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Abstract. This paper introduces a benchmark problem library for mechanized mathematics including computer algebra and au-
tomated theorem proving. The library consists of pre-university mathematical problems taken from exercise problem books, uni-
versity entrance examinations, and the International Mathematical Olympiads. The subject areas include real algebra, geometry,
number theory, pre-calculus, calculus, and combinatorics. It thus includes problems in various areas of pre-university mathemat-
ics and with a variety of difficulty. Unlike other existing benchmark libraries, this one contains problems that are formalized so
that they are obtainable as the result of mechanical translation of the original problems expressed in natural language. In other
words, the library is designed to support the integration of the technologies of mechanized mathematics and natural language
processing towards the goal of end-to-end automatic mathematical problem solving. The paper also presents preliminary exper-
imental results of our prototype reasoning component of an end-to-end system on the library. The library is publicly available
through the Internet.

Keywords: Mechanized mathematics, benchmark library

1. Introduction machine to conduct mathematical reasoning like hu-
man beings. It seems that a tacit understanding ex-
ists on how we should interpret this goal. First, the
input of the programs is assumed to be expressed

in some formal language, but not in a natural lan-

One of the ultimate goals of automated theorem
proving is to produce computer programs that allow a

I'This is an extended and updated version of a talk at the 1st Con-

ference on Atrtificial Intelligence and Theorem Proving and a paper
entitled “Race against the Teens — Benchmarking Mechanized Math
on Pre-university Problems” published in the proceedings of the In-
ternational Joint Conference on Automated Reasoning 2016 (IICAR
2016) [33]. All the statistics and the experimental results are updated
using the latest public version of the benchmark data and the current
version of the prototype solver.
*Corresponding author. E-mail: matuzaki @nuee.nagoya-u.ac.jp.

guage. Second, the term “human beings” is used to
mean gifted mathematicians rather than ordinary peo-
ple. In this paper, we propose a different interpre-
tation of the goal by providing a new problem li-
brary for benchmarking automated mathematical rea-
soners, and showing experimental results on the prob-
lem set.

0921-7126/18/$35.00 © 2018 — IOS Press and the authors. All rights reserved
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We developed a new problem library of real pre-
university mathematical problems. It is designed to
cover various sub-areas of curriculum mathematics and
a diverse range of difficulty. The initial release of the
data set includes more than 700 problems taken from
three sources: popular high school exercise book se-
ries, entrance examinations of seven top universities in
Japan, and the past problems from International Math-
ematical Olympiads (IMO). Our choice of the three
problem sources is motivated by the desire to measure
the performance of mechanized mathematics systems
with high school students of different skill and intel-
lectual levels as reference points.

Although problems in the library are formalized in a
formal language so that the automatic reasoning (AR)
and computer algebra communities will find it appeal-
ing to challenge the problems, the formalization is de-
signed so that the problems can be obtained as the re-
sult of mechanical translation of their originals. This
might have sounded unrealistic in the previous century
but is now within the range of contemporary research,
thanks to the recent progress that has been made in
deep linguistic processing (e.g., [8,12,30]).

Figure 1 presents an output from the translation
module under development. The input is a problem
taken from IMO:

The diagonals AC and CE of the regular hexagon
ABCDEF are divided by the inner points M and
N, respectively, so that % = g—’gf = r. Determine

rif B, M, and N are collinear.
IMO 1982, Problem 5

Roughly speaking, the first half of the formula in Fig. 1
(i.e., (exists(F)...)) says ABCDEF is a regular
hexagon and AC and CE are its diagonals. The second
polygon PQRSTU is introduced by the definition of
the term “regular hexagon”, which states that a poly-
gon x is a regular hexagon if and only if there exists a
regular polygon with six vertices (P, Q, ..., U) thatis
equal to x.

The second half (i.e., (exists(M N)...)) says the
points M and N satisfy % = % = r, they are inner
points of AC and CE, and B, M, and N are collinear.

Figure 2 depicts a part of the process that de-
rives the logical translation of a Japanese phrase
“IE6f1 regular-hexagon ABCDEF ofof xifafi/
diagonal”, that corresponds to “diagonal(s) of the reg-
ular hexagon ABC DE F.” The mechanical translation
is based on a grammar formalism called combinatory
categorial grammar (CCG) [42]. The translation pro-
cess starts by fetching the lexical items defined in a dic-

tionary. A lexical entry is a triple of a word, its syntac-
tic category, and its semantic function, e.g.:

diagonal :: Ng 24 .Shape/ N Pof,sg,2d Shape

: Aykx(i s-diagonal-of(x, y)).

The lexical entries correspond to the leaves of the
derivation tree. The semantic functions are combined
into the semantic representation of a sentence accord-
ing to the constraints encoded in the syntactic cate-
gories. For instance, the forward application rule (>)
combines the semantic functions of two words (or
phrases) having syntactic categories of the form X/Y
and Y as follows:

X/Y.:f Y:y
X f(y)

Currently, the dictionary contains 55,000 lexical items
for over 8,000 word forms. By manually inspecting the
output of the translation module, we verified that it de-
rives a semantic representation on 70% of unseen sen-
tences with the accuracy of 90% (see [31] for further
details).

In parallel with the development of the dictionary
and the translation module, our problem library was
developed by manually formalizing the mathematical
problems. It has been used as a substitute for the out-
put of the translation module in the development of the
reasoning module of the end-to-end system. Problems
in the library were thus manually formalized according
to the design of the translation module. That is, they
were translated manually into the formal language on a
word-by-word and sentence-by-sentence basis without
any inference and paraphrasing.

The formalized problem set and the accompanying
axioms are publicly available.> The problems and the
axioms are formulated in a higher-order language that
is compatible with the typed higher-order form with
rank-1 polymorphism (THI1) [25] of ‘Thousands of
Problems for Theorem Provers’ (TPTP) [44]. The data
and the axioms are distributed both in TPTP’s TH1
syntax and Lisp S-expression format. For readability,
we use the S-expression format for presenting the data.
Several basic elements such as logical connectives and
quantifiers are renamed following TPTP’s convention.

The development of the data set and a prototype
solver system has been carried out as a part of a long-
term Al research project called “Todai Robot Project”.

