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Electromagnetic linear dispersion relation for plasma with a drift across

magnetic field revisited
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A current across the magnetic field is formed in various situations in plasma. The relative drift
between ions and electrons due to the cross-field current becomes a source of various microscopic
instabilities. A fully electromagnetic and kinetic linear dispersion relation for plasma with a drift
across magnetic field is derived by assuming a uniform background plasma. The dielectric permit-
tivity tensor for shifted Maxwellian velocity distributions is also presented. Linear dispersion rela-
tions obtained by using the new dielectric permittivity tensor were confirmed by comparison with
the previous studies and with particle-in-cell simulation results. Published by AIP Publishing.

https://doi.org/10.1063/1.5050542

I. INTRODUCTION

Plasma instabilities are driven by various sources, such
as spatial inhomogeneity or velocity-space anisotropy. The
linear dispersion analysis plays an essential role for studies
of plasma physics. Instabilities due to spatial inhomogeneity
are generally analyzed by linear electromagnetic fluid equa-
tions, while instabilities due to velocity-space anisotropy
sometimes need a kinetic approach. It is known that various
velocity-space instabilities are induced when a velocity dis-
tribution function f[vy,v.] (where v and v, are velocity
components parallel and perpendicular to the ambient mag-
netic field, respectively) has a region of positive gradient,
ie., 0f /Ov > 0or df /Ov, > 0.

The positive gradient in the velocity distribution func-
tion parallel to the ambient magnetic field is formed when a
beam of charged particles propagates along the ambient
magnetic field or when there exists a relative velocity
between ion and electron components. There are a number of
textbooks on plasma physics and plasma waves that deal
with the kinetic linear dispersion relation including a drift
along the ambient magnetic field (hereafter, this is referred
to as the “standard linear dispersion relation””). However, a
few numbers of them gave the detailed derivation of the
standard linear dispersion relation.'

The positive gradient in the velocity distribution func-
tion perpendicular to the ambient magnetic field is formed in
various situations, such as ion reflection at shocks and mag-
netopauses or cross-field currents due to spatial inhomogene-
ity. The relative drift between ions and electrons in such
situations becomes a source of various instabilities, such as
the upper-hybrid drift instability (or Buneman instability)
the electron cyclotron drift instability (ECDI),* the modified
two-stream instability (MTSI),>¢ and the lower-hybrid drift
instability (LHDI).” The former three instabilities have been
identified in full kinetic numerical simulations of perpendic-
ular collisionless shocks.®™'> At the shock front, a part of
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upstream ions are reflected, which results in the deceleration
of upstream electrons so that the conservation of the total
current (the zero current condition in the shock normal direc-
tion) is satisfied. Consequently, there arises a relative drift
velocity between the upstream electrons and the upstream/
reflected ions.'® In the linear analysis of these instabilities in
the transition region of perpendicular collisionless shocks, it
was assumed, by using the coordinate transformation from
the shock-rest frame to the electron-rest frame, that unmag-
netized ions drifted across the ambient magnetic field, while
magnetized electrons were at rest,!> 14 Then, ion cyclotron
harmonic resonance was neglected, while ion Landau damp-
ing was enhanced.

The diamagnetic current is a cross-field current which is
formed at magnetic shear and pressure shear layers. External
forces, such as gravity, across magnetic fields also result in a
relative drift between ions and electrons, which forms a cur-
rent. The LHDI has drawn attention by full kinetic numerical
simulations of current sheets, which causes a quick trigger-
ing of magnetic reconnection and associated electron heat-
ing.'”” The LHDI is also known to play an role for the
turbulent formation and the associated electron heating in
thin density shear layers at the leading edge of the reconnec-
tion outflow jet.'® In an early linear analysis of the LHDI by
Davidson et al.,'” the term n=0 for the order of the Bessel
function was retained for electrons only, while ions were
assumed to be unmagnetized as Ref. 13. On the other hand,
Daughton'® numerically solved the fully electromagnetic
and kinetic linear dispersion relation including spatial inho-
mogeneity, although his procedure was rather complex.

The purpose of the present study is to derive a fully elec-
tromagnetic and kinetic linear dispersion relation for plasma
with a drift across an ambient magnetic field by modifying
the standard linear dispersion relation.

