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Quantitative stability measures for mechanical systems are highly needed. However, only a few such
measures have been proposed for nonlinear systems. In this paper, a quantitative measure of stability
for nonlinear systems based on the region of attraction (ROA) is proposed, and the measure is applied
to parameter optimization of mechanical systems: multi-link inverted pendulum example. Recently,
some techniques for calculating ROAs have been suggested; however, obtaining an accurate estimate
of a ROA remains computationally demanding. We illustrate two techniques for efficiently estimating
the proposed measure and apply them to the design parameter optimization problem for maximizing
the stability measure. A number of simulations show the effectiveness of the proposed method.
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1. Introduction

When designing any system, the inherent performance of the system should be considered. Thus,
many researchers in the field of control theory have addressed the quantification of controlla-
bility. As is well known, the rank of the controllability matrix indicates whether the system is
controllable or uncontrollable, but yields no further information. The concept of the degree of
controllability was proposed to address this issue [1]; this measure is a quantitative index deter-
mining how easily a certain system can be controlled. Various definitions have been proposed
for the degree of controllability measure; for example, there are definitions based on the energy
required to control the system [2–5] or those based on the robustness against disturbances [6, 7].
These measures are accounted for when designing optimal structures, such as in the problem of
an optimal arrangement of sensors and actuators for optimal control [8, 9].

The measures described above have been developed for linear systems and proved successful
when designing several representative forms of mechanical structures. However, novel mechanical
systems, likely with nontrivial characteristics, are expected in the future. A wheeled, inverted
pendulum mobile robot [10, 11] or VTOL aircraft [12, 13] have been studied as examples of such
novel mechanical systems. As these systems are inherently unstable and nonlinear, they should
be stabilized by control for practical use. In these cases, the key point for the optimal design is
the existence of a practical quantitative stability measure to treat nonlinear unstable systems.
However, there have been only a few studies addressing this issue. Developing such quantitative
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stability measures is indispensable for introducing novel mechanical systems. In this paper, we
take a first step toward this goal.

As a simple example, consider the problem of stabilizing a double inverted pendulum. This
system consists of two pendulums arranged in series, and the stabilization problem in the upright
position (unstable equilibrium) is often used as a benchmark control problem. The question that
arises is about the combination of the lengths of the two pendulums that can be most easily
controlled. One of the most important things in controlling a nonlinear unstable system is robust-
ness against the nonlinearity of the system. In the regulation problem of such nonlinear unstable
systems, there is no general design method for a globally stable control law that completely
takes into account the nonlinearity of systems; linear control methods are often used around
the equilibrium point of the system. In such a case, nonlinearity may jeopardize the stability of
the system. Once the system is away from its linear response region, it is difficult to guarantee
stability.

The region of attraction (ROA) is defined as a set of initial conditions for which a system is
stable around a corresponding equilibrium point, and it occurs when a nonlinear, unstable system
is controlled by a linear regulator. The size of the ROA indicates the robustness of the system
with respect to the perturbation of initial conditions, with larger ROAs characterizing more
easily stabilizable systems. Therefore, in this paper, focus on the ROA for stabilizing nonlinear
systems and propose an ROA-based quantitative measure for stabilization. In general, however,
the ROA has a complicated shape, which precludes its accurate estimation. Hence, we define the
minimal radius of the ROA as the minimal length between the origin and the boundary of the
ROA and consider this quantity as a measure of stability.

The existing methods for calculating ROAs fall into two categories: 1) numerical methods based
on the Monte Carlo technique [14] and 2) analytical methods based on the Lyapunov approach
[15–20]. Both of these methods have been used for characterizing a variety of systems [21, 22]. For
the numerical methods, the Monte Carlo technique is one of the most popular methods; however,
there is a tradeoff between the computation cost and the computation accuracy. The Lyapunov
approach has been recently extended to polynomial systems [23–27] as these systems can be
solved in the framework of linear matrix inequality (LMI) by using the sum of squares technique
[28]. However, when handling high-dimensional systems, the dimension of matrix in semidefinite
programming (SDP) become very large; hence, the computation is inherently difficult and often
time-consuming. Although both of the above methods can be used to accurately calculate the
shape of the ROA, they are not efficient when dealing with high-dimensional systems, owing to
the increasing computation cost.

