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ABSTRACT 

Road traffic deaths and injuries have already become a major cause of concern and aroused 

great attention all around the world. According to Global Status Report on Road Safety 2015 by 

World Health Organization, more than 1.2 million people die each year, with millions more 

sustaining serious injuries and living with long-term adverse health consequences. In low- and 

middle-income countries, traffic injuries have become one of the leading causes of death and cost 

approximately 3% of their GDP as a result of traffic crashes. Fatigue driving was identified as one 

of the four most risky driving-related behaviors, especially in fatal traffic crashes and represented 

a significant social and economic cost to the community. Despite extensive body of research 

addressing the harmfulness of driver fatigue on road safety, it has not attracted enough attention. 

Drivers are less concerned about driver fatigued than other traffic safety issues. Besides drivers, 

public are also not fully aware of the potential risk of driver fatigue because it is difficult to 

evaluate its effect accurately. 

The focus of this dissertation is to examine possible reasons for disregarding the harmfulness 

of fatigue-related crash, and identify factors contributing to the occurrence of fatigue-related crash 

as well as severe outcome in the crash. The first problem addressed in the dissertation is the 

misclassification problem of fatigue-related crash. Reliable and accurate records are essential for 

assessing the scope of fatigue-related crash problems, monitoring, and evaluating the effectiveness 



 

 

of intervention measures. An analysis framework is developed to identify factors that cause police 

officers misclassify fatigue-related crashes and examine the interactive effects of those factors. It 

can be inferred that the stereotype of certain groups of drivers, crash types, and roadway conditions 

affects police officers' judgment on fatigue-related crashes.  

Another possible reason for impeding understanding the harmfulness of fatigue-related crash 

is examined. Fatigue driving and injury severity in the crash may share some common influential 

factors. Ignoring the impact of these common factors will lead to endogeneity problem and result 

in biased parameter estimation. Therefore, a bivariate endogenous binary-ordered probit model is 

developed to examine the relationship between fatigue driving and injury severity considering 

endogeneity. Regarding the potential systematic differences between commercial and non-

commercial vehicle drivers, the difference of influential factors between commercial and non-

commercial vehicle drivers is also discussed. The results show that the influence of fatigue driving 

on injury severity is significantly underestimated if ignoring the endogeneity. 

Lastly, the dissertation investigates the fatigue-related crash from macro-level. A spatial 

filtering technique is applied to capture the unobserved spatial correlation of fatigue-related crash 

frequency. With the filtered spatial components, a semi-parametric Poisson model can be 

developed to explore the impacts of both road and macroscopic variables on the occurrence of 

fatigue-related crashes. Also, the effects of omitted spatial components and macroscopic variables 

can also be calculated. The calculation results indicate that the filtered spatial components and 



 

 

macroscopic variables explain more than half of the unobserved variation in the error term. 
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CHAPTER 1 

Introduction 

 

1.1  Background 

 Road traffic deaths and injuries have already become a major cause of concern and aroused 

great attention all around the world. More than 1.2 million people die each year, with millions 

more sustaining serious injuries and living with long-term adverse health consequences (World 

Health Organization, WHO, 2015). Particularly, in low- and middle-income countries, traffic 

injuries have become one of the leading causes of death and cost approximately 3% of their GDP 

as a result of traffic crashes (WHO, 2015). 

 Over the past few years, the concern over driver fatigue has risen. Fatigue driving was 

identified as one of the four most risky driving-related behaviors, especially in fatal traffic crashes 

(Fernandes et al., 2010) and represented a significant social and economic cost to the community. 

Approximately 20% of fatal crashes in Canada involved driver fatigue, eliminating the influence 

of alcohol, speeding and unsafe passing (Canadian Council of Motor Transport Administrator, 

CCMTA, 2010). In Australia, 20 - 30% of all fatal traffic crashes were found due to fatigue driving 

(Australian Transport Council, ATC, 2011). However, this situation could be worse in developing 
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countries since those countries include most of traffic crashes worldwide (WHO, 2015). A 

questionnaire-based research among commercial bus drivers in Malaysia found that the prevalence 

of fatigue among commercial bus drivers was 37.7% (Fadhli et al., 2008). Statistics from China 

also showed that 1,271 (0.83% of total number of crashes due to any cause) crashes were caused 

by fatigue driving in 2013, with 677 (1.16% of total number of people killed in the crashes due to 

any cause) people killed, 1,600 (0.75% of total number of people injured in crashes due to any 

cause) people injured, and over RMB 37 million in property losses (Traffic Management Bureau, 

Ministry of Public Security, PRC, 2013). Although China seems to have lower fatal fatigue-related 

crash rate than Canada and Australia, the reason for this contrast may be related to their criterion 

for calculating the "crash rate". The fatigue crash rate in the statistics of Canada and Australia is 

calculated using the number of crash which "fatigue is one of the contributing factors". However, 

the fatigue-related crash rate for China is calculated by the number of crashes which "fatigue is the 

major cause of crash". In this case, China is applying a much narrower concept in calculating 

fatigue-related crash rate than Canada and Australia. Applying the similar criteria, UK estimated 

the fatigue-related crash rate should be around 2% of all crashes in 2015 (Department for Transport, 

UK, 2016), which the fatigue-related rate is much closer to China. Although the reported fatigue-

related crash rate of China is not so high, we can still speculate that the crash rate for "fatigue is 

one of the contributors of crash" would be much higher. 

 Despite extensive body of research addressing the harmfulness of driver fatigue on road safety, 
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it has not aroused enough attention. Drivers were less concerned about fatigued driving than other 

traffic safety issues (Vanlaar et al., 2008). Studies from different countries showed that many 

people still drove when they felt fatigue (Beirness et al., 2005; Nordbakke & Sagberg, 2007; Tefft, 

2010). Besides drivers, public are also not fully aware of the potential risk of driver fatigue due to 

the inaccurate evaluation of its harmfulness. 

 

1.2  Problem Statement 

Although fatigue-related crashes represent a significant social and economic cost to the 

community, their influential mechanism, contributing risk factors and countermeasure are not fully 

understood. Generally speaking, three major barriers hinder the investigation of fatigue-related 

crashes. First and foremost, the absence of consistent definition for driver fatigue makes it hard to 

evaluate. One of the obstacles is that is hard to quantify the relationship between fatigue and 

working strength since both high-demand and low-demand road condition could induce driver 

fatigue (Oron-Gilad et al., 2008; Zhao & Rong, 2013). For example, poor road condition (Arnold 

et al., 1997), complex traffic conditions, and road environments (Pilcher & Huffcutt, 1996) 

required more attention and could easily induce physical and mental fatigue. However, fatigue can 

also be induced in simple and monotonous condition, which has been confirmed by simulated 

driving studies (Desmond & Hancock, 2001; Thiffault & Bergeron, 2003). In addition, fatigue is 

not a strictly linear progress, but a gradual and cumulative process, and the syndrome of fatigue 
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can be resolved after a period of rest. More importantly, individual differences hinder the objective 

quantification of fatigue degree in a crash (Haworth et al., 1998; Stutts et al., 1999; Rajaratnam & 

Arendt, 2001; Karrer et al., 2004; Philip et al., 2005). In this respect, it is still difficult to develop 

a general definition for driver fatigue like other violation behaviors. 

The second barrier is related to the data quality. Data quality is essential for accurately 

analyzing the influence and contributing factors of fatigue-related crashes, especially in 

statistically analysis. However, as mentioned above, fatigue-related crash data is hard to collect 

due to the absence of universal accepted definition. The sources of fatigue-related crash data can 

be can be classified into three categories: (1) self-report data collected by surveys, (2) experiment 

data obtained from lab experiment, and (3) police records. Self-report data are collected by asking 

drivers about their experience of fatigue and their involvement in automobile crashes (National 

Sleep Foundation, 2008; Pennay, 2008). The disadvantage of self-report data is that it can be 

affected by social desirability and recall bias (Neugebauer & Ng, 1990; Wåhlberg et al., 2010). 

Moreover, the narrow definition of fatigue in survey can also cause underestimation in the impact 

of fatigue in a crash (Armstrong et al., 2013). On the other hand, the data collected from lab 

experiment is believed to be much accurate for the reason that it is automatically recorded and 

saved by equipment. In this way, some objective bias of measuring fatigue can be avoided. It 

should be noted that experiment data is also criticized for whether it can reveal the reality since 

people’s driving behavior under experimental setting may differ from the real driving situation. 
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Moreover, individual characteristics have great influence on the fatigue level given the same 

condition. As a result, the results obtained from a small group of people may not be able to 

generalize to general public. 

The police records are perhaps the most often adopted data in fatigue-related crash analysis. 

This kind of data is recorded by police officers and can be easily combined to other data (e.g. 

medical records, geographic data, etc.). Nevertheless, it is criticized by some researchers that 

police officers may not has adequate knowledge and information to judge whether a crash is cause 

by driver fatigue (Armstrong et al., 2013). In practice, to assist in identifying fatigue in crash, 

proxy measurements are developed aiming to improve reporting accuracy of fatigue-related 

crashes (Filtness et al., 2015). Although these surrogate definitions are also based on experience 

or scientific research, they are criticized for being too specific (Crummy et al., 2008; Armstrong 

et al., 2013) and may provide misleading instructions for police officers. Additionally, police 

officers also tend to assign the reason of a crash to current interest when there exist more than one 

possible causes for the crash (Ogden & Moskowitz, 2004). 

As one of the fundamental methodologies for analysis traffic crashes on road, statistical model 

provides useful tools to investigate the risk factors contributing to fatigue-related crash (e.g. Pack 

et al., 1995; Zhang et al., 2016), and the relationship between fatigue driving behavior and severity 

outcome in the crash (e.g. Summala & Mikkola, 1994). Some important ongoing methodological 

issues should be considered when developing statistical models so as to achieve better evaluation. 
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Those issues are discussed in a review by Mannering and Bhat (2014): parsimonious vs. fully 

specified models; unobserved heterogeneity; risk compensation; choice of methodological 

approach; under-reporting of crashes with less severe injuries; selectivity-bias/endogeneity; spatial 

and temporal correlations. 

 

1.3  Objectives 

The primary objective of this dissertation is to develop statistical models to examine the 

harmfulness, pattern, and influential factor associated with fatigue-related crash from different 

prospects. The following are the specific objectives.  

The first purpose is to examine possible reasons for neglecting the harmfulness of fatigue-

related crash. Due to lacking of proper criteria, the identification of fatigue-related crashes by 

police officers largely depends on inferential evidence and their own experience. As a result, many 

fatigue-related crashes are misclassified and the harmfulness of fatigue on road safety is 

misestimated. Moreover, problematic statistical models can also induce inaccurate evaluation of 

the impact of driver fatigue. Therefore, in this dissertation, endogeneity will be addressed when 

analyzing the impact of fatigue on its consequently injury severity in fatigue-related crashes 

The second purpose is to identify factors contributing to the occurrence of fatigue-related 

crash as well as severe outcome in a crash. The micro-level analysis focuses on identifying factors 
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affecting both driver's fatigue propensity and driver's injury severity in a crash, including observed 

and unobserved factors. This analysis is based on individual data. On the other hand, this study 

also investigates factors associated with crash frequency using county-level fatigue-related crash 

data. Macro-level data is often found to be spatial dependent that the spatial correlation of fatigue-

related crash occurrence should be discussed. Moreover, the contribution of macroscopic variables 

will also be investigated. 

Based on the discussion, suggestions for better preventing fatigue-related crash and its 

consequently injury will be proposed. 

 

1.4  Structure 

The structure of the dissertation is shown in the following Figure 1.1. This dissertation 

contains seven chapters. Chapter 1 introduces the background and objectives of this research. 

Chapter 2 summarizes the researches of driver fatigue and modelling issues relevant to traffic 

crashes, especially to fatigue-related crash. The description of data applied in the dissertation is 

shown in Chapter 3. In Chapter 4, a joint model framework is introduced to analyze factors 

contributing to the misclassification of fatigue-related crashes in police reports. Association rule 

data mining technique is employed to identify the potential interactions of factors, and logistic 

regression models are applied to analyze factors that hinder police officers' identification of 

fatigue-related crashes. In Chapter 5, an empirical analysis is conducted to examine the 
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relationship between fatigue driving propensity and fatal injury severity by comparing bivariate 

and univariate endogenous binary-ordered probit model. In Chapter 6, the spatial correlation of 

fatigue-related crash is captured by spatial filtering technique. In addition, the influence of spatial 

correlation and macroscopic variables on fatigue-related crash frequency is calculated. Finally, in 

Chapter 7, conclusions and recommendations for future studies are given. 

 

 

Figure 1.1 Structure of the dissertation 
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CHAPTER 2 

Literature Review 

 

The review of literature is divided into three main sections: First, the previous studies on 

fatigue-related crashes are summarized. Second, studies on misclassification of traffic crash will 

be discussed in detail. Particularly, the researches based on fatigue-related crash will be addressed. 

Finally, a review of endogeneity and spatial correlation will be presented. 

 

2.1 Driver fatigue and fatigue-related crash 

Although the phenomenon of driver fatigue has been heavily researched, there is not a widely 

accepted definition for it. Fatigue is a physiological condition that can occur long before you fall 

asleep at the wheel, and impairs the reaction time, vigilance and judgement on traffic condition 

(The Ministry of Transport, New Zealand, 2017). There are three main determinants of fatigue 

identified by previous researches: lacking of sleep, time of the day, and time on the task (Dobbie, 

2002).  

Lacking of sleep is the most well-known cause of driver fatigue that would reduce the alertness 

and performance of drivers (Dinges, 1995; Hartley & Arnold, 1995; Rosekind, 1999). Different 
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individuals require different length of sleep. Moreover, the impact of sleep loss can be accumulated 

and manifests themselves during inappropriate or dangerous situations (e.g. falling asleep during 

driving) (Dinges, 1995; Feyer, 2001). On the other hand, time of the day is closely related to fatigue 

because it affects the circadian rhythm or body clock of human beings. Crash facts also confirm 

the influence of time of the day on the occurrence of crashes (Mitler et al., 1988). Several studies 

have claimed that there are two peaks for when the level of sleepiness is high: night to early 

morning and in the afternoon (Pack et al., 1995; Haworth, 1998; Hartley, 2000; Horne & Reyner, 

2001; Philip et al., 2005). Additionally, driving task-based research shown that with the increase 

of time spending on a task, the level of fatigue also increases. Also, the time spent in other tasks, 

such as working and studying, can also increase fatigue and affect subsequent driving behavior 

(The Ministry of Transport, New Zealand, 2017). 

Unlike drunk driving crashes, no blood or breath test can be applied to quantify driver's fatigue 

level at the crash scene (Pack et al., 1995; Connor et al., 2001a; DaCoTA, 2012). As a result, there 

is currently no standard methodology for convicting fatigue as the cause of the crash (Crummy et 

al., 2008; Filtness et al., 2015). Therefore, the identification of fatigue-related crashes is based on 

subjective evidences or indirect measurements. Table 2.1 lists the criterions for identifying fatigue-

related crashes in United Kingdom, United States of America, Australia, and China.
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Table 2.1 Fatigue-related crash determination criterion in researches 

Source Country Criterions for identifying fatigue-related crash 

Horne and Reyner (1995) United Kingdom (1) vehicle ran off the road and/or collided with another vehicle or object; 

(2) absence of skid marks or braking; (3) driver saw the point of run-off 

or the object hit prior to the crash; (4) witnesses reported lane drifting prior 

to the crash; (5) excluded are those instances where another cause may 

have been the primary factor (e.g. mechanical defect, speeding, excess 

alcohol, bad weather). 

NCSCR/NHTSA (2001) United States of 

America 

(1) occurred late at night, early morning or mid-afternoon; (2) resulted in 

higher than expected severity; (3) involved a single vehicle leaving the 

roadway; (4) occurred on a high-speed road; (5) driver did not attempt to 

avoid the crash; (6) driver was the sole occupant in the vehicle. 

ATSB operational definition 

(2006) 

Australia (1) includes single vehicle crashes that occurred during ‘critical times’ 

(00:00–06:00 and 14:00–16:00); (2) includes head-on collisions where 

neither vehicle was overtaking at the time; (3) excludes the following 

types of crashes:  crashes occurred on roads with speed limits under 80 

km/hour, crashes involved pedestrians, crashes involved unlicensed 

drivers, crashes involved drivers with high levels of alcohol (blood alcohol 

over 0.05g/100ml). 

China's Public Security 

Department (2007) 

China (1) drove cars more than eight hours a day; (2) engaged in other work 

excessive physical exertion; (3) lacked of sleep that results in sleepy or 

lower reaction rate, so that the driver is having difficulty in assessing 

traffic conditions immediately and reacting accurately. 
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2.2 Misclassification 

 Among all causes, fatigue-related crashes are easily neglected or misclassified 

because of the difficulty in observing and identifying driver fatigue (Radun et al., 2013; 

Filtness et al., 2015). Due to the absence of solid definition and objective test, fatigue-

related crash is hard to detect in a crash. For example, police officers may consider a 

crash to be fatigue-related, when the following conditions appear (Horne et al. 1995; 

Horne et al. 1999; NCSDR/NHTSA, 2001): occured during late night or mid-afternoon; 

single vehicle ran off the roadway; occured on a high-speed road; absence of skid marks 

or braking. Some fatigue-related crashes are determined even by eliminating other 

causes of crashes (e.g. speeding, drunk driving, etc.). 

 To assist the identification of fatigue in a crash, proxy measurements are developed 

aiming to improve reporting accuracy (Filtness et al., 2015). In Australia, ATSB (2006) 

has developed the proxy definition for fatigue/sleep-related crash, and five jurisdictions 

in Australia have already incorporated proxy definition into their reporting process. In 

Queensland, for example, fatigue can be considered as a contributor to a crash when it 

fitted the proxy definitions: single-vehicle crashes in more than 100 km/h speed zones 

which occured during midnight and in the afternoon, or where a vehicle ran out of 

roadway and the driver did not try to avoid the crash (Armstrong et al., 2013; Filtness 

et al., 2015). Although these surrogate definitions are based on experience or scientific 

research, they are criticized for too specific (Crummy et al., 2008; Armstrong et al., 

2013) and may provide misleading instructions for police officers. A questionnaire-
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based study conducted in Australia by Crummy et al. (2008) found that only a small 

proportion of participants that actually had a fatigue/sleep-related crash were correctly 

identified by ATSB proxy definitions (ATSB, 2006). 

Reliable and accurate records are essential for assessing the scope of fatigue-related 

crash problems, as well as monitoring and evaluating the effectiveness of intervention 

measures. A survey in Ontario showed that 56.6% of traffic police felt that they did not 

receive enough training to identify drivers who were fatigued or drowsy, or determined 

the role of fatigue in a crash (Robertson et al., 2009). Although several risk factors 

identified by prior research and public belief are believed to contribute to fatigue-

related crashes, few works have been done to prove whether these factors are useful for 

police officers to identify fatigue-related crashes. By the same token, some of the 

factors believed to be associated with fatigue-related crashes are not helpful in judging 

whether a crash is fatigue-related and may even lead to incorrect classification of the 

cause of crashes. 

 

2.3 Methodology for Statistical Modeling 

Recently, great improvement has been achieved in statistical methodologies for 

dealing with crash data. However, important methodological challenges still exist. 

Based on the review by Mannering and Bhat (2014), several statistical methodology 

relevant issues should be discussed in road safety research. Those issues include 
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unobserved heterogeneity, endogeneity, spatial and temporal correlation, etc. Here, two 

of them, endogeneity and spatial correlation, will be discussed in the content of fatigue-

related crash analysis. 

2.3.1 Endogeneity  

In econometrics, endogeneity problem is said to occur if the independent variable 

is correlated with the error term. This correlation can be caused by several reasons: 

omitted variables, measurement error, and simultaneity in simultaneous equations 

models. Endogeneity induces estimation bias in statistical models and may eventually 

lead to mistaken conclusions. 