Il. THEORETICAL FORMULATION

Our goal is to solve the following linearized Maxwell
equation for local plasma:

Published by AIP Publishing.
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where 1, k, @, and ¢ represent the unit tensor, wavenumber
vector, complex frequency, and the speed of light, respec-
tively. Note that kk denotes a dyadic tensor. The dielectric
tensor € is obtained by solving

2

€[, klE; = E| +l ,llo.]h ()

where J; represents the perturbed current density given by

= Z%NSO Jva1d3U7 (3)

with f;; being the perturbed velocity distribution function for
the species “s.”

To evaluate the perturbed distribution function, we
restart from the linearized Vlasov equation. By using the

total derivative, the linearized Vlasov equation is written as

s s I
vt et BB |
7dfv1 _Ys va

R NIRRT @

where ay, represents an external force which includes the
gravity and other (magneto-)hydro-dynamic forces due to
spatial inhomogeneity that causes drift motions across the
magnetic field for each particle species. The perturbed distri-
bution function can be obtained by the method of character-
istics, i.e., by the integral along a trajectory’ as follows:

fvl[r,v,t]:f%J {E\[#,1] +© x B\[F,{]}
va exp lik -7 — zwt]dt (5)

where (7, ) is an unperturbed trajectory of a particle which
reaches the point (r, v) when = t. The particle trajectory is
governed by the equation of motion

dv

o _ Lo 4

ar Py (0 x By), (6)

where Fy) = a0 + gsEo/ms. The solution to this equation
considered in the present study is

f)x = U/L COS [Qm(l - f) + (i)é)} + Uy
by = o) sin [Qu(t — ) + )] O
b, = v

where v and v/, represent velocity components parallel and
perpendicular to the ambient magnetic field, respectively,
and Q. = ¢,|Bo|/m; represents the gyro frequency. We
assume that both electric field and external force are directed
in the y direction, and the ambient magnetic field is directed
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in the z direction. Then, particles drift in the x direction across
the ambient magnetic field at the drift velocity u;,, = ¢,F0/Bo
as schematically illustrated in Fig. 1. Here, the velocity vector
and the wavenumber vector are, respectively, defined as

v = (U, Uy, v:) = (V) cos by + upg, V) singg,v)),  (8)

k = (ke ky,k.) = (ki cos 0,k sin0, k). 9)

(v — ubs)2 + vg. In contrast to the standard

velocity coordinate centered at (v, v.) = (0,0), the present
velocity coordinate is centered at (vj,v,) = (0,ups). It
should be also noted that we consider a “local” dispersion rela-
tion where the spatial scale of the perturbation is much smaller
than the spatial inhomogeneity.'” That is, it is assumed that the
background field quantities such as fluid quantities and electro-
magnetic fields are in the equilibrium state and that the drift
velocity u,, is constant and independent of both position and
time. With these assumptions, we can take an arbitrary drift
velocity u,,, for each species independently without consider-
ation of the external force a,( and spatial inhomogeneity.

Integrating the velocity over the time, we find the trajec-
tory which reaches the point (r, v) when /' = t as

/o —
where v/, =

1)+ ¢p] —singg } — ups(t — 1)

. v
X x—Q {sm [ch(t—

CS

~>
Il

/
y+ gv; { cos [Q(t —

z=z—u)(t—1)

1)+ ¢p] — cos ¢y }
(10)
Further taking the wavenumber vector k = (k1 cos0,k, sin0,k),
we obtain the Fourier component along the unperturbed
trajectory as
explik -7 — i)
=explik-r—iotexp [i(® — vk — upsk 1 cos0)(t—1)]

xem{_iéfl{sm[Qm@—fy+¢6—0]—sm[¢6—ﬂ}]

CcS

=explik -r—imt] Z ZJ {ULkL] {Uih}

n=—00l=—00 Qs
x expi(l—n)(¢y— 0)] exp|i [ (@ — vk — Qe

—upk | cosH)(t—f)}, (1)

FIG. 1. Schematic illustration of the coordinate in the present study.
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where 0 represents the wave normal angle relative to the drift motion across the magnetic field. Here, J,[x] is the Bessel func-
tion of the first kind of order n with

expliAsiny] = Z JalA] exp [iny].