To address the above issues, this paper describes two types of estimation methods based on
the minimal radius of the ROA. The first method is based on numerical calculations using Monte
Carlo simulations and the bisection method. In this method, the computation cost is lowered by
focusing not on finding the n-dimensional shape of the ROA but rather its minimal radius, which
is defined by a one-dimensional parameter. The second method is based on the linear robustness
analysis. This method can only be applied to polynomial systems up to the third order, thus,
a polynomial approximation is needed to apply to non-polynomial systems. Furthermore, the
estimated value is too conservative for use as an actual estimate of the minimal radius. However,
the calculated value reflects the size of the minimal radius, and the value can be obtained from
a simple algebraic calculation; thus, the cost of this computation is very low.

Our objective is to optimize the system design parameters for maximizing the minimal radius
of the ROA. For the above double inverted pendulum problem, this amounts to finding the best
length of the link that would yield the easiest stabilization. We estimated the minimal radius
using the two methods described above and reported the optimization results for a multi-link
inverted pendulum, a pendubot, and a quintuple inverted pendulum. Finally, we discuss the
advantages and disadvantages of both methods in the context of optimization.

In Section 2, we explain the concepts of the ROA and its minimal radius, which we use as a
quantitative measure of robustness. In Section 3, we demonstrate the two methods for calculating
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the minimal radius: 1) the numerical approach based on the Monte Carlo technique and 2) the
analytical approach based on the Lyapunov function. In Section 4, the measures calculated using
the proposed methods are used for optimizing the design parameters of the system, maximizing
the minimal radius of the ROA; the results of this optimization are reported for the pendubot
and quintuple inverted pendulum on a hinge. We show that the proposed methods can efficiently
optimize the system in terms of the minimal radius. For both of the proposed methods, we also
discuss the trade-offs between the cost of computation and the computation accuracy.

2. The Region of Attraction and Its Minimal Radius

In this section, we describe a ROA-based quantitative measure for quantifying the robustness of
a nonlinear system. The measure can be used as a reasonable index of robustness.

First, we introduce the concept of the ROA of a system. Consider the following autonomous
nonlinear system:

ẋ(t) = f(x(t)), x(0) = x0 where x ∈ Rn, f(·) : Rn → Rn. (1)

Suppose x = 0 to be an asymptotically stable equilibrium point. Then, the ROA of the system
is defined as

Ω =
{
x0 ∈ Rn | lim

t→∞
x(t)→ 0, ẋ = f(x), x(0) = x0

}
. (2)

This definition says that if the initial condition of the system is in the ROA, i.e., x0 ∈ Ω,
the states of the system asymptotically converge to the origin. ROAs exist in many nonlinear
systems, such as the van der Pol system in the field of chaos or inverted pendulums in mechanical
systems [29, 30]. Note that, in literature, this region is usually called the domain of attraction
or the basin of attraction for the attractors. Many techniques for estimating ROAs have been
suggested that allow estimating their shapes. Examples of these techniques are the Monte Carlo
or sum of squares-based techniques. However, determining the exact shape of a ROA remains
difficult.

In this paper, we do not deal with exact shapes but confine our interest to determining the
narrowest dimension (worst-case stability), namely the minimal distance between the origin and
the boundary of a ROA, as exemplified in Figure 1. We define the length as a minimal radius of
the ROA and represent it by Rmin, that is

Rmin = sup
D(R)∈Ω

R, D(R) =
{
x ∈ Rn | ‖ x ‖ = R

}
(3)

where ‖ · ‖ is the Euclidean norm. We use the minimal radius as an index of the robustness of the
system against nonlinear perturbations and seek to maximize it for design optimization. Smaller
minimal radii reduce the ability to stabilize a system to only a small perturbation around the
point of initial conditions. Note that other measures can also be considered, such as the ROA
volume. However, consider the case of an extremely thin ROA with an infinite volume; systems
that satisfy these conditions are practically unstable. In the following section, we describe the
methods for estimating the minimal radius of the ROA.
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Figure 1. Region of attraction and its minimum radius

3. Methods for Estimating the Minimal Radius of the ROA

3.1 Monte Carlo Technique

As argued in introduction, when using the Monte Carlo method to accurately estimate the
shape of the ROA, the calculation cost increases exponentially with the number of dimensions.
Therefore, here we focus only on the minimal radius of the ROA and combine the Monte Carlo
method with the bisection method to simplify the calculation. The rationale is that as the
minimal radius depends only on a one-dimensional parameter, the calculation cost remains low
even if the estimation accuracy is high.

Consider a region ∂D on a sphere with the radius R.

∂D(R) =
{
x0 ∈ Rn | ‖ x0 ‖ = R

}
(4)

Let Rmin be the minimal radius of the ROA. Then, ∂D(Rmin) ⊂ Ω Therefore, by updating the
radius R of ∂D(R) with the bisection method from an initial estimate, we can find the maximal
R that satisfies ∂D(R) ⊂ Ω. Then, R can be taken as an estimate of Rmin.

