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Relational Joins on GPUs: A Closer Look
Makoto Yabuta, Anh Nguyen, Shinpei Kato, Masato Edahiro, Hideyuki Kawashima

Abstract—The problem of scaling out relational join performance for large data sets in the database management system (DBMS) has
been studied for years. Although in-memory DBMS engines can reduce load times by storing data in the main memory, join queries still
remain computationally expensive. Modern graphics processing units (GPUs) provide massively parallel computing and may enhance
the performance of such join queries; however, it is not clear yet in what condition relational joins perform well on GPUs. In this paper,
we identify the performance characteristics of GPU computing for relational joins by implementing several well-known GPU-based join
algorithms under various configurations. Experimental results indicate that the speedup ratio of GPU-based relational joins to
CPU-based counterparts depends on the number of compute cores, the size of data sets, join conditions, and join algorithms. In the
best case, the speedup ratios are up to 6.67 times for non-index joins, 9.41 times for sort index joins, and 2.55 times for hash joins. The
execution time of GPU-based implementation for index joins, on the other hand, is only about 0.696 times less than the execution time
of the CPU’s counterparts.

Index Terms—Graphics processors, Query processing, Parallelism and concurrency
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1 INTRODUCTION

A database management system (DBMS) is increasingly
designed to process a large amount of data. Typical ex-
amples include Facebook’s Presto, Google’s Dremel, and
Cloudera’s Impala, in which several hundreds terabytes of
data are generated on a daily basis. As the amount of data
associated with web services and real-world applications is
continuously growing while response times of data process-
ing need to be maintained, DBMS engines are required to be
more high-performance and scalable for large data sets.

“Relational Join” is one of the most frequently used and
computationally-expensive queries in the DBMS. It requires
a lot of computing and memory resources to execute its
algorithm. Many DBMS engines use relational joins to in-
tegrate multiple pieces of data into a resultant data table. In
particular, emerging data-oriented services and applications
demand a large-scale data fusion mechanism based on re-
lational joins to produce new valuable information. Scaling
out relational join performance, therefore, is a key challenge
for the database community.

Given that tuples in a relational DBMS are often inde-
pendent, massively parallel computing is a reasonable and
promising approach to high-performance DBMS engines.
Using a large number of computing cores, algorithms of
relational joins can be massively parallelized to accelerate
their computation. In previous work, graphics processing
units (GPUs) have been especially considered as such com-
puting environments, demonstrating a significant improve-
ment in performance for relational joins [1], [2], [3], [4],
[5], [6]. GPUs integrate more than hundreds to thousands
cores on a chip. Many high-performance computing applica-
tions now leverage GPUs to achieve an order-of-magnitude
improvement in performance. It is natural that relational
joins containing data parallelism in algorithms could also
obtain a significant performance benefit from GPUs. The
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aforementioned previous work, however, largely focused on
a particular standalone GPU, being evaluated with limited
data sets. In general, performance of GPU computing can
easily change depending on hardware architectures and
data sets as well as implemented algorithms. It is not clear
yet in what condition relational joins perform well on GPUs.
To generalize the results from previous work, a closer look
into relational join performance, considering multiple types
of GPUs and multiple data sets, is needed.

Contribution: This paper presents the performance char-
acteristics of GPU computing for relational joins under
various configurations. Specifically, we quantify the per-
formance of relational joins on GPUs with respect to the
numbers of compute cores, the size of data sets, join con-
ditions, and join algorithms. We also investigate why GPUs
can speed up relational joins in terms of execution time and
memory usage. In summary, this paper provides answers to
the following questions, by consolidating the results from
previous work.

• Can the performance of relational joins scale with
advancement in GPU technology? To answer this
question, we evaluate three GPUs: NVIDIA’s GTX
560 Ti, GTX TITAN Black, and Tesla K20Xm.

• How does the performance of relational joins scale
with the size of data sets? We evaluate multiple data
sets ranging up to 128M×128M tuples to answer this
questions.

• How is the performance of relational joins affected
by data communication between the GPU and the
host CPU? For this question, we evaluate the run-
to-completion of workloads including CPU times
and data transfer times rather than considering GPU
times.

• How is the performance of relational joins affected by
changing join algorithms? To answer this question,
we evaluate four different join algorithms: non-index
join(NIJ), index join(IJ), sort index join(SIJ), and hash
join(HJ).
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• How is the performance of relational joins affected by
loading data? To answer this question, we evaluate
both in-memory and disk-based scenarios.