n=—00

With the Maxwell equation @B = k x E, we have

[ Dyky + 0.k, bk vk | [ Bx — tns Ofso |
Exl <1 — T + Eyl —+ Ezl 7 U/J_ 603_
_kxXE\ Of Ocky Ok + 0k ¥.ky vy Ifso
(E] +v X % ) 90 E. o —|—Ey1 l——— | +E, 1 —= ’ U/L avll
bk, bk, bk + Dok fso
EXIU%+Ey1L+Ezl(l_w> ov
i ® 1L (I

i X Oyky 4 .k \ O — tps Ofso . Oiky Dy fso ik o |
T 7 od, @ o e oo
1 1 10U} I

Exl
o U)k Dy — Ups 8st Oeky + 02k, @y ast f7ykz ast _
= e + |\l -+ = Ey | = hg-Ey,
w v ov) ) Voo @ Oy 4
E;

.k ux—umaﬁu%@_y%Jr(l ok + Dyky )afm

Il / / d / / d
o v, o o v oY @ dv |

where

(00 Ofo | [ e — sy 0|
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Ao |00k | | Bydfo
oo | by o, | v, oV,
08y, Ofso o
0. O oo

The vector h is rewritten as

2 k N ,k N . A~ s i R Sk § ]
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It follows that

n=—o0l=—00

oo S E] S S ot
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_UHkH —an —ubskLCOSO

lI=—00

For the time integral in Eq. (12), we use the following formulas:

Z Jul2] cos | — 1) + ¢p|exp [—inQey(t — 1) ] exp [—in(dg — 0)]

n=—00

= %cos 0 i {J,,H (2] 4+ T [)L]} exp [fian(t - f)]exp [fin(qb'o — 9)]

n=—00

~Liing _f: s l2] = Ty s [} exp [—inQus(t — )] exp [—in(dh — 0)]

— Z {%Jn[/ﬂ cos O — i), [4] sin 0} exp [—inQCS(t — E)}exp [_i”(¢6 _ 0)] ’

n=—00

Z Jn Sln rs ) + d)o] €Xp [ inQrS([ - tA)]eXp [7”1((1)() - 9)]

n=—00

= %sin@ i {701 2 + 7,21 12} exp [—inQu (¢ — 1) |exp [—in(¢y — 0)]

~5peost i {Fiil1] = 1111} exp [—inQy (¢ = )] exp [—in(f — 0)]
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where J) [A] represents the differentiation of the Bessel func-
tion of the first kind with respect to argument A = v/, k| /Q,.
For detailed derivation, see also Refs. 1, 2, and 19.

Let us consider the velocity-space integration. From the
definition of velocity, we obtain the Jacobian as

[ ov,  Ov,
o', O,
! AV L 0
W (W', )| = det dv,  Ou,
g

r / ) . /

— det| <5 % vy s o | _ V. (13)
| sin ¢ v cos ¢
Assuming that distribution functions are gyrotropic, i.e., g{/}‘,’ =
0

(fso[v] = fiolvy, v’ ]) and that the wavenumber vector k is taken
in the x — z plane, i.e., 0 =0 (k, = k and k.= k, ), we have

2m o0 OO 00 (00
Jd3v:J LJ v'ldedv’J_dd){):J J 20, doydv’,

0 —0 0 J-oo
(14)
and
2n , ) 1., 2mn
Jo Jil2] cos ¢y exp [l(l - n)qﬁo] de, = TJH (4],
o . ’ . 1 / .2mn /
. Ji[2] sin Py exp [1(1 - n)¢0]d¢0 = _lTjan AR
21
L Il exp [i(1 — m)h]dgsy = 27, .
By using these properties, Eq. (12) is rewritten as
? 5
1(1) Hod 1
Wi SN[ 2nv', Sdoydv/
_ sz Z J J _ E e | E,
s O =05 Jo w = UHkll — nQs — upgk |
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where
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Inserting Eq. (15) into Eq. (2) and deleting E;, we finally
obtain the dielectric permittivity tensor as

2>

n=—00

2mv’, Sdu)dv’,
- l)||kH - I’LQGY — Upsk ). ’
(25)

cok—IJrZ

lll. DIELECTRIC PERMITTIVITY TENSOR FOR
SHIFTED bi-MAXWELLIAN VELOCITY DISTRIBUTION

The Maxwellian distribution is often used as a distribu-
tion of particle velocity at an equilibrium state. We use the
following shifted bi-Maxwellian distribution as a velocity
distribution at the present analysis:

flon o] = faponf [V, (26)

1 (o) —u Y)2
Ji[on) = 7\/5‘43“ exp l— 7'2‘,[2'”{ ] (27)