In the context of road safety research, endogeneity is often observed in crash injury 

severity models. For example, the endogeneity of seat belt use in injury severity of 

traffic crash are discussed using different model structure. Eluru and Bhat (2007) 

addressed the endogeneity of seat belt use in injury severity analysis by a joint random 

coefficients binary-ordered logit model. Since seat belt non-users may be intrinsically 

unsafe drivers and are more likely to be involved in severe crashes. Thus, the 

unobserved factors (e.g. unsafe driving habits) would influence injury severity 

outcomes. de Lapparent (2008) used bivariate ordered probit model to modeled seat 

belt use and injury severity regarding different types of vehicle users (drivers, front 

passengers, and rear passengers). The results shown that drivers may tend to take more 

risks as the compensation of the efficiency of seat belt in reducing injury severity. More 
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discussion on endogeneity of seat belt-use can be found in Evans (1996), Dee (1997), 

Derrig et al. (2000), Cohen and Einav (2003), and Abay et al. (2013). 

Besides, other factors such as collision types, driver characteristics, road 

characteristics can be endogenous to crash severity. Ye et al. (2008) applied a joint 

random coefficient multinomial logit-ordered to examined the two-vehicle collision 

and crash severity. Results suggested that the unobserved factors contributing to head-

on collisions were negatively associated with unobserved factors contributing to severe 

injuries. On the contrary, the unobserved factors contributing to rear end crashes had 

positively impacts on severe injuries. Lee and Abdel-Aty (2008) evaluated the 

endogeneity of passenger characteristics (presence, number, and age of passengers) 

with crash characteristics (e.g. injury severity) by bivariate ordered probit models. Kim 

and Washington (2006) applied a joint model to examine the relationship between angle 

crashes and left turn lanes occurred in the intersections of 38 counties in Georgia. The 

results confirmed the endogeneity of left turn lane presence in angle crash occurrence 

models.  

From the prospect of model structure, several types of model structures are applied 

to addressed endogeneity problem. The joint random coefficient models were applied 

to deal with the endogeneity of independent variables (Kim & Washington, 2006; Eluru 

& Bhat, 2007; de Lapparent, 2008; Ye et al., 2008). In the studies of Hutchinson (1983, 

1986), Ouyang et al. (2002) and Yamamoto and Shankar (2004), they addressed the 

endogeneity problem due to common unobserved factors for different individuals 
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involved in the same crash by bivariate models. Moreover, multilevel model (Jones & 

Jorgensen, 2003; Lenguerrand et al., 2006; Kim et al., 2007; Huang et al., 2008) and 

copula-based model (Rana et al., 2010; Abay et al., 2013) were also introduced to deal 

with endogeneity in automobile crash model. 

For fatigue-related crash, although it is not in agreement, fatigue driving and injury 

severity in the crash may share some common influential factors, including observed 

and unobserved factors. Radun and Radun (2009) claimed that there was no connection 

between crash severity and whether the driver was judged to have been fatigued. 

However, more studies believed there existed some kind of connection (Haworth, 1998; 

Zhang et al., 2016). Fatigue-related crashes were often severe for that drivers could not 

take evasive action under fatigue (Haworth, 1998). Some factors related to fatigue 

driving may impair driver performance, then affect injury severity. For example, some 

unobserved factors related to the driver’s internal state and circadian cycle can also 

affect both fatigue propensity and driving performance (Williamson et al. (2011) has 

given a detail review on that). Unfortunately, this information is almost impossible to 

collect due to traumatic effects and emotional state change after the crash (Radun & 

Radun, 2009). Some drivers might not admit fatigue or falling asleep during driving 

concerning about insurance and legal consequences (Corfitsen, 1999). Therefore, those 

common factors are often neglected, which may lead to endogeneity problem and 

biased estimation when analyzing the relationship between fatigue driving and injury 

severity. 
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2.3.2 Spatial correlation 

There has been several road safety researches accounting for spatial correlation. 

Researches try to model spatial patterns with spatial components in the content of road 

safety studies, in which spatial heterogeneity and spatial autocorrelation are the two 

major concerns (LeSage, 1999; Bhat, 2000; Loo & Anderson, 2016).  

Spatial heterogeneity refers to variations or non-stationarity over spatial units 

(Fotheringham et al., 2002; LeSage & Pace, 2009). The usage of random parameter is 

a commonly applied method to address this issue in spatial modeling. The application 

of random parameter in statistical models can be found in researches examining the 

heterogeneity of road sections or intersections (Milton et al., 2008; Anastasopoulos & 

Mannering, 2009; Anastasopoulos et al., 2012; Wu et al., 2013; Venkataraman et al., 

2013; Chen & Tarko, 2014) as well as regionals (Xu & Huang, 2015; Coruh et al., 2015; 

Truong et al., 2016). On the other hand, spatial autocorrelation is defined as the value 

of a variable at a given spatial unit affects the value at contiguous unit (Cliff & Ord, 

1973). It originates from missing exogenous variables and inappropriate spatial 

aggregation of the underlying observational units (Anselin, 1988; Tiefelsdorf & Griffith, 

2007; Wang et al., 2013). It is expected that county-level variables within the same city 

have similar properties. For example, variables such as transportation regulations and 

traffic flow, are often absent from traffic crash models, which are spatial correlated 

across neighborhood areas. Generally, there are two ways to handle spatial 

autocorrelation: to take it into account in model setting or remove the spatial correlation 
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between observations. Several attempts have been made to develop models to take 

spatial autocorrelation into account. One can specify the spatial structure to model 

spatial autocorrelation by geographically weighted regression (GWR) (Quddus, 2008; 

Hadayeghi et al., 2010; Pirdavani et al., 2013). However, GWR is computation-

intensive and requires knowledge about the correlation structure (Griffith, 2002). 

Misspecification of correlation structure can also induce estimation bias (McMillen, 

2004). 

On the other hand, spatial filtering technique is a relatively new method for dealing 

with spatial data (Griffith, 2000a; 2000b; 2007). By constructing synthetic variables 

that accounts for spatial autocorrelation, spatial filtering can deal with spatial 

autocorrelation in regression analysis. This approach has already been widely used in 

disease mapping (Johnson, 2004; Griffith, 2005). Actually, spatial filtering technique is 

closely related to GWR. Griffith (2008) noted that GWR can be viewed as a special 

case of spatial filtering and established an indirect linkage between them via including 

includes interaction terms between spatial filtering and attribute variables. Generally 

speaking, three types of spatial filtering are introduced in the literature: distance-based 

eigenvector spatial filtering (Dray et al., 2006), G-statistics spatial filtering (Getis, 1990; 

Ord & Getis, 1995), and eigenfunction spatial filtering (Griffith, 2000a; 2000b). 

The principal coordinate analysis of neighbor matrices (PCNM) approach: the 

PCNM was originally proposed by (Borcard & Legendre, 2002). Dray et al. (2006) 

investigated the formal mathematical foundations and connections between PCNM and 
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spatial autocorrelation structure functions. The original approach constructs a truncated 

distance matrix by calculating the pairwise Euclidean distance matrix given certain 

threshold value between the sampling spatial units. Then, the principal coordinate 

analysis (PCoA) is conducted to obtain principal coordinate by scaling each of 

eigenvectors of distance matrix. In Borcard and Legendre’s (2002) approach, only 

eigenvectors with positive eigenvalues were selected. Dray et al. (2006) extend this 

approach by allowing negative eigenvalues that representing negative spatial 

autocorrelations. 

The Getis’s spatial filtering approach: the spatial correlation variable can be 

partitioned into a filtered nonspatial variable and a residual spatial variable (Getis & 

Griffith, 2002). Getis’s spatial filtering approach is based on the difference between 

observed and expected local spatial statistics ( )iG d  within distance the d  proposed 

by Getis and Ord (1992):  

               ( ) ( )
1 1

,  
n n

i ij j j

j j

G d w d x x i j
= =

=                        (2-1) 

The spatial filtered variable 
*

ix  can be written as: 

                 ( ) ( )* / 1 /i i i ix x W n G d= −                            (2-2) 

where ix  is the observed variables, iW  is the sum of the thi  row of spatial weight 

matrix, and n  represents the number of spatial units. ( )iG d  is the observed local 

spatial statistics value while ( )/ 1iW n −   represents the expected value of ( )iG d  . 
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Therefore, the difference between ix   and 
*

ix   can be interpreted as the spatial 

component of variable X  at spatial unit i . If there does not exist spatial correlation 

within d , 
* 0i ix x− = . The positive value of 

*

i ix x−  indicates spatial autocorrelation 

among high value of variable X  while the negative value of 
*

i ix x−  indicates spatial 

autocorrelation of lower value of X   (Getis & Griffith, 2002). More discussion on 

Getis’s spatial filtering approach can be found in Getis (1990) and Ord and Getis (1995). 

The Griffith’s eigenfunction spatial filtering approach: the Griffith’s 

eigenfunction spatial filtering approach is based on the computational formula of 

Moran’s I ( MI  ) statistic (Griffith, 2000a; 2000b). Moran’s I statistic is the most 

common used indicator of spatial autocorrelation. It is calculated as: 

           
( )( )

( )

1 1

2

1 1 1

n n

ij i ji j

n n n

ij ii j i

w x x x xn
MI

w x x
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              (2-3) 

where n  is the number of spatial units, ix  is the thi  observed value of variable X  

at location i , x  is the mean of X , and ijw  is the spatial weight of location i  and 

j . This approach extracts orthogonal and uncorrelated components from the matrix 

representing spatial structure (Tiefelsdorf & Boots, 1995). These components can be 

viewed as independent map patterns, which represent the latent spatial correlation of 

georeferenced variable given spatial weight matrix (Patuelli et al., 2006). MI  can be 

considered as a weighted sum of the eigenvalues of matrix ( ) ( )11 / 11 /T TI n C I n− − , 

where C   is the binary spatial connectivity matrix, I   is an n n   identity matrix, 

and 1  is the 1n   vector of ones (Tiefelsdorf & Boots, 1995). The Griffith’s 
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eigenfunction spatial filtering approach takes locational information into account by 

generating eigenvectors of given geographic weights matrix. Griffith’s eigenvector 

spatial filtering approach enjoys more flexibility since it can be applied in non-linear 

models as well as dealing with both positive and negative autocorrelation. Moreover, 

the mutually orthogonality of eigenvectors makes it possible to be applied either 

individually as predictor variables or simultaneously to a regression system (Tiefeldorf 

& Griffith, 2007). 

The spatial filtering approach has been successfully applied in many fields, such as 

disease mapping (Tiefelsdorf & Griffith, 2007), crime analysis (Helbich & Jokar 

Arsanjani, 2015), migration flow (Chun, 2008; Chun & Griffith, 2011), land use (Wang 

et al., 2013), real estate (Helbich & Griffith, 2016), and ecology and biogeography 

(Diniz‐Filho & Bini, 2005; Griffith & Peres-Neto, 2006). However, the application of 

spatial filtering in road safety research context has not been found. 
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CHAPTER 3 

Data Description 

 

3.1 Introduction 

This chapter introduces the data sets used in the dissertation. The study area is 

Guangdong province (109°45′E - 117°20′E, 20°09′N - 25°31′N), China. It is located in 

the southern part of China, including 21 cities, and 121 counties. By the end of year 

2014, Guangdong is populated by 110 million residents over an area of 179,716.02 

square kilometers. In 2012, there are 25,424 traffic crashes in Guangdong province, 

accounting for 12.81% (the highest among all 31 provinces in China) of the total 

number of crashes. The corresponding proportion of death, injury and direct property 

losses of Guangdong province accounts for 9.65%, 13.30% and 7.71% of the total 

number/amount, which is also the highest among all 31 provinces in China (Traffic 

Management Bureau, Ministry of Public Security, PRC, 2013). 

Since the focus of this research is fatigue-related crash, the definition of fatigue-

related crash in laws and regulations should be clarified. In China, the laws and 

regulations related to fatigue-related crash are as following: 

 Law of The People's Republic of China on Road Traffic Safety, article 22 (The 
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Standing Committee of the National People's Congress, 2004; 2011 revised): no 

one shall force, instigate or connive at a driver to violate the road traffic safety laws 

and regulations or the driving requirements on motor vehicle safety to drive a motor 

vehicle. 

 Implementation of the Road Traffic Safety Law of the People's Republic of China, 

article 62 (State Council, 2004; 2017 revised): drivers shall not drive more than 

four hours without rest breaks or rest breaks are less than 20 minutes. 

 Provisions on the Application for and Use of Driving Licenses (Ministry of Public 

Security, 2013): drivers who drive large/medium passenger vehicles or road 

transport vehicles for dangerous goods more than four hours without rest breaks or 

rest breaks are less than 20 minutes will receive the harsher 12 demerit points; 

drivers who drive other types of vehicles except for large/medium passenger 

vehicles or road transport vehicles for dangerous goods more than four hours 

without rest breaks or rest breaks are less than 20 minutes will receive 6 demerit 

points. 

 Regulation on the Road Traffic Safety of Guangdong Province, article 59 (The 

Standing Committee of the Guangdong Provincial People's Congress, 2011): 

drivers who drive more than four hours without rest breaks or rest breaks are less 

than 20 minutes shall be ordered to make correction, given disciplinary warning or 

200 yuan fine. 

It is important to noted that in this study the definition of fatigue-related crash 
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follows the definition by Guangdong Traffic Accident Dataset. A crash is defined as 

fatigue-related crash when fulfilled one of the following conditions in this study: (1) 

driving cars more than eight hours a day, (2) engaging in other work excessive physical 

exertion, and (3) lacking of sleep which results in sleepy or lower reaction rate, so that 

the driver is having difficulty in assessing traffic conditions immediately and reacting 

accurately. 

 

3.2  Data Source 

Three categories of data are used in this study: crash data, GIS data and macroscopic 

data. 

3.2.1 Crash data 

The crash data is extracted from Guangdong Traffic Accident Dataset (GTAD). 

GTAD is sourced from the Traffic Management Sector Specific Incident Case Data 

Report, the Road Traffic Accident Database of China’s Public Security Department. All 

police-recorded crash records occurred in Guangdong Province during 2005-2014, 

were filtered from the Traffic Accident Database. Five categories of variables are 

included in the crash data: driver characteristics, vehicle characteristics, road 

characteristics, environment characteristics and crash characteristics. Some selected 

variables from all five categories are listed in Table 3.1. 
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Table 3.1 List of variables in crash data 

Categories Variable 

Personal Characteristics Age; Gender, Occupation; Driving experience; Driving 

license; Nationality; Injury level; Injured position; 

Mean of transportation, etc. 

Vehicle Characteristics Vehicle type (e.g. large/medium/mini, cargo/passenger 

vehicle); Commercial condition; Loading condition; 

Safety condition; Ownership, etc. 

Road Characteristics Road type (e.g. highway, urban road); Intersection type; 

Separator; Signal; Road surface type and condition; 

Road alignment, etc. 

Environment Characteristics Date; Time in a day; Weather; Visibility; Terrain, 

Lightening condition, etc. 

Crash Characteristics Collision type (e.g. head-on, hit fixed object); Crash 

type (e.g. speeding, fatigue driving); First assessment of 

crash cause; Final assessment of crash cause; Number 

of casualties and loss in property; Crash location, etc.  

During this period, a total number of 328,733 crashes are recorded and stored in 

the database. Among them, 277,924 crashed are motor vehicle violations, 10830 are 

non-motor vehicle violations, and 6,703 are pedestrian or passenger violations (Figure 

3.1). 

 

Figure 3.1 Total number of crash by violation 

motor vehicle non-motor vehicle pedestrian or passenger other
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It should be noted that the injury severity of each individual involved in this data 

set is categorized into three levels: 

 Fatal injury: a person who dies within 30 days of a crash as a result of injuries 

caused by that crash. 

 Severe injury: a person who sustains severe injuries as a result of the road crash 

and who does not die as a result of those injuries within 30 days of the crash. 

 Minor injury: a person who sustains minor injuries as a result of a road crash 

and who does not die as a result of those injuries with 30 days of the crash. 

Accordingly, crash types based on injury level can be categorized as: 

 Fatal crash: a crash for which there is at least one fatality. 

 Injured crash: a non-fatal crash for at least one person sustains injury but no 

person is admitted to dies within 30 days of the crash. 

 Property damage only crash: a crash resulting in property damage and no 

person is injured or dies within 30 days of the crash. 

The following Figure 3.2 shows the number of crash by injury level. The majority 

number of crashes are injured crashes (75%), 19% crashes are fatal and 5% crashes are 

property loss only. It should be noted that the small number of property damage only 

crash is due to most of these crashes are not put into investigation procedure. Therefore, 
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these crashes are not included in the crash dataset. 

 

 

Figure 3.2 Number of crash by injury level 

 

Figure 3.3 and Figure 3.4 show the proportion of collision types in all crash records 

and fatigue-related crash records. In Figure 3.3, the three major collision types among 

all the crash are side collision (43%), head-on collision (17%) and hitting pedestrian 

(13%). For fatigue-related crashes, the major collision types are rear-end collision 

(25%), side collision (23%) and hitting fixed object (19%). It should be noticed that in 

fatigue-related crash records, the proportion of single vehicle crash is much higher than 

the proportion in all crash records. In fatigue-related crash, the proportion of hitting 

fixed object crash (19%) and rollover (10%) are much higher than the proportion of 

hitting fixed object crash (6%) and rollover (2%) among all crash records. 

Fatal Injured Property only
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Figure 3.3 Proportion by collision types for all crash records 

 

 

Figure 3.4 Proportion of collision types for fatigue-related crashes 

 

 As shown in Figure 3.5, illegal lane change leads to highest number of crash (11427 

crashes). 8509 crashes were caused by speeding, 6155 crashed were caused by drunk 

driving while 1628 crashes were fatigue-related. 
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Figure 3.5 Total number of major traffic violations of motor vehicle driver 

 

Figure 3.6 display the temporal trend of total crash number and fatigue-related crash 

number in Guangdong province during 2006-2014. The crash count in 2005 is not 

presented in Figure 3.6. due to the incompleteness of crash records in this year. It can 

be seemed in the figure that the total number of crash was decreasing during 2006-2012, 

then was increasing from 2012. For fatigue-related crash, it also shows similar trend as 

the change of total number of crash. The decrease of fatigue related crash number may 

be related to the raise of penalty for fatigue driving (Ministry of Public Security, 2013). 
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Figure 3.6 Temporal trend of total crash and fatigue-related crash from 2006-

2014 

 

3.2.2 GIS data 

Road length and boundary information applied in this research are obtained from 

the Geospatial Database of the 1:1,000,000 Geological map of China. This database 

contains basic information about road and county boundary. The length of road of 

different level within the boundary of a county are summed up separately. Figure 3.7 

shows the maps of highway, national road and provincial road in Guangdong province.  
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Figure 3.7 Map of roadway in Guangdong 

 

Furthermore, a statistical descriptive analysis for four types of roads are considered: 

expressway, national road, provincial road, and urban expressway can be found in Table 

3.2. 

 

Table 3.2 Summary of total length for four types of road by county 

Road types N Mean SD Min. Max. 

Highway (1000 km) 120 0.11 0.11 0.00 0.68 

National road (1000 km) 120 0.06 0.05 0.00 0.22 

Provincial road (1000 km) 120 0.16 0.12 0.01 0.80 

Urban express way (1000 km) 120 0.01 0.03 0.00 0.23 
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3.2.3 Macroscopic data  

The socio-economic data are collected from the Guangdong Statistical Yearbooks 

and Guangdong 1% Population Sampling Survey Data (Guangdong Statistical Bureau, 

2017). The following figures display the distribution of highway, national road, 

provincial road and urban expressway in 120 counties in Guangdong and darker color 

means higher value. It can be seemed from Figure 3.8 and Figure 3.11 that highway and 

urban express way are clustering in the middle south part of Guangdong, in which 

several big cities are located. The distribution of national road and provincial road are 

more even comparing to highway and urban expressway (Figure 3.9 and Figure 3.10). 