2The URL is: https://zenodo.org/record/815138#.WUojn8bnpth.
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(Find (x)
(exists (A B C D E)
(& (exists (F)
(& (exists (U T S R Q P)
(& (= (polygon
(polygon
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(list-of A B C D E F))
(list-of P Q R S T U)))

(is-regular (polygon (list-of P Q R S T U)))))
(is-diagonal-of (seg A C) (polygon (list-of A B C D E F)))
(exists (U T S R Q P)
(& (= (polygon (list-of A B C D E F))
(polygon (list-of P Q R S T U)))
(is-regular (polygon (list-of P Q R S T U)))))
(is-diagonal-of (seg C E) (polygon (list-of A B C D E F)))))
(exists (M N)
(& (exists (r)
(& (= (/ (length-of (seg A M)) (length-of (seg A C))
(/ (length-of (seg C N)) (length-of (seg C E))))
(= (/ (length-of (seg C N)) (length-of (seg C E))) r)
(on M (seg A C))
(= (/ (length-of (seg A M)) (length-of (seg A C))
(/ (length-of (seg C N)) (length-of (seg C E))))
(= (/ (length-of (seg C N)) (length-of (seg C E))) r)
(on N (seg C E))
(= x1r)))
(~ (=MA)) (~ (=MCQC))
(~ (=NC)) (~ (=NE))
(points-colinear (list-of B M N)))))))
Fig. 1. Mechanical translation result of IMO 1982, Problem 5.
ABCDEF
regular hexagon NPSg,nC,Zd.Shape
E6fAH oT : polygon([A,B,C,D,EF])
ng,ZdAShape T/(T\Npsg,nc,zd.shape)
is-regul )\ PQR,STU  AMAW/ W
:AxEPEQaRESETEIU(lS regular(polygon([PQ, ]))) AMAw (M (polygon([A,B,C,D,EF]))w) of
A A x = polygon([P.QR,S,T,U]) 1))
ppos T/(T\NPn¢,sg,2d.Shape) T\NPnc/(T\NPno)
. 1 AXX
- I; 1 PQR,S,TU
N EIPEQERESEITEU( is-regular(polygon([PQ D) )
| AMAW A polygon([A,B,C,D,EF]) = polygon([PQR,S,T.U])
N diagonal
o3 A M(polygon([A,B,C,D,EF])w i AR
T/(T\ana,sg,zd.Shape) ng,zd.Shape\NPno,sg,2d.Shape
. : AyAx(is-diagonal-of(x, y))
1 )\ PQRS,TU Y 8
N aPaQaRasaTaU( is-regular(polygon((PQ D) )
AW A polygon([A,B,CD,EF]) = polygon([PQR,S,TU)

A M(polygon([A,B,C,D,EF])w

ng,zd.Shape

EIPHQEIREISEITEIU(

is-regular(polygon([PQR,S,T.U]))
A polygon([A,B,C,D,E,F]) = polygon([PQR,S,TU])

A is-diagonal-of(x, polygon([A,B,C,D,E,F]))

Fig. 2. Syntactic/semantic analysis of problem (CCG derivation tree).

The project aims at developing Al systems that are ca-
pable of solving real university entrance exam prob-
lems including those in mathematics and other subjects
such as English, physics, and world history. The final
goal of the project is to ‘pass’ the entrance exam of
the University of Tokyo (a.k.a. “Todai” in Japan) by
2021.3 The objective of the project is to re-integrate the
achievements in Al and related areas that have emerged

3 http://spectrum.ieee.org/robotics/artificial-intelligence/
can-an-ai- get-into-the-university-of-tokyo

after the fragmentation of the field in the 1980s and
1990s.

The rest of the paper is structured as follows. We
first describe how we collected and formalized curricu-
lum mathematics problems in Section 2. Several prob-
lems are shown in Section 3 to exemplify what as-
pects of mechanized mathematics are necessary. Be-
sides proof problems, the benchmark includes many
“Find X”-type problems. Technical issues in formal-
izing such problems are discussed in Section 4. Sec-
tion 5 provides an overview of a prototype solver sys-


http://spectrum.ieee.org/robotics/artificial-intelligence/can-an-ai-get-into-the-university-of-tokyo
http://spectrum.ieee.org/robotics/artificial-intelligence/can-an-ai-get-into-the-university-of-tokyo
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tem built on an integration of a simple logical inference
system with computer algebra systems. Experimental
results on the initial release of the data by our solver
system are presented in Section 6. Finally, we conclude
the paper and discuss future directions in Section 7.

2. Pre-university mathematical problems as a
benchmark for mechanized mathematics
systems

In this section, we first describe the sources and the
types of the benchmark problems. We then explain how
we encoded the problems other than proof problems.
Finally, the representation language is described.

2.1. The problem library

The latest release of the data set (version 1.1) con-
sists of 743 problem files containing 1,337 directives,
and 2,787 axioms defining 1,372 symbols (functions,
predicates, and constants). The problems were taken
from three sources: exercise books (Ex), Japanese uni-
versity entrance exams (Univ), and International Math-
ematical Olympiads (IMO).

The Ex division of the data is taken from a popular
problem book series, “Chart-Shiki” [41], which con-
tains more than ten thousand problems in total. In the
first release of the data set, the Ex division consists
of arithmetic problems and various types of geometry
problems (including those involving calculus and lin-
ear algebra) (Table 1). Every problem in the book se-
ries is marked with one to five stars by the editors of
the book series according to its difficulty. We sampled
the problems so that their levels of difficulty and the
topics of the problems would be uniformly distributed.

The Univ division of the data consists of the past
entrance examinations of seven top Japanese national
universities.* Unlike in most countries, in Japan each
national university prepares its entrance exam by it-
self. As a result, several hundreds of brand-new prob-
lems are produced every year for the entrance exams.
In the first release, the Univ division includes the prob-
lems that were manually classified as ‘most likely ex-
pressible’ in the first-order theory of real-closed fields
(RCF) (Table 1). We exhaustively selected such prob-
lems in the examinations held in odd numbered years

4Hokkaido University, Tohoku University, the University of
Tokyo, Nagoya University, Osaka University, Kyoto University, and
Kyushu University.