102109-6 T. Umeda and T. K. M. Nakamura

72
L

Rz

fir[v)] exp ; (28)

T 2nv2,

where u,; is the drift velocity in the direction parallel to
the ambient magnetic field and Vg = /Ty /m and Vi

= /T, /m in the direction parallel and perpendicular to the
ambient magnetic field, respectively, with T, being tempera-
ture of particle species. Note that such shifted bi-Maxwellian
distributions are also common in laboratory plasmas.?’?!
Figure 2 shows the shifted Maxwellian velocity distribution
in the v, — v, space. The perpendicular velocity coordinates

are defined as v/, = /(v — uhx)2 + Uf. Note that the velocity

component parallel to the ambient magnetic field v is

defined from —oco to oo, while the perpendicular velocity v/,

is defined from O to oo. It is also noted that the perpendicular

component of the velocity distribution function in the present

study is not the Maxwellian “ring” velocity distribution.***
We perform the velocity space integral of S as

Ko J~oc Joo 27[1)/LSdl)HdUl (29)
o S & — vk = Qe — upk
00 kH ava 1
- d = — Z/ [ = —
Lo B — vjky — nQ — sk, Doy T 2V2 o
e nQ('va nQL‘S
J —— — I — de = —720[47] =
—oo @ — Uy ky — 1y — upsky \/Evrs\lk\\

JC’O ((Z) — UHkH — beki)fs\l don = 1 — &
e O — vk — nQes — Upsk | ! \/jvm‘HkH
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0.1

Uy /Vt

0.05

-6 -4 -2 0 2 4
v /V;

FIG. 2. The shifted Maxwellian velocity distribution. The drift velocity is
set as u, =2V,. The velocity coordinates perpendicular to the ambient mag-

netic field are defined as v/, = y/(v, — up)* + v

where the velocity space integral should not be performed over
v, but should be over v/, because of the definition of the phase
angle in the velocity space in Eq. (14). For convenience, we
use the properties of the integrals of the shifted Maxwellian

-X,

26 =1- X

[ 0; @ d)qkngchg(.:l }ik:,,sh ij do = — 0 ';gé(glku’”h Zh) = — &5

[“OC @ — uk’:gfgl i = n/?” (1 L2 \';g;;jmk:’”ki ZO[C,J) = _x,
Jio  — vk —UHQL,-S — Upsk | ?}JE dyy = — o= }/lz%glzubskl Zi[C) = — A

Ji ‘*()w—_vvlf—;gbki)sﬂl dup = tas ”?c (1 ’ _:;g;,x_kuhsm Zo [C"]> = Uy — Xy
[

and
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where I,,[x] and Z,[x] are the modified Bessel function of the first kind of order n and the plasma dispersion function,
respectively,
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Note that ) nA, = > B, = 0 in Egs. (30), (31), (34), (36),
and (37) due to the identity of the modified Bessel function.
It is also easy to extend the present dielectric permittivity
tensor to Maxwellian ring velocity distributions by replacing
the integrals over the velocity space perpendicular to the
ambient magnetic field (A, and 5,) with the numerical ones
shown in Ref. 23.

IV. NUMERICAL TESTS

A. Electron cyclotron drift and modified two-stream
instabilities

As an unstable plasma, we assume that there are two ion
and one electron components drifting across magnetic fields
with different drift velocities. Such a situation is often
observed in the transition region of perpendicular collision-
less shocks where a part of upstream ions are reflected at the
shock front.'® The following physical parameters of the three
plasma components for the present linear analysis were
obtained in the shock foot region of a perpendicular colli-
sionless shock in the previous particle-in-cell simulation."*
There were incoming ions (with subscript “i”), reflected ions
(with subscript “7”), and electrons (with subscript “e”) in the
shock foot region. In order to make a direct comparison with
the previous study,'* we normalize the velocity and angular
frequency by the upstream thermal velocity and plasma fre-
quency of electrons, Vi, and ,,, respectively. The drift
velocity, the thermal velocity, and the angular frequency of
electrons are upo/Vie1 =0.32, V,o/Vier =175, and ./
wpe1 = 1.76, respectively. The drift velocity, the thermal
velocity, and the angular frequency of incoming ions are u;/
Vier=2.12, V/V,e1 =042, and w,;/wpy.; =0.26, respec-
tively. The drift velocity, the thermal velocity, and the angu-
lar frequency of reflected ions are u,/V,.;=—1.85, V,/
Vier =0.32, and w,,/wp,; = 0.24, respectively. The upstream
electron cyclotron frequency was Q..i/®,.; =0.25, but the
local electron cyclotron frequency in the shock foot region
was Q./wp; =0.92 by the compression of the upstream
plasma. A reduced ion-to-electron mass ratio m;/m, =25 was
used in the previous study.'* The value of the upstream ther-
mal velocity of electrons was assumed to be V,;=0.lc,
where ¢ represents the speed of light. We use the secant

