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Daily Activity Recognition with Large-Scaled Real-Life Recording
Datasets Based on Deep Neural Network Using Multi-Modal Signals
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Tomoki TODA 7D, Members, and Kazuya TAKEDA®, Fellow

SUMMARY  In this study, toward the development of smartphone-based
monitoring system for life logging, we collect over 1,400 hours of data by
recording including both the outdoor and indoor daily activities of 19 sub-
jects, under practical conditions with a smartphone and a small camera.
We then construct a huge human activity database which consists of an
environmental sound signal, triaxial acceleration signals and manually an-
notated activity tags. Using our constructed database, we evaluate the
activity recognition performance of deep neural networks (DNNs), which
have achieved great performance in various fields, and apply DNN-based
adaptation techniques to improve the performance with only a small amount
of subject-specific training data. We experimentally demonstrate that; 1)
the use of multi-modal signal, including environmental sound and triaxial
acceleration signals with a DNN is effective for the improvement of activity
recognition performance, 2) the DNN can discriminate specified activities
from a mixture of ambiguous activities, and 3) DNN-based adaptation meth-
ods are effective even if only a small amount of subject-specific training
data is available.

key words: human activity recognition, activity of daily living, database,
deep neural networks, adaptation

1. Introduction

The goal of human activity recognition (HAR) system is
to identify human activities from observed signals. These
systems have great potential in various applications such
as life logging [1], monitoring the elderly [2], detection of
wandering behavior in dementia patients [3], health care
[4], [5], control systems in automated “smart homes” (light
switches, climate control, etc.) [6], [7], and so on. The mass
marketing of electronic devices with sensing capabilities has
made it possible to easily acquire various types of signals
which can be used to identify the human activity, and as a
result, the field of HAR has been attracting more attention.
HAR can be divided into two main categories: en-
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vironmental augmentation approach and wearable sensing
approach. The first approach, environmental augmentation,
utilizes information collected with sensors embedded in an
environment to recognize subjects’ activities. In the field
of computer vision, cameras have been utilized to detect
subjects’ physical activities [8], [9], or to understand group
activities [10], [11]. On the other hand, in the field of en-
vironmental sound understanding, microphones have been
utilized to identify sound events such as phone ringing, typ-
ing on a keyboard, human speech and so on [12]-[14]. These
approaches allow recognition of various types of activities,
however, there is a limitation of installation location. Fur-
thermore, the use of cameras may subjects uncomfortable
due to lack of privacy. Another approach of environmen-
tal augmentation is based on the use of ubiquitous sensors
such as radio frequency identifier (RFID) tags and switch
sensors [15]-[18]. In these approaches, with the embedding
small sensors to all of the objects in a room, the system can
not only detect the use of objects such as a knife, spoon, and
cups but also recognize complicated human activities such as
making coffee, taking a medicine and washing dishes. How-
ever, they require the embedding of many sensors, making it
very costly. The second approach, wearable sensing, utilizes
information collected with wearable sensors attached to a
subject’s body to recognize activities, especially which have
characteristic motion or sound. Compared to environmental
augmentation approach, wearable sensor approaches gener-
ally involve much lower costs because it does not require the
embedding of many sensors. One of the most typical ap-
proaches is based on the acceleration signals recorded with
wearable devices to recognize the activities such as walking,
running, cycling, going up (or down) the stairs, and on [19]—
[22]. However, it is difficult to recognize the complicated
activities including the use of objects. To address this issue,
some studies have combined various type of sensors such as
an acceleration sensor, gyro sensor, microphone, geomag-
netic sensor [23]-[25].

Recently, with the improvements in deep learning and
the advent of public benchmarking datasets [26], [27], neu-
ral network based approaches to HAR in wearable sensing
have been proposed. In the study [28], feed-forward neural
networks with human-designed features have been utilized,
outperforming conventional classification methods such as
support vector machine (SVM). Other studies have utilized
deep convolutional networks to extract features from ob-
served signals, and long short-term memory (LSTM) recur-
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rent neural networks to capture the temporal dependencies
between activities, achieving great performance without the
use of human-designed features [29], [30]. However, these
approaches were evaluated using a huge database which was
recorded in a sensor-rich environment, with subjects who
attached many sensors to their bodies. The performance un-
der the practical situation, where only limited sensors or a
limited amount of data are available, has not been evaluated.
Moreover, a realistic HAR system must be able to handle un-
known subjects with only a small amount of subject-specific
data. Therefore, it is also necessary to evaluate the perfor-
mance under these conditions.

In this study, toward the development of monitoring sys-
tem for life logging (Fig. 1), we construct a human activity
database and evaluate it using neural network based meth-
ods™. We collect over 1,400 hours of data including both
the outdoor and indoor daily activities of 19 subjects under
practical conditions with a smartphone and a small video
camera, and construct huge human activity database, which
consists of an environmental sound signal, triaxial acceler-
ation signals and manually annotated activity tags. Using
our constructed database, we evaluate the human activity
recognition performance of deep neural networks (DNNG),
and apply DNN-based adaptation techniques to improve the
performance with only a small amount of subject-specific
training data. We experimentally demonstrate the following:

1. the use of multi-modal signal, including environmental
sound and triaxial acceleration signals with a DNN is
effective for the improvement of activity recognition
performance,

TIn comparison to our previous work [31], we here further
investigate the performance of our method under various conditions,
and apply adaptation techniques to handle unknown subjects with
only a small amount of data.
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Fig.1 Overview of our target life-logging system. The system uses a
smartphone to continuously record environmental sound and acceleration
signals, and sends these signals to a server. In the server, subject’s current
activity is automatically recognized by an activity recognition model, and
then recognition results are then sent to the subject’s smartphone. The
subjects can not only view their activity history but also send a feedback to
improve the recognition performance.
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2. the DNN can discriminate specified activities from a
mixture of ambiguous activities,

3. DNN-based adaptation methods are effective even if
only a small amount of subject-specific training data is
available.

2. Nagoya-COI daily Activity Database

In this section we describe the construction of Nagoya Center
Of Innovation (Nagoya-COI) daily activity database.

2.1 Recording Condition

The outline of recording condition of daily activity is shown
in Table 1, and the equipment of subject is shown in Fig. 2.
An accelerated signal is recorded with a smartphone put in
a pocket of rear of subject’s trousers, and an environmental
sound signal and a video are recorded with a small video
camera attached to subject’s shoulder. The recording en-
vironment is a one-room studio apartment. Note that it is
an apartment with a kitchen/dining area and a separate bed-
room. Subjects can freely live in the room, however, they
were asked to lead a well-regularized life so that we could
obtain a variety of activity data from each subject. In other
words, subjects were encouraged to avoid sleeping all day,
watching excessive amounts of television, etc. And in order
to prevent recording errors, subjects were asked not to go
outside alone, but to let an assistant accompany them to help
record their outdoor activities.