Organization: The remainder of this paper is organized
as follows. In Section 2, we discuss related work on GPU-
based query processing techniques. The system model we
use in this paper is described in Section 3. Section 4 presents
the design and implementation of relational joins on GPUs,
and Section 5 provides experiments we perform to evaluate
GPU-accelerated relational joins. In Section 6, we discuss
several lessons we have learned from our experiments. This
paper is concluded in Section 7.

2 RELATED WORK

In-memory databases [7], [8], [9] and column-oriented
databases [10], [11] are often used for fast query processing.
However, time-consuming queries, such as “Relational Join”
and “Group By”, still prevent these databases from pro-
viding fast responses. General-purpose computing on GPUs
(GPGPU) is becoming an alternative solution to accelerating
such time-consuming queries [1], [2], [3], [4], [5].

This paper explores the performance of relational joins
executed on GPUs. While we reference previous work [2] for
GPU-based implementation of join algorithms, this paper
provides a different viewpoint of performance analysis. The
previous work focused on increasing the computation speed
of those algorithms using a particular GPU, and investi-
gated how the overall execution time changes upon the
match rate of join algorithms and the domination of data
transmission times between the CPU and the GPU. On the
other hand, this paper focuses on the computational scala-
bility of those algorithms using multiple GPUs and multiple
data sets. As a result, we clarify in what condition relational
joins perform well on GPUs. We also demonstrate that the
join algorithms presented in the previous work [2] can be
used with multiple generations of GPUs, although their
performance depends highly on the number of compute
cores, the size of shared memory, and the size of data tables.
The impact of GPU architectures and data sets on relational
join performance is discussed in Section 5.

Join algorithms can be further accelerated on GPUs by
leveraging unified virtual addressing (UVA) [6]. UVA allows
the GPU to directly access the main memory on the host
computer. Kaldewey et al. [6] reduced data transfer times
in join algorithms using the characteristics that the data
access time becomes aligned with the UVA read time if data
access to the device memory is random or non-coalesced.
The data transfer times between the CPU and the GPU
can be also reduced by coupling the CPU and the GPU
via coprocessors [12], and He et al. [13] has presented a
similar approach. This approach integrates queries on the
GPU and the CPU. However, previous studies aimed to
reduce transmission times of data copies between the GPU
and the CPU mainly, whereas, in many cases, data sets are
stored in secondary storage devices, such as hard drives and
solid state drives. Hence, we set up an experiment to find
out how reading data from secondary storage devices affects
the overall performance of GPU-based join algorithms. We
also investigate how the ratio of the data transmission times
between the GPU memory and the host memory to the
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Fig. 1. General structure of GPU computing.

execution time of the whole join process changes under
various conditions.

3 SYSTEM MODEL

GPUs provide massively parallel computing capabilities
with thousands of compute cores integrated on a single
chip [14], [15]. The concept of general-purpose computing
on GPUs (GPGPU) [16] has received significant attention
due to the emergence of programming languages, such as
CUDA [17], [18] and OpenCL. The general structure of GPU
computing is shown in Figure 1. GPUs typically provide
four instances of memory including device memory, two
types of caches (L1 and L2), and registers. The device
memory contains large memory space that is accessible to
and from all compute cores. The L1 cache represents on-chip
memory for each streaming multiprocessor (SM), and the
L2 cache is shared cache for the device memory. Finally, the
registers are extracted on the fast but small memory space
of each SM so that compute cores can allocate local variables
to them. In CUDA, these memory spaces are abstracted
such that the device memory is used for global memory,
constant memory, and texture memory. The system uses
the L1 cache for a secondary storage of local variables and
shared memory, and the L2 cache is used for shared global
memory cache.

CUDA is an abstraction of compute unified device ar-
chitecture, including a programming language, compiler,
and runtime stack designed for massively parallel com-
puting [18]. The primary advantages of CUDA are that
a large number of compute threads can be executed si-
multaneously, and heterogeneous memory management is
supported. Since the GPU often operates as a coprocessor in
conjunction with the CPU, conventionally a set of the CPU
and the main memory is called a host system, and the GPU
(including the device memory) is called a device system.
A program running on the CPU is called a host program,
and a component of that program running on the GPU is
called a kernel. The basic approach to GPU programming
is that (i) the host program transfers the kernel code and
its data to the global memory, (ii) function calls on the host
program launch the kernel on the GPU, and (iii) the result
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TABLE 1
Definition of symbols related to the relational join query.