Figure 2 shows the flowchart for the method of estimating the minimal radius, and the method
is explained below. The number of initial conditions for the Monte Carlo simulation and the
number of iteration for the bisection method are denoted by NMC and NBS , respectively. First,
define R̄min and R̄max as radii that are in and out of the ROA, respectively. Let Rcur = (R̄min +
R̄max)/2. Then, perform a simulation on the NMC initial values x0 ∈ ∂D(Rcur) and determine
whether or not each point is included in the ROA. If divergence occurs even for one initial point,
consider that ∂D(Rcur) 6⊂ Ω and update R̄max to Rcur. When convergence is observed for all n
points, update R̄min to Rcur. After updating, perform the Monte Carlo simulation again with
Rcur = (R̄min + R̄max)/2. Consequently, the value of the final R̄min after NBC iterations yields

an estimate of the minimal radius, i.e., let R̄kimin be the kith minimum estimate in the bisection

iteration, and let R̂MC
min be the estimate of the Monte Carlo method; then

R̂MC
min = R̄

kNBS

min . (5)

The resolution of the bisection method can be obtained as (Rmax−Rmin)/2NBC . We should also
briefly mention how to decide the number of initial values when using the Monte Carlo method.
The probability that the initial value exists inside the ROA follows the binomial distribution
B(N, p), where p is the probability that a single initial value exists inside the ROA, and N is
the number of attempted initial values. Therefore, the probability that K initial values on ∂D
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Figure 2. Programing flow of bisection method for estimating the minimum radius of the ROA

out of N are inside the ROA is given as

NCKp
K(1− p)N−K . (6)

The probability that all of the N initial values converge (K = N) is pN . Note that this probability
p shows what percentage of ∂D is included in the ROA; thus, it can be said that more than p%
of ∂D is included in the ROA with 1 − pN confidence. According to this, for example, to say
that 95% or more of D is included in the ROA with 99% confidence, the number of initial values
should be N ≥ 90.

It should be mentioned that estimating a ROA by an ellipse (not just a circle) is reasonable
in some cases, which can be calculated by the Monte Carlo method by changing ∂D in (4)
to an ellipse. It is, however, not clear how to define the parameter of the ellipse, and it may
cause conservativeness when calculating the Rmin. Our goal is to compare the robustness of the
nonlinear systems through the scalar value related to the ROA, which is Rmin in this paper.
Thus, we directly estimate the Rmin by Monte Carlo without using the ellipse for the less
conservativeness.

3.2 Linear Stability Analysis based on the Lyapunov Approach

Here, the minimal radius is approximately calculated by analyzing the stability of the sys-
tem based on the Lyapunov approach. Some robustness measures have been proposed using
the Lyapunov equation [31–33]. The following approach for estimating the ROA employs the
Lyapunov-based stability analysis.

In this subsection, for analytical evaluation of the ROA, the application system class is limited
to a polynomial system up to third order. We assume f(x) in Eq.(1) is continuous and differ-

5



August 11, 2018 Advanced Robotics output

entiable, and the Jacobian linearization of the system around the equilibrium point x = 0 is
asymptotically stable. The third-order approximated system then can be written as

ẋ = Ax+ f̃(x), (7)

where A ∈ Rn×n is a linear coefficient matrix calculated as

A =
∂f

∂x

∣∣∣∣
x=0

, (8)

and f̃(x) is a higher-order term, in which the ith column is written as

f̃i(x) =
1

2!

∑
j,k

∂2fi(x)

∂xj∂xk

∣∣∣∣∣∣
x=0

xjxk +
1

3!

∑
j,k,l

∂3fi(x)

∂xj∂xk∂xl

∣∣∣∣∣∣
x=0

xjxkxl. (9)

Define the following Lyapunov function:

V (x) = xTWx, (10)

where W ∈ Rn×n, W = W T is the positive definite solution of the Lyapunov equation

ATW +WA = −Q (11)

with a positive definite matrix Q ∈ Rn×n. From equations (7) and (11), the time derivative of
the Lyapunov function is

V̇ (x) = −xTQx+ f̃(x)TWx+ xTWf̃(x). (12)

We rewrite f̃(x) by using a state-dependent linear representation as

f̃(x) = E(x)x (13)

so that the condition for the time derivative of the Lyapunov function to be negative is

xT(E(x)TW +WE(x))x < xTQx. (14)

To further examine the inequality (14), we prove the following lemma.