2.2 Recorded Data

We recorded 1,400 hours data including both indoor and out-
door activities. We then annotated 300 hours data of indoor

Table 1

Number of subject
Recoding environment
Instruction

Data recording conditions.

1 (long-term) + 18 (short-term)
one-room studio apartment

Lead well-regulated life

Triaxial acceleration signals (200 Hz)
Environmental sound signal (16k Hz)
Video (1280x720, 29.97 fps)

Recorded signals

Smartphone

Fig.2  Recording equipment worn by subjects. Note that the video cam-
era is only for data annotation purposes and is not part of the target system.
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Fig.3  Annotation with ELAN.

Table2 Recorded daily activities.

Activity name | Length [min] | Activity name | Length [min]
Others 3,879 Cleaning 188
Sleeping 2,731 Writing 150
Note-PC 2,252 Cleaning bath 107
Smartphone 1,959 Calling 104
Watching TV 1,873 Tablet 86
Cooking 1,827 Light meal 85
Eating 908 Drying clothes 75
Clearing table 679 Washing 36
Reading 476 ‘Waking 30

Toilet 310 Monologue 5

Tooth brushing 214 Taking a bath 958

activities, and constructed two types of dataset: 1) long-
term, single subject data of 48 hours in length, 2) short-term,
multiple subject data with a total length of 250 hours. The
sampling rates of the recorded acceleration signals and envi-
ronmental sound signals were 200 Hz and 16,000 Hz, respec-
tively. The frame rate of the recorded video was 29.97 fps
and resolution was 1, 280 x 720. The video and environmen-
tal sound signals were synchronized, but the acceleration
signals were not synchronized because a different recording
device was used. Therefore, we synchronized these signals
using recording time information from the video and the time
stamp information of the acceleration signal. Note that the
time stamp information was recorded every sampling, and
therefore, it has enough time resolution to synchronize.

2.3 Annotation

Three people independently annotated the recorded signals
using the recorded video and the ELAN annotation tool [32].
After that, another person checked the annotation. Activity
tags used in the annotation and total duration lengths of the
individual tag are shown in Table 2. Total 21 tags are used
to represent daily activities, and an “Other” tag is used to
represent when a subject’s activity could not be determined
from the video. We tagged all of the activities of our subjects
which could be determined from the recorded video. When
recording the activity of “Sleeping”, the subject wore only
the smartphone and the camera placed on the bedside desk.
Similarly, when recording the activity of “Taking a bath”,
the subject removed all equipment but the equipment was
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placed in the bathroom and continued recording. There were
also situations when subjects conducted multiple activities
simultaneously (e.g., eating lunch while watching TV). In
these situations, we used two types of annotations: a primary
tag to represent the main activity and a secondary tag to
represent a sub-activity. In this study, we assumed that the
activity started first was the primary, and that simultaneous
activities initiated later were secondary. Finally, to simplify
the evaluation experiment, we divided the signals according
to their tags, and then cut them into samples of one minute
in length.

3. Daily Activity Recognition Model

In this section, we describe our Deep Neural Network
(DNN)-based daily activity recognition model and its adap-
tation methods.

3.1 Pre-Processing and Feature Extraction

The acceleration signals recorded using a smartphone in-
cluded pulsive noise signal which were not related to actual
movement, and sometimes the signals lacked consecutive
samples, which were likely caused by inadequate smartphone
processor performance. These factors had a negative influ-
ence on the analysis of our data, therefore, we applied a
median filter to remove pulsive noise signal and conducted
spline interpolation to project signals which were missing
during sampling as pre-processing procedures. After pre-
processing, we divided the environmental sound signal and
the acceleration signal into synchronous frames of equal du-
ration, and extracted the features from each frame. Frame
size and shift size were both 1 second. We extracted three
features from each environmental sound signal frame: 1)
Mel Frequency Cepstral Coefficients (MFCC) + Power + A
+ AA, 2) Root Mean Square (RMS) and 3) Zero-Crossing
Rate (ZCR). We obtained 41-dimensional acoustic features
for each frame. MFCC is a feature which reflects human au-
ral characteristics and is often used for speech recognition,
and its effectiveness has also been confirmed in acoustic
event detection [33]. RMS and ZCR represent volume and
pitch, respectively. We then extracted the following five fea-
tures from each acceleration signal using the X, Y, and Z
axes of each frame: mean, variance, energy, entropy in the
frequency domain, and correlation coefficients, where mean
and variance are defined as the mean and variance of the raw
acceleration signal. The mean represents the orientation of
the smartphone, and is closely related to the user’s posture.
For example, suppose that the smartphone is put in a rear
pocket of the user’s trousers. When the user is standing, the
Y axis acceleration component includes acceleration forces
due to the earth’s gravity. However, when the user is sit-
ting, the Y axis acceleration component omits the effect of
gravity. The variance represents the intensity of a user move-
ment, and is effective for detecting user movement. Energy
E represents the sum of the absolute values of the fast Fourier
transform (FFT) components excluding the DC component,
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Fig.4 Proposed DNN activity classifier.

as expressed by the following equation:
N-1
E= IRl (1
i=1

where F; represents the i-th FFT component of the signal of
each axis. This feature is also effective for detecting user
movement. Entropy in the frequency domain is represented
as follows:

N-1

§=~ ) pli)logp(i), @)

i=1

where p(i) represents the probability distribution derived
from the normalized FFT component using the following
equation:

(€)

This entropy value enables us to discriminate between dif-
ferent activities which have the same intensity. Correlation
coefficient r between two axis is defined for the series data
S1, s of two axis as follows:
F(s1,82) = onS0:52) @
Os, ' O,
where Cov(sy, $p) represents covariance between two vectors
and o represents a standard deviation of vector components.
The correlation coefficients represent the direction of move-
ment of the smartphone, which is related to user movement.
Finally, we concatenated these features extracted from
the sound and acceleration signals and used a total of 56
dimensional features as classifier inputs.

3.2 Activity Classifier

In this study, we use DNNs as an activity classier. DNNs can

not only deal with high dimensional feature vectors reflecting
atime sequence, but can also be trained to automatically con-
vert themselves into discriminative feature vectors through
lamination of their hidden layers.