R and S: Tables on which the relational join query is
executed. In the case of index join, R serves as
the index table. In hash join, R is used as the
criteria for table partitioning.

|R| and |S|: Counts of table rows of R and S, respectively.
ResultTable Table that stores the results of the relational join

query.
K and M : K stands for kilo (1024) and M stands for mega

(1024×1024). We use K and M as units of the
table size, since the power of two is more con-
venient for GPU computing.

of computation obtained on the GPU is copied back to the
main memory from the global device memory.

In order for a large number of compute threads to run
simultaneously, CUDA employs the concepts of blocks and
grids. A block is a set of threads, and a grid is a set of blocks.
In current CUDA versions, each block can contain at most
1024 threads. The number of threads per block is referred
to as the block size. Each block is represented by a three
dimensional structure of {x, y, z} threads, where x ≤ 1024,
y ≤ 1024, and z ≤ 64. Each grid is also represented by
{x, y, z} blocks, where x ≤ 2ˆ32 − 1, y ≤ 65535, and
z ≤ 65535. Threads in the same block can use the same
shared memory as fast memory. The shared memory size
is 48 KB at maximum, which is allocated from L1 cache as
shown in Figure 1. The system allocates computing cores
by units of blocks and SMs. In other words, threads within
the same block are assigned to computing cores of the same
SM. Each SM can contain multiple blocks. The number of
blocks is determined by the resource requirements, such as
the number of threads and the shared memory size.

Coalesced memory access is a principal method of GPU
programming that supports fast memory access. In this
method, 32 threads are packed by hardware as a unit of
dispatching on the GPU, which is often referred to as a
warp. When threads within the same warp access sequential
memory addresses, the entire memory accessing can be
aggregated by one or a more instruction. Coalesced memory
access helps the GPU maximize performance, as well as the
allocation of computing cores and shared memory

4 RELATIONAL JOINS ON GPUS

Relational joins refer to database processing that links tuples
from tables R and S based on a given condition. Table 1
defines the symbols related to the relational join query.

In this section, we assume that data tables are already
loaded in the main memory, and four well-known join
algorithms are considered: NIJ, IJ, SIJ and HJ.

NIJ compares all rows of the tables in an exhaustive
fashion. This is easy-to-implement and conditionally
flexible, but data processing is slow.

To reduce search time, IJ and SIJ use a search method
where one table contains the index and the other
contains the searched values. Creating an index is
performed by two methods, i.e., (i) partitioning the
tables and (ii) sorting the tables. IJ sorts the tables

into partitions and stores the starting position of each
tuple group.
In this paper, the former is referred to as IJ and
the latter as SIJ. To search the index, the algorithm
identifies the starting position based on the matching
value, followed by a sequential search. The tables
are divided into partitions, each having the same
remainder of division performed by some appropri-
ate constant, i.e., the hash value. SIJ sorts the table
and performs a binary search. Although these two
algorithms require indices to be created before the
execution of join, our experiments were performed
under the assumption that the indices were created
in advance.

HJ is implemented by referencing a partition hash
join [19], [8], [20]. HJ has two phases: (i) partitioning
and (ii) join. In the partitioning phase, tuples in both
tables are divided by some constant and sorted by
the remainder of division (hash value). In the join
phase, the algorithm executes NIJ across partitions
with the same hash value.
Note that HJ is faster than NIJ; however, it is slower
than IJ because HJ must perform the hash function.
HJ is also restricted relative to join conditions. For
example, an inequality sign cannot be used in HJ
conditional expressions.

We accelerate these four joins using the GPU. The follow-
ing subsections describe the details of implementation using
CUDA, and most of which are based on previous work [2].

4.1 Counting Sort
A major issue of GPU-accelerated join is confliction among
threads when they attempt to write their results to the
same location in the memory. To avoid this problem, we
implement Algorithm 1 using the existing primitives [2].

Algorithm 1 Counting Sort
1: Input tuples are split and assigned to threads. Each

thread counts the number of matched tuples and writes
results to an array named count.

2: The prefix sum is performed on the count array to cal-
culate the total number of matched tuples and positions
for writing matched tuples in each thread.

3: Each thread writes matched tuples into the positions
determined in step 2.

We use the CUDA thrust prefix sum program [21] to
perform the prefix sum in Step 2 of Algorithm 1.

By computing the write location for each thread, the
Counting Sort algorithm prevents threads from accessing
the write locations of other threads, thereby solving the
write conflicts among threads. In addition, the total number
of matched tuples calculated by the prefix sum enables the
GPU to allocate an appropriate memory buffer for the result
table.