Lemma 1. Let A and Ā ∈ Rn×n be symmetry matrices. Assume that the entries of Ā are

Āij ≥

{
Aij (i = j)

|Aij | (i 6= j).
(15)

Define a diagonal matrix B in which each diagonal entry Bii is

Bii =

n∑
j=1

Āij . (16)

Then, for all x ∈ Rn,

xTAx ≤ xTBx. (17)
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Proof. Applying the Gershgorin Circle theorem to the matrix B − A immediately gives the
conclusion.

Use this lemma to examine (14). Define a symmetric matrix

H(x) = E(x)TW +WE(x). (18)

Since each (i, j) entry of E(x) is composed of a linear and quadratic term of x, the entries of
H(x) (represented by Hij(x)) can be written as a linear and quadratic term as well, i.e.,

Hij(x) = heij
Tx+ xTHe

ijx (19)

where heij ∈ Rn is a constant vector, and He
ij ∈ Rn×n is a constant symmetric matrix. Let

σmax and λmax be the maximal singular value and the eigenvalue, respectively. Define diagonal
matrices Z1, Z2 ∈ Rn×n so that each diagonal entry Z1ii and Z2ii is

Z1ii =
∑
j

‖ heij ‖, (20)

Z2ii = λmax(He
ii) +

∑
i 6=j

σmax(He
ij). (21)

Since

‖ heii ‖‖ x ‖+ λmax(He
ii)‖ x ‖2 ≥ Hii(x), (22)

‖ heij ‖‖ x ‖+ σmax(He
ij)‖ x ‖2 ≥ |Hij(x)| (23)

for all x, according to Lemma 1, we obtain

xTH(x)x ≤ xT(Z1‖ x ‖+ Z2‖ x ‖2)x. (24)

Consequently, from (14) and (24), a sufficient inequality condition for V̇ (x) < 0 is given as

xT(Z1‖ x ‖+ Z2‖ x ‖2)x < xTQx. (25)

Note that the above condition does not directly indicate ROA. That is, even if (25) is satisfied
in the initial condition, the system may deviate from the region satisfying (25) in the transition
process. Therefore, we consider the following elliptical region:

ΩW (γ) =
{
x ∈ Rn | xTWx < γ

}
. (26)

We also introduce the following lemma to explain how to compute the ROA.

Lemma 2. ([34]) Let the origin be a locally asymptotically stable equilibrium point of (1). Let

ΩW (γ) ⊆ {x ∈ Rn | V̇ (x) < 0} ∪ {0n}. (27)

Then,

ΩW ⊆ Ω. (28)

Then, with the following theorem, ΩW (γ) can serve as an estimate of the ROA.
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Theorem 1. Consider an autonomous system described in (7). Define Q and W in (11), and
Z1, Z2 in (20), (21) respectively. Assume that f(x) is a third-order polynomial of x. Let γ∗ > 0
be a scalar so that any γ ∈ [0, γ∗] can satisfy the inequality

γλmax(W−1Z2) +
√
γ
√
λmax(W−1Z1)λmax(Z1) < λmin(Q). (29)

Then, from any initial points x0 ∈ ΩW (γ∗), the system converges to the origin, i.e., ΩW (γ∗) is
an inner estimate of Ω.

Proof. Take a point xb on the unit circle as xb ∈ {x ∈ Rn | ‖ x ‖ = 1}. Since W > 0, ΩW is
bounded, one point on the boundary of ΩW can be written as αxb with a positive scalar α. Then,
α corresponding to xb is given by

α2xT
bWxb = γ. (30)

The condition for satisfying (25) at the point x = αxb is given as

α4xT
b Z2xb + α3xT

b Z1xb < α2xT
b Qxb. (31)

Therefore, by eliminating α from these two equations (30), (31), the condition for satisfying (25)
with a given γ is obtained as

γxT
b Z2xb +

√
γxT

b Z1xb

√
xT
bWxb < xT

b Qxbx
T
bWxb. (32)

Since W is positive definite, this can be written as

γ
xTZ2x

xTWx
+
√
γ

√
xTZ1x

xTWx

√
xTZ1x

xTx
<
xTQx

xTx
. (33)

Furthermore, W can be decomposed as W = XTX with a certain non-singular matrix X ∈ Rn×n.
Let y = Xx. Note that X−TZiX

−1 for i = 1, 2 is symmetric, then

xTZix

xTWx
=
yTX−TZiX

−1y

yTy
≤ λmax(X−TZiX

−1) = λmax{X−1(X−TZiX
−1)X} = λmax(W−1Zi)

(34)

Therefore, since γ > 0, the sufficient condition of the inequality (33) is given as

γλmax(W−1Z2) +
√
γ
√
λmax(W−1Z1)λmax(Z1) < λmin(Q). (35)

Since Q > 0, there exists γ∗ ∈ (0, +∞) such that γ ∈ [0, γ∗] satisfies (35). Then V̇ (x) < 0 holds
anywhere in ΩW (γ∗), and thus we can say ΩW (γ∗) ⊆ Ω from Lemma 2.