method as a complex-root finder to solve the dispersion Eq.
25) numerically.23

Figure 3 shows the numerical solutions to the linear dis-
persion Eq. (25) for a three-component plasma in the foot
region of a perpendicular collisionless shock. It is again
noted that the linear dispersion relation was solved with the
coordinate transformation from the shock-rest frame to the
electron rest frame and that the ions were assumed to be
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FIG. 3. Linear dispersion relations for a three-component plasma in the foot
region of a perpendicular collisionless shock.'* The x axis is parallel to the
direction of the particle drifts and is perpendicular to the ambient magnetic
field. (a) Higher frequency range (o > Q,.), which corresponds to the elec-
tron cyclotron drift instability (ECDI). The angle of the wave vector relative
to the ambient magnetic field is 90°. (b) Low frequency range (® < Q.,.),
which corresponds to the modified two-stream instability (MTSI). The angle
of the wave vector relative to the ambient magnetic field is 64° for the
forward-propagating wave and 60° for the backward-propagating wave.
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unmagnetized in order to apply the standard linear dispersion
solvers in the previous study.'*

Panel (a) shows the result for a higher frequency range
(> Q..), which corresponds to the electron cyclotron drift
instability (ECDI). The angle of the wave vector relative to
the ambient magnetic field is 90°. We compare panel (a)
with Fig. 6(d) in Ref. 14 and find that these results are in
excellent agreement.

Panel (b) in Fig. 3 shows the result for a low frequency
range (o < Q,), which corresponds to the modified two-stream
instability (MTSI). The angle of the wave vector relative to the
ambient magnetic field is 64° for the forward-propagating wave
and 60° for the backward-propagating wave. We also compare
panel (b) with Fig. 5(d) in Ref. 14 and find that these results are
in excellent agreement.

B. Lower-hybrid drift instability

A linear analysis of the LHDI was conducted by
Davidson et al.'” In their study, ion and electron components
drifting across magnetic fields with different drift velocities
were assumed as an unstable plasma. In one of their numeri-
cal analysis, parameters were set as m;/m, = 1836, T;/T,
=1, wpe/w(?e = \/E7 Up; = _\/Evti, and up, = \/Evti and
they found a positive growth rate at a frequency equal to sev-
eral w;yr. We solved the linear dispersion Eq. (25) numeri-
cally with these parameters, but did not find any solution
with a positive growth rate. We also performed a two-
dimensional full particle-in-cell simulation with these parame-
ters in a uniform and doubly periodic system and confirmed
that no waves are excited. As described in Introduction,
Davidson et al. assumed unmagnetized ions and neglected har-
monic cyclotron resonance of electrons by setting #» =0 on the
order of the Bessel function.'” The present study suggests that
the unmagnetized ions enhanced the effect of the ion Landau
resonance artificially.

Next, let us consider a simple Harris current-sheet equi-
librium without a background component

&MzBmmE} (39)
NM:MWMH. (40)

The parameters are assumed to be m;/m, =512, T;/T,
=1, @Wpeo/Qee0 =5, and r,/L =2 which are identical to those
of the previous study,'® where r; = v/2V,;/Quo is the ion
thermal gyro radius. The speed of light and the half-
thickness of the current layer are obtained as c¢/V,, =10
and L/ip, =80, where Ap,=V,/w,. is the Debye length.
Daughton found a positive growth rate of the LHDI in his
linear analysis at y/L=0.5-2 and confirmed it by a two-
dimensional particle-in-cell simulation of the current sheet.'®

It should be noted that the present study cannot be com-
pared with the previous study'® directly, since the present
study uses a coordinate system in the By — u, plane (i.e., z — x
plane with k, = k” ke = ki ,k, = 0 and 0 =0), while the pre-
vious study18 used a coordinate system in the u;, — (u;, X By)
plane (i.e., x—y plane with k. =0, k. =k, cos0,k,
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= k. sin6). In the previous study,'® it is difficult to distin-
guish between fluid instabilities due to the spatial inhomoge-
neity and velocity-space instabilities due to Of /v or
df /Ov ., since the previous study considered the entire current
sheet and both instabilities can be generated. On the other
hand, the present study uses a local model where the back-
ground physical quantities are assumed to be uniform. Hence,
the present study deals only with the velocity-space instabil-
ities at a local position in the Harris sheet equilibrium.