Table 1
Subject areas (Ex & Univ)
Ex Univ
Algebra 51 9
Linear Algebra 28 62
Geometry 136 65
Pre-Calculus 15 75
Calculus 42 32
Combinatorics 16 0
Total 288 243
Table 2
Subject areas (IMO)
IMO
Algebra 57
Number Theory 38
Analysis 1
Geometry 105
Combinatorics 11
Total 212

from 1999 to 2013. Two hundred more Univ problems
involving transcendental functions and integer arith-
metic (often as a mixture with reals) are currently un-
der preparation for the second release of the data set.
The IMO division consists of about 2/3 of the past
IMO problems. The initial release includes all of the
geometry and real algebra problems in the IMOs held
between 1959 and 2014, and some of the problems in
number theory, function equations, and combinatorics.
Each problem is labeled by its subject domain name
such as geometry or calculus (Table 1 and Table 2),
and also by its formal theory name. The problems that
are naturally expressible (by humans) in the theories of
RCF or Peano Arithmetic (PA) are labeled so, and the
rest of the problems are tentatively labeled ZF, stand-
ing for Zermelo-Fraenkel Set Theory. We scrutinized
the problems labeled ZF and classified them into sev-
eral groups such as ‘RCF + PA’ (mixture of integer
and real arithmetics) and “Transc’ (problems involving
transcendental functions that cannot be reformulated in
RCF), though they are not formal theories (Table 3).
Table 4 lists statistics for the formalized problems.
For reference, it also lists those for the typed higher-
order format (THF) problems in TPTP version 6.4.0.
The statistics about the TPTP-THF problems include
the numbers of formulas, atoms, etc., in the conjectures
to be proved as well as those in the axioms. The statis-
tics about our problem library include only those num-
bers of the directives but not those of the axioms. As
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Table 3
Distribution of theory labels
Ex Univ  IMO
PA 84 0 42
RCF 174 243 116
ZF 30 0 54
RCF + PA 1 0 8
Transc 23 0 5
PA + Transc 5 0 1
Comb 0 0 10
Other 0 30

can be seen in the table, the average numbers of atoms,
symbols, lambda abstractions (1), and existential quan-
tifiers (3) per formula are much larger in our dataset
than in TPTP-THF problems. The number of univer-
sal quantifiers (V) is smaller because we don’t count
those in the axioms. We may hence say the problem
statements (directives) in our dataset tend to be more
complex than the conjecture formulas in TPTP-THF.

2.2. A formalization of curriculum mathematics
problems

We formalize a problem as a pair of a directive and
its answer. By surveying the problems, we identified
three major types of directives:

e Showl[¢] is a proof problem to prove ¢.

e Find(v)[¢(v)]is a problem to find all values for
v that satisfy condition ¢ (v).

e Draw(v)[¢(v)] requests a geometric object v de-
fined by ¢ (v) be drawn.

Show directives must be familiar to the reader,
though the set of problems requiring proofs is a mi-
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Table 5

Number of problems and directives

Ex Univ MO Total
#Problems 288 243 212 743
#Directives Find 472 426 108 1006
Draw 28 24 0 52
Show 78 66 135 279

nority in curriculum mathematics. Table 5 shows that
students are asked to find some values more frequently
than to prove propositions. The answer to a Find
problem, Find(v)[¢(v)], is expected to be a charac-
teristic function f(v) that returns true if and only
if v satisfies ¢ (v). The answer to a Draw problem
Draw(v)[¢ (v)] should be the geometric object v ex-
pressed as a characteristic function on R? or R3. Fig-
ure 3 is an example of a Find problem taken from
IMO 1982.

To use a problem set in the above format as bench-
mark data, we need a rule to judge whether a system’s
output is acceptable or not. It is clear for the Show
directives: true or false. We regard a Draw directive
as a variant of Find problems for which the system
is supposed to find a formula that defines the geomet-
ric object. Then, what is “to solve a Find problem?”
Roughly speaking, a solver is supposed to give a cor-
rect solution in its simplest form. We will discuss the
properties an answer formula for a Find problem has
to satisfy in Section 4.

2.3. Representation language

We formalized all the problems in a single theory on
the basis of ZF regardless of their context. In formality,
it is a typed lambda calculus with parametric polymor-
phism. This is again due to the fully automatic, end-

Table 4
Statistics on the syntactic properties (min/avg/max/median)
Todai Robot Project Math Benchmark TPTP-THF
Ex Univ IMO All
# of formulae 172/ 9/ 2 1/ 3/ 13/ 2 1/ 2/ 25/ 1 1/ 27 25/ 2 1/103/ 5639/11
# of atoms 15/86/554/71 21/131/658/103 11/75/ 359/64 11/98/ 658/75 1/724163737/175
Avg atoms per formula 10/40/138 /34 5/ 49/183/ 47 4/58/ 325/52 4/48/ 325/44 0/ 21/ 811/ 4
# of symbols 3/17/ 33/16 6/ 20/ 34/ 20 4714/ 34/13 3/17/ 34716 1/ 45/ 1442/ 9
# of variables 1/11/ 54/ 8 1/ 15/ 69/ 12 0/ 8/ 39/ 7 0/11/ 69/ 8 0/152/11290/19
#of A 0/ 4/ 22/ 3 0/ 4/ 23/ 3 0/ 1/ 9/ 1 0/ 37 23/ 2 0/ 22/ 385/ 2
#of vV 0/ 2/ 49/ 0 0/ 2/ 24/ 0 0/ 5/ 24/ 4 0/ 3/ 49/ 0 0/122/10753/ 9
#of 3 0/ 5/ 38/ 3 0/ 9/ 50/ 6 0/ 2/ 20/ 1 0/ 6/ 50/ 4 0/ 8/ 496/ 2
# of connectives 127737485/ 60 17/111/494/ 85 11/66/ 255/57 11783/ 494/65 0/569/51044 /53
Max formula depth 8/20/ 50/19 12/ 25/ 59/ 23 9/21/ 49/20 8/22/ 59/21 2/ 36/ 359/11
Avg formula depth 0/ 4/ 9/ 4 0/ 4/ 9/ 4 0/ 5/ 9/5 0/ 4/ 9/ 4 0/ 5/ 9/ 6
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; <PROBLEM-TEXT>

;i The diagonals $ACS and $CE$ of the regular hexagon $ABCDEFS are
; divided by the inner points $M$ and $N$, respectively, so that

l; ¥

¥ frac{aM}{AC} = ¥frac{CN}{CE} = r.