The inequality (29) in the theorem 1 is a second order for
√
γ, thus the condition of γ satisfying

the inequality can be calculated analytically. For example, for an inverted pendulum system,
Z1 = 0 and Z2 > 0, thus the condition of γ∗ is given as

γ∗ <
λmin(Q)

λmax(W−1Z2)
. (36)
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Let γ = sup γ∗. Then, ΩW (γ) can serve as a reasonable estimate of the ROA. Since the region

of ΩW is an ellipse, the minimal radius R̂LFmin(ΩW ) is estimated as

R̂LFmin(ΩW ) =

√
γ

λmax(W )
. (37)

Note that, in this approach, the ROA is approximately estimated by an n-dimensional ellipse
ΩW ; the volume V (ΩW ) can be calculated easily as

V (ΩW ) =
πn/2

Γ(n/2 + 1)

√
det(W−1γ), (38)

and it can be a reasonable measure of the ROA in some cases.

4. Structure Optimization

4.1 Pendubot Example

In this section, design parameter optimization based on the minimal radius of the ROA is consid-
ered for mechanical system examples. As an example of low-dimensional nonlinear mechanical
system, we consider a pendubot [35]. The schematic is shown in Figure 3. For the i-th link
(i = 1, 2), qi is the angle (define q = [q1, q2]T), mi is the mass, li is the length, lci is the distance
from the i-th joint to the center of mass (COM), Ji is the inertia around the center of mass, and
g is the gravitational acceleration (= 9.801 m/s2). This system has two links connected in series
and moves symmetrically in a plane. The control input (torque τ) is only on the joint connected
to the inertial reference frame, and the joint between links rotates freely.

Figure 3. The schematic of the pendubot

A pendubot is a so-called underactuated system, and the problem of stabilizing at an unstable
equilibrium point, where two links stand vertically, is often treated as a benchmark problem of
nonlinear control. Some methods have been proposed for solving this stabilization problem for the
pendubot [36–38]; however, a global stabilization principle that fully accounts for the nonlinearity
of the system is not yet known, and stabilization by linear control is usually performed around
the origin. In this case, the stability of the system strongly depends on the system parameters.
Consider, for example, the case in which the first link (l1) connected to the reference frame is
very short and the second link (l2) is very long. Then, for a small perturbation in the initial value

9
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of the second link, the first link needs to move significantly to transmit the torque to the second
link. This motion induces nonlinearity, and the region that can be stabilized by linear control is
considered very small. Our objective is to investigate the best length relationship between the
two links that will yield the easiest stabilization by linear control.

Using the method of Lagrange, the equation of motion of the pendubot is derived as follows:

M(q2)q̈ + C(q, q̇)q̇ +G(q) = u, (39)

where u = [τ, 0]T and

M(q2) =

[
M11(q2) M12(q2)
M21(q2) M22

]
=

[
a1 + a2 + 2a3 cos q2 a2 + a3 cos q2

a2 + a3 cos q2 a2

]

C(q, q̇) =

[
−a3q̇2 sin q2 + µ1 −a3(q̇1 + q̇2) sin q2

a3q̇1 sin q2 µ2

]
, G(q) =

[
−b1 sin q1 − b2 sin(q1 + q2)

−b2 sin(q1 + q2)

]
,

a1 = m1l
2
c1 +m2l

2
1 + J1, a2 = m2l

2
c2 + J2,

a3 = m2l1lc2, b1 = (m1lc1 +m2l1)g, b2 = m2lc2g,

where µ1 and µ2 are the viscosity coefficients for the corresponding joints. Let x =
[x1, x2, x3, x4]T = [q1, q2, q̇1, q̇2]T be state variables. Then, the state space representation of this
system is given as

ẋ = f(x) + g(x)τ, (40)

where

f(x) =

 x3

x4

−M(q2)−1
[
C(q, q̇)q̇ +G(q)

]
 , g(x) =


0
0

M(q2)−1

[
1
0

]
 . (41)

For optimizing the lengths of the links, we introduce some assumptions. Assume that each link
is a cylinder with uniform density ρ and radius r; thus, the mass is written as mi = πr2ρli, and
lci = li/2, Ji = mil