 
Figure 3.8 Total length of highway distribution (km) 
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Figure 3.9 Total length of national road distribution (km) 

 

Figure 3.10 Total length of provincial road distribution (km) 
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Figure 3.11 Total length of urban expressway distribution (km) 

 

The distributions of other macroscopic variables are also presented. Population 

(Figure 3.12), transportation employees (Figure 3.15) as well as the number of public 

transport passengers (Figure 3.16) are also clustered in the middle south Guangdong. 

On the contrary, the proportion of youth (Figure 3.13) and elder people (Figure 3.14) 

are higher in other parts rather than middle south of Guangdong. The summary of those 

variables is presented in Table 3.3. 
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Figure 3.12 Population distribution (million) 

 
Figure 3.13 Proportion of population age from 0-15 years old distribution (%) 
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Figure 3.14 Proportion of population age elder than 60 years old distribution (%) 

 
Figure 3.15 Number of transportation employee distribution 
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Figure 3.16 Number of public transport passenger distribution (100 million) 

 

Table 3.3 Descriptive statistics of variables 

Variable Mean SD Min. Max. 

Number of population (Million people) 2.95 0.75 0.98 5.46 

Proportion of people aged from 0-15 0.18 0.04 0.10 0.28 

Proportion of people aged elder than 60 0.14 0.04 0.03 0.22 

Average room per person 1.06 0.29 0.44 1.95 

Proportion of employee in transportation industry 0.03 0.02 0.01 0.22 

Number of passenger using bus and taxi (100 million) 0.81 1.91 0.01 11.48 
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CHAPTER 4 

Understanding Factors Associated with Misclassification of 

Fatigue-related Crashes in Police Record 

 

4.1 Introduction 

Fatigued driving is a serious problem threatening road safety all around the world. 

Police records from different countries indicate a range from 1-4% incidence of 

fatigue/sleep-related crashes of all registered crashes (Traffic Management Bureau, 

Ministry of Public Security, PRC, 2008; Radun & Radun, 2009). However, several 

questionnaire-based surveys suggest the role of fatigue in a traffic crash is misestimated. 

National Sleep Foundation (2008) reported that approximately 32% of respondents in 

Sleep in America Poll had driven while fatigued at least once a month. In China, a 

survey conducted in Guangdong province in 2007 also showed that 9.3% vehicle 

drivers had the fatigue driving experience in the past 30 days (Yan et al., 2010). The 

difference between police reports and surveys implies that police reports could have 

significantly misestimated the harmfulness of fatigue in road safety. One of the possible 

reasons is police officers are not so alert to the presence of fatigue and have difficulties 

in identifying fatigue-related crashes (Robertson et al., 2009). 
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 Among all causes of traffic crashes, fatigue-related crashes are easily neglected or 

misclassified due to the difficulty in observing and identifying driver fatigue (Radun et 

al., 2013; Filtness et al., 2015). No blood or breath test can be applied to quantify 

driver's fatigue level at crash scene (Pack et al. 1995; DaCoTA, 2012). As a result, there 

is currently no standard methodology for identifying fatigue as the cause of the crash 

(Crummy et al., 2008; Filtness et al., 2015) and defining fatigue-related crash largely 

relies on inferential evidence or experience. For example, police officers may consider 

a crash to be fatigue-related, when the following conditions appear (Horne et al., 1995; 

NCSDR/NHTSA, 1998; Horne et al., 1999): occur during late night or mid-afternoon; 

single vehicle run off the roadway; occur on a high-speed road; absence of skid marks 

or braking. Some fatigue-related crashes were determined even by eliminating other 

causes of crashes (e.g. speeding, drunk driving, etc.). 

 To assist identification of fatigue in a crash, proxy measurements are developed 

aiming to improve reporting accuracy of fatigue-related crashes (Filtness et al., 2015). 

In Australia, ATSB (2006) has developed the proxy definition for fatigue/sleep-related 

crash, and five jurisdictions in Australia have already incorporated proxy definition into 

their reporting process. In Queensland, for example, fatigue can be considered as a 

contributor to a crash when it fitted the proxy definition: single-vehicle crashes in more 

than 100 km/h speed zones which occur during midnight and in the afternoon, or where 

a vehicle runs out of roadway and the driver does not try to avoid the crash (Armstrong 

et al., 2013; Filtness et al., 2015). Although these proxy definitions are based on 
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experience or scientific research, they are criticized for too specific (Crummy et al., 

2008; Armstrong et al., 2013) and may provide misleading instructions for police 

officers. A questionnaire-based study conducted in Australia by Crummy et al. (2008) 

found that only a small proportion of participants that actually had a fatigue/sleep-

related crash were correctly identified by ATSB proxy definitions (ATSB, 2006). 

 Reliable and accurate records are essential for assessing the scope of fatigue-related 

crash problems, monitoring and evaluating the effectiveness of intervention measures. 

A survey in Ontario showed that 56.6% of traffic police felt that they did not receive 

enough training to identify drivers who were fatigued or drowsy, or determined the role 

of fatigue in a crash (Robertson et al., 2009). Although several risk factors identified 

by prior research and public belief are believed to contribute to fatigue-related crashes, 

few works have been done to prove that whether these factors are useful for police 

officers to identify fatigue-related crashes. That is, some of the factors believed as 

associated with fatigue-related crashes are not helpful in judging whether a crash is 

fatigue-related and may even lead to incorrect classification of the cause of crashes. 

Therefore, in this study, we proposed an analysis framework based on existing crash 

data to identify factors that easily make fatigue-related crashes misclassified by police 

officers, examine the interactive effects of those factors, and provide better inference 

for determining fatigue-related crash by removing some misleading terms, which help 

to improve enforcement strategies. 
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4.2 Methodology 

4.2.1 Objectives and research strategy 

 This study aims at investigating potential factors that hinder police officers' 

identification of fatigue-related crashes. However, some factors have not only 

individual effects but also combinatorial effects on the determining of fatigue-related 

crashes. Classic logistic regression model lacks appropriate criteria to incorporate 

interactions between independent variables when there are a large number of variables 

to be considered. Instead, ignoring interactions may cause biased estimation. Therefore, 

our strategies for this analysis are: (1) Association rule data mining technique is applied 

to identify important interactions between factors, which helps overcome the 

disadvantage of classic logistic regression model in selecting appropriate interactions; 

(2) Incorporating the interactions identified by association rules, binary logistic 

regression models are applied to find out factors that hinder police officers from 

correctly identifying fatigue-related crashes. 

4.2.2 Association rule analysis 

 Regression models in road safety research focus on establishing and analyzing 

relationships between "dependent" and "independent". It is also important to take the 

correlation between "independent" variables into consideration since it may hamper the 

statistical analysis (Pande & Abdel-Aty, 2009). With the increasing number of 

independent variables, however, the number of interactions will grow at an accelerated 
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rate. Thus, the methodology for identifying potential interaction among a large number 

of crash-related factors is needed. Association rule data mining technique can 

potentially identify relationships that are not well known from current research works 

and have been used in traffic safety research (Pande & Abdel-Aty, 2009; Montella et 

al., 2011; Das & Sun, 2014; Weng et al., 2016). Some studies have combined 

association rule data mining technique with logistic regression model for other purposes 

(Kamei et al., 2008; Shaharanee et al., 2009), but few of them use association rule 

analysis as a tool for selecting potential interactions among variables. Changpetch and 

Lin (2013) proposed a model selection method procedure for logistic (Changpetch & 

Lin, 2013a) and multinomial logit model (Changpetch & Lin, 2013b), which help to 

improve the classic model by considering potential interactions. 

 In this study, association rule analysis is performed using a priori algorithm 

according to the methodology introduced by Agrawal et al (1993). A rule is defined as 

an implication of the form “ A B→ ”, where A  is the antecedent (left-hand-side, LHS) 

and B  is the consequent (right-hand-side, RHS). It is important to note that the rule 

should not be interpreted as a direct causation, but as associations between variables 

(Pande & Abdel-Aty, 2009; Montella et al., 2012). Three measures are commonly used 

in filtering rules: Support, Confidence and Lift. Support measures the frequency of LHS 

and RHS appearing in the dataset and is calculated as follows: 

( ) ( )Support A B P AB→ =                       (4-1) 
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where ( )P AB  represents the probability of case containing A  and B  at the same 

time. Confidence determines how frequently RHS appears given that LHS occurs: 

( ) ( )

( ) ( )

|Confidence A B P B A

P AB P A

→ =

=
                 (4-2) 

where ( )P A  is the probability of case containing A . Lift is a measure of the 

statistical dependence of the rule. A lift value which is smaller than one indicates 

negative independence between LHS and RHS, a value equal to one indicates 

independence, and a value which is greater than 1 indicates positive interdependence 

(Montella et al., 2012). Higher lift value indicates stronger associations. Lift is defined 

as follows: 

( ) ( ) ( )

( ) ( ) ( )

|

/

Lift A B P B A P B

P AB P A P B

→ =

=
               (4-3) 

 To make sure that the identified rules are reasonable and accurate, the minimum 

threshold values for these three indexes need to be specified. Since there are no clear 

criteria for choosing threshold values, different studies employed different threshold 

support and confidence values (Pande & Abdel-Aty, 2009; Montella, 2011; Montella 

et al., 2012; de Oña et al., 2013) based on the nature of the data (balanced or not) and 

sample size (small or large databases). For example, Pande and Abdel-Aty (2009) set 

0.009 and 0.1 for them respectively. Thus, in this study the minimum threshold values 

for Support, Confidence and Lift are set as follows: 0.01Support  , 0.1Confidence  , 

and 1.2Lift  . It also needs to be emphasized that only rules with two items in the 
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LHS are selected for ease of interpretation. We firstly generate rules with non-fatigue 

to fatigue crash or fatigue to non-fatigue crash in RHS from all the generated rules. 

Then, all the selected rules are descending ordered by confidence, and the top ten are 

changed into interactions and incorporated into logistic regression models as inputs.  

4.2.3 Binary logistic regression model 

 Two assessment results will be recorded for normal procedure crash records in the 

database. The one recorded by the police officer at the crash scene is denoted as on-site 

assessment. Normally, on-site assessment was determined by a quick check at the crash 

scene, surrounding environment and simply ask those who were present for facts of the 

crash. The other one recorded in the final report is denoted as final assessment, which 

is the assessment result after an in-depth investigation. After placing a case on file for 

investigation, more detail information of driving condition is also collected for 

investigation. Information such as skid marks and scrub marks, the condition of vehicle 

mechanical (e.g. brakes, steering, tires, and lights). Besides road surveillance video and 

driving records, police officers will obtain and examine marks from the crash scene, 

statements from drivers and witnesses, collect off-scene information, and do vehicle 

mechanical inspection. Based on that information, a crash reconstruction can be 

performed to examine the real cause of the crash. Therefore, based on more detailed 

and reliable evidence, the final assessment is believed to be the accurate assessment 

result for the crash. It needs to be emphasized that on-site assessment and final 

assessment can be different, and this inconsistency of crash cause enables us to analyze 
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the factors hindering making correct judgments. And the simple procedure crash 

records with on-site assessment only are not included in this study due to lack of 

information for judging whether they have been correctly classified or not. Thus, based 

on the combinations of on-site assessment and final assessment, three types of records 

are presented in Table 4.1:  

 Non-fatigue to Fatigue (N-F crash): crashes with non-fatigue as on-site 

assessment and fatigue as final assessment; 

 Fatigue to Non-fatigue (F-N crash): crashes with fatigue as on-site assessment 

and non-fatigue as final assessment; 

 Fatigue to Fatigue (F-F crash): the on-site assessment and final assessment are 

both fatigue. 

Table 4.1 Summary of types of records by injury severity level 
 

Fatal and severe injury Minor injury Total 

N - F crash 55 66 121 

F - N crash 156 173 329 

F - F crash 211 350 561 

Total 422 589 

 

  

Similar to the terms widely used in medical screening (Stegeman et al., 2013), 

fatigue detection at the crash scene can be regarded as a test and the final result after 

full investigation as the real cause. Then, we can define the false negative fatigue-

related crash as a fatigue-related crash that was misclassified into other causes at the 
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crash scene. A false positive fatigue-related crash is defined as a crash believed to be 

fatigue-related but is actually not. Binary logistic regression models are employed to 

identify significant factors affecting false positive and false negative fatigue-related 

crash detection. The first model is established to identify factors related to false 

negative fatigue-related crash detection. The binary outcomes represented by a dummy 

variable (1 indicates false negative fatigue-related crash detection, 0 is correct fatigue-

related crash detection), is used as dependent variables. The second model is built to 

identify factors affecting false positive fatigue-related crash detection. Similarly, the 

dependent variable is also dummy variable (1 indicates false positive fatigue-related 

crash detection, 0 is correct fatigue-related crash detection).  

 Furthermore, police officers may treat crashes differently under different injury 

severity level (e.g. if police suspect the crash may be related to fatigue driving, they 

tend to give an oral examination to determine whether the crash is fatigue-related level 

in less severe crashes (if the people involved are sober)). Thus, we separated our dataset 

into two groups based on their recorded injury severity level of the driver who is 

responsible for the crash: fatal and severe injury, and minor injury. We do not include 

property only crashes because part of them was applied to the simple procedure without 

further investigation and analysis based on selected sample will be biased. 
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4.3 Data 

 The data employed in this study were obtained from the Road Traffic Accident 

Database of China’s Public Security Department (Zhang et al., 2016). All police-

recorded fatigue crashes, relevant crash records occurred in Guangdong Province 

during 2005 - 2014, were filtered from the Traffic Accident Database. Only records in 

which the cause of a crash was convicted as fatigue-related and the involving driver 

who was fully or mainly responsible for the crash, were used in this study. According 

to definition by the database, a crash was defined as fatigue-related crash when fulfilled 

one of the following conditions: (1) driving cars more than eight hours a day, (2) 

engaging in other work excessive physical exertion, and (3) lack of sleep which results 

in sleepy or lower reaction rate, so that the driver is having difficulty in assessing traffic 

conditions immediately and reacting accurately. In this study, 1101 general procedure 

crash records were extracted from the database. Among them, 561 are F-F crashes, 121 

are N-F crashes, and 329 are F-N crashes. Although fatigue-related crashes account for 

a small percentage of all crashes in our dataset, the percentage of incorrect detection of 

fatigue-related crashes is really high.  

 To focus on the meaningful analysis, several variables will be considered in this 

study guided by prior research. These variables were selected into the final models: 

crash characteristics (crash type), driver characteristics (driver's gender, age, and 

occupation), vehicle characteristics (vehicle type and insurance condition), roadway 

characteristics (road type, lane type, and road segment) and environmental 
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characteristics (lighting condition and weather). In order to consider non-linear effects 

in logistic regression models, driver's age was categorized: age (≤30, 31-40, 41-50, 

and ≥51). The description of these variables is presented in Table 4.2. 

Table 4.2 Descriptive statistics of variables 
 

Fatal and severe injury Minor injury 

Variable Count Percentage Count Percentage 

Crash characteristics 

    

  Motor vehicle crash 233 55.21% 402 68.25% 

  Rollover 70 16.59% 75 12.73% 

  Hit fixed object 114 27.01% 88 14.94% 

Driver characteristics 

 
 

 
 

  Male 416 98.58% 553 93.89% 

  31-40 years old 156 36.97% 218 37.01% 

  41-50 years old 94 22.27% 108 18.34% 

  ≥51 years old 21 4.98% 47 7.98% 

  Clerk 24 5.69% 44 7.47% 

  Worker 93 22.04% 99 16.81% 

  Farmer 71 16.82% 131 22.24% 

  Self-employed 57 13.51% 64 10.87% 

  Migrant worker 52 12.32% 37 6.28% 

  Unemployed 3 0.71% 10 1.70% 

Vehicle characteristics 

 
 

 
 

  Heavy/medium truck 111 26.30% 117 19.86% 

  Light truck 32 7.58% 33 5.60% 

  Large/medium bus 15 3.55% 13 2.21% 

  Passenger car 89 21.09% 104 17.66% 

  Have insurance 346 81.99% 495 84.04% 

Roadway characteristics 

 
 

 
 

  Expressway 99 23.46% 110 18.68% 

  Urban expressway 15 3.55% 18 3.06% 

  Urban road 51 12.09% 128 21.73% 

  Motor vehicle lane 340 80.57% 414 70.29% 

  Non-motorized vehicle lane 14 3.32% 35 5.94% 

  Mix lane 50 11.85% 122 20.71% 

  Intersection 46 10.90% 78 13.24% 

  Special road segment 35 8.29% 31 5.26% 

Environmental characteristics 

 
 

 
 

  Dark with street light 97 22.99% 125 21.22% 
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  Dark without street light 165 39.10% 169 28.69% 

  Cloudy 58 13.74% 98 16.64% 

Total number of crash 422 

 

589 

 

 

4.4 Results 

 R software 3.3.1 was applied to generate association rules and estimate the models.  

4.4.1 Association rule analysis 

 In this study, 'arules' package in R software is employed for computation of 

association rules (Hahsler et al., 2007). To find out the potential associations or patterns 

among the items, association rule analysis is conducted using N-F crash and F-N crash 

sample sets separately for two injury severity levels. The results are presented in Table 

4.3. Then, these rules are converted into dummy variables. Suppose the rule being 

selected is "if i iX x=  and j jX x=  then Y y= ", where ix  is the level of variable 

iX , jx  is the level of variable jX , and y  is the level of response Y  (Changpetch 

& Lin, 2013). The interaction between iX  and jX  is denoted as 1 if i iX x=  and 

j jX x= , and as 0 otherwise. For example, Rule 1 for N-F fatal and severe injured crash 

in Table 4.3 which is "Given a fatal and severe injured crash is N-F crash, the crash 

occurred in cloudy weather condition and the mainly responsible driver drove 

large/medium cargo vehicle" is converted into a dummy variables D1 (D1=1 if 

weather=cloudy and large/medium cargo vehicle; D1=0, otherwise). 
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Table 4.3 Rules for N-F crash and F-N crash by injury severity level 1 
 

Fatal and Severe Injury Support Confidence Lift Minor Injury Crash Support Confidence Lift 
 

N - F crash 

1 "cloudy" & "large/medium cargo vehicle" 0.01  0.40  3.07  "light cargo vehicle" & "motorized vehicle lane" 0.01  0.29  2.60  

2 "age 31-40" & "cloudy" 0.02  0.32  2.44  "age 41-50" & "expressway" 0.01  0.29  2.55  

3 "motor vehicle crash" & "urban road" 0.01  0.32  2.42  "male driver" & "light cargo vehicle" 0.01  0.24  2.16  

4 "night without street light" & "cloudy" 0.02  0.30  2.27  "motor vehicle crash" & "expressway" 0.03  0.22  1.97  

5 "self-employed" & "night without street light" 0.02  0.27  2.07  "vehicle with insurance" & "light cargo vehicle" 0.01  0.22  1.95  

6 "vehicle with insurance" & "cloudy" 0.03  0.25  1.92  "age 41-50" & "might without street light" 0.01  0.22  1.95  

7 "motor vehicle crash" & "night without street light" 0.02  0.24  1.85  "expressway" & "motorized vehicle lane" 0.04  0.21  1.89  

8 "age 41-50" & "passenger car" 0.01  0.23  1.77  "night without street light" & "cloudy" 0.01  0.20  1.78  

9 "age 41-50" & "night without street light" 0.01  0.23  1.74  "male driver" & "expressway" 0.04  0.20  1.78  

10 "age 31-40" & "night without street light" 0.04  0.22  1.69  "larger/medium cargo vehicle" & "expressway" 0.02  0.19  1.69  
 

F - N crash 

1 "hit fixed object" & "non-motorized vehicle lane" 0.01  0.86  2.32  "urban road" & "night without street light" 0.01  0.57  1.95  

2 "urban road" & "cloudy" 0.01  0.83  2.25  "night with street light" & "rollover" 0.01  0.55  1.86  

3 "age 31-40" & "non-motorized vehicle lane" 0.01  0.75  2.03  "urban road" & "intersection" 0.02  0.50  1.70  

4 "urban road" & "intersection" 0.01  0.71  1.93  "migrant worker" & "motorized vehicle lane" 0.02  0.48  1.64  

5 "intersection" & "night without street light" 0.02  0.70  1.89  "migrant worker" & "motor vehicle crash" 0.02  0.48  1.63  

6 "male driver" & "non-motorized vehicle lane" 0.02  0.69  1.87  "intersection" & "night with street light" 0.02  0.48  1.62  

7 "passenger car" & "night without street light" 0.02  0.64  1.74  "mixed lane" & "hit fixed object" 0.02  0.47  1.61  

8 "urban road" & "night without street light" 0.02  0.64  1.72  "migrant worker" & "urban road" 0.01  0.47  1.59  

9 "motor vehicle crash" & "urban expressway" 0.01  0.63  1.69  "clerk" & "night with street light" 0.01  0.46  1.57  

10 "passenger car" & "intersection" 0.01  0.63  1.69  "worker" & "large/medium cargo vehicle" 0.01  0.46  1.57  

2 
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4.4.2 Binary logistic model 

 The independent variables are selected based on their significance and model 

fitness. To avoid neglecting variable problem, a conservative selection strategy was 

employed in the current study. First, all the variables were tested in the basic models. 