;i Determine $r$ if $BS, S$M$,
;; </PROBLEM-TEXT>

(def-directive problem IMO_1982_2

(Find (r)
(exists (A B CDE F M N)
(&

is-regular (polygon

and $N$ are collinear.

(list-of ABCDE F)))

(

(on M (seg A C))

(on N (seg C E))

(~ (= MA)) (~ (=MQ))

(~ (=N C)) (~ (= NE))

(= (/ (length-of (seg A M)) (length-of (seg A C)))
(/ (length-of (seg C N)) (length-of (seg C E))))

(= (/ (length-of (seg A M)) (length-of (seg A C)))
r)

(colinear B M N)))))

(def-answer problem IMO_1982_2
(lambda r (= r (/ 1 3))))

Fig. 3. Problem file example (IMO 1982, Problem 5).

Table 6
Logical translations in ZF set theory and Peano arithmetic

a) There are two prime numbers less than 4.
ZF: |{n € N | prime(n) An < 4}| =2
prime(n) A prime(ng)A
ny <4Any <4Any#nA

PAli Einﬁlnz )
v (prime(m) Am < 4)
— (m=n1vVm=np)

PA;: number_of(prime_less_than(4)) = 2

b) There is an even number of prime numbers less than 4.
ZF: 3k € N(even(k) A [{n | prime(n) An < 4}| = k)

PA: Jk(even(k) A number_of(prime_less_than(4)) = k)
c) There are infinitely many prime numbers greater than 4.

ZF: |{n € N | prime(n) An > 4}| = w
PA: =3NVn((prime(n) An >4) - n < N)

to-end task setting. In informal mathematics, a word
sometimes means an object, sometimes a relation, and
sometimes a higher-order function. When we refer to
“the derivative of f,” we treat f as if it were an ob-
ject though it is indeed a function. Parametric poly-
morphism is utilized to have polymorphic lists and sets
in the language and define various operations on them
while keeping the axioms and the lexicon concise.
Table 6 also demonstrates why a higher-order lan-
guage is appropriate as the target language. Mechan-
ical translation assumes a systematic correspondence
between the syntactic structures of the input and out-
put languages. That is, the output language needs to
have enough expressive power so that any two natu-
ral language sentences having the same syntactic struc-
ture can be translated into two logical formulas hav-
ing at least similar syntactic structures. The results of

the translations of a), b), and ¢) into ZF in Table 6
have the same or at least a similar structure thanks to
the set builder notation such as {n € N | prime(n) A
n > 4}, which is expressed using A-abstraction in
the library. However, the expressions of the three sen-
tences in PA must be different. Although a conserva-
tive extension of the theory allows us to translate a)
and b) in a similar way by introducing the functions
such as ‘prime_less_than’ and ‘number_of,” we cannot
translate c¢) analogously since the concept of finiteness
cannot be expressed in first-order logic. Meanwhile,
the expressibility of ZF allows almost word-by-word
translations for all sentences.

We believe the vast majority of our benchmark prob-
lems can be eventually expressed in first-order logic.
To mechanically fill the gap between the heavy-duty
language and the relatively simple content is however
a mandatory step to connect natural language process-
ing and automated reasoning together for end-to-end
automatic problem solving.

Since our mechanical translator is still under devel-
opment, the problems were formalized manually at the
current stage. Operators, all majored in computer sci-
ence and/or mathematics, were trained to translate the
problems as faithfully as possible to the original nat-
ural language statements following the design of the
translation module. The sets of new symbols and their
defining axioms were introduced in parallel with the
problem formalization, to match the problem formula
as closely as possible to the problem text. All the for-
malized problems were reviewed by one of the de-
velopers of the translation module to reject a formal-
ization that involves paraphrasing or re-interpretation
of the problem that is not possible in the mechanical
translation.
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In the language, we currently have 59 types includ-
ing those shown in Table 7. The types are somewhat
redundant in that we can represent, e.g., EgnR (equa-
tion in domain R) simply by a function of type R — R
by regarding f : R — R as representing f(x) = 0.
The abundance of types, however, helped a lot in orga-
nizing the axioms and debugging the formalized prob-
lems. Figure 4 presents an excerpt from an axiom file
that includes two type definitions (two def-preds)
and two axioms.

All in all, the language shall be understood as a
conservative extension of ZF set theory. It thus has
some overlap with previous efforts toward formalizing
a large part of mathematics, such as Mizar’s mathe-
matics library [18]. However, some essential parts of
the system (e.g., the definition of the real numbers and
arithmetic) are left undefined. Instead of writing all the
inference rules explicitly, we delegated computer alge-
bra systems to take care of it. Although it is not within

Table 7
Types defined in the representation language
truth values Bool
numbers Z (integers), Q (rationals),

R (reals), C (complex numbers)
polynomials Poly
R2R (R — R),c2c (C - ©)
EgnR (in domain R), EgnC (in C)

single variable functions

single variable equations

points in 2D/3D space 2d.Point, 3d.Point
geometric objects 2d.Shape, 3d. Shape
vectors and matrices 2d.Vector, 3d.Vector
matrices 2d.Matrix, 3d.Matrix
angles 2d.Angle, 3d.Angle
number sequences Seq

Limitval
SetOf(a), ListOf ()
Pair(a, B), Triple(a, B, y)

limit values of functions
polymorphic containers
polymorphic tuples

;; tangent(S1, S2, P) <-> geometric objects
;; S1 and S2 are tangent at point P

(def-pred

tangent :: Shape -> Shape -> Point => Bool)
(axiom

def_tangent_line_and_circle

(pgcrP)

(<-> (tangent (line p q) (circle c r) P)
(& (on P (line p q))

(perpendicular (line c P) (line p q))

(= (distance™2 P c) (" r 2)))))

our current research focus, full formalization of the
system (maybe by embedding it into an existing for-
malized mathematics library) is an interesting future
direction.

