problem 6.

If û satisfies the conditions in S, we can confirm

that the solution φgi of Problem 5 belongs to Y , which

is the Banach space for the admissible set D defined in

(1).

7 Solution to the shape optimization problem

In order to solve Problem 3, we use an iterative method

based on sequential quadratic programming. The do-

main variation decreasing f0 while satisfying f1 ≤ 0 is

determined with the solution of the following problem.

In this section, we denote f0 (ϕ, sk) as f0 (ϕ) and its

shape derivative as g0.

Problem 7 (SQ approximation) For ϕ ∈ D, let gi
be the shape derivatives of fi (ϕ) for i ∈ {0, 1}, and let

f1 (ϕ) ≤ 0. Let a ( · , · ) be given as in (22). Find φ such

that

min
φ∈X

{
q (φ) =

1

2
a (φ,φ) + ⟨g0,φ⟩∣∣∣ f1 (ϕ) + ⟨g1,φ⟩ ≤ 0

}
.

The Lagrange function of Problem 7 is defined as

LSQ (φ, λ1) = q (φ) + λ1 (f1 (ϕ) + ⟨g1,φ⟩)

where λ1 ∈ R is the Lagrange multiplier for the con-

straint f1 (φ) ≤ 0. The Karush–Kuhn–Tucker condi-

tions for Problem 7 are given as

a (φ,φ) + ⟨g0 + λ1g1,φ⟩ = 0, (24)

f1 (ϕ) + ⟨g1,φ⟩ ≤ 0, (25)

λ1 (f1 (ϕ) + ⟨g1,φ⟩) = 0, (26)

λ1 ≥ 0 (27)

for all φ ∈ X. Here, let φgi for i ∈ {0, 1} be the solu-

tions to Problem 5, and set

φg = φg0 + λ1φg1. (28)

Then, by substituting φg of (28) for φ in (24), (24)

holds. If the constraint in (25) is active, i.e., (25) holds

with the equality, we have

⟨g1,φg1⟩λ1 = −f1 (ϕ) + ⟨g1,φg0⟩ . (29)

Equation (29) has a unique solution of λ1. Moreover, if

f1 (ϕ) = 0, we have

⟨g1,φg1⟩λ1 = −⟨g1,φg0⟩ . (30)

Since (30) is independent of the magnitude of φg0 and

φg1 to determine λ1, (30) is used in the numerical

scheme for the initial domain Ω0 in which we assume

that f1 (ϕ) = 0 is satisfied. If λ1 < 0 in the solution λ1

to (29) or (30), by setting λ1 = 0, we have λ1 satisfying

(24) to (27).

The magnitude of φg in (28), which means the step

size for domain variation, is adjusted by selection of ca
in (23) using criteria such as the Armijo and Wolfe’s

criteria to ensure the global convergence in Problem 7.

An outline of the numerical scheme is shown in Fig. 4.

The details of the numerical scheme are shown in the

previous paper (Azegami et al. (2013a))
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Check terminal
condition.

Solve main and adjoint problems.
Compute cost functions and derivatives.

Input data.

Solve domain variations
by H1 gradient method for each cost function.

Compute the Lagrange multipliers.

Output data.

Yes

No

Update domain.

Fig. 4 Flowchart of program to solve shape optimization
problem

R0

P0

¡D0

Fig. 5 Finite element model

(a) Up

(b) Down

Fig. 6 3rd natural vibration mode of initial shape

8 Numerical example

We developed a computer program for solving Prob-

lem 3 based on the numerical scheme described above.

A multidisciplinary finite element solver RADIOSS de-

veloped by Altair Engineering, Inc. was used to solve

Problem 2 and Problem 4.