If no variable is significant in a particular group, log-likelihood ratio test would be 

conducted to compare models with or without those variables. Information criteria were 

also compared for the same purpose. If log-likelihood ratio test cannot reject the null 

hypothesis and information criteria also showed better fit in the model without 

insignificant variables, those variables would be removed from the basic model. At the 

final results, variables with 90% or higher levels of significance are kept in final results 

for examining more possible impact factors given relatively smaller sample size. The 

results of logistic regression models for factors associating with false negative and false 

positive fatigue-related crash detection on two injury levels are presented in Table 4.4 

and Table 4.5. For fatal and severe crashes, seven variables (include one interaction) 

are found to be significant for false negative fatigue-related crash detection and eight 

variables (include one interaction) are significant impact factors for false positive 

fatigue-related crash detection at the 90% level. Among minor injury crash, nine 

significant variables were identified for false negative fatigue-related crash detection 

and eight variables (include two interactions) are found to be significant for false 

positive fatigue-related crash detection. More detailed discussion of results will be 

presented in next section. 
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Table 4.4 Factors associating with false negative fatigue-related crash detection 

 Fatal and severe injury Minor injury 

 OR 95% CI OR 95% CI 

Crash Characteristics 
  

 
 

  

  Motor vehicle crash 0.334 0.075 1.485 0.422 0.104 1.709 

  Rollover 0.080*** 0.014 0.472 0.248* 0.048 1.289 

  Hit fixed object 0.196** 0.041 0.930 0.469 0.096 2.287 

Driver characteristics       

  Male 
 

     

  31 ~ 40 years old 3.536*** 1.488 8.400 0.495** 0.251 0.974 

  41 ~ 50 years old 3.463** 1.319 9.096 0.860 0.390 1.897 

  ≥ 51 years old 4.673** 1.179 18.520 0.380 0.098 1.478 

  Clerk    0.248** 0.066 0.939 

  Worker    0.301** 0.110 0.818 

  Farmer 
 

  0.876 0.397 1.932 

  Self-employed    0.469 0.175 1.258 

  Migrant worker 
 

  0.286 0.064 1.285 

Vehicle-specific characteristics       

  Large/Medium cargo vehicle    1.683 0.664 4.265 

  Light cargo vehicle    4.417*** 1.439 13.550 

  Large/Medium passenger vehicle 
 

  8.054** 1.618 40.100 

  Light passenger car    1.420 0.591 3.412 

  Vehicle with insurance 
 

  0.475* 0.204 1.11 

Roadway characteristics       

  Expressway 1.054 0.472 2.354 1.761 0.772 4.017 

  Urban expressway 1.244 0.231 6.708 5.651** 1.356 23.550 

  Urban road 2.428* 0.894 6.593 1.150 0.497 2.661 

  Special road segment    0.134* 0.016 1.117 

  Intersection 
 

  0.509 0.201 1.286 

  Motorized vehicle lane       

  Non-motorized vehicle lane       

  Mixed lane       

Interaction       

  Cloudy & Night without street light 6.667*** 2.069 21.490    

Constant 0.314 0.069 1.423 1.223 0.229 6.527 

Note: *** Statistically significant at 1% level; ** Statistically significant at 5% level; * Statistically significant at 10% 

level 
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Table 4.5 Factors associating with false positive fatigue-related crash detection 

 Fatal and severe injury Minor injury 

 OR 95% CI OR 95% CI 

Crash Characteristics 
 

     

  Motor vehicle crash 0.588 0.157  2.205    

  Rollover 0.248* 0.061  1.004    

  Hit fixed object 0.227** 0.057  0.902    

Driver characteristics       

  Male driver    0.269*** 0.122  0.593  

  31 ~ 40 years old    0.632** 0.406  0.986  

  41 ~ 50 years old    0.910 0.532  1.556  

  ≥ 51 years old    0.500* 0.231  1.085  

  Clerk 0.640 0.214  1.912 0.603 0.261  1.393  

  Worker 1.975** 1.010  3.859 0.476** 0.245  0.921  

  Farmer 1.518 0.747  3.085 1.588* 0.964  2.617  

  Self-employed 0.584 0.268  1.274 1.145 0.598  2.193  

  Migrant worker 1.671 0.774  3.607 1.921* 0.900  4.099  

Vehicle-specific characteristics       

  Large/Medium cargo vehicle       

  Light cargo vehicle       

  Large/Medium passenger vehicle       

  Light passenger car       

  Vehicle with insurance 0.412*** 0.232  0.733     

Roadway characteristics       

  Expressway 2.088** 1.116  3.908     

  Urban expressway 1.652 0.466  5.855     

  Urban road 3.127*** 1.327  7.369     

  Special road segment       

  Intersection       

  Motorized vehicle lane       

  Non-motorized vehicle lane 5.334*** 1.558  18.260     

  Mixed lane 1.387 0.673  2.861     

Interaction       

  Passenger car & Night without street 

light 
4.372* 0.921 20.750    

  Urban road & Intersection    3.309** 1.234  8.868  

  Worker & Large/medium cargo vehicle    4.863** 1.340  17.650  

Constant 1.885 0.468  7.599  1.924 0.819  4.521  

Note: *** Statistically significant at 1% level; ** Statistically significant at 5% level; * Statistically significant at 10% 

level 
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4.4.3 Model evaluation 

 We conducted likelihood ratio tests to compare the overall fitness between models 

with interactions and without interactions. The likelihood ratio is calculated as follow: 

( )2 r uLR LL LL= − −                        (4-4) 

where rLL  represents the log-likelihood at convergence of restricted model (model 

without interactions) and uLL  is the log-likelihood at convergence of unrestricted 

model (model with interactions). Under the null hypothesis that the coefficient of 

interaction is equal to zero, LR  statistic is chi-square distributed with degree of 

freedom equal to the number of interactions. The results of LR  statistic and several 

goodness-of-fit statistics are shown in Table 4.6.  

The results indicate that models with interactions outperformed the models without 

interactions in both fatal and severe injury crash sample and minor injury crash sample. 

As shown in Table 4.6, the p-value of Hosmer-Lemeshow Test (Hosmer & Lemeshow, 

1980) for all four models is greater than 0.05 that show no evidence of poor fit. 
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Table 4.6 Goodness-of-fit measures 

 N-F Crash F-N Crash 

 Fatal and severe Minor Fatal and severe Minor 

 With Interactions 

Number of coefficients 11 22 16 12 

McFadden pseudo-R2 0.132 0.128 0.105 0.057 

Log-likelihood at convergence -117.781 -158.768 -223.993 -313.076 

Log-likelihood at null -135.565 -181.971 -250.248 -331.965 

Akaike Information Criteria (AIC) 267.150 361.535 479.987 650.152 

Bayesian Information Criteria (BIC) 296.853 450.210 542.472 701.267 

Hosmer-Lemeshow test (p-value) 0.376, g=13 0.833, g=24 0.401, g=18 0.977, g=14 

 Without Interactions 

Number of coefficients 10 22 15 10 

McFadden pseudo-R2 0.095 0.128 0.097 0.040 

Log-likelihood at convergence -122.698 -158.768 -225.878 -318.545 

Log-likelihood at null -135.565 -181.971 -250.248 -331.965 

Akaike Information Criteria (AIC) 265.397 361.535 481.757 657.091 

Bayesian Information Criteria (BIC) 301.232 450.210 540.338 699.687 

Hosmer-Lemeshow test (p-value) 0.467, g=12 0.833, g=24 0.612, g=17 0.935, g=12 

 

4.5 Discussion 

4.5.1 False negative fatigue-related crash detection 

 With regards to crash type, the odds for rollover or hitting fixed object fatigue-

related crash with fatal and severe injury being misclassified are lower than being 

correctly classified (OR=0.080 and OR=0.196, respectively). Some researchers had 

already pointed out that single car crashes were closely associated with driver fatigue 

(Radun et al. 2009; Armstrong et al. 2008), and hitting fixed object and rollover were 

two major types of single vehicle crashes. A statistic from Australia has shown that 

hitting fixed object crashes and rollover crashes accounted for 54% and 28% of all 

fatigue-related crashes during 2005 - 2009 in South Australia (Government of South 
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Australia, 2010). In line with those findings, these two types of crashes have lower odds 

of being misclassified into non-fatigue crashes than other types of crashes. In serious 

injury crashes, lacking witnesses makes it almost impossible to observe the syndrome 

of fatigue from a dead body and determining crash causes based on some specific types 

of crash seems to be a useful and effective way. However, rollover was found to be 

significant only at 90% level (OR=0.248) and hitting fixed object is not significant for 

minor injury crashes. In a minor injured crash, besides of crash types, police officers 

might also ask the witness for relevant information about driver fatigue condition to 

assist their judgment. 

 Driver's age and occupation are found to have a significant influence on false 

negative fatigue-related detection for serious injured crashes. The odds of false negative 

fatigue-related crash detection for drivers in age groups of 31-40 (OR=3.536), 41-50 

(OR=3.463), ≥51 (OR=4.673) are higher than younger drivers (≤30). Young drivers 

were believed to be frequently involved in fatigue-related crashes because of their 

lifestyle (Horne & Reyner, 1995; Maycock, 1996; McKernon, 2009). Moreover, some 

practical guidance for identifying for police officers also suggested young driver to be 

one of the high-risk groups. On the other hand, compared to the young drivers, drivers 

in other age groups may not attract sufficient attention. Table 4.2 shows that drivers 

who are 31 - 40 years old and 41 - 50 years old occupied 37.0% and 22.3% of all fatigue-

related fatal and severe injured crashes, and 37.0% and 18.3% for minor injured crashes. 

Without enough attention, fatigue-related crashes in which the responsible drivers who 

are older than 31 years old, have high odds for being misclassified into non-fatigue 
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crashes than younger drivers. On the contrary, among minor injury crashes, the odds of 

a fatigue-related crash involving drivers aged between 31 - 40 being misclassified into 

non-fatigued crashes is lower than younger drivers (OR=0.495). For clerk and normal 

worker, the odds of being misclassified into non-fatigue-related crahses are 0.248 and 

0.301 the odds for other occupation in minor injured crashes. Studies showed that shift 

workers and commercial vehicle drivers were more likely to drive under fatigue 

(Morrow & Crum, 2004; Philip, 2005). According to the coding rules of this database, 

both professional drivers and shift workers were coded as "worker" or "clerk". If the 

driver belongs in these two types of occupations and there is no any other extra 

information for determining crash cause, police officers may easily connect them to 

fatigue driving. Thus, they are less likely to be misclassified into other causes. 

 The odds for both large/medium passenger vehicle and light cargo vehicle 

involving fatigue-related crashes being assigned to other cause are approximately 8.05 

times and 4.42 times the odds for other types of vehicles in minor injured crashes 

(OR=8.054 and OR=4.417, respectively). Even though large/medium cargo or 

passenger vehicles are recommended to install driving recorders by road management 

authorities, not all of them would actually install them since it is not mandatory, 

especially for privately-owned cargo vehicles. Driving records can help to identify the 

cause of crashes. However, police officers may not have enough time to check them at 

crash scene due to complaints from drivers and passengers. Therefore, a more common 

way for officers is to ask the drivers how long they had driven or whether they felt 

fatigued or sleepy at the crash scene to determine whether fatigue involved in the crash 
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(Robertson et al., 2009). For fatigue-related crashes involving light cargo vehicles, they 

are also easy to be assigned to other cause of the crash. This may be partly due to the 

difficulty in proving fatigue driving behavior without driving recorders as well as a 

similar working pattern as heavy cargo vehicles. Previous research noticed that the long 

and monotonous journey made heavy cargo vehicles more likely to involve in fatigue-

related crashes (Summala & Mikkola, 1994; Chang & Mannering, 1999). The 

combination effects make fatigue-related crash involving those vehicles easily be 

misclassified. 

 The odds of minor injured fatigue-related crashes took place on urban expressways 

being misclassified into other cause is 5.65 times higher than correctly classified 

(OR=5.651). These crashes often occurred on expressways because of the average trip 

length and high-speed limit (Pack et al., 1995; Diamantopoulou et al. 2003). 

Expressway has been widely considered to be of high risk of fatigue-related crash 

(NCSDR/NHTSA, 2001). However, less attention has been paid to urban expressways 

which have similar road condition with expressway, that driving on them also easily 

leads to driver fatigue (Li et al., 2010). With the rapid urbanization in Guangdong, more 

and more urban expressways were built to serve the city traffic. Therefore, police 

officers have lower sensitivity and fail to correctly identify driver fatigue when crashes 

occurred on urban expressways for minor injured crashes, which make them easily 

being misclassified. 
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4.5.2 False positive fatigue-related crash detection 

 The odds of fatal and severe injured non-fatigue hitting fixed object crash being 

misclassified into the fatigue-related crash is lower than other types of crashes 

(OR=0.227). Rollover crashes are also found significant at 90% level. This finding is 

similar to false negative fatigue-related crash detection indicating that crash types is a 

good indicator for identifying fatigue-related crashes. 

 Some driver characteristics significantly contribute to false positive fatigue-related 

crash detection. Crashes involving drivers whose occupation were categorized as 

"worker" have higher odds for false positive fatigue detection in fatal and severe injury 

crashes (OR=1.975) than other occupations. A survey conducted by police officers in 

Ontario confirmed that approximately 61% of them believed that night or shift workers 

tended to involve in fatigue-related crashes (Robertson et al., 2009). This image of shift 

workers is in line with some previous research indicating that workers with non-fixed 

working schedule were more likely to have sleep problems (Marcus & Loughlin, 1996; 

McCartt et al., 1996; Dalziel & Job, 1997), which contributed to fatigue-related crashes 

(Connor et al., 2001a). Thus, these crashes are easily being considered as fatigue-related. 

For minor injury crashes, the odds of workers involving crashes being false positive 

fatigue detected is lower than other occupations (OR=0.476) even if police officers can 

ask those drivers about the fatigue condition at the crash scene. Moreover, farmers 

(OR=1.588, significant at 90% level) and migrant workers (OR=1.921) have higher 

odds of being misclassified into other cause in minor injured crashes. Some common 

features are shared by farmers and migrant workers: low salary, non-fixed working 
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schedule, and low social status. Drivers with these features are widely thought to be 

related to fatigue driving, and this stereotype can influence the judgment of police 

officers on fatigue-related crash detection. Therefore, police officers tend to believe 

that they are more likely to involve in traffic violation related to fatigue. The odds of 

male drivers for false positive fatigue detection is significantly lower than the odds of 

female drivers (OR=0.269). While the male driver was believed were more at risk of 

driving while fatigued (Robertson et al., 2009; Horne & Reyner, 1995), they also found 

to be at high risk of other violations. As a result, they were not easily to misclassify into 

fatigue-related crashes. Drivers' age (31 - 40, OR=0.632) also shows similar results that 

the odds of false positive fatigue-related crash detection is lower for them compared to 

young drivers, which is similar to the previous discussion. 

 The odds of a vehicle with insurance for false positive fatigue-related crash 

detection is lower than vehicles without insurance for fatal and severe injury crash 

(OR=0.421). According to the insurance claim process, investigators from insurance 

companies need to do site investigation which may help police officer to determine the 

crash cause better. 

 As for roadway characteristics, expressways and urban roads have higher odds of 

false positive fatigue-related crash detection in fatal and severe injury crashes 

(OR=2.088 and OR=3.127) since many researches discussed the relationship between 

urban expressways and fatigue-related crash detection and their potential danger may 

be overemphasized. In addition, there are dozens of monitoring facilities on 

expressways and urban roads, it is still difficult to identify whether the cause of crashes 
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is fatigue-related at the crash scene immediately. Crashes occurred in non-motorized 

vehicle lanes have higher odds of false positive fatigue-related crash detection 

(OR=5.334) since most of the fatigue-related crashes since most of the fatigue crash are 

vehicle-related. 

4.5.3 Interactions 

 Even though the effect of some individual factors may not have significant impacts, 

their combination with other factors did influence police officers' judging on 

determining fatigue-related crashes. For example, lightening condition and weather do 

not show significant influence for failing to recognize fatigue-related crashes. But 

driving at night without street light in a cloudy day was identified to contribute to false 

negative fatigue-related crash detection in serious crashes (OR=6.667). Therefore, 

when a serious crash take place at night without street light in a cloudy day, the police 

officer should carefully consider fatigue might be one of the causes of crashes. 

 Some other interactive factors are identified to hamper the judgment of police 

officers. A crash involving passenger car during night time without street lighting are 

found more likely to be false positive fatigue-related crash detection for fatal and severe 

injured crashes (OR=4.372, significant at 90% level). For minor injured crash, crashes 

occurred on interactions of urban roads (OR=3.309) is easy to be considered as fatigue-

related crashes when fatigue is actually not the primary cause. In addition, non-fatigue 

crashes in which driver is labeled as "worker" that drives trucks or other large size cargo 

vehicles, are more likely to be considered as fatigue-related (OR=4.836). Commercial 
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truck drivers are commonly believed to be associated with fatigue driving, thus, they 

are also more easily to be mistakenly believed to fatigue driving. One possibility is 

commercial large/medium cargo vehicle drivers are more skillful that they have enough 

experience and ability to avoid fatigue-related crashes. Therefore, fatigue may not be 

the major cause of crashes that have these three interactive features, and other possible 

causes of crashes should be considered. 

 

4.6 Conclusions and Practical Applications 

 Due to lack of proper criteria, the identification of fatigue-related crash by police 

officers largely depend on inferential evidence and their own experience and may even 

lead to incorrect classification of the cause of crashes. Even though some risk factors 

identified were believed to contribute to fatigue-related crashes, less research has been 

done to prove that whether these factors are helpful for fatigue-related crash 

identification. The purpose of this study is to find out factors affecting police officers' 

judgment when dealing with fatigue-related crashes. 

 The results show that single vehicle rolling over or hitting fixed object crashes are 

good indicators for determining fatigue involvement. Crashes that include two or more 

vehicles have not been found to have significant influence both misclassification types 

since fatigue could be one of the causes of crashes that have not been noticed. Driving 

light cargo vehicle, driving large/medium passenger vehicle and urban expressway 

should attract more attention on determining whether a crash is fatigue-related. 
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Moreover, some stereotypes should be abandoned. Some occupations (e.g. workers, 

farmer and migrant workers) should not be labeled as "high risk of fatigue driving" 

when investigating cause of crashes. Expressways and urban roads are also easy to be 

viewed as high-risk places for fatigue-related crashes. These images will hinder the 

judgment of fatigue detection whey there are used as an evidence for convicting a crash 

is fatigue-related. Fatigue should be considered as a possibility rather than a conclusion 

for cause of the crashes. We also recognized some interactive effects between variables 

that may also affect fatigue-related crash detection. However, it should be re-

emphasized that significant combinatorial effects of factors in this study may only 

reveal the characteristics of a small subset of fatigue-related crashes. More rules can be 

generated based on this dataset and it would be better to be used as additional 

information for training police officers to identify fatigue-related crashes correctly.  