2.4. Related work

Development of a well-designed benchmark is cru-
cial in the research field of automated reasoning. The
most notable example is the “Thousands of Problems
for Theorem Provers” (TPTP) [44], which covers var-
ious domains and several problem formats including
CNF, first-order formula with quantifiers, and typed
higher-order logic. Previous efforts have also accumu-
lated benchmarks for various branches of AR, such as
the satisfiability problems in propositional logic (SAT)
[20], satisfiability modulo theory (SMT) [6], inductive
theorem proving [14], and geometry problems [37].
However, the current study is the first attempt to offer
a large collection of curriculum mathematics problems
including not only proof problems but also Find and
Draw problems with a wide range of difficulties as a
benchmark for AR and mechanized mathematics tech-
nologies.

Our benchmark data would be of special interest to
computer algebra (CA) and SMT community, where
decision and quantifier-elimination procedure for a for-
mula involving non-linear real arithmetic is one of the
major themes. As was shown in Section 1, our bench-
mark includes more than 500 problems expressible in
the theory of RCF with a variety of difficulty. We plan
to provide them also in the form of RCF formulas. It
would be a good addition to the existing benchmark
problems for CA and SMT because the uniformity of
the existing benchmark problems is raised as an issue
[15].

;5 maximum (S, m) <->
;; m is the maximum element of set S
(def-pred
maximum :: (SetOf R) -> R => Bool)
(axiom
def_maximum
(set max)
(<-> (maximum set max)
(& (elem max set)
(forall (v)
(-> (elem v set)
(<= v max))))))

Fig. 4. Type definitions and axioms.
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End-to-end problem solving of mathematical word
problems is a classical topic in artificial intelligence
[7,17]. A mathematical word problem is a problem
stated in natural language wherein several numerical
relations are described in a real-world scenario. It at-
tracts much attention recently in the field of natural
language processing [21,28,29,36,39,40,47]. However,
these studies mainly target at solving primary school
level arithmetic word problems. In their nature, pri-
mary school arithmetic questions are quantifier-free.
Moreover they tend to include only A (and) as the log-
ical connective. Automated reasoning for such prob-
lems is hence not of much interest from the viewpoint
of mechanized mathematics.

3. Problem samplers

We provide several sample problems taken from the
first release of the library.

Let £ be the trajectory of (¢ +2, t 42, t) for  rang-
ing over the real numbers. O(0, 0, 0), A(2, 1, 0),
and B(1,2,0) are on a sphere S, centered at
C(a, b, ¢). Determine the condition on a, b, ¢ for
which S intersects with £.

Hokkaido Univ., 2011, Science Course, 3 (2)

In the data set, the above problem is formalized as
shown in Fig. 5. It is not difficult to obtain an equiv-
alent formula in the language of first-order RCF by
rewriting the predicates and functions using their defin-
ing axioms. However, it results in a formula including
22 variables and 22 atoms, that is way above the ability
of existing RCF-QE solvers to deal with. It is not very
surprising seeing that the time complexity of the most

;; FILE: Univ-Hokkaido-2011-Ri-3.1lsp
(def-directive
hokudai_2011_Ri_3_2
(Find (abc)
(exists (a bc OABC12S)
(& (= abc (list-of a b c¢))
line-type 1)

sphere-type S)

n S) (on A S) (on B 9)
C (p01nt a b c))

= C (center-of 9))
intersect 1 S)))))))

I o

(
(=
(
(=
(
(
(=
(

1 (shape-of-cpfun (lambda p (exists

0] (p01nt 0 0 0)) (= A (point 2 1 0))

common implementations of RCF-QE is doubly expo-
nential in the number of variables in a given formula
[13] (though it is in theory doubly exponential in the
number of quantifier alternations). We enhanced ex-
isting RCF-QE algorithms to overcome the difficulty.
Fortunately, our prototype system successfully solved
this problem. We will explain the enhancement in de-
tail in Section 5.

lax—yl _ 242
it 5y
Prove that there are only finitely many pairs of pos-
itive integers (x, y) that satisfy the above inequali-
ties when a is a rational number.

Ex, Math 3+C, Problem 09CBCEO11

Consider 0 < forx > 0and y > 0.

In the data set, the above problem is formalized as
follows:

VaeQEInGZ(n >0An= |S|)
where

= {(x, y) € 7% |
P(to_real(x), to_real(y))}

lax—y|

ﬁ+ﬂ x+})

Several €’s preceding to domain names in the formula
signify their types. Despite the seeming mixture of re-
als, integers, and rational numbers, we can easily find
an equivalent formula in the language of Peano arith-
metic:

VbYeaXIYVaVy ((C #0AQ0(x,y)) >

and P(x,y)=(x>0Ay>0An0<

x<XAny<Y)

(t) (= p (point (+ t 2) (+ t 2) £))))))

(= B (point 1 2 0))

Fig. 5. Hokkaido University, 2011, Science Course, Problem 3 (2).
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where all variables are in domain Z and

Ox,y)=x>0Ay>0Abx —cy#0
A (bx = cy)*(x + y)* < 8(b* +¢?).

In the course of the reformulation, we set a = b/c and
paraphrased the finiteness of the set of the lattice points
(x, y) with the existence of the upper bounds of x and
y. The mechanization of processes such as this is one
of our ongoing research topics.

Let n > 3 be an integer, and let a», a3, ..., a, be
positive real numbers such that azaz---a, = 1.
Prove that (1 + a2)?>(1 +a3)3...(1 +a,)" > n™.

IMO 2012, Problem 2

In the data set, this problem is formalized using
a higher-order function prod_from_to, which is
of type (Z - R) — Z — Z — R and corre-
sponds to H%?Om in the common notation. This problem
apparently requires some kind of inductive reasoning
but the domain includes both real numbers and inte-
gers. Problems of this type are abundant in curriculum
mathematics. We believe they will prove to be new and
interesting and challenging problems for automated in-
ductive reasoning, both theoretically (e.g., formalizing
them in a suitable local theory other than ZF) and prac-
tically.

S is the set {1, 2,3, ..., 1000000}. Show that for
any subset A of S with 101 elements we can find
100 distinct elements x; of S, such that the sets {a+
Xx; | a € A} are all pairwise disjoint.

IMO 2003, Problem 1

It is straightforward to translate the above-men-
tioned problem in ZF:

VA(A C S AA] =101 — ¢100(A))

where S = {n € N| 1 < n < 1000000} and

ok (A)
X CSAIX|=kn
= 3X | pairwise_disjoint( {{a +x |a € A} | | .
x € X})

A reference answer to the problem proves the claim
by first showing ¢1 (A) and then ¢ (A) — ¢r+1(A) for
k=1,...,99,assuming A C S A |A| = 101.