In this study, we evaluate two types of DNNs: 1) an
ensemble model which integrates the outputs of the acoustic
and acceleration feature models, and 2) an integrated model
which utilizes acoustic and acceleration features as an input
feature vector. The structures of these DNNs are shown in
Fig.4. The outputs of ensemble model Pepsempie(c|X) are
calculated as follows:

Pensemble (¢ | X) = Py(c | Xacoustic)wP2(C | Xacc)l_w’ (5)

where Pi(c | Xacoustic) and Pr(c | Xuec) are outputs of the
acoustic feature model and the acceleration feature model,
respectively, ¢ is an index of activity class, w is a weight
coefficient between the acoustic feature model and the ac-
celeration feature model, and Xacoustic, Xacc,» and X are the
acoustic feature vector, the acceleration feature vector, and
the concatenated feature vector, respectively. The networks
consist of 3 hidden layers with 2,048 hidden nodes, and a
sigmoid function is used as an activation function. The num-
ber of nodes in the input layer corresponds to the dimensions
of the input feature vector, and the number of nodes of the
output layer corresponds to the number of target activity
classes.

The training procedure is as follows. First, we concate-
nate the features of 11 frames, which included a center frame,
the 5 preceding frames and the 5 succeeding frames, utiliz-
ing a key property of DNNs which is the ability to deal with
large numbers of dimensional feature vectors. Second, we
normalize the concatenated features using all of the training
data, making the mean and the variance of each dimension
0 and 1, respectively. Third, we pre-train the DNN using
greedy learning with a denoising auto encoder (DAE), in
order to appropriately set the initial parameters of the DNN
using the normalized, concatenated features. When training
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Fig.5 Outline of adaptation methods.

the DAE, we add Gaussian noise with a variance of 0.1 to
the input vectors. Finally, we train the DNN by fine-tuning
with back-propagation using annotation data. During the
fine-tuning phase, we use the Adam optimization method
[34] and dropout [35] with a fixed learning rate of 5e — 4.

3.3 Adaptation Methods

To achieve better activity recognition performance, we need
to build a customized model for each user. However, it is
difficult to collect sufficient data for each user, and building
the model requires annotation of all the data. Therefore,
we utilize an adaptation technique used in the field of speech
recognition, which enables to fit a trained model for a specific
user even if only a small amount of subject-specific training
data is available.

We use three types of adaptation methods whose effec-
tiveness has been confirmed in the field of speech recognition
[36], [37]. The first adaptation method is to train all of the
layers of the DNN. When using this approach, we use the
parameters of the subject independent model as the initial pa-
rameters, and then re-train the network using subject-specific
data for adaptation. If the amount of subject-specific data
used for adaptation is small, the network will tend to over-
fit, therefore we need to determine a suitable regularization
coefficient.

The second adaptation method is to re-train only a spe-
cific layer with subject-specific data, which is selected as a
subject adaptation layer [36]. A diagram of this method is
shown in Fig. 5(a). The adaptation is performed as follows:

argmin  E(A, WO, BO)+ £ (IWO-WD |24 BO-bD|2),  (6)
(WD, By

where [ is the index of the adaptation layer, W and b rep-
resent the weight and bias parameters before re-training, re-
spectively, W and b represent the weight and bias parameters
after re-training, respectively, A represents all of the network
parameters, and S is a regularization coefficient. The first
term represents the error function of the network, and the
second term represents a regularization term which prevents
leaving too much in common with the original parameters.
The third adaptation method is embedding the linear
transformation network (LTN embedding) [37]. A diagram

of this method is shown in Fig. 5(b). A linear transformation
layer is inserted before a specific layer and only the linear
transformation layer is re-trained. When inserting the linear
transformation layer, its weight parameters A and its bias
parameters a are initialized as an identity matrix and a zero
vector, respectively. The optimization is conducted based on
the following equation:

ar(ﬁm)in EAA2)+5 (JIA-T12+[1a-0] ), 7
,a

where A represents all of the network parameters, and S is a
regularization coefficient. The first term represents the error
function of the network, and the second term represents a
regularization term which prevents leaving too much data
from the identity matrix and zero vector. Note that the third
adaptation method, LTN embedding, has a strong restriction
compared to the second adaptation method.

4. Experimental Evaluation

We conducted experiments to evaluate the performance of
our proposed activity recognition model using the Nagoya-
COI daily activity database described in Sect. 2.

4.1 Subject-Closed Experiment

First, we conducted a subject-closed experiment in which
the same subject’s data was used in both the training and test
phases, the results of which will represent the performance
under the condition where a large amount of subject-specific
data can be prepared in advance. The target activities are
shown in Table 3, where the numbers in brackets represent
the length of the recorded data in minutes. For this exper-
iment we used a long-term, single person dataset, and the
most frequently observed nine activities were used as the
target activities, while all of the remaining activities were
used as non-target activity. When multiple activities were
occurring simultaneously, we only focused on the primary
tag for that sample, i.e., the main activity. A data segment of
60 seconds in length was regarded as one sample, and data
segments of less than 60 seconds in length were not used for
the experiment.

The experiment was conducted as follows: 1) randomly
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Table 3  Target activities in subject-closed experiment.
Tag [ Length [min] [ Tag Length [min]
Cleaning 39 Sleeping 1,257
Cooking 108 Smartphone 198
Meal 120 Toilet 61
Note-PC 141 Watching-TV 109
Reading 164 Other 582

select 10 samples from each activity data set as test data; 2)
train the network using the remaining data as training data;
3) evaluate performance for the model using the selected test
data; 4) repeat steps 1-3 ten times. In order to evaluate sev-
eral different models fairly, the test data selected to evaluate
the first model was also used to evaluate the other models.
We used the average F measure for an activity tag as the eval-
uation criterion, and all of the DNNs were trained using the
open source toolkit Torch7 [38] with a single GPU (Nvidia
GTX 980).

4.1.1 Effectiveness of Multi-Modal Signals

To confirm the effectiveness of using multi-modal signals,
we compared the performance of the following four models
using nine types of target activities:

1. Acceleration feature model (Only Acceleration)
2. Acoustic feature model (Only Acoustic)

3. Ensemble model (Ensemble)

4. Integrated model (Integration)

All of these models have the same DNN structure with the
exception of the input layer. Weight coefficient w in Eq. (5)
was set at 0.75, which was determined experimentally in
order to maximize performance.

The experimental result is shown in Fig. 6. Frame rep-
resents frame F measure at the level of the frame unit. Sam-
ple represents sample F measure obtained using the majority
of the frame recognition results in each sample. When we
compare the performance of the single signal models and the
multi-modal signal models, we can see that the multi-modal
signal models achieved better performance. Therefore, we
can say that the use of multi-modal signals is more effec-
tive for activity recognition. Second, when we compare the
performance of the ensemble and integrated models, we can
see that the integrated model achieved better performance.
This is because the DNN could extract discriminative fea-
tures using both acceleration features and acoustic features
as inputs.