 Based on the findings from this study, some countermeasures should be considered 

to improve the fatigue-related crash detection. A clear and easy to implement fatigue 

definition is an essential solution to this problem. However, up until now, we still do 

not have a completely general method to quantify driver fatigue and to determine what 

kind of fatigue level should be considered as fatigue driving. Finding an appropriate 

definition and quantification method for driver fatigue is one of the challenges in fatigue 

research during the coming years. In the current stage, more partial countermeasures 

are needed to improve fatigue-related crash detection. First of all, raising fatigue driving 

violation penalty for passenger vehicles can prevent drivers from fatigue driving as well 

as stimulate police officer to put more attention on identifying the involvement of 



64 

 

fatigue in a crash. Secondly, providing training for identifying fatigue in traffic crashes 

can be beneficial for more police officers and give them a better understanding of 

fatigue considering the experience of Finland (Radun & Radun, 2013). In this case, 

misleading factors in identifying fatigue-related crash should be addressed in training 

process. Moreover, useable and reliable vehicle-based fatigue measurement devices 

should be encouraged. These devices not only can be used in monitoring drivers' 

behaviors and the level of driver fatigue by placing sensors on the steering wheels and 

acceleration pedals, but also provide useful information for traffic police officers to 

determine the role of fatigue in a crash (Liu et al., 2009; Sahayadhas et al., 2012). 

Although information such as the length of time spent on driving, detail previous work, 

sleeping condition and rest schedules of the drivers involved can be found in 

investigation reports of final assessment, it should be recorded as a necessary part in 

standard crash investigation procedure. 

 There are several limitations which need to be acknowledged. Firstly, for the 

purpose of identifying factors contributing to the detection of fatigue-related crashes, 

N-F crashes and F-N crashes are compared with F-F crashes in our study. However, we 

have not examined whether these factors also influence police officers' judgment on 

other types of crash. To understand whether those factors are unique for fatigue-related 

crashes, comparison studies of factors contributing to misclassification of other types 

of crashes should be conducted in the future. Furthermore, the misclassification scale 

of property only fatigue-related crash may be underestimated. Filtness et al. (2015) also 

mentioned that identifying fatigue among less serious crashes may be inaccurate. 
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Moreover, due to the difficulties in proving fatigue as a contributor in a crash, it is 

possible that not all fatigue-related crashes have been detected even after full 

investigation process. Some fatigue-related crashes cannot be detected even after in-

depth investigation since there is no extra information to evaluate the scale of miscoding 

problem. Thus, additional data should be collected (e.g. self-report fatigue 

questionnaire) for better assessing fatigue identification. Several important variables 

should be considered such as time of day and pre-crash activity. These variables can 

provide valuable information for identify fatigue-related crash. Unfortunately, they are 

not included in our dataset. 
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CHAPTER 5 

The Effect of Fatigue Driving on Injury Severity 

Considering Endogeneity 

 

5.1 Introduction 

Fatigue driving was identified as one of the four most risky driving-related 

behaviors, especially in fatal traffic crashes (Fernandes et al., 2010) and represented a 

significant social and economic cost to the community. Despite extensive body of 

research addressing the harmfulness of fatigue driving on road safety, it has not 

attracted enough attention. Drivers were less concerned about fatigued driving than 

other traffic safety issues (Vanlaar et al., 2008). Studies from different countries showed 

that many people still drove when they felt fatigue (Beirness et al., 2005; Nordbakke & 

Sagberg, 2007; Tefft, 2010). Besides drivers, public are also not fully aware of the 

potential risk of fatigue driving because it is difficult to evaluate its effect accurately. 

For example, fatigue could be resolved after a period of rest (Karrer et al., 2004), this 

feature made it hard to detect and identify after crashes occurred. When other risky 

driving behaviors are involved, it is even harder to tell what the major contributor is 

and may lead to misclassification of the cause of crash (Horne & Reyner, 1995; Philip 

et al., 2005; Armstrong et al., 2008). In addition, police also tended to assign the cause 
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of crash to current interest (Ogden & Moskowitz, 2004). 

Several studies have examined the relationship between fatigue driving and traffic 

injury severity from different aspects. However, fatigue driving and injury severity in 

traffic crashes may share some observed common influential factors (e.g. road types). 

There are also some unobserved factors between fatigue driving and injury severity. 

The connection between sleep disorder, fatigue and traffic injury severity were 

discussed by many researchers (Akerstedt et al., 2001; Horne & Reyner, 2001; Philip 

et al., 2003; Stutts et al., 2003). Ignoring the impact of these common factors will lead 

to endogeneity problem and incorrect conclusion. This study contributes toward current 

fatigue driving research by applying a bivariate endogenous binary-ordered probit 

model framework to examine the relationship between fatigue driving propensity and 

fatal injury propensity in a crash considering the potential endogeneity of fatigue 

driving. Considering the potential systematic differences between commercial and non-

commercial vehicle drivers, this model also identifies the observed common factors of 

fatigue driving and injury severity for two groups of drivers and makes a comparison. 

This result may help better understand how those factors affect fatigue driving 

propensity and injury severity and contributes to more efficient policy for preventing 

the harmfulness of fatigue-related crashes. The analysis includes several types of 

factors, including driver characteristics, vehicle characteristics, road characteristics, 

environmental characteristics, and collision characteristics. 
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5.2 Literature Review 

Fatigue is a gradual and cumulative process closely related to deterioration of 

performance efficiency like driving performance (Haworth, 1998; Rajaratnam & 

Arendt ,2001; Philip et al., 2005), and could be induced by repetitive and monotonous 

activities like driving long distances (Stutts et al., 1999). Research pointed out that 

fatigue was not a strictly monotone decreased progress (Karrer et al., 2004), but an 

interaction between deactivation and compensation processes, resulting in variability 

of performance (Dinges & Kribbs, 1991). 

As for the influential factors related to fatigue driving, prior studies basically 

focused on four categories: driver characteristics, road characteristics, environmental 

characteristics and vehicle characteristics. Considering driver characteristics, male 

drivers were at high risk of fatigue driving for the reason that males were more likely 

to drive for a longer time (Fernandes et al., 2010; Amstrong et al., 2011). In Amstrong 

et al. (2008)'s study, it was found that drivers aged 17-24 years were more likely to be 

involved in a fatigue-related crash. However, the influence of age is much more 

complicated and there exist different behavior patterns between young drivers and elder 

drivers. Young drivers frequently committed their fatigue-related offenses during early 

morning and night-time hours (Horne & Reyner, 1995; Pack et al., 1995; Maycock, 

1996; Horne & Reyner, 2001) while elder drivers mostly in the afternoon (Summala & 

Mikkola, 1994). In addition, the motivation for driving while fatigue for young drivers 

might be their overestimation of capabilities (Gregersen & Bjurulf, 1996) and 

miscalculation of the cost of consequence (Fernandes et al., 2010). 
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For road characteristics and environmental characteristics, driving on different 

types of road can lead to similar consequence. Both high-demand and low-demand road 

condition could induce driver fatigue (Oron-Gilad et al., 2008; Zhao & Rong, 2013). 

Dyani (2007) divided driver fatigue into two groups: passive fatigue and active fatigue. 

Passive fatigue was defined closely related to underload, which has been confirmed by 

simulated driving studies in monotonous condition (Desmond & Hancock, 2001; 

Thiffault & Bergeron, 2003). Active fatigue was defined related to overload of driver. 

For example, poor road condition (Arnold et al., 1997), complex traffic conditions and 

road environments (Pilcher & Huffcutt, 1996) required more attention and could easily 

induce physical and mental fatigue. Time of day was mentioned by several fatigue-

related studies. Folkard (1997) has reviewed several researches that studied the 

relationship between road safety and time of day. It was widely believed that time of 

day were closely related to human rhythms, which was identified as an important factor 

affecting driver fatigue (Haworth, 1998; Philip et al., 2005). Horne and Reyner (2001) 

found that 02:00-06:00 and 14:00-16:00 is time period associated with higher 

probability of fatigue. Haworth (1998) also pointed out that nighttime is significant 

contributor of fatigue-related crashes. Light level (Sullivan & Flannagan, 2002) and 

season were also identified to play important role (Radun & Radun, 2009). 

Nevertheless, fatigue-related crashes are severe among commercial vehicle drivers. 

Statistics from Europe pointed out that approximately 20% of commercial vehicle 

crashes were related to driver fatigue (European Transport Safety Council, ETSC, 

2001). The causes of fatigue varied since fatigue could be developed while on the job 
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with regular sleep patterns or arrived at work already fatigued with irregular sleep 

patterns (Young & Hashemi, 1996). Commercial vehicle drivers suffered from sleep 

restriction (Hanowski et al., 2007) and were under great work pressure, which made 

them vulnerable to fatigue-related crashes. Specifically, drivers in developing countries 

are more likely to drive while fatigue for financial reasons (Mock et al., 1999; Nantulya 

& Muli-Musiime, 2001). Surveys conducted among truck and taxi drivers in Beijing, 

China, showed that driver fatigue was prevalent and the most important reason was 

prolonged driving time (Meng et al., 2015). 

Even though it is not in agreement, fatigue driving and injury severity in the crash 

may share some common influential factors, including observed and unobserved factors. 

Radun and Radun (2009) claimed that there was no connection between crash severity 

and whether the driver was judged to have been fatigued. However, more studies 

believed there existed some kind of connection (Haworth, 1998; Zhang et al., 2016). 

Fatigue-related crashes were often severe that drivers could not take evasive action 

under fatigue (Haworth, 1998). Some factors related to fatigue driving may impair 

driver performance, then affect injury severity. For example, some unobserved factors 

related to the driver’s internal state and circadian cycle can also affect both fatigue 

propensity and driving performance (Williamson et al. (2011) has given a detail review 

on that). Unfortunately, this information was almost impossible to collect due to 

traumatic effects and emotional state change after the crash (Radun & Radun, 2009). 

Some drivers might not admit fatigue or falling asleep during driving concerning about 

insurance and legal consequences (Corfitsen, 1999). Therefore, those common factors 
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were often neglected, which may lead to endogeneity problem and biased estimation 

when analyzing the relationship between fatigue driving and injury severity. 

 

5.3 Econometric Framework 

5.3.1 Model structure 

 In fatigue-related crashes, drivers who are more likely to be involved in fatigue-

related crashes and injury severity can be correlated, which may cause endogenous 

problem. In econometrics, endogeneity problem is said to occur if the independent 

variable is correlated with the error term. This correlation can be caused by several 

reasons: omitted variables, measurement error, and simultaneity in simultaneous 

models. Endogeneity induces estimation bias in statistical models and may eventually 

lead to mistaken conclusions. To take into account the potential endogeneity of fatigue 

driving, we apply a bivariate endogenous binary-ordered probit model in the current 

paper. Bivariate endogenous binary-ordered probit model is a hierarchical model 

system of two equations that can be used to model two response variables 

simultaneously, and addresses endogeneity problem. This model addresses endogeneity 

by considering error correlations among two equations that capture the relationships 

among endogenous variable, exogenous variables and error term (for further discussion, 

see Greene, 2007; Fernandez-Antolin et al., 2014). 

 Let i  ( 1,2,...,i N= ) be an index representing drivers and k  ( 1,2,...,k K= ) be 

https://en.wikipedia.org/wiki/Explanatory_variable
https://en.wikipedia.org/wiki/Explanatory_variable
https://en.wikipedia.org/wiki/Errors_and_residuals
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indices representing ordinal categories of injury severity sustained by driver i  in the 

crash. Suppose iy  is the observed injury severity level and 
*

iy  represents latent injury 

severity propensity of driver i  in the crash. Thus, the latent propensity 
*

iy  is mapped 

to the actual injury severity level iy  by threshold k

( 0 0 1 and ,  K K    = − =    ) as the following equations: 

                          
* ,i i i iy x fatig v = + +                     (5-1) 

and 

                          
*

1,   if 
ii k ky k y −=                      (5-2) 

where ix  is an 1M   column vector of variables that influences 
*

iy
 
(not including a 

constant) and ifatig  is a dummy variable indicating whether driver i  is convicted as 

fatigue driving or not. α represents an 1M   coefficient vector of ix
 
and   is the 

coefficient of ifatig . iv  is the error term assumed to be identically and independently 

across driver i . 

 However, ifatig  included in Eq. (5-1) may be endogenous. Therefore, we specify 

here:  

                           
* ,  i i ifatig z = +                       (5-3) 

                           

*1,   if  0

0,   otherwise

i

i

fatig
fatig

 
= 


                  (5-4) 

 This equation represents the latent fatigue driving propensity 
*

ifatig  of driver i . 

ifatig  is the actual observed fatigue driving behavior by driver i , and iz  is an 1L  

column vector of independent variables (including a constant) influencing fatigue 
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driving propensity 
*

ifatig  .    is an 1L   coefficient vector of iz  . ix   and iz   can 

share some common variables, representing the common observed influential factors 

between fatigue driving propensity and fatal injured propensity. i   represents the 

random components that capture all unobserved factors. 

 Still, there could be unobserved correlation between injury severity and fatigue 

driving. To capture the unobserved correlation, without losing generality we assume 

that iv  and i  form a bivariate normal distribution. In particular, the probability is 

given as: 
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      (5-5) 

where ( )2    is the standard bivariate normal cumulative distribution function. j  

and 1j −  ( 0,1)j =  represent thresholds for mapping the latent variable 
*

ifatig  to 

the observed variable ifatig  in Eq. (5-4). Specifically, in the binary probit model we 

set 1− = − , 0 0 = , and 1 =  .   measures the correlation between disturbances 

in the equations, which measures correlation between injury severity and fatigue 

driving propensity after the influence of fatigue is accounted in injury severity function. 

If this correlation between fatigue driving propensity and fatal injury propensity is 

ignored when actually exists, it could lead to inconsistent estimation of the effect of 

fatigue on injury severity. We also introduce a univariate endogenous binary-ordered 



74 

 

probit model in which we assume 0 = , neglecting the correlation between iv  and 

iw
 
for comparison purpose. 

5.3.2 Model estimation 

 The log-likelihood function is given by: 
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    (5-6)

 

 The corresponding parameters             k    and    are estimated 

simultaneously by maximizing the log-likelihood function of Equation (5-6). R 

software (version 3.3.1) is used for estimation in this study. 

 

5.4 Data 

5.4.1 Data source 

 The Guangdong Traffic Accident Dataset (GTAD) is sourced from the Traffic 

Management Sector Specific Incident Case Data Report, the Road Traffic Accident 

Database of China’s Public Security Department. A total of 38,564 crash records during 

2006-2011 are applied in this study. The data we used in this study were drawn from 

police-reported crashes in 21 cities across Guangdong Province, and compiled from a 

sample of crashes that involve at least one motor vehicle and resulting in property 
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damage, injury, or death. 

 Several crash-related attributes are collected for each record in GTAD, including 

driver characteristics, vehicle characteristics, road characteristics, environmental 

characteristics, and crash characteristics. The injury severity of each individual 

involved in the crash is categorized into four ordinal levels: (1) No injury, (2) Minor 

injury, (3) Serious injury, and (4) Fatal injury.  

 This study mainly focuses on drivers who were chiefly responsible for the 

occurrence of crash that was convicted to be fatigue-related. The reason is that crash 

and personal information is better recorded. The definition for fatigue driving in GTAD 

is defined as fulfilling one of the following conditions: (1) Driving cars more than eight 

hours a day, (2) Engaging in other work with excessive physical exertion, and (3) 

Lacking of sleep which results in sleepy or weakness of limbs, so that the driver is 

having difficulty in assessing traffic conditions immediately and reacting accurately. 

Normally, the police officer would interview the involved parties and witnesses, and 

check the driving records to identify the cause of crash. Technical reconstruction is also 

helpful for determining the cause of crash by studying testimony of witnesses and 

physical evidence, especially in serious crashes. Fatigue-related crashes defined by this 

definition constitute 6.5% of all crashes in GTAD dataset. The distribution of fatigue 

driving and injury severity across observations is presented in Table 5.1. Overall, the 

descriptive statistics in Table 5.1 indicate a substantially higher percentage of fatal 

fatigue-related crashes (13.2%) than non-fatigue-related crashes (6.5%).   
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Table 5.1 Number of fatigue related crashes by injury level 

Injury Severity Fatigue Driving All 

(%) 

 No 

(%) 

Yes 

(%) 

 

All    

  No Injury 25070 

(65.5) 

173 

(56.9) 

25243 

(65.5) 

  Minor Injury 8156 

(21.3) 

64 

(21.0) 

8220 

(21.3) 

  Serious Injury 2559 

(6.7) 

27 

(8.9) 

2586 

(6.7) 

  Fatal Injury 2475 

(6.5) 

40 

(13.2) 

2515 

(6.5) 

  Total 38260 

(100) 

304 

(100) 

38564 

(100) 

Commercial     

  No Injury 8297 

(86.0) 

96 

(57.5) 

8393 

(85.5) 

  Minor Injury 725 

(7.5) 

34 

(20.3) 

759 

(7.7) 

  Serious Injury 227 

(2.4) 

15 

(9.0) 

242 

(2.5) 

  Fatal Injury 400 

(4.1) 

22 

(13.2) 

422 

(4.3) 

  Total 9650 

(100) 

167 

(100) 

9817 

(100) 

Non-commercial    

  No Injury 16773 

(58.6) 

77 

(56.2) 

16850 

(58.6) 

  Minor Injury 7431 

(26.0) 

30 

(21.9) 

7461 

(25.9) 

  Serious Injury 2332 

(8.1) 

12 

(8.8) 

2344 

(8.2) 

  Fatal Injury 2075 

(7.3) 

18 

(13.1) 

2093 

(7.3) 

  Total 28610 

(100) 

137 

(100) 

28747 

(100) 
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5.4.2 Variables 

 Five types of variables were considered in the empirical analysis. Driver 

characteristics include: driver's age (≤25, 26-35, 36-45, 46-55, 56-65, and ≥66 years 

old), driver's gender, driving experience (2 years), and whether the driver has a valid 

driving license. Vehicle characteristics include: whether the vehicle has insurance. 

Other vehicle characteristics, such as vehicle speed just before collision, could not be 

included because of the absence of data in the GTDA. Road characteristics include: 

road type (whether the crash occurred on express way or urban roads), isolated lanes 

(whether the road has separated lanes for motorized and non-motorized vehicles), and 

terrain (mountain area). Environmental characteristics include: time of day 

represented in three categories (early morning (00:00-06:59), morning peak hours 

(07:00-08:59), and afternoon peak hours (17:00-19:59)) and lighting conditions (dark 

with street lights and dark without street lights). Crash characteristics include: 

collision type (head-on collision, rear-end collision, sideway collision). Variable 

description is presented in Table 5.2.  