The problem can be expressed in Presburger arith-
metic as follows:

N ai € SANigjai #a;
A xi e sa
— 3Jxy...3x100 /\,-¢jxi;&x]-A
Nijks1 @i 35k #aj +x

Vap ...Vajg

It may be possible to derive this formula from its
original formulation in ZF with some heuristics. How-
ever, the reformulation would do little help in solving
it since it includes more than 50 million atoms.

4. What constitutes an answer to a find problem?

Section 2.2 provided a brief discussion on the prop-
erties an answer formula for a Find problem has to
satisfy for it to be regarded as acceptable (correctness
and simplicity). Now we will discuss these in detail.
In [45], Sutcliffe et al. proposed the conditions which
answers of answer-extraction problems have to satisfy.
Our definition of ‘answer’ encompasses theirs in spirit
and covers more complicated cases beyond the extrac-
tion of a finite number of answers.

The definition of the correctness of an answer is
straightforward. Given a problem Find(x)[v¥ (x, p)]I,
where p stands for zero or more free parameters, an
answer formula ¢ (x, p) must satisfy:

VxV¥p (¥ (x, p) < ¢(x, p)). (1)

An example of a correct answer formula ¢'(x, p) is
provided for each Find problem in the library. If
@’ (x, p) is used instead of ¥ (x, p), the proof task for
(1), which checks the correctness of the answer, should
generally be easy.

The simplicity of an answer is harder to define. Sup-
pose that you are given a problem,

Find(v : R)[v2 = a],

in a mathematics test. Then, Av.(v2 = a) is of course
not an acceptable answer. Test-takers are expected to
answer, for example,

)»v.((a >0Av= al/z)

\% (a >0Av = —01/2)).

An answer to a problem asking to find all real num-
bers v satisfying a formula ¢ (v) in the first-order lan-
guage of RCF is called simple when it is in the form
Av.yr (v) satisfying the following conditions.
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e Y (v) is a quantifier-free formula in disjunctive
normal form, and

e cach dual clause in ¥ (v) consists of atoms of the
form of v p « (the answer) or 8 p 0 (conditions on
the free parameters), where p € {=, <, >, <, >},
and o and B are first-order terms not including v
and comprises numbers, variables (i.e., parame-
ters) and functions in {+, —, -, /, ~(power)}.

When a problem includes a condition on the free pa-
rameter(s), such as in

Find(x : R)[p >0Ax?= p],
the answer must repeat the condition:

wx.(p>0A(x=pVx=—p).

It is necessary for mechanically checking the correct-
ness of an answer by proving the equivalence to the
correct answer.’

The aforementioned syntactic conditions for a prob-
lem classified in RCF should be acceptable because
RCEF allows quantifier elimination [46]. Furthermore,
the statistics tell us that almost all pre-university math
problems have explicit solutions (i.e., in the form of
x=uo,pf>x>vy,etc)

For problems other than those expressible in RCF,
we tried our best to capture a loose, common under-
standing in the form of acceptable answers by examin-
ing the model answers (for humans) to the benchmark
problems. Our tentative definition of ‘simple answers’
is as follows:

e Simplicity of the sub-language: an answer for-
mula should be in a language consisting of
Boolean connectives, equality and inequalities,
numbers, variables, and the four arithmetic oper-

SMore precisely, the condition on the free parameter in the an-
swer may be stronger (or weaker) than that given in the problem. For
instance, to the problem

Find(x : R)[p >0Ax2= P A x| > 1]
the possible solutions include
M(p>1A=pVvx=—yp)
as well as

Ax.(p>0A((x=ﬁAx >DHVvx=—/pAx <71))).

We allow both because they conform to the syntactic condition (after
the distribution of A) and are equivalent to the problem formula.

ations and power calculations, sin, cos, tan, exp,
log, and a minimal use of lambda abstractions
and quantifications.

e Explicitness: whenever possible within the above
restriction imposed on the language, the answer
to a problem of the form Find(x)[¢ (x)] should
be given using atoms such as x = @ and x > «,
where o does not include x.

Note that we need quantification in general unless
the problem is expressible in a theory that allows quan-
tifier elimination. For instance, in the sub-language de-
fined above, there is no way to express the answer to
“Determine all positive numbers v that are divisible by
three and also by two,” other than, e.g.,

Jk(v = 6k Ak > 0).

As for “minimal use of A,V,3”, we define the pref-
erence of answer form tentatively (Table 8). The hi-
erarchy is our own creation but we tried our best to
capture the conventions in the standard textbooks and
problem books. The answer-check routine compares a
solver’s answer and the model answer in the data set,
and checks whether the solver’s answer ranks equal (or
higher) in the hierarchy.

5. Prototype solver

While developing the benchmark data set, we also
developed a prototype mathematical problem solver
system (overviewed in Fig. 6). Given a formalized
problem, the system first rewrites it iteratively using
the axioms and several equivalence-preserving trans-
formation rules such as beta-reduction, extensional
equality between functions:

Ax.M =Aix.N & Vx(M = N),
and variable elimination by substitution:

Vi(x = f = ¢(x0) & ¢ (f),
Ax(x = f AP()) & o (f)

where x does not occur free in f. In the course of
the rewriting process, several types of terms, such as
multiplication and division of polynomials and inte-
gration, are evaluated (simplified) by computer alge-
bra systems (CASs). Specifically, we use Mathemat-
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Table 8

Preference hierarchy on answer form

Directive type

Syntactic condition on the answer formula

Find(v : R)[¢ (v, p)]

Find(v : 2)[¢ (v, p)]

Find(v : SetOf(Point))[¢ (v, p)]

LV (A @ pij eij) AYi(p)

2.Vi(Aj fij @) pij OAYi(p)

3.Vi@m : 2).(A\jw pij aij(m)) A (@ pi i) A i (p))
4.V; A0 RN pij ij() A pi vi)) A i (p))

L V(A pij aij) A¥i(p)
2.V;Am :2).(v = ;(n) A (1 p; ¥i)) AYi(p))

Vi ={(x,») 1&& 0N} A¥i(p)

(px € {=, <, <, 2, >} s, (1), ¥, Ex (-, )t first-order terms not including v, x, y; f;; (v): first-order term; ¥; (p): quantifier-free first-order

formula)

D
Todai Robot w RCF+ SYNRAC
Math Formula RCF-QE Solver
Benchmark Formalized Formula
Problem Rewriting
Problem $ PA | Mathematica
ranguage L1 Formula PA-QE Solver
Processing [ SYNRAC
CASs: Maple
Under development Mathematica

Simplification,
equation solving,
integration, etc.