4.2 NIJ
As shown in Fig. 2, NIJ divides tables R and S into sub-
tables Rn and Sm, and allocate them to blocks so that it can
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compare all the combinations of these sub-tables. In each
block, each thread compares every tuple of sub-table Rn

with all tuples of sub-table Sm. To improve performance,
we store Sm in the shared memory, since it is accessible to
all threads within the block. Therefore, we must partition
tables such that the size of sub-table Sm does not exceed
the shared memory capacity. In our implementation of NIJ,
we first execute the Counting Sort algorithm to determine
the size of the result table and the writing location for each
thread. In the next phase, we divide tables again using the
same method, and this time, each thread writes the result of
join to the result table according to the write location that is
computed in advance by the Counting Sort algorithm.

4.3 IJ

As shown in Fig. 3, our implementation of IJ creates |S|
threads to perform the Counting Sort algorithm. Similar
to NIJ, after calculating the write location for each thread,
we write the result of join to the result table according to
the calculated locations. Each thread in turn reads a tuple
from S and compares that tuple to the index to determine
whether the tuples’ indices match. If the size of |S| exceeds
the upper bound on the number of threads, the algorithm
reads the second and third tuples into the same thread.

4.4 SIJ
Similar to IJ, SIJ creates |S| threads to perform the Count-
ing Sort algorithm. The procedure of writing the results of
join to the result table is identical to the one in NIJ: namely,
each thread writes the result to the location determined by
the Counting Sort algorithm. However, each thread searches
for tuples of a non-indexed table in the index table using
binary search. Since the device memory of GPU is accessed
randomly during binary search, to improve the memory
access speed, we copy such data that are present at the
beginning search positions of the index array to the shared
memory. We found experimentally that 4096 bytes per blosk
is an appropriate size for the shared memory to achieve the
best performance. In our experiments, this size of shared
memory is used for evaluation.

4.5 HJ
HJ contains two phases in the algorithm, partitioning and
join. The partitioning phase has two steps, i.e., (i) recursive
execution of Split [2], [22] (Algorithm 2) to sort tuples by
partitions and (ii) calculation of the starting position of each
partition based on the sorted table.

Algorithm 2 Split
1: Read each tuple and calculate the number of tuples that

belong to each partition.
2: Scan the number of tuples in each partition to calculate

the starting position of each partition.
3: Re-read each tuple to identify the partition and starting

position based on the tuple value, then write to that
partition.

We use Algorithm 2 to partition tables based on hash val-
ues. On the GPU, the algorithm first divides input tables into
multiple partitions. Each thread then calculates the number
of tuples that correspond to each partition, as shown in
Fig. 4. The algorithm creates a histogram representing the
numbers counted by each thread per partition. It next scans
the histogram to identify where each partition starts writing
tuples. Finally, the algorithm re-partitions the table into
threads, and identifies the partition and position set based
on the tuple value to sort the data. Our Split implementa-
tion uses shared memory to improve access speed when
creating a histogram. Since the maximum size of shared
memory is 48 KB per block, the number of partitions is
limited to 48KB/(sizeof(int)×BlockSize).

Here, an issue of concern is that the number of partitions
created by the above method is insufficient. We extend
the Split algorithm to execute recursively by shifting the
partitioning bits to increase the number of partitions per
execution to the power of N . For example, if the number of
partitions per execution is 64, we use bits 0 to 5 for the first
execution and bits 6 to 11 for the second execution as the
base of expression, representing the partitioning condition.
Writing to the same partition is performed in the order of
thread numbers, as shown in Fig. 4. The Split algorithm
divides the table into 64 partitions in the first execution. Tu-
ples assigned to the same partition in the second execution
are written in the order of partition numbers given by the
first execution.
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Therefore, after the second execution of the Split algo-
rithm, tables are sorted automatically with up to the 642

partitions. After the last step, the algorithm counts and scans
the final number of tuples in each partition to calculate the
starting position of each partition. Hereafter, we refer to the
number of partitions resulting from a single execution of
the Split algorithm as the number of splits, and the overall
number of partitions as the number of partitions.

In the join phase, the Split algorithm partitions the
table into blocks with the same hash value, as shown in
Fig. 5. For example, RN and SN are present in the same
block since both belong to partition N . Similar to NIJ, HJ
places SN in the shared memory and reads the tuple from
RN on a thread-by-thread basis within a block. It reads
tuples RN1, RN2, and RN3 from RN into each thread and
compares them with tuples SN1, SN2, and SN3 from SN .
For both CPU-based and GPU-based implementations of
join algorithms, we find and use the number of partitions
such that the executions of join algorithms demonstrated the
fastest performance in preliminary experiments conducted
beforehand. After partitioning S, if size of each partition of
S exceeds the shared memory size, the system re-partitions
S to fit the shared memory size. During the join phase, we
calculate the size of the result table and the write location
using the Counting Sort algorithm, before each thread writes
the result of join to the output buffer.