Based on these results, we used the integrated model as
DNN in subsequent experiments.

4.1.2 Comparison with Conventional Models

Next, we compared our integrated DNN model with the
following four conventional methods:

1. k-Nearest Neighbor (KNN)
2. Gaussian Mixture Model (GMM)

IEICE TRANS. FUNDAMENTALS, VOL.E101-A, NO.1 JANUARY 2018
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Fig.7 Comparison of proposed DNN model with other conventional
methods.

3. Decision Tree (Tree)
4. Support Vector Machine (SVM)

K in the KNN method was 5, the number of mixtures in the
GMM was 10, the kernel function of the SVM was an RBF
kernel, and the type of SVM is one-versus-one. The SVM
was trained using 1ibSVM [39]. These hyper-parameters
were determined through preliminary experiments, and all
of these models were trained using the same feature vector,
which consisted of both acceleration and acoustic features.
We assumed that our target system also receives signals of
an ambiguous activity which is difficult to determine, there-
fore, we evaluated performance under two conditions: 1) the
activity “Other” is not added to target activities (w/o other),
and 2) the activity “Other” is added to target activities (w/
other).

Experimental results are shown in Fig. 7. We can see
that the DNN-based integrated model performed signifi-
cantly better than the conventional methods, especially when
the activity “Ohter” is added to target activities. The perfor-
mance of conventional methods such as decision tree or SVM
decreased by about 10 points when the activity “Other” was
added. This is because the “Other” data is widely distributed
and significantly overlapped with the other data in the feature
space, and therefore, it is basically difficult to determine the
complicated hyperplane. On the other hand, the proposed
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DNN-based model maintained its recognition performance
when the “Other” was added. This result implies that the
DNN can relatively well model such a complicated hyper-
plane. A visualization of third hidden layer outputs using
t-SNE [40] is shown in Fig. 8. We can see that each activity
data is distributed separately in the manifold space. This
result supports our hypothesis that DNN can model the com-
plicated hyperplane through the conversion to discriminative
features using multiple hidden layers.

4.2 Subject-Open Experiment

Next, we conducted a subject-open experiment where the
data of different subjects was used in the training and test
phases. This experiment evaluates performance when we
cannot prepare subject-specific data in advance, and is an
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important indicator of viability in practical use. For this
experiment we used a short-term, multiple-subject dataset,
and the target activities are shown in Table 4. The experiment
was conducted using leave-one-subject-out validation, where
one subject’s data is used as test data, and the remaining data
of the other subjects is used as training data.

The experimental results are shown in Fig.9 and Ta-
ble 5. From these results we can see that performance in the
subject-open evaluation is much lower than in the subject-
closed experiment, especially for the activities of “Reading”,
“Note-PC” and “Smartphone”, for which the model achieved
recognition performance of less than 20 points. There are
two reasons for the poor recognition performance for these
activities. First, each subject has a very different way of per-
forming these tasks, i.e., there are large differences in subject
behavior, even when they are performing the same activity.
Examples are shown in Fig. 10, where signals for the activity
“Smartphone” are shown for two different subjects. From

150 . L .
« Cleaning the figures, we can see that there is a big difference in the
* f/l"e‘;lfmg recorded signals for each subject as they perform the same
100 od® Note-PC activity. Another examples are shown in Fig. 11. In this
é §o Is{l‘?e‘:)‘i‘l‘é comparison, one subject’s manner of “Reading” is similar to
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Fig.8  Visualization of third hidden layer outputs using t-SNE. =
= 20+ ]
Table4  Target activities in subject-open experiment.
Tag [ Length [min] [ Tag [ Length [min] 10+ |
Cleaning 679 Sleeping 2,731
Cooking 1,826 Smartphone 1,959
Meal 908 Toilet 310 123456789101112131415161718
Note-PC 2,252 Watching-TV 1,873 Subject index number
Reading 476 . .
Fig.9  Leave-one-subject-out result.
Table 5 Confusion matrix of subject-open experiment. Diagonal elements represent recall, that of
the right end column represent precision, and that of the lower end row represent F measure.

Recall H Cleaning Cooking Meal Note-PC Reading Sleeping Smartphone Toilet Watching-TV H Precision
Cleaning 69.2 28.4 0.9 0.1 0.0 0.0 0.6 0.7 0.0 41.9
Cooking 31.3 64.0 0.5 0.5 0.2 0.8 0.2 22 0.3 74.6

Meal 1.0 6.1 559 12.6 1.2 3.1 42 32 12.8 443
Note-PC 0.3 1.7 10.7 222 15.4 16.4 5.6 32 24.5 40.7
Reading 0.4 1.9 9.0 13.9 6.7 19.1 8.0 21.8 19.1 39
Sleeping 0.0 0.0 0.2 8.1 7.3 66.8 7.9 4.8 4.9 64.9

Smartphone 1.0 1.5 8.2 10.5 3.9 17.8 16.7 4.7 35.7 32.6
Toilet 10.3 15.5 1.3 2.6 39 8.7 0.3 54.8 2.6 24.4
Watching-TV 0.5 12 9.1 5.6 7.3 5.8 132 2.8 54.4 38.8
Fmeasure || 522 68.9 495 28.8 49 65.8 2.1 337 453 [ a2
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Fig.10  Example of recorded signals of the activity “Smartphone” for
two different subjects. The left figure represents a spectrogram of sound
signal, and the right figure represents the recorded acceleration signals.

ject reads while lying on a bed. In addition, such activities
do not tend to emit frequent, characteristic sounds, making
them harder to detect. A second reason is the lack of uni-
form orientation of the smartphone in the rear pockets of the
subjects’ trousers. Subjects were instructed how to attach
the smartphone in their pockets, but some subjects were not
careful about the orientation of the smartphone. To inves-
tigate this problem in more detail, we extracted data when
the subject was standing without making any movements,
and divided the rotation of smartphone in the rear pocket
into four patterns with the mean of acceleration signals. The
results are shown in Fig. 12, where each axis represents the
axis of the noted acceleration signals as recorded by the
smartphone in each of the possible orientations, and where
the percentages represent the proportion of subjects who po-
sitioned their phone in each orientation. From these results,
we can confirm that subjects were not careful about the ori-
entation of the smartphone, and that even if subjects perform
the same activity in the same manner, recorded accelera-
tion signals will be very different if the smartphone is not
in the same position. Therefore, it is necessary to perform
a pre-processing to estimate the actual orientation of smart-
phone, or extract the new feature which is independent of the
orientation of the smartphone.