2
i /12. Further, the viscous friction of the shaft on which the motor is mounted

is considered to be large; therefore we set the viscosity coefficients for the joints as µ1 = 0.2 and
µ2 = 0.01, respectively. In the following calculation, the physical parameters are r = 4 mm, and
ρ = 2.70 g/cm3, and the closed loop is designed to be stable around the origin (inverted point)
with the LQR controller minimizing the cost function J =

∫∞
0 xTQlqx+ τTRlqτ dt. The weight

matrix of the corresponding problem is

Qlq =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , Rlq = 1. (42)

Then, the closed loop system is written as

ẋ = f(x)− g(x)Kx, (43)
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where K is the feedback gain calculated by LQR method. We examine the ROA of this system.
When use the Lyapunov based approach, the third-order Taylor approximation is applied to the
system as described in section 3.2 .

First, we simulate the equation (43) for some initial conditions and visualize the ROA of the
pendubot in a zero angular velocity slice, with link lengths l1 = l2 = 1 m. The ROA, obtained
from numerical calculations at each initial point x0 = [q1(0), q2(0), 0, 0], is shown in Figure 4.
The colored area indicates the point to which the system converges from the corresponding
initial condition. We also show the minimal radius of the ROA estimated using the Monte Carlo
method (NMC = 1000, NBC = 12), which is calculated as R̂MC

min = 0.53.

-1.5 -1 -0.5 0 0.5 1 1.5

q1(0) [rad]

-1

-0.5

0

0.5

1

q
2

(0
) 

[r
a

d
]

Rmin=0.53

Figure 4. The ROA for the pendubot (zero angular velocity slice) with link lengths l1 = 1 m, l2 = 1 m, and LQR control
in which the weight matrices are Q = I4×4 and R = 1

Next, we consider the link lengths l1 and l2 as optimization variables and find the ones that
maximized Rmin in the admissible range. Here, the range is l1 ∈ [0.1, 1.0] and l2 ∈ [0.1, 1.0];
the grid search method is used to determine the optimal link lengths. For each grid point, the
proposed measures R̂MC

min (5) and R̂LFmin (37) are calculated for the system (43), and the results
are shown in Figure 5. Note that the feedback gain K is calculated for each grid, corresponding
to the optimization variables l1 and l2.

In the Monte Carlo method computation, the parameters are NMC = 100, and NBS = 10.

0.2 0.4 0.6 0.8 1
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0.2

0.4

0.6

0.8

1

l2
 [
m

]

0.1

0.2

0.3

0.4

0.5

0.6

(a) Monte Carlo technique (res. 0.06 m)
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0.2
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1
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(b) Lyapunov function based approach (res. 0.06 m)

Figure 5. The grid search results for the estimation of the minimal radius using the (a) Monte Carlo technique R̂MC
min and

(b) Lyapunov function-based technique R̂LF
min. The resolution in the grid search was 0.06 m in both calculations. The overall

computation time is ∼15 h for (a) and ∼3.4 s for (b) using MATLAB.
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The optimal value is computed as R̂MC
min = 0.64 for l1 = 1.0 and l2 = 0.58. On the other hand, in

the Lyapunov-based method computation, the Lyapunov equation (11) is solved with Q = I4×4.
The nonlinear term f̃(x) of the system (43) is approximated to be a cubic function by Taylor

series expansion, and the optimal value is R̂LFmin = 4.1×10−3 for l1 = 1.0 and l2 = 0.52. Note that
the value obtained using the Lyapunov-based method is too small compared with one obtained
using the Monte Carlo method for use as an actual estimate of the minimal radius. However, the
tendency in the distribution of values for the Lyapunov-based method (Figure 5(b)) resembles the
value calculated using the Monte Carlo method (Figure 5(a)) and thus can be used as a guide for
finding the optimal link lengths. The computation time required for the Monte Carlo calculation
is ∼15 h. On the other hand, the time required for the Lyapunov-based method is ∼3.4 s. These
codes are written in Matlab R2016a and performed in a PC with Intel Core i7-6700 processor
3.40 GHz, 8 GB of RAM. It is seen that the computation cost of the Lyapunov-based method
is very low compared to the one of the Monte Carlo method. Therefore, the Lyapunov-based
method may be used as a rough estimate of the preliminary stage for accurately calculating
the minimal radius using the Monte Carlo method for the optimization. The ROA with the
optimized link lengths shown in Figure 6, confirming that Rmin is increased by the optimization.
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q1(0) [rad]
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1

q
2

(0
) 

[r
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d
]

Rmin=0.64

Figure 6. The ROA for the pendubot (zero angular velosity slice) with optimised link lengths l1 = 1 m, l2 = 0.58 m and
LQR control in which the weight matrices Q = I4×4 and R = 1.