 Firstly, a general model including all the variables suggested by prior studies and 

intuitiveness considerations are applied. Then, variables are chosen based on a 

systematic process of removing statistically insignificant variables and combining 

variables when their effects were not significantly different. Furthermore, continuous 

variables, such as driver' age and time of day, were converted into dummy variables 

and different ranges are also tested. 
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Table 5.2 Variable description 

Variables Description Mean 

Driver characteristics   

Driver's gender   

  Male Male=1; Female=0 0.947 

Driver's age   

  ≤25 ≤ 25=1; Others=0 0.209 

  26-35 26-35=1; Others=0 0.355 

  36-45 36-45=1; Others=0 0.296 

  46-55 46-55=1; Others=0 0.106 

  56-65 56-65=1; Others=0 0.028 

   66  66=1; Others=0 0.006 

Driving experience   

  ≤2 years ≤2 years=1; Others=0 0.135 

Driving license   

  Not valid Not valid=1; Others=0 0.280 

Vehicle characteristics   

Insurance   

  Yes Insurance=1; Others=0 0.779 

Road characteristics   

Road type   

  Express way Express way=1; Others=0 0.046 

  Urban road Urban road=1; Others=0 0.409 

Isolated lanes   

  Yes Isolated lanes=1; Others=0 0.397 

Terrain   

  Mountain Mountain=1; Others=0 0.600 

Environmental characteristics   

Lighting condition   

  Dark with street light Dark with street light=1; Others=0 0.261 

  Dark without street light Dark without street light=1; Others=0 0.173 

Time of day   

  00:00-06:59 00:00-06:59=1; Others=0 0.155 

  07:00-08:59 07:00-08:59=1; Others=0 0.087 

  17:00-19:59 17:00-19:59=1; Others=0 0.171 

Crash characteristics   

  Head-on Head-on collision=1; Others=0 0.224 

  Sideway Sideway collision=1; Others=0 0.421 

  Rear-end Rear-end collision=1; Others=0 0.119 
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5.5 Estimation Results and Discussion 

 In this study, two different models were estimated: (1) Bivariate Endogenous 

Binary-Ordered Probit model, and (2) Univariate Endogenous Binary-Ordered Probit 

model (by assuming 0 =  as noted earlier). There could be potential systematic 

differences between commercial and non-commercial vehicle drivers (i.e. driving skill, 

driving time), we compare the factors associated with fatigue driving propensity and 

fatal injury propensity between them. Variables considered in the models at the very 

beginning of fatigue and injury severity function are listed in Table 5.3, and all the 

variables that were included in fatigue function also being included in injury severity 

function. In Table 5.4 and Table 5.5, we present the results of both models for 

commercial and non-commercial vehicle drivers, and only significant variables (at 95% 

significant level) will be listed and discussed in the following parts. 

Table 5.3 Variable selection for fatigue model and injury severity model 

 Fatigue Injury severity 

Variable Commercial Non-commercial Commercial Non-commercial 

Driver characteristics     

  Driver's gender √ √ √ √ 

  Driver's age √ √ √ √ 

  Driving experience √ √ √ √ 

  Driving license √ √ √ √ 

Vehicle characteristics     

  Vehicle type √ √ √ √ 

  Insurance √ √ √ √ 

Road characteristics     

  Road type √ √ √ √ 

  Isolated lanes √ √ √ √ 

  Terrain √ √ √ √ 

Environmental 

characteristics 

    

  Lighting condition √ √ √ √ 
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  Time of day √ √ √ √ 

Crash characteristics     

  Collision type   √ √ 

 

5.5.1 Measures of fit 

 Before discussing the estimation results, likelihood ratio test is conducted to 

compare bivariate and univariate model. The test statistic is given as 

                          ( )2 nc cLR llk llk= −  −                      (5-8) 

where ncllk  is the log-likelihood at convergence of bivariate model, and cllk  is the 

log-likelihood at convergence of the models estimated on univariate model. The LR  

statistic for commercial and non-commercial vehicle drivers is 4.38 and 3.66, which 

reject the null hypothesis of 0 =  at 0.05p   and 0.1p  , respectively. It should 

be noted that, in this case,   is conservatively retained in non-commercial vehicle 

driver sample since the correlation does significantly change the coefficient of fatigue 

in the model. This result indicates that correlation due to unobserved factors between 

injury severity and fatigue driving propensity is significant, and model estimation 

without considering this correlation may result in inefficient parameter estimates 

(Yamamoto & Shankar, 2004).  

 We also conduct information criteria to compare model performance. Both of the 

value of Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) 

decline for commercial and non-commercial vehicle drivers by including the 

correlation, which also suggests that the proposed model is more efficient. 
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5.5.2 Estimation results 

 The results in Table 5.4 and Table 5.5 indicate that fatigue has significant impacts 

on fatal injury propensity for both commercial and non-commercial vehicle drivers. 

The coefficient of fatigue in the bivariate endogenous model is larger than in univariate 

model. The estimated coefficient of fatigue driving among commercial drivers is 0.984 

in bivariate model and 0.291 in univariate model. The impact of fatigue driving on fatal 

injury propensity is underestimated by 0.693 in the latter. For non-commercial vehicle 

drivers, the coefficient of fatigue driving in bivariate model is 0.895 while in univariate 

model is 0.234 and the gap is 0.661. The impact of fatigue driving on injury severity in 

a crash on both groups are underestimated and the gaps between these two groups are 

similar. Larger coefficient of fatigue driving indicates higher risk of involving in fatal 

injured crash. Results suggest that commercial vehicle drivers are somewhat more risky 

when driving under fatigue than non-commercial vehicle drivers. Commercial vehicle 

drivers often drove a high number of miles (National Sleep Foundation, 2009), and 

some of them tend to break the rules about duty and rest hours for pursuing more profit 

(Radun & Radun, 2009). Thus, they are more likely to lose focus or even fall asleep at 

the wheel, which may lead to severe crashes. 

 This study also identifies the observed common factors of fatigue driving 

propensity and fatal injury propensity. In summary, the observed common factors for 

commercial vehicle drivers are: insurance, road types, and terrain. For non-commercial 

vehicle drivers, the observed common factors are: insurance and road types. More detail 

discussions of estimation results by groups are as following: 



82 

 

 Driver characteristics: although gender, age and driving experience do not show 

significant impact on fatigue driving propensity, they do influence the driver's 

propensity of fatal injury in the crash. Non-commercial vehicle drivers who is over 45 

years old are more likely to be fatal injured in the crash while male, young non-

commercial vehicle drivers are found less likely. This result is consistent with previous 

findings (Hatfield et al., 2005; McConnell, 2003). Less experienced drivers ( 2 years) 

are found more likely to be more severe injured than those with more driving 

experienced. Less experienced drivers with dynamic driving style are with more risk in 

the monotonous setting than experienced and calm drivers (Stutts et al., 2003; Karrer 

et al., 2004). However, these effects are not significant for commercial vehicle drivers 

due to small variation in commercial driver group. Drivers without a valid driving 

license are significantly more likely to be severe injured for both commercial and non-

commercial vehicle drivers. 

 Vehicle characteristics: the impact of factors associated with vehicle itself shows 

contrast effects on fatigue driving propensity and fatal injury propensity. For both 

groups of drivers, driving vehicles with insurance are less likely to be fatally injured in 

the crash. Insurance lowers the monetary loss of crashes. Nevertheless, monetary 

compensation can never compensate for losing one's life. Therefore, drivers will pay 

enough attention to preventing themselves from fatal crashes. On the other hand, they 

might let their defenses down under the circumstances which they thought to be not 

serious. Thus, light-injured crashes are more likely to happen. In addition, non-

commercial vehicle with insurance presents higher risk of fatigue driving while the 

http://cn.bing.com/dict/search?q=compensate&FORM=BDVSP6&mkt=zh-cn
http://cn.bing.com/dict/search?q=for&FORM=BDVSP6&mkt=zh-cn
http://cn.bing.com/dict/search?q=let&FORM=BDVSP6&mkt=zh-cn
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impact for commercial vehicle is not significant. This finding may be related to 

different penalties for commercial drivers and non-commercial vehicle drivers when 

conducting fatigue driving. According to the Road Traffic Safety Law of the People's 

Republic of China and local traffic regulations, commercial vehicle drivers will have 

their driving licenses endorsed with at least six penalty points even lose their driving 

licenses once caught fatigue driving. However, for non-commercial vehicle drivers, 

fatigue driving will only incur traffic tickets without losing any points on their driving 

license. 

 Road characteristics: driving on express way is at high risk of fatigue driving and 

fatal injury for commercial and non-commercial vehicle drivers. Express ways are 

mostly monotonous and of high speed. Driving on them can be regarded as a repetitive 

activity which requires sustained attention and can easily lead to fatigue (McCartt et al., 

2000; Thiffault & Bergeron, 2003). On the contrast, driving on urban road or mountain 

area is less likely to fatigue driving as well as sustain fatal injured. The lower propensity 

of fatigue driving may be the result of high rate of environmental stimulation and 

continuous changes in the driving scenery (Mavjee & Horne, 1994; Horne & Reyner, 

1999), which help to maintain driver's attention persistently. The impact of driving in 

mountain area on fatigue driving propensity is not significant for non-commercial 

vehicle drivers. Isolated lanes show no significant impact on fatigue driving propensity, 

however, its impact on injury severity differs between commercial and non-commercial 

vehicle drivers. For commercial vehicle drivers, driving on isolated lanes is less likely 

to sustain fatal injury, but is more likely for non-commercial vehicle drivers.  
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 Environmental characteristics: The effect of time period on fatigue driving 

propensity also shows different patterns. During midnight to early morning (00:00-

06:59), both commercial and non-commercial vehicle drivers are more likely to fatigue 

driving compared to other time period in a day. For example, 75% of fatigue-related 

crashes occurred between 02:00 and 08:00 in 107 heavy truck crashes reviewed 

(National Transportation Safety Board, U.S., 1995). Morning peak hour (07:00-08:59) 

only affects the fatigue driving propensity of commercial drivers. It is still not clear 

whether this result is due to sleep loss or other reasons. Driving at night significantly 

contributes to more severe injury crashes for both commercial and non-commercial 

vehicle drivers, but the propensity of fatal injured crashes declines following the 

installation of street lights. This finding is also consistent with several previous studies 

(Elvik, 1995; Owens & Sivak, 1996; Plainis et al., 2006).  

 Crash characteristics: since collision type does not affect fatigue driving behavior, 

this variable is only considered in injury severity function. The result indicates that 

commercial vehicle drivers are more likely to fatal injured when involved in rear-end 

collision while sideway collision and head-on collision is less likely to fatal injured. 

Some commercial vehicles have larger size and are heavier than the other passenger 

vehicles with which they share the roads, and the stopping distance for them is much 

longer. Thus, large and heavy commercial vehicles involving in rear-end crashes may 

be due to their inability to stop immediately, and cause severe injuries. For sideway and 

head-on collision, commercial vehicle drivers can reduce the harmfulness of collision 

by taking sudden turns or other protecting behaviors based on their experience. 
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However, for non-commercial vehicle drivers, both head-on and rear-end collision have 

higher propensity of fatal injury, which may be related to lacking experience in 

handling emergencies on road compared to commercial vehicle drivers. The impact of 

side collision is not significant for non-commercial vehicle drivers. 

Table 5.4 Estimation result of commercial vehicle driver sample 
 

Correlated Uncorrelated 

Variables Coef. SE Coef. SE 

Fatigue Driving Propensity 

Road type     

  Express way 0.368*** 0.080  0.400***  0.079  

  Urban road -0.718*** 0.152  -0.702*** 0.151  

Terrain     

  Mountain -0.179** 0.072  -0.178** 0.072  

Time of day     

  00:00-06:59 0.771*** 0.079  0.740*** 0.079  

  07:00-08:59 0.466*** 0.114  0.457*** 0.114  

Intercept -2.379*** 0.068  -2.381*** 0.068  

Injury Severity Propensity 

Fatigue 0.984*** 0.312  0.291*** 0.097  

Driving license     

  Not valid 0.291*** 0.064  0.293*** 0.065  

Insurance     

  Yes -0.192*** 0.064  -0.193*** 0.064  

Road type     

  Express way 0.850*** 0.056  0.883*** 0.054  

  Urban road -0.129*** 0.044  -0.133*** 0.044  

Isolated lanes     

  Yes -0.085** 0.040  -0.084** 0.040  

Terrain     

  Mountain -0.217*** 0.034  -0.223*** 0.034  

Lighting condition     

  Dark with street light 0.131*** 0.048  0.136*** 0.048  

  Dark without street light 0.243*** 0.040  0.252*** 0.040  

Collision type     

  Head-on -0.142*** 0.050  -0.140*** 0.051  

  Side -0.377*** 0.047  -0.376*** 0.047  
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  Rear-end 0.276*** 0.044  0.280*** 0.044  

ρ -0.313** 0.132   

Cut1 0.925*** 0.071  0.921*** 0.071  

Cut2 1.450*** 0.072  1.449*** 0.072  

Cut3 1.719*** 0.074  1.720*** 0.074  

log-likelihood -5491  -5493  

AIC 11025  11028  

BIC 11057  11059  

N 9816  9816  

 * p < 0.1, ** p < 0.05, *** p < 0.01 

 

Table 5.5 Estimation result of non-commercial vehicle driver sample 
 

Correlated Uncorrelated 

Variables Coef. SE Coef. SE 

Fatigue Driving Propensity 

Insurance     

  Yes 0.351*** 0.090  0.351*** 0.089  

Road type     

  Express way 0.595*** 0.108  0.604*** 0.108  

  Urban road -0.267*** 0.068  -0.268*** 0.068  

Time of day     

  00:00-06:59 0.419*** 0.071  0.384*** 0.070  

Intercept -2.896*** 0.086  -2.891*** 0.086  

Injury Severity Propensity 

Fatigue 0.895** 0.364  0.234** 0.101  

Driver's gender     

  Male -0.200*** 0.028  -0.199*** 0.028  

Driver's age     

  26-35 -0.170*** 0.016  -0.170*** 0.016  

  46-55 0.238*** 0.023  0.238*** 0.023  

  56-65 0.500*** 0.037  0.500*** 0.037  

  ≥65 0.606*** 0.075  0.606*** 0.075  

Driving experience     

  ≤ 2 years 0.153*** 0.022  0.153*** 0.022  

Driving license     

  Not valid 0.703*** 0.017  0.703*** 0.017  

Insurance     

  Yes -0.281*** 0.017  -0.280*** 0.017  
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Road type     

  Express way 0.370*** 0.050  0.388*** 0.050  

  Urban road -0.250*** 0.015  -0.251*** 0.015  

Isolated lanes     

  Yes 0.060*** 0.016  0.060*** 0.016  

Terrain     

  Mountain -0.135*** 0.015  -0.135*** 0.015  

Lighting condition     

  Dark with street light 0.076*** 0.017  0.077*** 0.017  

  Dark without street light 0.181*** 0.020  0.182*** 0.020  

Collision type     

  Head-on 0.140*** 0.017  0.140*** 0.017  

  Rear-end 0.180*** 0.024  0.180*** 0.024  

ρ -0.234* 0.122   

Cut1 0.053 0.036  0.052  0.036  

Cut2 0.960***  0.036  0.960*** 0.036  

Cut3 1.442*** 0.037  1.442*** 0.037  

log-likelihood -28726  -28728  

AIC 57504  57506  

BIC 57541  57541  

N 28748  28748  

* p < 0.1, ** p < 0.05, *** p < 0.01 

 

5.5.3 Marginal effects 

 The coefficient estimates do not provide the magnitude of impacts on probability 

in each injury level. Thus, we calculate the marginal effect of variables, which directly 

influence fatal injury propensity, on each injury level for both commercial and non-

commercial vehicle drivers. Considering all variables in this model are dummy 

variables, we compute probabilities by setting the variable to one and then zero, and 

take the difference. That is,  

                  Prob( | 1) Prob( | 0)i i i iME y k m y k m= = = − = =         (5-7) 
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where ME   is the marginal effect of dummy im   on injury level k  . The marginal 

effect can be interpreted as the change of probability due to the change in variable from 

zero to one. The results of bivariate and univariate models for commercial and non-

commercial vehicle drivers are presented in Table 5.6 and Table 5.7. (These tables only 

present the marginal effect for significant variables identified in earlier discussion).  

Some important features should be addressed here. First, this study shows that the 

marginal effect of fatigue driving on fatal injury for commercial vehicle driver and non-

commercial driver is 12.9% and 17.9%. That is, the occurrence of fatigue driving will 

increase the probability of fatal injury in a crash by 12.9% for commercial vehicle driver 

and 17.9% for non-commercial vehicle drivers. Moreover, comparing marginal effect 

in bivariate and univariate model, we find that the estimated impact of fatigue is much 

lower without considering correlation. Ignoring the correlation of unobserved factors 

may lead to underestimation of the harmfulness of fatigue driving behavior. In our study, 

the harmfulness of fatigue is underestimated by 10.5% and 14.6% for commercial and 

non-commercial vehicle driver, respectively. Second, for commercial vehicle drivers, 

other major risk factors of fatal injury include express way, not valid driving license, 

and rear-end collision. For non-commercial vehicle, elder driver (aged ≥66 years old 

and 56-65 years old), not valid driving license, and express way are the most significant 

contributors. Third, side collision, driving in mountain area, and insurance are 

recognized as the three most influencing factors for commercial vehicle drivers to 

survive in a crash while for non-commercial vehicle drivers are insurance, urban road, 

and male. 
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Table 5.6 Marginal effect for commercial vehicle driver sample 
 

Bivariate Binary-Ordered 

Probit 

Univariate Binary-Ordered 

Probit 
 

Y = 1 Y = 2 Y = 3 Y = 4 Y = 1 Y = 2 Y = 3 Y = 4 

Fatigue Driving -0.256 0.086 0.041 0.129 -0.060 0.025 0.010 0.024 

Driving License 

    

    

  Not valid -0.058 0.025 0.010 0.023 -0.060 0.025 0.010 0.024 

Insurance 

    

    

  Yes 0.037 -0.016 -0.006 -0.014 0.038 -0.016 -0.006 -0.015 

Road type 

    

    

  Express way -0.225 0.084 0.037 0.087 -0.237 0.087 0.039 0.094 

  Urban road 0.037 -0.009 -0.004 -0.008 0.036 -0.009 -0.003 -0.007 

Isolated lanes 

    

    

  Yes 0.015 -0.007 -0.003 -0.006 0.015 -0.007 -0.003 -0.006 

Terrain 

    

    

  Mountain 0.054 -0.022 -0.008 -0.018 0.046 -0.018 -0.007 -0.015 

Lighting condition 

    

    

  Dark with street 

light 

-0.024 0.011 0.004 0.009 -0.026 0.011 0.004 0.010 

  Dark without street 

light 

-0.046 0.021 0.008 0.017 -0.049 0.022 0.009 0.019 

Collision type 

    

    

  Head-on 0.024 -0.011 -0.004 -0.009 0.024 -0.011 -0.004 -0.009 

  Sideway 0.063 -0.031 -0.011 -0.022 0.065 -0.031 -0.011 -0.022 

  Rear-end -0.054 0.024 0.009 0.020 -0.056 0.025 0.010 0.021 
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Table 5.7 Marginal effect for non-commercial vehicle driver sample 
 

Bivariate Binary-Ordered Probit Univariate Binary-Ordered 

Probit 
 

Y = 1 Y = 2 Y = 3 Y = 4 Y = 1 Y = 2 Y = 3 Y = 4 

Fatigue Driving -0.303 0.051 0.073 0.179 -0.081 0.028 0.020 0.033 

Driver's gender 

    

    

  Male 0.069 -0.025 -0.017 -0.027 0.069 -0.025 -0.017 -0.027 

Driver's age 

    

    

  26-35 0.058 -0.024 -0.014 -0.020 0.058 -0.024 -0.014 -0.020 

  46-55 -0.083 0.030 0.021 0.032 -0.083 0.030 0.021 0.032 

  56-65 -0.175 0.051 0.044 0.080 -0.175 0.051 0.044 0.080 

  ≥65 -0.211 0.054 0.053 0.105 -0.211 0.054 0.053 0.105 

Driving experience 

    

    

  Less than 2 years -0.053 0.020 0.013 0.020 -0.052 0.020 0.013 0.020 

Driving License 

    

    

  Not valid -0.259 0.098 0.067 0.093 -0.258 0.098 0.067 0.093 

Insurance 

    

    

  Yes 0.097 -0.039 -0.025 -0.036 0.097 -0.039 -0.025 -0.037 

Road type 

    

    

  Express way -0.140 0.038 0.031 0.055 -0.143 0.038 0.032 0.057 

  Urban road 0.089 -0.035 -0.021 -0.029 0.089 -0.035 -0.021 -0.029 

Isolated lanes 

    

    

  Yes -0.021 0.008 0.005 0.007 -0.020 0.008 0.005 0.007 

Terrain 

    

    

  Mountain 0.046 -0.018 -0.011 -0.017 0.046 -0.018 -0.011 -0.017 

Lighting condition 

    

    

  Dark with street 

light 

-0.026 0.010 0.006 0.009 -0.026 0.010 0.006 0.010 

  Dark without street 

light 

-0.063 0.024 0.016 0.024 -0.063 0.024 0.016 0.024 

Collision type 

    

    

  Head-on -0.048 0.019 0.012 0.018 -0.049 0.019 0.012 0.018 

  Rear-end -0.062 0.023 0.015 0.024 -0.063 0.023 0.016 0.024 
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5.6 Conclusions and Practical Applications 

 Several studies have examined the relationship between driver fatigue and traffic 

injury severity from different aspects. However, some of factors that affect driver's 

fatigue propensity also have influence on driver's injury severity in a crash, including 

observed and unobserved factors. Ignoring the impact of these common factors will 

lead to endogeneity problem and incorrect conclusion. Based on 38,564 crash records 

during 2006-2011, we conduct an empirical analysis to examine the relationship 

between fatigue driving propensity and fatal injury severity by comparing bivariate and 

univariate endogenous binary-ordered probit model. Five types of factors are included. 