4.6 Expansion for Large Tables
The size limit of the input table used in this implementation
is 1M for NIJ and 128M for other algorithms. When input
tables are larger than this limitation, we divide them into
multiple smaller sub-tables. Thus, the GPU can perform the
join algorithms on the sub-tables. Each pair of sub-tables is
joined before the final result is summarized and written to
the output buffer. The above method is only applied for NI
and HJ, due to the complexity of partitioning indices in IJ
and SIJ.

5 EVALUATION

We evaluated the performance of GPU-accelerated join in
terms of the number of computing cores, the size of data
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Fig. 5. Structure of the join phase of HJ.

TABLE 2
CPU and GPU Specification

CPU GPU
clock frequency 3.30GHz 732MHz
core 4 2688
memory 64GB 6GB

sets, and different types of algorithms (i.e.,NIJ, IJ, SIJ, and
HJ). The objective of this evaluation was to measure end-
to-end performance of GPU-accelerated join. We revisit pre-
vious work [2], [6] with state-of-the-art GPUs, and enhance
their results by utilizing multiple generations of GPUs and
multiple types of data sets.

5.1 Experimental Setup
Our experiments were performed on a system with an Intel
(R) Xeon (R) E5–2643 CPU and an NVIDIA Tesla K20Xm
GPU(specifications are shown in Table 2). In addition, we
implemented CPU-oriented join algorithms in two different
ways,i.e., single-threaded and multi-threaded. The multi-
threaded implementation for CPU HJ was implemented in
the same manner as previous work [19], [20].

Each tuple of the experimental tables was constructed
from two 4-byte integer variables, i.e., key and val. In the
basic configuration, the size of tables R and S was the same.
The join condition was defined by R : val = S : val. In
addition, to determine the impact of the rate of the matched
tuples to overall performance, we defined a ”match rate”
parameter, which is calculated as follows: match rate =
number of matched tuples in S/|S|.

The value of val in each tuple is unique in the scope
of each table. By assigning a unique value to each val,
the size of ResultTable, which is described in Table 1,
can be predicted to some extent. First, unique values were
randomly generated in R. In S, to meet the match rate, val’s
value in a specific number of S’s tuples was set to be the
same as that of R’s tuples, while the rest were assigned with
randomly selected values that do not overlap the values of
R’s tuples. After being generated, S’s tuples are randomly
rearranged to ensure that they were not partially sorted.

We investigated the performance of GPU-accelerated
join algorithms and compared to them with each other, as
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well as to CPU-oriented counterparts. We also considered
the impact of table size, match rate, join condition, and GPU
type on the overall performance of the join algorithms. In
addition, we performed our experiments under different
conditions, such as when the data set is initially stored in an
external storage device rather than main memory and when
the join condition is more complicated. The results from
those experiments help us figure out how the performance
of the join algorithms varies under such conditions. In
particular, the NIJ algorithm was tested in the case when
the size of the input tables was extremely large, because
this algorithm is the most time-consuming. In addition, we
address the best split number and partition number for
partitioning in HJ. Finally, we evaluated the performance
of improved memory access.

5.2 Comparison of Algorithms

Each GPU-accelerated join algorithm was compared to the
corresponding CPU multi-threaded join algorithm in terms
of execution time. The number of table tuples was 1M×1M
for NIJ, and 128M×128M for the other algorithms. This is
because GPU memory cannot accommodate memory space
allocated by NIJ with tables larger than 1M×1M. The size of
Rn was set to 1024, and the size of Sm was set to 4096. The
block size was 1024 in IJ, 256 in SIJ, and 16 in HJ. Note
that, in HJ, the number of tuples processed by the Split
algorithm per thread, the number of splits, and the number
of partitions were set to 256, 64, and 2M, respectively.

TABLE 3
Comparison of execution times.

GPU (ms) Multi-threaded CPU (ms) Speedup
NIJ 24863 165843.6 6.67
IJ 1986 1382 0.696
SIJ 6083 57242.2 9.41
HJ 2446 6233.2 2.55

Table 3 shows the execution time of each join algorithm.
Compared to the multi-threaded CPU implementation, the
GPU implementation is 6.67, 9.41, and 2.55 times faster for
NIJ, SIJ, and HJ, respectively.