4.3 Adaptation Experiment

Finally, we conducted an adaptation experiment to see if we
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(b) Example of the activity “Sleeping”.

Fig.11  Example of recorded signals of the activities “Reading” and
“Sleeping” for two different subjects. The left figure represents a spec-
trogram of sound signal, and the right figure represents the recorded accel-
eration signals.
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Fig.12  Analysis of smartphone rotation in the rear pocket.

could improve activity recognition performance with only a
small amount of subject-specific data. To confirm the effec-
tiveness of the adaptations, we compared performance after
adaptation with performance when the model is constructed
using arandom initialization. Itis expected that performance
when using the adaptations will be better than when using
a random initialization if the adaptation methods are effec-
tive. The adaptation experiment was conducted as follows:
1) build the subject-independent model using a short-term,
multiple-subject dataset as training data; 2) randomly select
adaptation samples for each activity class from a long-term,
single-subject dataset; 3) apply an adaptation method to the
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subject-independent model using selected samples; 4) evalu-
ate performance using test data selected in the subject-closed
experiment; 5) repeat steps 2-4 while increasing the num-
ber of adaptation samples. In this experiment, we selected
N = {1,2,3,...,25} samples from each activity class for
adaptation, 10 samples from each activity class for test data,
and repeated these steps ten times. When we applied the sec-
ond adaptation method, re-training only a specific layer, we
selected the second hidden layer as the adaptation layer, and
set the regularization coefficient in Eq. (6) to 1e — 6. When
we applied the third adaptation method, LTN embedding, we
inserted a linear transformation layer before the second hid-
den layer, and set the regularization coefficient in Eq. (7) to
5e—6. These adaptation layer and regularization coefficients
were determined through preliminary experiments.
Experimental results are shown in Fig. 13. We can see
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Fig.13  Class average performance using various adaptation methods and

different numbers of samples.
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that performance when using the adaptation methods is bet-
ter than when using random initialization. This result shows
that all of the adaptation methods are effective even if only a
small amount of subject-specific training data is available. In
Fig. 13, when the number of adaptation samples is from one
to ten, there is no difference in performance between these
adaptation methods. However, when the number of adapta-
tion samples is more than ten, performance with re-training
only a specific layer tend to become saturated. Hence, it
is better to use other adaptation methods if we can prepare
adaptation data more than ten. There is no significant dif-
ference between performance using all layer re-training and
when using LTN embedding, however, the number of param-
eters to keep for each subject are significantly fewer when
using LTN embedding than when using all layer re-training.
Therefore, we can say that LTN embedding is a suitable adap-
tation method in terms of not only improving performance,
but also requiring limited computational resources.

Finally, the change in classwise performance is shown
in Fig. 14, where the graph on the left represents change in
the activity recognition rate when using random initializa-
tion, and the graph on the right represents that when using
LTN embedding as an adaptation method. By comparing
these results, we can see that the adaptation method is effec-
tive for improving accuracy of most of the activities, but not
for activities such as “Sleeping”, “Note-PC”, and “Smart-
phone”. For “Sleeping” and “Note-PC”, even if we use a
random initialization the performance is nearly 90 points,
therefore there is little room for improvement using an adap-
tation method. Recognition performance for “Smartphone”
was poor even when an adaptation method was used. One
reason for this poor performance is that there was a great
deal of inconsistency in the manner in which subjects used
their smartphones (See the example in Fig. 10). Therefore,
using other subject’s data have no advantage to recognize the
activity “Smartphone”.
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5. Conclusion

In this study, toward the development of smartphone-based
monitoring system for life logging, we collected over 1,400
hours data including both outdoor and indoor daily activi-
ties of 19 subjects in a practical situation with a smartphone
and small camera, and then constructed huge daily activity
database which consists of an environmental sound signal,
triaxial acceleration signals, and manually annotated tags.
We evaluated the activity recognition performance of DNN-
based methods using our constructed database, and apply
DNN-based adaptation methods to improve the performance
even if only a small amount of subject-specific data is avail-
able. We experimentally demonstrated that the use of multi-
modal including an environmental sound and triaxial accel-
eration signals with DNN is effective for the improvement of
performance, and DNN can discriminate specified activities
from a mixture of unspecified activities. Furthermore, we
confirmed that DNN-based adaptation method is effective
even if only a small amount of subject-specific training data
is available.

In future works, we will expand the focus of the pro-
posed model to recognize not only indoor but also outdoor ac-
tivities. We will also investigate a method of pre-processing
which would allow us to compensate for differences in the
orientation of the smartphone used to monitor acceleration.

Acknowledgements

This research is partially supported by the Center of In-
novation Program (Nagoya-COI) from Japan Science and
Technology Agency.

References

[1] C. Gurrin, A.F. Smeaton, and A.R. Doherty, “Lifelogging: Personal
big data,” Foundations and Trends® in Information Retrieval, vol.8,
no.1, pp.1-125, 2014.

[2] M.P. Rajasekaran, S. Radhakrishnan, and P. Subbaraj, “Elderly
patient monitoring system using a wireless sensor network,”
Telemedicine and e-Health, vol.15, no.1, pp.73-79, 2009.

[3] Q.Lin, D.Zhang, X. Huang, H. Ni, and X. Zhou, “Detecting wander-
ing behavior based on GPS traces for elders with dementia,” Control
Automation Robotics Vision, pp.672-677, IEEE, 2012.

[4] Y.T.Peng, C.Y.Lin, M.T. Sun, and K.C. Tsai, “Healthcare audio event
classification using hidden Markov models and hierarchical hidden
Markov models,” IEEE International Conference on Multimedia and
Expo, pp.1218-1221, IEEE, 2009.

[5] Y. Liang, X. Zhou, Z. Yu, and B. Guo, “Energy-efficient motion
related activity recognition on mobile devices for pervasive health-
care,” Mobile Networks and Applications, vol.19, no.3, pp.303-317,
2014.

[6] D. Valtchev and I. Frankov, “Service gateway architecture for a smart
home,” IEEE Commun. Mag., vol.40, no.4, pp.126—132, 2002.

[7] P.Rashidiand D.J. Cook, “Keeping the resident in the loop: Adapting
the smart home to the user,” IEEE Trans. Syst., Man, Cybern. A, Syst.
Humans, vol.39, no.5, pp.949-959, 2009.

[8] C. Zhang and Y. Tian, “RGB-D camera-based daily living activity
recognition,” J. Computer Vision and Image Processing, vol.2, no.4,
p.12,2012.