It is essential to quantify the impact of these characteristics on injury severity by 

calculating marginal effect, so that measures to prevent or reduce harmfulness of fatigue 

driving can be identified and implemented. 

 The result reveals a substantial and significant negative error correlation between 

fatigue driving propensity and fatal injury propensity, which lends strong support for 

endogeneity of fatigue driving propensity. The influence of fatigue driving on injury 

severity is significantly underestimated if ignoring the unobserved correlation between 

fatigue driving behavior and crash injury severity propensity. This study also compares 

the difference in risk factors of fatigue driving behavior and crash-related injury 

between commercial vehicle drivers and non-commercial drivers. Some common 

observed influential factors are identified. For instance, driving on express way not only 

contribute to higher fatal injury propensity but also high fatigue driving propensity. 

Measures aiming at preventing driver fatigue such as light signals or signs may also 
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help to reduce injury severity in the crash. It is also found in the paper that factors show 

different impacts on them. Driver's gender and age has significant influence on fatigue 

driving propensity of non-commercial vehicle driver, but this influence is not 

significant on commercial vehicle driver.  

 It should arouse the attention of researchers that the harmfulness of driver fatigue 

on traffic crash injury severity is larger than expected due to neglecting of the 

endogeneity of fatigue. Furthermore, correctly understanding the impact of fatigue-

related crash is considered to be essential to the development and design of 

countermeasures aimed at reducing the hazard of fatigue crash. Different impact factors 

identified between commercial and non-commercial vehicle drivers in this study should 

be addressed. Some factors have similar impacts for both commercial and non-

commercial vehicle drivers (e.g. road types and lighting conditions), but some factors 

have not (e.g. collision types). Thus, developing effective measures to reduce fatigue-

related crash occurrence and its injury severity should take into account those 

differences. Moreover, according to our findings, police makers should also consider 

installing driver fatigue prevention devices (e.g. deceleration strip or warning signs) on 

express ways since those devices help reducing driver fatigue as well as injury severity. 

 With respect to fatigue driving behavior, our results suggest that fatigue is 

important in reducing the likelihood of fatal injury. However, one of the major 

limitations of this research is the sparseness of fatigue-related crash in this dataset for 

the reason that small sample size may influence model estimation. It is essential to 

address endogenous in the model since endogeneity would cause inconsistent 
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estimation. And this model can apply for any crash type when there is potential 

endogenous dependent variable. Therefore, it is reasonable to introduce this model in 

our analysis given the data limitation. In addition, the number of observations of some 

variables are small that may also limit the ability of determining effects precisely. And 

the vague and broad definition of fatigue may also cause misclassification problem and 

reduce the accuracy of our data analysis. This paper also does not consider the potential 

confounding effects of driving mileage, driver's health condition, drug use, which could 

affect both fatigue and risk of crash (Connor et al., 2001a), due to the limitation of data. 

To deal with this problem, more detail and complete data are needed. Interaction effects 

or non-linear effects of variables and heterogeneity of drivers, which may also have 

significant impacts on injury severity and fatigue driving propensity, are not considered 

in this study for the first attempt since the focus is on the endogeneity of fatigue driving. 

Those problems will be discussed in our future studies. 
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CHAPTER 6 

Identifying Factors Contributing to County-level Fatigue-

related Crash Considering Spatial Correlation 

 

6.1 Introduction 

Traffic crash has become a major threat all around the world and fatigue-related 

crashes have long been the topic of discussion in road safety research (Horne & Reyner, 

1995a; Horne & Reyner, 1995b; Philip et al., 2001; Akerstedt & Kecklund, 2001; 

Connor et al., 2001b; Zhang et al., 2016). However, traffic crashes do not occur 

randomly and the spatial correlation involves in the processes and events leading to the 

traffic crash (Loo & Anderson, 2016). Different from other types of automobile crash, 

fatigue-related crash may be more closely related to the social and economic 

development level. For example, one area of high commercial transportation demand 

is more likely to have fatigue-related crash. It is important to evaluate the relationship 

between variables related to social and economic development and fatigue-related 

crashes. 

Spatial correlation has long been discussed in transportation researches (Quddus, 

2008; Huang et al., 2010). It originates from missing exogenous variables and 

inappropriate spatial aggregation of the underlying observational units (Anselin, 1988; 

Tiefelsdorf & Griffith, 2007; Wang et al., 2013). For example, variables such as 
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transportation regulations and traffic flow, are often absent from traffic crash models, 

which may lead to spatial correlation across the neighborhood areas. In addition, the 

presence of spatial autocorrelation violates the assumption of independence in most 

conventional statistical models; ignoring spatial autocorrelation will lead to biased 

parameter estimation and standard errors (Wakefield, 2003). 

Generally, there are two ways to handle spatial correlation: to take it into account 

in model setting or remove it from observations. Several attempts have been made to 

develop models that take spatial correlation into account, such as geographically 

weighted regression models (Quddus, 2008; Hadayeghi et al., 2010; Wang et al., 2012; 

Pirdavani et al., 2013). On the other hand, eigenvector spatial filtering is a relatively 

new method to deal with spatial correlation method (Griffith, 2000a; 2000b; 2007). 

Spatial filtering approach avoids the complex calculation of geographically weighted 

regression models and extracts the unobserved map patterns from the spatial structure 

in matrix form. The application of spatial filtering technique has been discussed and 

applied several studies (Cliff & Ord, 1981; Getis, 1990; Getis & Anselin, 1995; Griffith, 

2002; Griffith, 2004).  

This study aims to evaluate factors contributing to county-level fatigue-related 

crash frequency in Guangdong, China. The spatial filtering technique is used to capture 

the unobserved spatial correlation among studied areas. With the filtered spatial 

components, a semi-parametric Poisson model is developed to examine the impacts of 

both road and macroscopic variables on fatigue-related crash frequency. Since the 

spatial filtering process is based on the decomposition of spatial neighbor matrix, the 
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spatial components can be included in the model as exogenous variables. In this way, 

the importance of spatial effects as well as macroscopic variables in explaining fatigue-

related crash occurrence in Guangdong can be assessed. This study can provide some 

insights for regional policy evaluation and strategic planning in preventing fatigue-

related crashes. 

 

6.2 Methodology 

6.2.1 Spatial neighbor matrix 

The neighboring connectivity spatial unit i  and j  can be defined by a spatial 

neighbor matrix W . This matrix is a square symmetric n n  matrix with the ( ),i j  

element , 1i jw =  if units i  and j  are considered to be neighbors, and , 0i jw =  

otherwise. There are many ways for constructing the spatial neighbor matrix (LeSage, 

1998): 

Rook contiguity: two units are considered to be spatial neighbors if they share a 

common boundary only (or the boundary is longer than a given distance). 

Bishop contiguity: two units are considered to be spatial neighbors if they share a 

common vertex only (or the boundary is shorter than a given distance). 

Queen contiguity: two units are considered to be spatial neighbors if they share a 

common boundary or vertex. Queen contiguity can be viewed as the combination of 

Rook and Bishop contiguity. 
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Other than the above “first-order” measures of contiguity, one can extend the 

spatial neighbor definition to “second-order” contiguity. By the same token, the 

neighbors of first-order neighbor units can be viewed as second-order neighbors. In 

addition, distance-based measures of neighbors are also commonly applied. In practice, 

distance-based spatial weights matrices are popular since it allows us to take various 

forms of distance influence into account. However, distance-based spatial weight 

matrices do not always guarantee better fitness. El-Basyouny and Sayed (2001) 

mentioned that the spatially correlation may be simply due to the omission of variables. 

Therefore, in the case of omission of variables, testing the influence of different 

neighboring structures is more promising than constructing complex spatial structure. 

The construction of neighbor matrix W  depends on the problem and is somehow 

artificial due to lacking of information for specifying neighbors. Tsai et al. (2009) and 

Tsai (2012) found that first-order Queen contiguity was more appropriate when areas 

were highly irregular in shape and size. Griffith (1996) and Griffith and Lagona (1998) 

also mentioned that small number of neighbors was preferred after comparing different 

spatial weight matrix. Given the diverse size of spatial units in our dataset, binary 

contiguity is employed in this study. Rook and Queen contiguity structure are evaluated 

and the comparison of the basic information between them are listed in Table 6.1. 

Table 6.1 The comparison of Queen and Rook contiguity 

 Queen Rook 

Number of neighbors 120 120 

Number of non-zero links 560 556 

Average number of links 4.67 4.63 
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The results show that Rook and Queen contiguity are quite similar in light of 

number of non-zero links. There is no formal guidance for choosing a proper spatial 

matrix (Anselin, 2002; Paez & Scott, 2005). Therefore, both of the them will be used 

in spatial filtering and the final choice of spatial neighbor matrix is determined by 

optimal performance of the model (Getis & Aldstadt, 2004; Dray et al., 2006). 

6.2.2 Eigenvector spatial filtering approach 

This study follows the spatial filtering approach proposed by (Griffith, 2000a; 

2000b). This approach also known as Moran eigenvector spatial filtering approach 

since it is based on the computational formula of MI  statistic (Griffith, 2000a; 

Patuelli et al., 2006). The Moran eigenvector filtering approach relax the restriction of 

Getis’s spatial filtering approach that can deal with both positive and negative spatial 

autocorrelation. In addition, it can be used either individually in a model as predicting 

variables or simultaneously in a regression system (Tiefelsdorf & Griffith, 2007). 

The Moran spatial filtering approach eigenvectors  1,..., nE E  are extracted from 

the transformed spatial neighbor matrix 

                    ( )1
1 2
, , evec T

nE E M W W M  +
 

                (6-1) 

where W  represents the spatial neighbor matrix. M  is a symmetric and idempotent 

projection matrix 

                          ( )
1

1 1 1 1T TM I
−

= −                         (6-2) 

where I  is an n n  identity matrix and 1 is an 1n  vector of ones. In this way, 
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the spatial correlation can be expressed by independent and uncorrelated eigenvectors 

(Tiefelsdorf & Griffith, 2007). The eigenvectors extracted are arranged in an ascending 

order. The first eigenvector 1E  is the one whose numerical values generate the largest 

MI  statistic among all eigenvectors of the transformed matrix. Similarly, the second 

eigenvector 2E , which is uncorrelated with 1E , is the set of numerical values that 

maximize the MI  statistic. The process continues until the thn  eigenvectors have 

been generated (Patuelli et al., 2006). By employing the suitable orthogonal and 

uncorrelated map patterns representing by eigenvectors to Poisson model, the spatial 

correlation present in the residuals can be removed (Dray et al., 2006). 

To determine the suitable and parsimonious number of eigenvectors, a subset of 

representing eigenvectors is extracted and selected by a stepwise procedure. To avoid 

inflated sets of eigenvectors, Griffith (2003) suggested that a restriction is needed for 

searching over eigenvectors with moderate to high spatial autocorrelation. Suppose the 

first eigenvector 1E  express the highest level of spatial correlation. Then, it is possible 

to assume there exists an eigenvalue 
ie  corresponding to eigenvector iE  that 

1ie e , which indicates iE  contains at least weakly spatial correlation given certain 

level  . In this study, 0.5 =  is used according to some prior researches (Griffith, 

2003; Patuelli et al., 2006).  

The selected Q  eigenvectors are included into the Poisson model as following: 

1

exp
Q

q q

q

X E  
=

 
= + 

 
                      (6-3) 

where X  is the exogenous explanatory variables (i.e. road length and macroscopic 
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variables in this study) and   is the corresponding coefficients. qE  is the selected 

eigenvectors and q  represents the corresponding coefficient. However, there can be 

too many eigenvectors, the stepwise selection is used to choose appropriate variables. 

The stepwise selection can be done by maximizing model accuracy, which not only 

suitable for linear model but also for generalized linear models (Murakami & Griffith, 

2005). The model accuracy is evaluated by three indexes: log-likelihood ratio test (LR), 

Akaike Information Criterion (AIC), and Bayesian Information Criterion (BIC). 

6.2.3 Proportion of reduction in variance 

The literature suggests that various socio-demographic variables such as population, 

employment, poverty, economic activity affect traffic casualties (Graham & Glaister, 

2003; Noland & Quddus, 2004a; Aguero-Valverde & Jovanis, 2006; Kim et al., 2006). 

Therefore, to evaluate the overall explanatory power of macroscopic variables, the 

proportion of reduction in variance (PRV, also called explained variance) is introduced 

(Raudenbush & Bryk, 2002; Wang et al., 2017). PRV was calculated by the following 

function: 

                            
2 2

0 1

2

0

PRV
 



−
=                         (6-4) 

where 
2

0  represent the variance of error term in the model which did not contain 

target variables while 
2

1  is the variance of error term of model containing target 

variables. PRV should be bounded between 0 to 1, and high PRV value indicates strong 

explanatory power of variables on the occurrence of crash. 
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6.3 Data 

6.3.1 Study area 

The study area is Guangdong province (109°45′E - 117°20′E, 20°09′N - 25°31′N), 

China. It is located in the southern part of China, including 21 cities, and 121 counties. 

By the end of year 2014, Guangdong is populated by 110 million residents over an area 

of 179,716.02 square kilometers. It should be noticed that Nan’ao is excluded in this 

study since it is the only island and is not connected to any other county in Guangdong. 

Finally, totally 120 administrative counties are discussed in this study. 

6.3.2 Data collection 

The data used in this study were extracted from different sources. Crash data were 

collected from the Traffic Management Sector Specific Incident Case Data Report, the 

Road Traffic Accident Database of China’s Public Security Department. Fatigue-

related crash records during 2006-2014 were extracted and aggregated by counties in 

this study. In total, 2342 fatigue-related crashes were recorded in the database. 

Road length were calculated from the Geospatial Database of the 1:1,000,000 

Geological map of China. This database contains basic information about road and 

county boundary. The length of road of different level within the boundary of a county 

are summed up separately. Four types of roads are considered: expressway, national 

road, provincial road, and urban expressway.  



102 

 

To investigate the relationships between the occurrence of fatigue-related crash and 

macroscopic variables, the macroscopic data for county-level units in Guangdong were 

collected from the Guangdong Statistical Yearbook and Guangdong 1% Population 

Sampling Survey Data (Guangdong Statistical Bureau, 2017). It is noted that some 

variables are only available for city-level, they were adjusted by the land area assuming 

the distributed evenly given the same city. 

6.3.3 Variables 

The total number of fatigue-related crash is selected as the dependent variables. 

Various explanatory variables aggregated at county-level are evaluated. Generally, the 

variables can be grouped into two categories: road characteristics and macroscopic 

characteristics. 

Several road characteristics (e.g. roadway density, functional classification, speed 

limit, number of lanes, etc.) have been discussed by previous studies (Noland & Quddus, 

2005; Quddus, 2008; Hadayeghi et al., 2010; Huang et al., 2010; Abdel-Aty et al., 2011). 

The impacts of different road types on fatigue-related crash are discussed. Four 

variables are included in the model: the total length of highway, national road, 

provincial road and urban expressway. 

Regarding the socio-economic variables, Wang et al. (2017) demonstrated that 

macroscopic variables can be considered as surrogate of individual behaviors. 

Population density (de Guevara et al., 2004; Permpoonwiwat & Kotrajaras, 2012), 

gender and age (MacNab, 2004; Aguero-Valverde & Jovanis, 2006; Quddus, 2008; 
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Hadayeghi et al., 2010; Huang et al., 2010; Li et al., 2013), employment (Hadayeghi et 

al., 2010, Huang et al., 2010; Pulugurtha et al., 2013; Xu et al., 2014) were found to has 

significant influence on the crash occurrence (Loukaitou-Sideris et al., 2007; Wier et 

al., 2009). The population number, proportion of population younger or equal to 15 

years old, proportion of population equal to or older than 65 years old, total employment 

number, proportion of unemployment by various industry, average room per person, 

total commuters by public transportation modes (including bus and taxi), and distance 

to the capital city in Guangdong.  

However, traffic characteristics is another important category of variables that has 

been widely discussed in traffic crash analysis. For example, Vehicle Miles Travelled 

(VMT) (Dong et al., 2015; Cai et al., 2017) and proportion of heavy vehicle mileage 

(Cai et al., 2017) are used as a measurement of exposure of traffic. Unfortunately, those 

data are not available for our data set and will not discussed in this study. It should be 

noted that more variables were tested, however, only the descriptive statistics for final 

selected variables are shown in Table 6.2. 

Table 6.2 Descriptive statistics of variables 

Variable Definition Mean SD Min. Max. 

Dependent variable 

Total Number of total fatigue-

related crash 

19.52 60.75 0.00 397.00 

Independent variable 

Highway The length of highway (1000 

km) 

0.11 0.11 0.00 0.68 

National The length of national road 

(1000 km) 

0.06 0.05 0.00 0.22 

Provincial The length of provincial road 

(1000 km) 

0.16 0.12 0.01 0.80 
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Urbanexp The length of urban 

expressway (1000 km) 

0.01 0.03 0.00 0.23 

Pop Number of population 

(Million people) 

2.95 0.75 0.98 5.46 

Age0014 Proportion of people aged 

from 0 - 15 

0.18 0.04 0.10 0.28 

Age6000 Proportion of people aged 

elder than 60 

0.14 0.04 0.03 0.22 

Ave_Room Average room per person 1.06 0.29 0.44 1.95 

Trans_emp Proportion of employee in 

transportation industry 

0.03 0.02 0.01 0.22 

Distance Distance to Guangzhou (the 

capital city of Guangdong) 

(km) 

171.36 121.40 0.00 366.06 

Passenger_pub Number of passenger using 

bus and taxi (100 million) 

0.81 1.91 0.01 11.48 

 

6.4 Result and Discussion 

The study investigates the relationship between different contributing factors and 

county-level fatigue-related crash frequency using basic Poisson model and spatial 

filtering Poisson model. Two different spatial contiguity structures are applied in spatial 

filtering process. The extracted eigenvectors are selected by a stepwise procedure and 

included in the Poisson model as the surrogate measurement of spatial correlation. 

Those models are denoted as Basic Poisson (BP) model, Rook Spatial Filtering Poisson 

(RSFP) model and Queen Spatial Filtering Poisson (QSFP). 

The explanatory variables selected into the final model setting are based on 

theoretically important and their significant level. Also, the variance inflation factor 

(VIF) is also calculated to check the multicollinearity between variables. Generally, as 

a rule of thumb, VIF>10 is considered to have high multicollinearity (Kutner, et al., 
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2004). Variables with VIF>10 will be removed from the regression model to avoid 

multicollinearity. R software (version 3.4.3) is used for all the estimation in this study. 