Note that IJ works better on the CPU than on the GPU
because IJ must transfer significant amount of data between
host memory and device memory in the GPU implemen-
tation. The base of the index also affects performance.
Increasing the base causes the data transmission time to
increase. As a result, the GPU implementation is forced to
use a small base, which allows the CPU implementation to
perform better.

The breakdown of execution time of the GPU implemen-
tation for the join operation is shown in Fig.6. According
to these results, counting the matching tuples and joining
tuples are the most time-consuming operations for NIJ and
SIJ. In particular, the index search requires significant time
with SIJ because random accesses to global memory are
performed frequently. In HJ, most of the operation time
is spent on hashing because this operation includes many
random memory accesses. Consequently, the overhead of
hashing in HJ is significant. The rates of execution time
for uploading, counting matched tuples, and joining in IJ
are approximately the same. Compared to SIJ, the number
of global memory accesses in IJ is relatively small; thus,
the executing kernel in IJ is faster than in SIJ. However, IJ
requires a considerable time to upload a large index. The
result is the domination of the uploading rate of in the
overall execution time with IJ.

5.3 Impact of Table Size

We investigated how the size of the input tables affects the
execution time of join operations. The match rate is fixed at
10%. The experimental result of are shown in Figs. 7, 8, 9,
and 10.

The overhead imposed on algorithms by data commu-
nication has been studied previously [6], [13]. To highlight
the impact of data communication to overall performance of
join algorithms, we added a configuration called ”GPU w/o
com”, which is execution time excluding data communica-
tion for GPU join algorithms.

Because the most optimal values of block size, grid
size, and shared memory size for each algorithm fluctuate
according to table size, we used the most suitable values for
those parameters which were determined experimentally.
The parameters in the following sections were also set by
those values.

Figs. 7, 8, 9, and 10 show change in execution time as
a function of table size. It is evident that each algorithm
exhibits virtually linear execution times.

As can be seen in to Fig. 7, NIJ resulted in the worst
performance when performing joins on 1M×1M tuples. This
may be due to the increase in the amount of shared memory
consumed per block. The experimental results show that
when NIJ was performed on tables with size less than or
equal to 512K tuples, 1024 tuples were stored in shared
memory, and the join operation achieved the best perfor-
mance. When the size of the input tables reached 1M tuples,
due to the limited number of elements that can be scanned,
approximately 4096 tuples were stored in shared memory.
Since the size of each tuple was 8 bytes, the total amount of
shared memory consumed in each block increased from 8
KB with 512K-tuple tables to 32 KB with 1M-tuple tables.
Because shared memory is integrated in each SM, when
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the memory space required for each shared memory area
increases and the number of blocks decreases, the number
of parallel threads decreases. Consequently, the acceleration
rate of NIJ in the case of joining 1M-tuple tables became
slightly less than when joining smaller size tables.

The acceleration rates for IJ and SIJ dropped after peak-
ing with 16M×16M, as shown in Figs. 8 and 9. This was
largely due to the fact that the level of parallelism was too
high for the algorithms to perform parallel execution. In
contrast, for HJ, the acceleration rate increased as the table

1

10

100

1000

10000

100000

1000000

4M*4M 8M*8M 16M*16M 32M*32M 64M*64M 128M*128M

ex
ec

ut
io

n 
tim

e(
m

s)
 

the number of tuples 

GPU

GPU(w/o com)

CPU(multi)

CPU(single)

Fig. 9. Execution time for SIJ as a function of table size.
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Fig. 10. Execution time for HJ as a function of table size.
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Fig. 11. Execution time for NIJ as a function of the match rate.

size increased, as shown in Fig. 10. Although hashing occu-
pies the most execution time for HJ, the overall acceleration
rate increased due to the high acceleration rate of the split
operation.

5.4 Impact of Match Rate
In this experiment, we considered the impact of match rate
on the overall acceleration rate of join algorithms imple-
mented with the GPU. The table size was fixed to 256K
tuples for NIJ and 16M tuples for the other algorithms.
Figs. 11, 12, 13 and 14 show the changes in execution
time as a function of the match rate. When the match rate
changed from 1% to 100%, the execution time increased
approximately 76% for IJ, 41% for SIJ, and 16% for HJ.
However, the change in NIJ was negligible.