The local drift velocity, angular plasma, and cyclotron
frequencies of electrons at y/L=0.5 are up,/V,. = 0.125, w,./
Wpeo = 0.8868, and Q. /w),.0 = 0.09242, respectively, and the
local drift velocity, angular plasma, and cyclotron frequencies
of ions at y/L = 0.5 are u;/V,, = —0.125, w,i/wp,.0=0.03919,
and Q.;/wp,.0=1.8051 x 1074, respectively. Figure 4 shows
the numerical solutions to the linear dispersion Eq. (25) for a
two-component plasma at the Harris current sheet. Panel (a)
shows the result for wave modes with wave normal angles
quasi-parallel to the ambient magnetic field. The quasi-
parallel modes have the maximum growth rate at a frequency
® < wpyr and a wavenumber k| d; ~ 2. The growth rate of
the exactly parallel mode is maximum, but the growth rate of
quasi-parallel modes is almost the same as that of the exactly
parallel mode. It is suggested that these quasi-parallel modes
are excited by an energy anisotropy between the parallel and
perpendicular kinetic energies of particles. We do not find
any solution to these modes for wave normal angles of >7°
relative to the ambient magnetic field.
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FIG. 4. Linear dispersion relations for a two-component plasma at the
Harris current sheet.'® The z axis is parallel to the ambient magnetic field.
The x axis is perpendicular to the ambient magnetic field and is parallel to
the direction of the particle drifts. (a) Wave modes with wave normal angles
quasi-parallel to the ambient magnetic field. (b) Wave modes with wave nor-
mal angles quasi-perpendicular to the ambient magnetic field.
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Panel (b) shows the result for wave modes with wave
normal angles quasi-perpendicular to the ambient magnetic
field. The perpendicular mode has no positive growth rate. A
wave mode with a wave normal angle of ~80° relative to the
ambient magnetic field has the maximum growth rate. These
modes have a large growth rate at a frequency w ~ ;g and
a wavenumber k /7.7; ~ 2, whose characteristics are simi-
lar to those of the LHDI at the intermediate scale but not
the same. In the present study, unstable modes exist neither
ky\/reri ~ 1 nor k,r, ~1. The cyclotron resonance condition
of ions wyyr ~ nQ.; + kyuy is easily satisfied at k| /rer;
~ 2 (here, wyyr ~22.5 Q.). We found that the electron
cyclotron resonance at n =1 is dominant, while a wide range
of the ion cyclotron resonance at n = 1-23 contributes to the
positive growth rate of the LHDI. There is no positive
growth rate when the cyclotron resonance is neglected (i.e.,
n=0 only). It is also found that the short wavelength that
mode at k,;r, ~1 hardly satisfies the cyclotron resonance
condition with the present parameters.

We also performed a large-scale two-dimensional full
particle-in-cell simulation with these parameters in a uniform
and doubly periodic system and confirmed that the unstable
wave modes shown in Fig. 4 were excited.

V. CONCLUSION

A theoretical linear dispersion relation for plasma
with a drift across the magnetic field for a local model
was derived. Then, the dielectric permittivity tensor for
shifted Maxwellian velocity distributions is obtained by
using the plasma dispersion function and the modified
Bessel function. The linear dispersion relations of ECDI
and MTSI obtained by using the new dielectric permittivity
tensor are in excellent agreement with the previous
study.' The linear dispersion relations of the LHDI with
an in-plane ambient magnetic field show the importance
of the cyclotron resonance of both ions and electrons at @
~ wryr. The extension of the present study to 0 # 0 cases
(with out-of-plane ambient magnetic field) is left as a
future study.

The obtained dielectric permittivity tensor can be easily
implemented to numerical linear dispersion solvers. Given
the successful tests of our solvers shown in this paper, the
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present method would be applicable to various other targets
in collisionless plasma with a drift across magnetic field.
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