6.4.1 Model goodness-of-fit and comparison 

Then the goodness-of-fit statistics for the BP, RSFP and QSFP are shown and 

compared in Table 6.3. Results indicate that incorporating the filtered spatial 

components in fatigue-related crash Poisson model leads to a considerable 

improvement in the overall model fitness. Both RSFP and QSFP include 15 

eigenvectors, which is selected by the stepwise procedure. And the selected eigenvalues 

explain 60.11% and 60.34% of positive spatial correlations in RSFP and QSFP, 

respectively. As shown in Table 6.3, the likelihood ratio (LR) test comparing the RSFP 

models (LR = 3633.484) and QSFP model (LR = 3409.168) with the base Poisson 

model are both significance at the 0.01 level. Moreover, the AIC and BIC also prefer 

RSF Poisson and BIC Poisson rather than the base Poisson model. These results suggest 

that the filtered spatial components should not be omitted in fatigue-related crash 

frequency analysis. 

However, comparing the goodness-of-fit results between RSFP model and QSFP 

model, Rook contiguity structure can better explain the spatial patterns of fatigue-

related crashes than Queen contiguity structure. Although these two types of contiguity 

structure show in number of links, common vertex may not be a good measure of spatial 

connection of fatigue-related crashes based on our results.  

 



106 

 

Table 6.3 Goodness-of-fit statistics 

Goodness-of-fit BP RSFP QSFP 

Number of spatial units 120 120 120 

Number of selected eigenvector 0 15 15 

Degrees of freedom 12 27 27 

Adjusted R-square 0.222 0.590 0.567 

Log-likelihood at convergence -3839.35 -2022.608 -2134.766 

AIC 7702.701 4099.217 4323.533 

BIC 7736.151 4174.479 4398.795 

6.4.2 Parameters and marginal effects 

Several factors are found to have significant impacts on fatigue-related crash 

occurrence. The estimation results for BP, RSFP and QSFP are presented in Table 6.4 

and Table 6.5. The significant level of most of the variables is the same among those 

three models, except for the length of urban expressway and total number of public 

transport commuters. According to the discussion above, RSFP gives the better model 

fitness. Therefore, the following discussions on the estimated coefficients and marginal 

effects are based on results of RSFP model. The marginal effects calculated based on 

RSFP are also presented in the final column of Table 6.4. 

The road length variables are found to have inconsistent effects. The total length 

of highway has negative impact on occurrence of fatigue-related crashes while national 

road and provincial road has positive impact on fatigue-related crash occurrence. The 

marginal effect of highway is -9.138 while the marginal effect of national road and 

provincial road is 3.650 and 4.437, respectively. It is possible that commercial vehicles 

are one of the high-risk groups in fatigue-related crash; they tend to choose lower level 

road (national and provincial road) rather than highway considering travel cost. 
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Therefore, the total length of national and provincial road contributes to fatigue-related 

crash occurrence. 

Population is positively associated with fatigue-related crash occurrence with 

marginal effect of 0.491. This finding it consistence to other researches analyzing crash 

occurrence or casualties. Larger population was identified to be closely related with 

higher crash exposure opportunity (Pulugurtha & Sambhara, 2011; Mitra & 

Washington, 2012; Wang et al., 2017), which is true not only for fatigue-related crash 

but also other types of crash. Moreover, the proportion of population elder or equal to 

60 years old and the proportion of population younger or equal to 15 years old also have 

significant negative impact on the occurrence of fatigue-related crash. The marginal 

effect for them are -13.306 and -9.243, respectively. Some researchers claimed that 

young and old people are of relatively high risk in traffic crashes (Huang et al., 2010; 

Aguero-Valverde, 2013; Wang et al., 2017). However, the result suggests that higher 

proportion of young or old people are associated with lower fatigue-related crash 

occurrence. This may be an expected result in the context of fatigue-related crash given 

that few of people in these two groups will drive on road. Also, fatigue-related crashes 

are often observed among professional driver, who’s age obviously not belongs to either 

groups. 
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Table 6.4 Parameters estimation results 

 BP RSFP QSFP Marginal 

Variables Coef. S.E. P-value Coef. S.E. P-value Coef. S.E. P-value  

  Intercept 2.508 0.272 0.000 -1.812 0.646 0.005 -1.497 0.589 0.011 - 

  Highway -3.783 0.372 0.000 -21.286 0.944 0.000 -19.709 0.803 0.000 -9.138 

  National 5.495 0.532 0.000 8.503 0.708 0.000 8.383 0.689 0.000 3.650 

  Province 3.798 0.297 0.000 10.335 0.566 0.000 7.572 0.495 0.000 4.437 

  Urbanexp 5.286 0.718 0.000 1.064 1.282 0.407 6.434 1.19 0.000 - 

  Log(pop) 0.199 0.047 0.000 1.145 0.094 0.000 1.141 0.088 0.000 0.491 

  Trans_emp 2.371 0.977 0.015 9.05 1.305 0.000 7.992 1.335 0.000 3.885 

  Ave_Room 0.889 0.118 0.000 -1.86 0.231 0.000 -2.575 0.233 0.000 -0.798 

  Log(distance) 0.365 0.025 0.000 1.783 0.086 0.000 1.555 0.074 0.000 0.765 

  Age0014 -6.219 1.034 0.000 -21.531 1.887 0.000 -9.967 1.516 0.000 -9.243 

  Age6000 -17.642 1.119 0.000 -30.995 1.959 0.000 -26.45 1.869 0.000 -13.306 

  Passenger_pub -0.139 0.019 0.000 -0.044 0.034 0.189 -0.116 0.045 0.009 - 



109 

 

Table 6.5 Estimation results of eigenvectors 

RSFP QSFP 

eigenvector Coef. S.E. P-value eigenvector Coef. S.E. P-value 

r_e1 17.435 1.422 0.000 q_e1 17.503 1.326 0.000 

r_e2 0.699 0.761 0.359 q_e2 -13.175 0.915 0.000 

r_e3 -31.369 1.588 0.000 q_e3 -16.934 0.894 0.000 

r_e4 -18.206 0.976 0.000 q_e4 -2.202 0.619 0.000 

r_e5 -18.068 0.910 0.000 q_e5 -14.420 0.864 0.000 

r_e6 -0.615 0.571 0.282 q_e6 4.165 0.557 0.000 

r_e7 6.055 0.562 0.000 q_e7 17.391 0.932 0.000 

r_e8 39.790 1.818 0.000 q_e8 23.898 1.160 0.000 

r_e9 -10.523 0.801 0.000 q_e9 -5.563 0.559 0.000 

r_e10 -6.760 0.500 0.000 q_e10 -4.823 0.534 0.000 

r_e11 -13.626 0.577 0.000 q_e11 -12.423 0.611 0.000 

r_e12 7.821 0.651 0.000 q_e12 -6.179 0.536 0.000 

r_e13 1.991 0.412 0.000 q_e13 1.979 0.462 0.000 

r_e14 -7.537 0.514 0.000 q_e14 3.377 0.373 0.000 

r_e15 13.833 0.560 0.000 q_e15 -15.522 0.697 0.000 

 

RSFP QSFP 

eigenvector Coef. S.E. P-value eigenvector Coef. S.E. P-value 

r_e1 17.435 1.422 0.000 q_e1 17.503 1.326 0.000 

r_e2 0.699 0.761 0.359 q_e2 -13.175 0.915 0.000 

r_e3 -31.369 1.588 0.000 q_e3 -16.934 0.894 0.000 

r_e4 -18.206 0.976 0.000 q_e4 -2.202 0.619 0.000 

r_e5 -18.068 0.910 0.000 q_e5 -14.420 0.864 0.000 

r_e6 -0.615 0.571 0.282 q_e6 4.165 0.557 0.000 

r_e7 6.055 0.562 0.000 q_e7 17.391 0.932 0.000 

r_e8 39.790 1.818 0.000 q_e8 23.898 1.160 0.000 

r_e9 -10.523 0.801 0.000 q_e9 -5.563 0.559 0.000 

r_e10 -6.760 0.500 0.000 q_e10 -4.823 0.534 0.000 

r_e11 -13.626 0.577 0.000 q_e11 -12.423 0.611 0.000 

r_e12 7.821 0.651 0.000 q_e12 -6.179 0.536 0.000 

r_e13 1.991 0.412 0.000 q_e13 1.979 0.462 0.000 

r_e14 -7.537 0.514 0.000 q_e14 3.377 0.373 0.000 

r_e15 13.833 0.560 0.000 q_e15 -15.522 0.697 0.000 
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Regarding employment, the number of employees or employment density has already been 

found to be a significant variable for predicting crashes (Noland & Quddus, 2003; Wier et al., 

2009). Given that fatigue-related crashes are commonly found among professional drivers, the 

percentage of employee in transportation is used as a measurement of exposure. The result also 

shows that higher proportion of employee in transportation industry has positive impact on fatigue-

related crash occurrence, which confirms that fatigue-related crash is closely related to 

professional drivers. The marginal effect for proportion of transportation employee is 3.885. That 

is, a unit increase in proportion of transportation employee will lead to the increase of frequency 

of fatigue-related crash by 3.885. 

The average room per person, as the measurement of resident density, has a pronounced and 

stronger negative effect on the occurrence of fatigue-related crashes. The marginal effect for it is 

-0.798. The possible reason is the traffic within commercial area may increase the risk of fatigue-

related crashes. Hence, high residential density has relatively lower risk of crash. Similar 

discussion can be found in Noland and Quddus (2004). Another interesting result can be found in 

the variable of distance to capital city. This variable measures the geographic connection as well 

as economic connections within Guangdong. Guangzhou, the capital city of Guangdong province, 

is surrounded by several notable cities (e.g. Shenzhen). This area, also known as “the Pearl River 

Delta (PRD)”, is the economic hub in Guangdong. Due to the economic clustering effect, areas 

which are far from PRD may be relatively less developed. As a general measurement, the results 
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indicate that the overall development level (represent by distance to capital city) has a negative 

impact on fatigue-related crash occurrence with the marginal effect of 0.765 due to, for example, 

the relatively poor transportation infrastructure. 

6.4.3 Contribution of variables 

Table 6.5 shows the contribution of macroscopic components as well as the filtered spatial 

components. The PRV of macroscopic variables in fatigue-related crash frequency model is 7.69%. 

It means that 7.69% of unobserved variation can be explained by the omission of macroscopic 

variables. This result is similar to Wang et al. (2017), in which the motor vehicle crash-frequency 

model with macroscopic variables has PRV in a range of 2.67-7.98% for different buffer width. 

Interestingly, the PRV of spatial component is 44.73%, which is much larger than the PRV of 

macroscopic variables in fatigue-related crash occurrence. This finding also confirms the existence 

of spatial correlation in fatigue-related crash occurrence. Therefore, it is necessary to take this 

issue into account when analyze fatigue-related crash frequency to avoid estimation bias caused 

by the spatial correlated error term. 

Table 6.6 Contribution of variables 

Components PRV 

  Macroscopic variables 7.69% 

  Spatial components 44.73% 
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6.5 Conclusion 

This chapter examines factors contributing to fatigue-related crash occurrence considering 

spatial correlation using the fatigue-related crash frequency data of 120 counties in Guangdong, 

China. By the eigenvector spatial filtering approach, the unobserved spatial correlation can be 

extracted from the error term. These eigenvectors represent the orthogonal and uncorrelated map 

patterns given spatial structure and can be embedded into a semiparametric statistical framework. 

Then, the suitable and parsimonious subset of eigenvectors are determined by the stepwise 

procedure while the spatial contiguity matrix is selected based on the optimal model selection. The 

model fitness suggests Rook contiguity matrix better explains the neighbor structure of county-

level fatigue-related crash occurrence in Guangdong. 

Several variables are evaluated in the model. Based on the result, the total length of national, 

provincial and urban expressway is found to positively related to fatigue-related crash occurrence 

while the total length of highway is negatively related to fatigue-related crash occurrence. For 

macroscopic variables, higher proportion of young and elder people has negative impacted on the 

fatigue-related crashes. Other macroscopic variables, for example population and employment, are 

found to be have positive influence on the occurrence of fatigue-related crash. The results suggest 

that special attention should be pay for transportation industry employees since they are related to 

high risk of fatigue-related crash. 

Besides, the effects of omitted spatial components and macroscopic variables in the model 
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evaluating fatigue-related crash are examined, and the PRV for spatial components and 

macroscopic are calculated. Macroscopic variables covered 7.69% of the unobserved variation in 

the error term while the filtered spatial components explain 44.73%. Thus, this finding indicates 

the omission of those variables will leave those correlation in the error term, which violates the 

independent assumption in many conventional models. 

However, there are still some limitations that need to be discussed in the future studies. 

Poisson model is criticized for the equality of its mean and variance assumption, which is not 

appropriate to deal with overdispersion data (i.e. variance is larger than the mean). In this case, 

negative binomial should be considered. In addition, the data applied is aggregated by county, 

which is an administrative unit and might not matched the real crash diffusion process. Large 

territory of one county may be heterogeneous. Several important variables such as traffic volume, 

are not considered due to lacking of data source. More spatial contiguity matrices should be tested 

and evaluated the sensitivity of the results. 
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CHAPTER 7 

Conclusions and Future Work 

 

7.1 Summary  

This dissertation mainly focused on the fatigue-related crashes. The main objectives of this 

study are to (1) examine possible reasons for neglecting the harmfulness of fatigue-related crash, 

and (2) identify factors contributing to the occurrence of fatigue-related crash as well as severe 

outcome in a crash.  

In the micro-level analysis, it is found that both misclassification and endogeneity can lead to 

the underestimation of driver fatigue harmfulness. Chapter 4 contributes to safety literature by 

introducing an analysis framework based on existing police recorded data to identify factors that 

easily make fatigue-related crashes misclassified by police officers, and examining the interactive 

effects of those factors. Some variables such as road types, collision types, and vehicle types, and 

their interactions are identified to have significant impacts on fatigue-related crash detection. In 

Chapter 5, another possible reason for underestimating the harmfulness of fatigue is explored. 

Ignoring the common factors can lead to endogeneity problem and result in biased parameter 
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estimation. The factors contributing to fatigue crash propensity and its consequent severity are 

different between commercial and non-commercial vehicle drivers. The results show that the 

influence of fatigue driving on injury severity is significantly underestimated if the endogeneity of 

fatigue driving on fatal injury propensity is ignored.  

For the perspective of macro-level analysis, chapter 6 investigates the fatigue-related crash 

from macro-level. County-level fatigue-related crash occurrence is influenced by several 

macroscopic factors. To capture the unobserved spatial correlation, a spatial filtering technique is 

applied. With the filtered spatial components, a semi-parametric Poisson model is developed to 

evaluating the impacts of both roads and macroscopic variables on fatigue-related crash frequency. 

The calculation results indicate the filtered spatial components and macroscopic variables 

explained more than half of the unobserved variation in the error term. 

Some conclusions can be drawn based on the discussions in this research. First of all, single 

vehicle rolling over or hitting fixed object crashes are good indicators for determining fatigue-

related crashes. From chapter 3, the proportions of single vehicle rolling over and hitting fixed 

object crash in fatigue-related crashes are higher than all crashes. The results in chapter 4 also 

show that these two types of crashes are related to lower propensity of misclassification of fatigue-

related crashes.  

Workers and migrant workers who were labeled as “high-risk of fatigue driving group” by 

previous research or the guidance of detecting fatigue-related crash for police officers, turn out to 
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be misleading when detecting fatigue-related crashes. As well, expressway and urban expressway 

are also contributing to fatigue-related crash misclassification.  

Higher number of total length of national and provincial road is positively correlated with 

higher number of fatigue-related crashes. Comparing to expressway, cargo vehicle drivers prefer 

national and provincial roads due to lower cost. Normally, these roads lack surveillance and rest 

stop, which can contribute to driver fatigue. 

Factors such as vehicle insurance and road types not only affect fatal injury propensity, but 

also fatigue driving propensity. Road types and road lighting conditions show similar impacts for 

both commercial and non-commercial vehicle drivers. On the contrary, the impact of collision 

types on fatigue driving propensity and fatal injury propensity differs between commercial and 

non-commercial vehicle drivers. 

Large and medium passenger vehicle driver will receive severe punishments if they are 

convicted as fatigue driving according to the current transportation laws and regulations. Raise of 

penalty caused a decrease in fatigue-related crashes as shown in chapter 3. However, punishments 

for other types of drivers are relatively mild even though these drivers are also likely to drive under 

fatigue (e.g. cargo vehicle drivers). 

According to conclusions above, countermeasures are proposed to better deal with fatigue-

related crashes. First of all, on way to prevent fatigue-related crashes is providing training for 

police officers. The current laws or regulations about fatigue-related crash are too vague to 
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implement that the police and other enforcement authorities need appropriate knowledge to detect 

driver fatigue. Some features are good indicators for detecting fatigue-related crash, which should 

be highlighted. For example, it should be mentioned in the guidance and training process for police 

officers that if a crash is a single vehicle rolling over or hitting fixed object crash that they should 

realize this crash may be fatigue-related. In this way, the routine investigation of driver fatigue 

(e.g. asking the rest schedule of driver, self-estimation survey of fatigue level) should be conducted 

in the investigation procedure. At the same time, misleading features in identifying fatigue-related 

crashes such as workers, immigration workers, and expressway, should also be addressed in the 

training process.  

Besides training, reliable and detailed records are also essential to identify driver fatigue. In 

the current traffic crash investigation procedure, it is suggested to collect information related to 

driver fatigue such as driving duration, health condition, etc. However, this information is not a 

compulsory part that sometimes it is neglected. Since the information of driving duration, rest time, 

sleep condition as well as self-evaluation of fatigue condition is vital for determining driver fatigue, 

it should be included in routine traffic injury investigation procedural compulsorily and displayed 

in the final crash investigation report. Also, usable and reliable vehicle-based fatigue measurement 

devices should be encouraged. These devices not only can be used in monitoring drivers' behaviors 

and the level of driver fatigue by placing sensors on the steering wheels and acceleration pedals, 

but also provide useful information for traffic police officers to determine the role of fatigue in a 
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crash. 

This research also suggests that national road and provincial road should attract more attention. 

There is only limited number of parking places (normally gas station) along national roads and 

provincial roads in which drivers can take a break during their trips. More rest stops are needed to 

prevent fatigue driving, especially in Summer. Also, setting checkpoints at the entrances and exits 

of national roads and provincial roads to inquire driver fatigue condition are also helpful to prevent 

fatigue-related crashes. 

Finally, raising fatigue driving violation penalties for cargo vehicles can prevent drivers from 

fatigue driving as well as stimulate police officers to put more attention on identifying the 

involvement of fatigue in a crash. Moreover, the findings also suggested that different impact 

factors are identified between commercial and non-commercial vehicle drivers due to their 

different working patterns. For commercial vehicle driver, their employers should take the 

responsibility to secure that their employees are adequately informed and educated to stay vigilant 

while driving. 

7.2 Future Work 

First and foremost, a clear and easy-to-implement fatigue definition is essential to evaluate 

and make countermeasure to prevent fatigue-related crashes. Therefore, finding an appropriate 

definition and quantification method for driver fatigue is one of the biggest challenges in fatigue 

research during the coming years. More efforts should be invested in finding solid indexes for 
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measuring driver fatigue. 

Additionally, it is possible that not all fatigue-related crashes have been detected even after 

full investigation process. Some fatigue-related crashes cannot be detected, especially among 

property only crashes. Future study needs to investigate the impact of fatigue in property only 

crash. 

Moreover, factors contributing to the detection of fatigue-related crashes in the dissertation, 

however, whether these factors also influence police officers' judgment on other types of crash. To 

understand whether those factors are unique for fatigue-related crashes, comparison studies of 

factors contributing to misclassification of other types of crashes should be conducted in the future.  

Although the influence of endogeneity and spatial correlation on fatigue-related crash model 

has been discusses, other statistical issues which may also affect the estimation results, should be 

considered in the future studies. For example, heterogeneity of drivers, which may also have 

significant impacts on injury severity and fatigue driving propensity, should be discussed in our 

future studies. 
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