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

IEICE TRANS. FUNDAMENTALS, VOL.E101-A, NO.1 JANUARY 2018

A. Tosifidis, A. Tefas, and I. Pitas, “View-invariant action recogni-
tion based on artificial neural networks,” IEEE Trans. Neural Netw.
Learning Syst., vol.23, no.3, pp.412-424, 2012.

Z. Deng, A. Vahdat, H. Hu, and G. Mori, “Structure inference ma-
chines: Recurrent neural networks for analyzing relations in group
activity recognition,” IEEE Conference on Computer Vision and
Pattern Recognition, pp.4772-4781, IEEE, 2016.

M.S. Ibrahim, S. Muralidharan, Z. Deng, A. Vahdat, and G. Mori,
“A hierarchical deep temporal model for group activity recogni-
tion,” IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp.1971-1980, IEEE, 2016.

T. Heittola, A. Mesaros, A. Eronen, and T. Virtanen, “Context-
dependent sound event detection,” EURASIP Journal on Audio,
Speech, and Music Processing, vol.2013, no.1, pp.1-13, 2013.

T. Komatsu, T. Toizumi, R. Kondo, and Y. Senda, “Acoustic event
detection method using semi-supervised non-negative matrix fac-
torization with mixtures of local dictionaries,” Proc. Detection and
Classification of Acoustic Scenes and Events 2016 Workshop, pp.45—
49, September 2016.

T. Hayashi, S. Watanabe, T. Toda, T. Hori, J. Le Roux, and K.
Takeda, “BLSTM-HMM hybrid system combined with sound activ-
ity detection network for polyphonic sound event detection,” IEEE
International Conference on Acoustics, Speech and Signal Process-
ing, pp.766-770, IEEE, 2017.

D.J. Patterson, D. Fox, H. Kautz, and M. Philipose, “Fine-grained
activity recognition by aggregating abstract object usage,” IEEE In-
ternational Symposium on Wearable Computers, pp.44-51, IEEE,
2005.

J. Wu, A. Osuntogun, T. Choudhury, M. Philipose, and J.M. Rehg,
“A scalable approach to activity recognition based on object use,”
IEEE International Conference on Computer Vision, pp.1-8, IEEE,
2007.

M. Philipose, K.P. Fishkin, M. Perkowitz, D.J. Patterson, D. Fox, H.
Kautz, and D. Hahnel, “Inferring activities from interactions with
objects,” IEEE Pervasive Comput., vol.3, no.4, pp.50-57, 2004.

A. Fleury, M. Vacher, and N. Noury, “SVM-based multimodal clas-
sification of activities of daily living in health smart homes: Sensors,
algorithms, and first experimental results,” IEEE Trans. Inf. Technol.
Biomed., vol.14, no.2, pp.274-283, 2010.

J.R. Kwapisz, G.M. Weiss, and S.A. Moore, “Activity recogni-
tion using cell phone accelerometers,” ACM SigKDD Explorations
Newsletter, vol.12, no.2, pp.74-82, 2011.

J. Lester, T. Choudhury, N. Kern, G. Borriello, and B. Hannaford,
“A hybrid discriminative/generative approach for modeling human
activities,” 2005.

L. Bao and S.S. Intille, “Activity recognition from user-annotated ac-
celeration data,” International Conference on Pervasive Computing,
pp.1-17, Springer, 2004.

T. Huynh and B. Schiele, “Towards less supervision in activity recog-
nition from wearable sensors,” IEEE International Symposium on
Wearable Computers, pp.3—10, IEEE, 2006.

P. Lukowicz, J.A. Ward, H. Junker, M. Stiger, G. Troster, A. Atrash,
and T. Starner, “Recognizing workshop activity using body worn
microphones and accelerometers,” International Conference on Per-
vasive Computing, pp.18-32, Springer, 2004.

K. Ouchi and M. Doi, “Smartphone-based monitoring system for
activities of daily living for elderly people and their relatives etc.,”
ACM Conference on Pervasive and Ubiquitous Computing Adjunct
Publication, pp.103—-106, ACM, 2013.

T. Maekawa, Y. Yanagisawa, Y. Kishino, K. Ishiguro, K. Kamei, Y.
Sakurai, and T. Okadome, “Object-based activity recognition with
heterogeneous sensors on wrist,” International Conference on Perva-
sive Computing, pp.246-264, Springer, 2010.

A.Reiss and D. Stricker, “Introducing a new benchmarked dataset for
activity monitoring,” International Symposium on Wearable Com-
puters, pp.108-109, IEEE, 2012.