Table 1 Complex eigenvalues for the initial shape

k Re Im

1 -1.692E+01 8.022947E+03
2 -1.444E+01 9.438261E+03
3 8.613E+00 1.249724E+04
4 -2.944E+01 1.437360E+04
5 -5.783E+01 1.629984E+04
6 -5.356E+01 2.168113E+04
7 -5.195E+01 2.394771E+04
8 -6.593E+01 2.573753E+04
9 -6.325E+01 2.711726E+04
10 -6.896E+01 2.893466E+04

In order to demonstrate the effectiveness of the present

method, we solved a shape optimization problem in-

volving a simple brake model. Figure 5 shows the finite

element model of the brake model. In this figure, nodal

points with fixed signs are assumed to be fixed in Prob-

lem 2 and Problem 4, i.e., the Dirichlet condition is as-

signed. The length of the largest edge in ΩR0 is 0.15 [m].

The Young’s modulus, Poisson’s ratio, and the density

were 210 [GPa], 0.3, and 7.8×103 [kg/m3], respectively,

for the rotor and 16 [GPa], 0.3, and 2.1× 103 [kg/m3],

respectively, for the pad. Moreover, the contact stiffness

α, the friction coefficient µ and structural damping ra-

tio were 5.0× 106 [N/m], 0.1 and 0.005, respectively.

The numerical results for the complex eigenvalues

for the initial shape, i.e., the numerical solution of Prob-

lem 2, are shown in Table 1. Among these results, the

3rd eigenvalue has a positive real part. As such, we set

k = 3 in Problem 3. Figure 6 shows the 3rd natural

vibration mode of the initial shape. We can observed

that primary bending mode is occurred.

The iteration histories of cost functions f0 and f1
with respect to the number of reshaping iterations are

shown in Fig. 7. In this figure, f0 init and c1 denote

the value of f0 and the volume of ΩP0, respectively,

for the initial shape. Note that f0 decreases monoton-

ically while satisfying the domain measure constraint

of f1. Table 2 shows the numerical results for the com-

plex eigenvalues after 60 reshaping iterations. The 3rd

eigenvalue has a negative value in the real part. Figure

8 compares the initial and optimized shapes. Figure 9

shows the 3rd natural vibration mode of the optimized

shape. From those results, a remarkable change in the

shape is observed at the center and both ends. Those

parts correspond to the antinode of the natural vibra-

tion mode and the fixed part, respectively, and were

reinforced by shape optimization. This change means

that the stiffness with respect to the deformation of

the 3rd natural vibration mode is improved. By this

change, we can consider that the cause of the brake

squeal is suppressed.
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Fig. 7 Iteration histories of cost functions with respect to
reshaping

(a) Initial shape

(b) Optimized shape

Fig. 8 Comparison of shapes

9 Conclusions

In the present paper, we have introduced a numeri-

cal solution to shape optimization problems of a brake

model consisting of a rotor and a pad, between which

Coulomb friction occurs. The main problem was con-

structed as a complex eigenvalue problem of the brake

model obtained from the equation of motion. The shape

optimization problem was formulated using the posi-

tive real part of the complex eigenvalue assigned as the

cause of brake squeal as an objective cost function and

the volume of the pad as a constraint cost function.

The method of evaluating the shape derivative of the

objective cost function was derived using the station-

ary conditions of the Lagrange function. A standard

(a) Up

(b) Down

Fig. 9 3rd natural vibration mode of optimized shape

Table 2 Complex eigenvalues for the optimized shape

k Re Im

1 -1.647E+01 7.745197E+03
2 -1.765E+01 1.027973E+04
3 -1.163E+01 1.110440E+04
4 -3.048E+01 1.503565E+04
5 -4.185E+01 2.092213E+04
6 -5.070E+01 2.186379E+04
7 -6.588E+01 2.671747E+04
8 -7.522E+01 2.756015E+04
9 -7.540E+01 3.137934E+04
10 -7.658E+01 3.320161E+04

scheme by which to solve the shape optimization prob-

lem using the H1 gradient method for reshaping was

used to construct the numerical scheme. Finally, nu-

merical results obtained using a simple rotor-pad model

were presented, in which the real part of the target com-

plex eigenvalue decreases monotonically, satisfying the

constraint for the volume of the pad. Based on these

results, in the present paper, a methodology for find-

ing the optimum shape that minimizes the real part of

the complex eigenvalue representing the cause of brake

squeal was presented.
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