Fig. 15 shows the breakdown of execution time when the
match rate varied from 1% to 100%. Because NIJ verifies the
join condition in all pairs of tuples, but only combines pairs
that meet the condition, combining pairs only occupies a
small portion of the overall execution time. Thus, although
the match rate of NIJ changed, it only affects the execution
time of combining matched tuples, which is relatively small
compared to other operations. Therefore, the overall accel-
eration rate of NIJ, did not significantly change when the
match rate changed.

The impact of the match rate on the execution time of IJ
was the most significant among all join algorithms.

In IJ and SIJ, instead of evaluating join predicate on every
pair of rows from tables, the system first performs searching
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Fig. 12. Execution time for IJ as a function of the match rate.
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on the index values of the index table. Since index values
are sorted, we can use some advanced searching methods
like binary search to look for the appropriate tuples. Those
methods require less number of comparison than traditional
sequential search. As the result, searching in IJ and SIJ is
much faster than in NIJ. In contrast, the acceleration rate
of SIJ decreased when the match rate increased. In SIJ, the
operation of searching for an index ends as soon as matched
tuples are found. Note that as the match rate increases, the
fewer searches are performed. However, since all threads in
a warp are synchronized in GPU computation, eventually
the deepest search dominates performance. This leads to a
low acceleration rate when the match rate is high. Finally,

0

200

400

600

800

1000

1200

1% 10% 25% 50% 75% 100%

ex
ec

ut
io

n 
tim

e(
m

s)
 

match rate 

GPU

GPU w/o com

CPU(multi)

CPU(single)

Fig. 14. Execution time for HJ as a function of the match rate.
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in HJ, the acceleration rate dropped slightly due to the
overhead incurred by writing data on the GPU.

5.5 NIJ and HJ with Large Tables

We also evaluated NIJ and HJ when the size of the input
tables exceeded the amount of global GPU memory. We
changed the size of the input tables to 128K, 256K, 512K,
1M, 2M, 4M, 8M, and 16M for NIJ, and to 6M, 32M, 64M,
128M, 256M, 512M and 1G for HJ.

Table 4 shows the results of the NIJ evaluation when
the tables were divided into 1M sub tables. The system
achieved the best performance when the size of each sub-
table was 512K for NIJ and 128M for HJ. The reason for
this improvement in NIJ is that when the size of each sub-
table was 1M, the number of tuples each thread had to
process and the number of threads per block both increased,
compared to the case of 512K sub-tables. Thus, the size
of the writing positions array computed by the Counting
Sort algorithm exceeded the size of global GPU memory;
consequently, the number of tuples each thread had to
process increased. As the amount computation increases the
degree of parallelism decreases, which results in decreased
of overall performance.

TABLE 4
Execution time when Partitioning a Table of 1M Tuples.

Number of table partition 1M 512K*2 256K*4 128K*8
Execution time (ms) 24863 22171 22177 22239

Figure 16 and 17 show the results of experiments with
large tables with NIJ and HJ, respectively. Since large tables
are divided into sub-tables and the sub-tables are joined, the
join process may become slower than the case of one-time
processing. In HJ, when the input table size exceeded 128M,
the growth of processing time increased more quickly than
predicted. However, in NIJ, the growth of processing time
did not change, even when the size of the input tables was
larger than 1M. The reason for this is that when the number
of threads becomes very high, all blocks must wait in a
specific order rather than executing simultaneously. Note
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that this mechanism does not affect the growth of processing
time when sub-tables are joined in NIJ.

5.6 Disk Overhead
To this point, we have assumed that data tables are present
in memory. Here, we consider the condition where data sets
are stored on disk. In this experiment, data were initially
loaded from disk to memory. Then, the join operation was
executed in the same manner as the previous case where
data tables were present in memory. For IJ and SIJ, mea-
surements were made with the index present in memory.
The table size was set to 1M for NIJ and 128M for the
other algorithms. The match rate was set to 10%. The other
parameters were set to the values described in Section 5.2.

Table 5 shows the execution time and speedup achieved
by GPU and CPU multi-threading, with the percentage
of disk read time for GPU-accelerated join. Although the
change for NIJ was negligible due to the small table size
and the significant join execution time, the other algorithms
required approximately 505 ms to read the tables, which is
a 6-35% increase in execution time.

5.7 Comparison of GPUs
All previous experiments were conducted using a K20Xm
GPU. Here, we use a GTX 560Ti and GTX TITAN Black
to compare join performance on diffrent GPUs. The results

TABLE 5
Percentage of Disk Read Overhead for each Algorithm.