R. Chavarriaga, H. Sagha, A. Calatroni, S.T. Digumarti, G. Troster,


http://dx.doi.org/10.1561/1500000033
http://dx.doi.org/10.1561/1500000033
http://dx.doi.org/10.1561/1500000033
http://dx.doi.org/10.1089/tmj.2008.0056
http://dx.doi.org/10.1089/tmj.2008.0056
http://dx.doi.org/10.1089/tmj.2008.0056
http://dx.doi.org/10.1109/icarcv.2012.6485238
http://dx.doi.org/10.1109/icarcv.2012.6485238
http://dx.doi.org/10.1109/icarcv.2012.6485238
http://dx.doi.org/10.1109/icme.2009.5202720
http://dx.doi.org/10.1109/icme.2009.5202720
http://dx.doi.org/10.1109/icme.2009.5202720
http://dx.doi.org/10.1109/icme.2009.5202720
http://dx.doi.org/10.1007/s11036-013-0448-9
http://dx.doi.org/10.1007/s11036-013-0448-9
http://dx.doi.org/10.1007/s11036-013-0448-9
http://dx.doi.org/10.1007/s11036-013-0448-9
http://dx.doi.org/10.1109/35.995862
http://dx.doi.org/10.1109/35.995862
http://dx.doi.org/10.1109/tsmca.2009.2025137
http://dx.doi.org/10.1109/tsmca.2009.2025137
http://dx.doi.org/10.1109/tsmca.2009.2025137
http://media-lab.ccny.cuny.edu/wordpress/Publications/NWPJ-201209-15-CameraReady.pdf
http://media-lab.ccny.cuny.edu/wordpress/Publications/NWPJ-201209-15-CameraReady.pdf
http://media-lab.ccny.cuny.edu/wordpress/Publications/NWPJ-201209-15-CameraReady.pdf
http://dx.doi.org/10.1109/tnnls.2011.2181865
http://dx.doi.org/10.1109/tnnls.2011.2181865
http://dx.doi.org/10.1109/tnnls.2011.2181865
http://dx.doi.org/10.1109/cvpr.2016.516
http://dx.doi.org/10.1109/cvpr.2016.516
http://dx.doi.org/10.1109/cvpr.2016.516
http://dx.doi.org/10.1109/cvpr.2016.516
http://dx.doi.org/10.1109/cvpr.2016.217
http://dx.doi.org/10.1109/cvpr.2016.217
http://dx.doi.org/10.1109/cvpr.2016.217
http://dx.doi.org/10.1109/cvpr.2016.217
http://dx.doi.org/10.1186/1687-4722-2013-1
http://dx.doi.org/10.1186/1687-4722-2013-1
http://dx.doi.org/10.1186/1687-4722-2013-1
http://www.cs.tut.fi/sgn/arg/dcase2016/documents/challenge_technical_reports/DCASE2016_Komatsu_2004.pdf
http://www.cs.tut.fi/sgn/arg/dcase2016/documents/challenge_technical_reports/DCASE2016_Komatsu_2004.pdf
http://www.cs.tut.fi/sgn/arg/dcase2016/documents/challenge_technical_reports/DCASE2016_Komatsu_2004.pdf
http://www.cs.tut.fi/sgn/arg/dcase2016/documents/challenge_technical_reports/DCASE2016_Komatsu_2004.pdf
http://www.cs.tut.fi/sgn/arg/dcase2016/documents/challenge_technical_reports/DCASE2016_Komatsu_2004.pdf
http://dx.doi.org/10.1109/icassp.2017.7952259
http://dx.doi.org/10.1109/icassp.2017.7952259
http://dx.doi.org/10.1109/icassp.2017.7952259
http://dx.doi.org/10.1109/icassp.2017.7952259
http://dx.doi.org/10.1109/icassp.2017.7952259
http://dx.doi.org/10.1109/iswc.2005.22
http://dx.doi.org/10.1109/iswc.2005.22
http://dx.doi.org/10.1109/iswc.2005.22
http://dx.doi.org/10.1109/iswc.2005.22
http://dx.doi.org/10.1109/iccv.2007.4408865
http://dx.doi.org/10.1109/iccv.2007.4408865
http://dx.doi.org/10.1109/iccv.2007.4408865
http://dx.doi.org/10.1109/iccv.2007.4408865
http://dx.doi.org/10.1109/mprv.2004.7
http://dx.doi.org/10.1109/mprv.2004.7
http://dx.doi.org/10.1109/mprv.2004.7
http://dx.doi.org/10.1109/titb.2009.2037317
http://dx.doi.org/10.1109/titb.2009.2037317
http://dx.doi.org/10.1109/titb.2009.2037317
http://dx.doi.org/10.1109/titb.2009.2037317
http://dx.doi.org/10.1145/1964897.1964918
http://dx.doi.org/10.1145/1964897.1964918
http://dx.doi.org/10.1145/1964897.1964918
https://dl.acm.org/citation.cfm?id=1642416
https://dl.acm.org/citation.cfm?id=1642416
https://dl.acm.org/citation.cfm?id=1642416
http://dx.doi.org/10.1007/978-3-540-24646-6_1
http://dx.doi.org/10.1007/978-3-540-24646-6_1
http://dx.doi.org/10.1007/978-3-540-24646-6_1
http://dx.doi.org/10.1109/iswc.2006.286336
http://dx.doi.org/10.1109/iswc.2006.286336
http://dx.doi.org/10.1109/iswc.2006.286336
http://dx.doi.org/10.1007/978-3-540-24646-6_2
http://dx.doi.org/10.1007/978-3-540-24646-6_2
http://dx.doi.org/10.1007/978-3-540-24646-6_2
http://dx.doi.org/10.1007/978-3-540-24646-6_2
http://dx.doi.org/10.1145/2494091.2494120
http://dx.doi.org/10.1145/2494091.2494120
http://dx.doi.org/10.1145/2494091.2494120
http://dx.doi.org/10.1145/2494091.2494120
http://dx.doi.org/10.1007/978-3-642-12654-3_15
http://dx.doi.org/10.1007/978-3-642-12654-3_15
http://dx.doi.org/10.1007/978-3-642-12654-3_15
http://dx.doi.org/10.1007/978-3-642-12654-3_15
http://dx.doi.org/10.1109/iswc.2012.13
http://dx.doi.org/10.1109/iswc.2012.13
http://dx.doi.org/10.1109/iswc.2012.13
http://dx.doi.org/10.1016/j.patrec.2012.12.014

HAYASHI et al.: DAILY ACTIVITY RECOGNITION WITH LARGE-SCALED REAL-LIFE RECORDING DATASETS BASED ON DNN USING MULTI-MODAL SIGNALS

[28]

[29]

(30]

(31]

[32]

[33]

[34]

[35]

[36]

(371

[38]

[39]

[40]

J.d.R. Millan, and D. Roggen, “The opportunity challenge: A bench-
mark database for on-body sensor-based activity recognition,” Pat-
tern Recog. Lett., vol.34, no.15, pp.2033-2042, 2013.

H. Guo, L. Chen, L. Peng, and G. Chen, “Wearable sensor based
multimodal human activity recognition exploiting the diversity of
classifier ensemble,” ACM International Joint Conference on Perva-
sive and Ubiquitous Computing, pp.1112-1123, ACM, 2016.

F.J. Ordéfiez and D. Roggen, “Deep convolutional and Istm recur-
rent neural networks for multimodal wearable activity recognition,”
Sensors, vol.16, no.1, p.115, 2016.

N.Y. Hammerla, S. Halloran, and T. Ploetz, “Deep, convolutional,
and recurrent models for human activity recognition using wear-
ables,” arXiv preprint arXiv:1604.08880, 2016.

T. Hayashi, M. Nishida, N. Kitaoka, and K. Takeda, “Daily activity
recognition based on dnn using environmental sound and acceleration
signals,” European Signal Processing Conference, pp.2306-2310,
IEEE, 2015.

“ELAN-Linguistic Annotator,” http://www.mpi.nl/corpus/html/elan
T. Heittola, A. Mesaros, A. Eronen, and T. Virtanen, “Context-
dependent sound event detection,” EURASIP Journal on Audio,
Speech, and Music Processing, vol.2013, no.1, pp.1-13, 2013.

D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R.R. Salakhutdinov, “Improving neural networks by preventing co-
adaptation of feature detectors,” arXiv preprint arXiv:1207.0580,
2012.

T. Ochiai, S. Matsuda, X. Lu, C. Hori, and S. Katagiri, “Speaker
adaptive training using deep neural networks,” IEEE International
Conference on Acoustics, Speech and Signal Processing, pp.6349—
6353, IEEE, 2014.