Fig. 6. System overview.

ica 10 for the operations on polynomials and Maple
18 for the integration and differentiation. Once the in-
put is rewritten to a formula in the language of RCF,
quantifier-elimination (QE) algorithms are invoked; we
utilized the RCF-QE algorithm implemented in SyN-
RAC [24]. When QE is proceeded successfully, the
remaining tasks, solving equations and inequalities in
many cases, will be taken care by Mathematica. When
the input is rewritten in the language of PA, we apply
the Reduce command of Mathematica.

The prototype solver can thus be regarded as an
enhancement of CASs with a much richer input lan-
guage, which is as rich as allowing a translation of a
mathematical problem stated in natural language on a
word-by-word basis. The formula rewriting process is
analogous to a compiler (e.g., from C++ to assembler)
whose target languages are RCF and PA. It is however
not guaranteed that the formula rewriting process pro-
duces a translation in the target languages since the in-
put language can represent a far more wider variety of
problems that fall outside of the expressiveness of RCF
and PA. Furthermore, we need to carefully design the
axioms so that they produce a computationally feasible

reformulation of the concepts expressed by the predi-
cate and function symbols.

As mentioned in Section 3, the first-order formulas
generated by mechanical translation are much larger
than expected [32]. We enhanced the RCF-QE algo-
rithms by numerous techniques to handle them: choice
of the computation order of sub-formulas [23,27], spe-
cialized QE algorithms for restricted input formulas
[16], simplification of the intermediate formulas by uti-
lizing the interim results [23], and so on.

Moreover we developed an approach to pre-process
an RCF formula into a form more suitable for QE [22].
Specifically, we developed three methods to simplify
the formulas based on the geometric invariance of the
problems under translation, rotation, and scaling. On
our benchmark, the simplifications were applicable to
over 20% of the problems and provided substantial per-
formance improvements. Additionally, we developed
an algorithm for computing the area enclosed by a set
of curves based on an enhancement of the cylindrical
algebraic decomposition (CAD) algorithm.

We also implemented an extended RCF-QE pro-
cedure that reduces some of the problems involving
trigonometric functions to RCF-QE problems. The re-
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duction is applicable to a problem in a form such as

N <x;i < B
e 3 < A (sin(Y; mixi), cos(Y; n,-x,-)))

where «;s and B;s are constants, m;s and n;s are in-
tegers, ¢ (s, c) is an RCF formula that does not in-
clude free occurrences of x;s. We also require that the
condition ; < x; < B; (modulo 27) can be ex-
pressed sub-algebraically in terms of sin x; and cos x;
(we store such combinations of ¢; and §; in a pre-
compiled database). By expanding sin(} ; m;x;) and
cos(D ; n;x;) into polynomials of sin x; and cos x; (i =
1,..., k), replacing sinx; and cosx; with new vari-
ables s; and ¢;, and adding ci2 + siz = 1 as new con-
ditions, we have an equivalent RCF formula. For in-
stance, we can convert

Ix3 O<x1<mA0<x2<7%
T2\ A y = cos(x] + x2) + sin(x; — x3)

into

s1>0Acp>0A585>0
deydsy | Ay =ciep — s152 + 5160 — €152
dcrdsy A c% —i—s]z =1
2 2 _
ANey+s5 =1

This conversion is applicable only to a problem in
quite a limited form. It however covers a large num-
ber of trigonometric problems in pre-university prob-
lems. MetiTarski [1] and Polya [5] are special-purpose
provers developed for decision problems involving
trigonometric and other transcendental functions. They
mainly target at proving (Boolean combinations of) in-
equalities between transcendental functions. Although
they can handle various types of transcendental func-
tions, it is not straightforward to apply them to Find
problems since we need not only to verify a closed for-
mula but also to eliminate quantified variables to find
an answer.

6. Experiments

The prototype system was run on the benchmark
problems with a time limit of 600 seconds per problem
(including the time spent on checking the correctness
of the answers). Table 9 shows the number of success-
fully solved problems, minimum, median, average, and
maximum (wallclock) time spent on solved problems,

number of failures due to timeout, wrong answers (dis-
proofs for Show or wrong answers for Find or Draw
directives), and those not solved due to various rea-
sons (the column headed ‘Other’). The machine used
for the experiments is a 64-bit machine with 2.6 GHz
AMD Opteron processors and 130 GB of RAM. Ap-
proximately one-third of the ‘Other’ cases were due to
a failure in the problem reformulation phase; i.e., for
those problems, the system could not find an equivalent
formula expressible in either RCF or PA. Wrong an-
swers were due to known bugs in our formula rewriting
module.

Overall, the performances for the Ex, Univ, and
IMO divisions seem to well reflect the inherent dif-
ferences in their difficulty levels. Success rates on the
RCF problems in Ex and Univ division are quite close,
but the solver spent more time in solving Univ prob-
lems. The IMO problems are apparently more difficult
than Ex and Univ problems as can be seen in the much
lower success rate on RCF and PA problems and the
higher timeout rate on the RCF problems. It is not sur-
prising but justifies our primary motivation behind the
development of the benchmark library: we can gauge
the ability of a mechanized reasoning system using pre-
university students’ ability as the reference points.

In comparison with our past experimental results
[33], the speed of the computation and the rate of suc-
cessfully solved problems are improved. For instance,
on Univ problems, the median of the computation time
was improved from 26.5 sec to 10.0 sec per problem
and the rate of successfully solved problems was im-
proved from 58.0% to 68.3%. The improvement in the
speed is mainly due to the refinement of the RCF-QE
procedure (Section 5). The improvement in the rate of
success is brought by both the speed-up and the fact
that more problems are successfully reformulated in
RCF or PA by the axioms added for more comprehen-
sive definitions of the predicates and function symbols
(i.e., definitions for various special cases, for which
general definitions cannot be formulated in RCF nor
PA, e.g., ‘length of a curve’ vs. ‘length of the perimeter
of a triangle’).