GPU join (ms) CPU join (ms) Speedup percentages
non-index 24877 165977 6.67 0%
index 2870 1892 0.659 35%
sort index 6644 65501 9.86 8%
hash 2988 6920 2.32 18%

from a high-end CPU are also provided as a reference.
Table 6 lists the specifications of these two GPUs. Since
the GTX 560Ti does not have sufficient memory space to
perform a one-time join for 1M tables, the input tables were
divided into 256K sub-tables.

TABLE 6
GPU Speciications.

type Clock frequency Cores Memory
560Ti 1645 MHz 384 1 GB
TITAN B 980 MHz 2880 6 GB

The size of the input tables was set to 1M in NIJ and 16M
in other cases, and the match rate was maintained at 10%.
The experimental results are shown in Table7.

The GTX TITAN Black showed the best performance.
However, while the performance of NIJ and HJ on the TI-
TAN Black were 13% and 30% better than the K20m, respec-
tively, those for IJ and SIJ were nearly the same between the
two GPUs. Since IJ and SIJ cannot leverage coalesced GPU
memory access, the speed of reading data from memory is
significantly slow. As a result, the join processing time can-
not be reduced even with the large number of cores on the
GTX TITAN Black. On the other hand, for HJ, as the amount
of computation in the hash process was significant, the GTX
TITAN Black showed high performance. In addition, the
proportion of data transmission in IJ was 30% of the total
processing. The data transmission time was approximately
the same among all GPUs. Taking the percentage of data
transmission time into account, the difference in the overall
join processing time was not very significant among the
tested GPUs.

6 DISCUSSION

In this section, we discuss major factors that appear to be
bottlenecks for performance speedup in GPU-accelerated
joins, i.e., data transmission and memory capacity.

First, impact of data transmission on overall processing
time is non-trivial. The proportions of time for data trans-
mission to the whole join process were 30%, 8%, and 13% for
IJ, SIJ, and HJ, respectively, according to our experimental
results. This is relatively high. The development of GPU
technology would continue with more SM cores and more
memory space. However, as mentioned in Section 5.7, an
improvement in GPU computing capabilities does not con-
tribute to faster data transmission. It is a core challenge for
GPU-accelerated joins to develop a novel way of reducing
data transmission time.

Secondly, the size of global memory and shared memory
is important. As explained in Section 5.5, for HJ, when the
size of the input tables exceeds the size of global memory,
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TABLE 7
Execution time and acceleration rate of GPU-accelerated Join relative to CPU-oriented Join.

CPU (single) CPU (multi) K20Xm 560Ti TITAN Black
NIJ (ms) 2486105 165843 24863 64980 21648
IJ (ms) 465 109 157 261 153
SIJ (ms) 14013 4300 303 730 295
HJ (ms) 1122 565 276 847 198

the processing time increases because the algorithm must
divide tables into multiple sub-tables. Regarding the size of
shared memory, on the other hand, since the current size
of shared memory is 48 KB, each SM can only execute a
small number of blocks. This causes the overall degree of
parallelism to be extremely limited. To improve join perfor-
mance, it is desired to increase parallelism by integrating
more shared memory space to each SM.

Another problem not fully investigated in this paper is
the memory capacity of registers. Our evaluation used syn-
thetic data sets rather than real-world data sets. Since real
data would require much more complex processing, more
local memory may be needed. Each SM has 65,536 registers
at the moment, each of which is represented by 4 bytes.
Considering that each SM can occupy 1024 threads, each
thread can eventually use 256 bytes of local memory at most.
Complex database processing may require more space than
this amount of local memory. We conjecture that 256 bytes
of local memory may be insufficient, and therefore reducing
local memory consumption in join algorithms would be a
key to apply GPU technology for future DBMS engines.

7 CONCLUSION

We have presented the performance characteristics of rela-
tion joins on GPUs. Whereas previous work demonstrated
non-trivial performance improvements using a particular
GPU, this paper assessed improvements across multiple
GPUs with various setup changes, such as the number of
compute threads, size of the data sets, join conditions, and
join algorithms. Our results indicate that NIJ and SIJ are
scalable relative to the number of compute cores, whereas
the performance of IJ and HJ might not improve with
GPUs because IJ and HJ incur data transfer and partitioning
overhead.

The achievable speedup of relational joins obtained by
using GPUs varied relative to the number of compute cores,
the size of data sets, join conditions, and join algorithms. Ac-
cording to our results, the best scenario exhibited speedup
of 6.67 times for NIJ, 0.696 times for IJ, 9.41 times for SIJ,
and 2.55 times for HJ under the condition of equal joins.
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