For further study of the optimal pendubot configuration, we calculated several cases with
different viscous coefficients, and it is found µ2 rather than µ1 has a great influence on the
optimal configuration and minimal radius. In addition, l1 = 1 (upper limit) is given as an
optimal value in most cases. Figure 7 shows the optimal second link length l2 and Rmin for
different viscous coefficients µ2 calculated by both methods proposed in this paper (µ1 is set to
0). It is shown Lyapunov function based approach follows the same tendency as the Monte Carlo
method’s result.

We give a physical interpretation for this result. In the ideal (no friction) case that µ1 = µ2 = 0,
if l1 is relatively long for the unactuated link l2, the movement of l1 needed to stabilize l2 is
small and the motion is close to linear. Hence it is reasonable that the length of l1 is the upper
limit value and l2 is small value. On the other hand, when a viscous friction exists on the angle
between the links, if the length of l2 is extremely small, the motion of l1 can not be transmitted to
the angle q2 because of the friction. The optimum value is determined considering this trade-off
well.
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(a) Monte Carlo technique
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Figure 7. The optimal configuration of the pendubot for different viscous friction coefficients µ2 calculated by (a) Monte
Carlo technique and (b) Lyapunov function based approach. In both method, µ1 = 0 is set, and l1 = 1 is given as optimal
for all cases.

4.2 Optimization of the Quintuple Inverted Pendulum on a Hinge System using
the Genetic Algorithm

Through the previous pendubot example, we confirmed that the two proposed measures could
be used for the parameter optimization. Next, we apply these methods to the optimization of
higher-dimensional systems, taking as an example a quintuple inverted pendulum. However, the
grid search method can be no longer used here owing to its high computation cost. Thus, we use
the genetic algorithm approach for the parameter optimization of this system. The schematic of
the 5-link inverted pendulum is shown in Figure 8. The index of the link of the hinge is set to
0, and other links are numbered 1 to 5, starting from the bottom as in figure.

Figure 8. The schematic model of a quintuple inverted pendulum on a hinge. qi (i = 0 ∼ 5) is the deviation angles of the
i-th links from the upright position.

The system is mounted on a hinge with five rotating links, which can be regarded as the
extension of a pendubot to six links. For the general multi-link inverted pendulum system, the
nonlinear dynamics is studied in [39–41], and the linear controllability and observability are
studied in [42]. According to those study, this 6-link inverted pendulum configuration is linearly
controllable and observable in the upward position. As a control achievement of a multi-link
inverted pendulum, stabilization experiment of a quadruple inverted link on a cart was reported
in [43]. The stabilization at the inverted position was achieved by fuzzy control in that paper.
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Table 1. Parameter of Genetic Algorithm

Parameter Value/Scheme

Population 200

Number of generations 15

Number of offspring 160

Selection scheme Roulette wheel

Crossover scheme Intermediate

Mutation White Gaussian noise

Variance of mutation 0.01

However, there was no description of the proper design method for determining the links lengths.
Here, as in the case of the pendubot, our objective is to find the optimal link lengths maximizing
the minimal radius of the ROA, assuming that the closed loop is stabilized by the LQR controller
with the identity weight matrix (Qlq = I12×12, Rlq = 1).

The links are assumed to have uniform density, and other parameters such as inertia and mass
are set in the same manner as in the pendubot case. The viscosity coefficients for the joints are
µ0 = 0.2 and µi = 0.01 (i = 1, · · · , 5). Thus, the design parameter are the lengths of the six links
(l0 ∼ l5). We also consider the motor kinematics mounted on a hinge. Denoting the gear ratio
and the inertia of the motor by n and Jm, respectively, the apparent inertia Ja0 of the hinge is
written as

Ja0 = J0 + n2Jm, (44)

where J0(= m0l
2
0/12) is the original inertia of the hinge. We use this apparent value Ja0 as the

inertia of the hinge with n = 28 and Jm = 7.96× 10−6 kg ·m2.
In the genetic algorithm calculation, linear constraint conditions for the length of each link

length are set as follows:

0.1 ≤ l0, l1, · · · , l5 ≤ 1.0,
5∑
i=0

li ≤ 1.5 (45)

Therefore, each link has to be longer than 0.1 m, and the total length has to be shorter than 1.5
m. For the crossover process of the GA, an intermediate method is used as

child1 = parent1 + rand ∗ (parent2 − parent1) (46)

where rand is an uniform random number in the 0-1 range, having the children satisfy a supra-
linear constraint. The mutation rate is set to 0.1, and Gaussian noise with a variance of 0.01 is
added in the mutation process. For other details of the GA algorithm, see Table 1.