T. Ochiai, S. Matsuda, H. Watanabe, X. Lu, C. Hori, and S. Katagiri,
“Speaker adaptive training for deep neural networks embedding lin-
ear transformation networks,” IEEE International Conference on
Acoustics, Speech and Signal Processing, pp.4605-4609, IEEE,
2015.

“Torch 7]|A Scientific Computing Framework for Luajit,”
http://torch.ch/

C.C. Chang and C.J. Lin, “LIBSVM: A library for support vector
machines,” ACM Trans. Intell. Syst. Technol., vol.2, no.3, p.27,2011.
L.v.d. Maaten and G. Hinton, “Visualizing data using t-SNE,” J.
Machine Learning Research, vol.9, no.Nov, pp.2579-2605, 2008.

Tomoki Hayashi received his B.E. degree
in engineering and M.E. degree in information
science from Nagoya University, Japan, in 2013
and 2015, respectively. He is currently a Ph.D.
student at the Nagoya University. His research
interest include statistical speech and audio sig-
nal processing. He received the Acoustical So-
ciety of Japan 2014 Student Presentation Award.
He is a student member of the Acoustical Society
of Japan, and a student member of the IEEE.

209

Maasfumi Nishida Masafumi Nishida re-
ceived a B.E. in 1997, an MLE. in 1999, and a
Ph.D. in 2002, all in Electronics and Informatics,
and all from Ryukoku University, Shiga, Japan.
From 2002 to 2003, he was a post-doctoral re-
searcher at PRESTO, Japan Science and Tech-
nology Corporation. In 2003, he became a Re-
search Associate at the Department of Informa-
tion Science, Chiba University. From 2007 to
2008, he was an Assistant Professor at the Grad-
uate School of Advanced Integration Science,
Chiba University. From 2009 to 2013, he was an Associate Professor at the
Department of Information Systems Design, Doshisha University. In 2014,
he was an Designated Associate Professor at the Institute of Innovation for
Future Society, Nagoya University. Currently, he is an Associate Profes-
sor at the Department of Informatics, Shizuoka University. His research
interests include speech recognition, speaker recognition, spoken dialogue
systems, well-being information technology, and behavior signal process-
ing. He received the 2011 Yamashita SIG Research Award from IPSJ. He
is a member of the IEICE, the IPSJ, the ASJ and the JSAI.

Norihide Kitaoka received his B.S. and
M.S. degrees from Kyoto University. In 1994,
he joined DENSO CORPORATION. In 2000, he
received his Ph.D. degree from Toyohashi Uni-
versity of Technology (TUT). He joined TUT as
a research associate in 2001 and was a lecturer
from 2003 to 2006. He became an associate pro-
fessor in Nagoya University in 2006. Since 2015
he has been a professor in Tokushima University.

Tomoki Toda received his B.E. degree from
Nagoya University, Japan, in 1999 and his M.E.
and D.E. degrees from Nara Institute of Science
and Technology (NAIST), Japan, in 2001 and
2003, respectively. He was a Research Fellow of
the Japan Society for the Promotion of Science
from 2003 to 2005. He was then an Assistant
Professor (2005-2011) and an Associate Profes-
sor (2011-2015) at NAIST. From 2015, he has
been a Professor in the Information Technology
Center at Nagoya University. His research in-
terests include statistical approaches to speech and audio processing. He
received more than 10 paper/achievement awards including the IEEE SPS
2009 Young Author Best Paper Award and the 2013 EURASIP-ISCA Best
Paper Award (Speech Communication Journal).


http://dx.doi.org/10.1016/j.patrec.2012.12.014
http://dx.doi.org/10.1016/j.patrec.2012.12.014
http://dx.doi.org/10.1016/j.patrec.2012.12.014
http://dx.doi.org/10.1016/j.patrec.2012.12.014
http://dx.doi.org/10.1145/2971648.2971708
http://dx.doi.org/10.1145/2971648.2971708
http://dx.doi.org/10.1145/2971648.2971708
http://dx.doi.org/10.1145/2971648.2971708
http://dx.doi.org/10.3390/s16010115
http://dx.doi.org/10.3390/s16010115
http://dx.doi.org/10.3390/s16010115
https://arxiv.org/abs/1604.08880
https://arxiv.org/abs/1604.08880
https://arxiv.org/abs/1604.08880
http://dx.doi.org/10.1109/eusipco.2015.7362796
http://dx.doi.org/10.1109/eusipco.2015.7362796
http://dx.doi.org/10.1109/eusipco.2015.7362796
http://dx.doi.org/10.1109/eusipco.2015.7362796
http://www.mpi.nl/corpus/html/elan
http://dx.doi.org/10.1186/1687-4722-2013-1
http://dx.doi.org/10.1186/1687-4722-2013-1
http://dx.doi.org/10.1186/1687-4722-2013-1
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1207.0580
https://arxiv.org/abs/1207.0580
https://arxiv.org/abs/1207.0580
https://arxiv.org/abs/1207.0580
http://dx.doi.org/10.1109/icassp.2014.6854826
http://dx.doi.org/10.1109/icassp.2014.6854826
http://dx.doi.org/10.1109/icassp.2014.6854826
http://dx.doi.org/10.1109/icassp.2014.6854826
http://dx.doi.org/10.1109/icassp.2015.7178843
http://dx.doi.org/10.1109/icassp.2015.7178843
http://dx.doi.org/10.1109/icassp.2015.7178843
http://dx.doi.org/10.1109/icassp.2015.7178843
http://dx.doi.org/10.1109/icassp.2015.7178843
http://torch.ch/
http://torch.ch/
http://dx.doi.org/10.1145/1961189.1961199
http://dx.doi.org/10.1145/1961189.1961199
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html

210

Kazuya Takeda received his B.E.E., M.E.E.
and Ph.D. from Nagoya University. After gradu-
ating from Nagoya University in 1985, he worked
at Advanced Telecommunication Research Lab-
oratories and at KDD R&D Laboratories, Japan,
mostly in the area of speech signal processing.
He was a Visiting Scientist at the Massachusetts
Institute of Technology from October 1988 to
April 1989. In 1995, Dr. Takeda moved to
Nagoya University, where he started a research
group for signal processing applications. Since

then he has been working on a wide range of research topics, including
acoustics and speech, as well as driving behavior. He is the co-author of
more than 100 journal articles and five books. Dr. Takeda is currently a
Professor at the Graduate School of Informatics and the Green Mobility
Collaborative Research Center, Nagoya University, Japan.

IEICE TRANS. FUNDAMENTALS, VOL.E101-A, NO.1 JANUARY 2018