Table 10, Table 11, and Table 12 show further anal-
ysis of the results obtained for the three divisions. Ta-
ble 10 lists the performance figures for the RCF prob-
lem subsets in the Ex division that are rated level 1 to 5
in the exercise books. The rating was done by the edi-
tors of the exercise books: level 1 to 3 signify textbook
exercise level and level 4 and 5 signify university en-
trance exam level. We see a clear difference between
those rated level 1 or 2, and 4 or 5, especially in the
percentages of the problems that had a timeout.
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Table 9
Overall results
Succeeded Failed
Success % Time (sec) Timeout Wrong Other
Min / Med / Avg / Max
Ex RCF 68.4% (119/174) 2/ 50/ 257/ 529 21.3% 1.1% 9.2%
PA 48.8% ( 41/ 84) 2/ 30/ 43/ 64 14.3% 0.0% 36.9%
Other 10.0% ( 3/ 30) 3/ 4.0/1653/ 489 3.3% 3.3% 83.3%
All 56.6% (163/288) 2/ 40/ 229/ 529 17.4% 1.0% 25.0%
Univ All (RCF only) 68.3% (166/243) 3/10.0/ 33.0/ 598 20.2% 2.9% 8.6%
IMO RCF 23.3% ( 27/116) 3/16.0/ 36.0/ 226 66.4% 0.9% 9.5%
PA 9.5% ( 4/ 42) 4/17.5/136.5/ 507 14.3% 0.0% 76.2%
Other 5.6% ( 3/ 54) 2/ 30/ 60/ 13 5.6% 0.0% 88.9%
All 16.0% ( 34/212) 2/11.5/ 452/ 507 40.6% 0.5% 42.9%
Table 10
Breakdown of results on Ex RCF problem by number of stars
Succeeded Failed
# of stars Success % Time (sec) Timeout Wrong Other
Min / Med / Avg / Max
1 82.4% (28/34) 2/ 40/ 8.6/ 99 8.8% 0.0% 8.8%
2 73.5% (25/34) 3/ 5.0/29.3/529 5.9% 2.9% 17.6%
3 72.7% (24/33) 3/ 6.0/43.3/502 21.2% 0.0% 6.1%
4 60.5% (23/38) 3/ 6.0/329/477 23.7% 2.6% 13.2%
5 54.3% (19/35) 3/11.0/155/ 37 45.7% 0.0% 0.0%
Table 11
Breakdown of results on Univ RCF problems by university
University # of all problems RCEF problems % Overall success % Success % on RCF problems
Hokkaido 72 43.1% (31/72) 30.6% (22/72) 71.0% (22/31)
Tohoku 80 51.2% (41/80) 37.5% (30/80) 73.2% (30/41)
Tokyo 160 37.5% (60/160) 21.9% (35/160) 58.3% (35/60)
Nagoya 72 41.7% (30/72) 23.6% (17/72) 56.7% (17/30)
Osaka 64 37.5% (24/64) 31.2% (20/64) 83.3% (20/24)
Kyoto 88 42.0% (37/88) 34.1% (30/88) 81.1% (30/37)
Kyushu 96 36.5% (35/96) 26.0% (25/96) 71.4% (25/35)
Table 12
Results for IMO problems by decade
Years Human score % Machine score % Success % Failed
Timeout Wrong Other
1959-69 58.23% 25.94% 32.1% (18/56) 42.9% 0.0% 25.0%
1970-79 46.57% 8.50% 16.7% (5/30) 40.0% 0.0% 43.3%
1980-89 44.35% 7.41% 12.5% (4/32) 37.5% 0.0% 50.0%
1990-99 38.27% 5.00% 8.3% (3/36) 30.6% 2.8% 58.3%
2000-13 34.31% 4.76% 7.4% (4/54) 48.1% 0.0% 44.4%
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Table 11 lists the performance figures for each uni-
versity from which the exam problems were taken. Al-
though average scores etc. of the entrance exams are
not published, a statistical analysis undertaken by ma-
jor prep schools tells us that the average score of suc-
cessful applicants to the top universities is around 30-
60% depending on schools and departments. Hence, it
is very plausible that a machine will come to have the
ability to pass the entrance mathematics exams of top
universities if it is able to cover areas other than RCF.

Finally, Table 12 lists the results on IMO problems
taken from different time periods. Human and Machine
percentage scores in the table shows the ratio between
the attained points (by all contestants in a year and by
our system, respectively) and all possible points.® It
seems that the IMO problems are getting harder year
by year not only for human participants but more so for
our system.

We believe that these experimental results support
our decision on the library organization, and encour-
age us to further proceed toward the goal of end-to-end
math problem solving with the monolithic logical lan-
guage based on ZF.

7. Conclusion and prospects

In this paper, we introduced a benchmark prob-
lem library for mechanized mathematics technolo-
gies. The library consists of curriculum mathematics
problems taken from exercise problem books, univer-
sity entrance exams, and International Mathematical
Olympiads. Unlike other existing benchmark libraries,
this one contains problems that are formalized so that
they are obtainable as the result of mechanical transla-
tion of the original problems expressed in natural lan-
guage. Preliminary experimental results we obtained
for our prototype system on the benchmark show that
its performance is comparable to that of candidates for
admission to top universities, at least for problems in
real-closed fields.

As can be seen in the example problems and the
experimental results, the benchmark library offers a
challenge to various areas of mechanized mathemat-
ics and calls for an integration of these technologies.
They include (but not limited to): enhancement of
basic reasoning algorithms such as quantifier elimi-
nation procedures (e.g., [9-11,23,24,27,43]), simpli-

OThe statistics were taken from the official IMO website: https://
www.imo-official.org/results_year.aspx.

fication of a problem by exploiting the symmetry in
the problem [2—4,19], inductive theorem proving be-
yond integer domain, and representation change of the
problem across different local theories and formalisms
(e.g., [26,34,35,38]).

Our future plan includes the expansion of the li-
brary with more problems on integer arithmetic, tran-
scendental functions, combinatorics, and a mixture of
real and integer arithmetics as well as development and
performance improvement of the natural language pro-
cessing module for an end-to-end system.
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