The parameters in the Monte Carlo method are NMC = 100 and NBC = 10, and the fitness
value of the GA is defined by RMC

min (5)) in this problem. The result of optimization performed
using the Monte Carlo method and GA is shown in Figure 9. Figure 10 also shows the best
fitness values of the optimal individuals, for each generation.

The results obtained using the Lyapunov-based method are shown in Figures 11 and 12. Here,
the value of the fitness function is defined by RLFmin (37), and the positive definite matrix Q in
the Lyapunov equation is chosen to be the identity matrix. Clearly, the optimal links lengths
yielded by the two methods are similar, with the third link being the longest, ∼0.6 m. The next
longest is the hinge, ∼0.4 m, and the other links are almost of the minimal allowable length,
∼0.1 m. However, the calculation times are dramatically different, with the Monte Carlo method
completing in more than 112 h, but Lyapunov-based method completing in 6.4 h.
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Figure 9. Results of the Monte Carlo calculation. Optimal link lengths: l0 = 0.4434, l1 = 0.1018, l2 = 0.1007, l3 =
0.6162, l4 = 0.1121, l5 = 0.1012
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Figure 10. Results of the Monte Carlo calculation. Best individual value vs. the generation number. The best fitness value
is 0.01563, the overall calculation time was 112.3 h
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Figure 11. Results of the Lyapunov-based method. Optimal link lengths: l0 = 0.3833, l1 = 0.1386, l2 = 0.1019, l3 =
0.6285, l4 = 0.1479, l5 = 0.1006

To evaluate the results of these optimizations, the values of Rmin are calculated and compared
for four cases: two optimized cases, and ”equally divided” and ”sweep” cases. The links lengths
in the ”equally divided” scenario are set to be the same, while in the ”sweep” scenario the links
gradually become longer, with the bottom link being the shortest.

The value of Rmin is calculated more accurately using the Monte Carlo method as R̂MC
min with

NMC = 1000 and NBC = 12. The results are summarized in Table 2. The largest R̂MC
min is the

one obtained using the Monte Carlo method, and the obtained value is R̂MC
min = 0.01313. The

value obtained using the Lyapunov-based method is also R̂MC
min = 0.01252, considerably close to

that obtained using the Monte Carlo method. In both case, the values of R̂MC
min are four times

larger than those obtained in the ”equally divided” scenario, making the optimization evident.
Because the Monte Carlo method calculates the minimal radius of the ROA considering all

nonlinearity, it can provide a very accurate estimation, but it is still impossible to prevent an
increase in the computation time. On the other hand, because the method based on the Lyapunov
function requires using a rough approximation, the estimated value is very conservative in the
sense of the ROA approximation; however, it is still useful in terms of the computation cost for
use as a guideline for optimization.
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Figure 12. Results obtained using the Lyapunov-based method. Best individual value vs. the generation number. The best
fitness value is 6.69× 10−7, and the overall calculation time is 6.4 h

Table 2. Link lengths and minimal radii of ROA

l0 l1 l2 l3 l4 l5 R̂MC
min

∗ Calc time∗∗

Monte Carlo opt 0.4542 0.1017 0.1007 0.6080 0.1084 0.1009 0.01313 112.3 hour
Lyapunov opt 0.3831 0.1385 0.1018 0.6282 0.1478 0.1005 0.01252 6.4 hour
Equally divided 0.1500 0.1500 0.1500 0.1500 0.1500 0.1500 0.00314 -
Sweep 0.1000 0.1000 0.2500 0.2500 0.4000 0.4000 0.00289 -

∗ An accurate estimate was calculated using the Monte Carlo method with NMC = 1000, NBS = 12

∗∗ Computation was performed by parallel computing using 4 cores with Paralel Computing Toolbox
of MATLAB

5. Conclusion

As a quantitative measure of the stability of nonlinear unstable systems, the minimal radius
of the ROA was adopted here. Two types of approximate calculation methods for the minimal
radius were considered, and calculations were performed for the pendubot and the quintuple
inverted pendulum systems. Comparing those results, it was shown that both of the considered
methods were able to calculate the optimal lengths of links in multiple inverted pendulum
systems. However, the Monte Carlo method and the Lyapunov-based method have a trade-off
between accuracy and computation cost, and more efficient optimization may be possible by
successfully combining them.
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