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A current across the magnetic field is formed in various situations in plasma. The relative drift

between ions and electrons due to the cross-field current becomes a source of various microscopic

instabilities. A fully electromagnetic and kinetic linear dispersion relation for plasma with a drift

across magnetic field is derived by assuming a uniform background plasma. The dielectric permit-

tivity tensor for shifted Maxwellian velocity distributions is also presented. Linear dispersion rela-

tions obtained by using the new dielectric permittivity tensor were confirmed by comparison with

the previous studies and with particle-in-cell simulation results. Published by AIP Publishing.
https://doi.org/10.1063/1.5050542

I. INTRODUCTION

Plasma instabilities are driven by various sources, such

as spatial inhomogeneity or velocity-space anisotropy. The

linear dispersion analysis plays an essential role for studies

of plasma physics. Instabilities due to spatial inhomogeneity

are generally analyzed by linear electromagnetic fluid equa-

tions, while instabilities due to velocity-space anisotropy

sometimes need a kinetic approach. It is known that various

velocity-space instabilities are induced when a velocity dis-

tribution function f ½vjj; v?� (where vjj and v? are velocity

components parallel and perpendicular to the ambient mag-

netic field, respectively) has a region of positive gradient,

i.e., @f=@vjj > 0 or @f=@v? > 0.

The positive gradient in the velocity distribution func-

tion parallel to the ambient magnetic field is formed when a

beam of charged particles propagates along the ambient

magnetic field or when there exists a relative velocity

between ion and electron components. There are a number of

textbooks on plasma physics and plasma waves that deal

with the kinetic linear dispersion relation including a drift

along the ambient magnetic field (hereafter, this is referred

to as the “standard linear dispersion relation”). However, a

few numbers of them gave the detailed derivation of the

standard linear dispersion relation.1,2

The positive gradient in the velocity distribution func-

tion perpendicular to the ambient magnetic field is formed in

various situations, such as ion reflection at shocks and mag-

netopauses or cross-field currents due to spatial inhomogene-

ity. The relative drift between ions and electrons in such

situations becomes a source of various instabilities, such as

the upper-hybrid drift instability (or Buneman instability3)

the electron cyclotron drift instability (ECDI),4 the modified

two-stream instability (MTSI),5,6 and the lower-hybrid drift

instability (LHDI).7 The former three instabilities have been

identified in full kinetic numerical simulations of perpendic-

ular collisionless shocks.8–12 At the shock front, a part of

upstream ions are reflected, which results in the deceleration

of upstream electrons so that the conservation of the total

current (the zero current condition in the shock normal direc-

tion) is satisfied. Consequently, there arises a relative drift

velocity between the upstream electrons and the upstream/

reflected ions.13 In the linear analysis of these instabilities in

the transition region of perpendicular collisionless shocks, it

was assumed, by using the coordinate transformation from

the shock-rest frame to the electron-rest frame, that unmag-
netized ions drifted across the ambient magnetic field, while

magnetized electrons were at rest.13,14 Then, ion cyclotron

harmonic resonance was neglected, while ion Landau damp-

ing was enhanced.

The diamagnetic current is a cross-field current which is

formed at magnetic shear and pressure shear layers. External

forces, such as gravity, across magnetic fields also result in a

relative drift between ions and electrons, which forms a cur-

rent. The LHDI has drawn attention by full kinetic numerical

simulations of current sheets, which causes a quick trigger-

ing of magnetic reconnection and associated electron heat-

ing.15 The LHDI is also known to play an role for the

turbulent formation and the associated electron heating in

thin density shear layers at the leading edge of the reconnec-

tion outflow jet.16 In an early linear analysis of the LHDI by

Davidson et al.,17 the term n¼ 0 for the order of the Bessel

function was retained for electrons only, while ions were

assumed to be unmagnetized as Ref. 13. On the other hand,

Daughton18 numerically solved the fully electromagnetic

and kinetic linear dispersion relation including spatial inho-

mogeneity, although his procedure was rather complex.

The purpose of the present study is to derive a fully elec-

tromagnetic and kinetic linear dispersion relation for plasma

with a drift across an ambient magnetic field by modifying

the standard linear dispersion relation.

II. THEORETICAL FORMULATION

Our goal is to solve the following linearized Maxwell

equation for local plasma:a)Email: taka.umeda@nagoya-u.jp
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k � ðk � E1Þ ¼ ðk � E1Þk � jkj2E1 ¼ �i~xl0J1 �
~x2

c2
E1;

0 ¼ kk � jkj2I
� � c2

~x2
E1 þ � ~x; k½ �E1; (1)

where I, k, ~x, and c represent the unit tensor, wavenumber

vector, complex frequency, and the speed of light, respec-

tively. Note that kk denotes a dyadic tensor. The dielectric

tensor � is obtained by solving

� ~x; k½ �E1 ¼ E1 þ i
c2

~x
l0J1; (2)

where J1 represents the perturbed current density given by

J1 ¼
X

s

qsNs0

ð
vfs1d3v; (3)

with fs1 being the perturbed velocity distribution function for

the species “s.”

To evaluate the perturbed distribution function, we

restart from the linearized Vlasov equation. By using the

total derivative, the linearized Vlasov equation is written as

@fs1

@t
þ v � @fs1

@r
þ as0 þ

qs

ms
E0 þ v� B0ð Þ

� �
� @fs1

@v

¼ dfs1

dt
¼ � qs

ms
E1 þ v� B1ð Þ � @fs0

@v
; (4)

where as0 represents an external force which includes the

gravity and other (magneto-)hydro-dynamic forces due to

spatial inhomogeneity that causes drift motions across the

magnetic field for each particle species. The perturbed distri-

bution function can be obtained by the method of character-

istics, i.e., by the integral along a trajectory1 as follows:

fs1 r;v; t½ � ¼ �
qs

ms

ðt

�1
E1 r̂; t̂½ � þ v̂ � B1 r̂; t̂½ �
� �

� @fs0

@v̂
exp ik � r̂ � ixt̂½ �dt̂; (5)

where ðr̂; v̂Þ is an unperturbed trajectory of a particle which

reaches the point ðr;vÞ when t̂ ¼ t. The particle trajectory is

governed by the equation of motion

dv̂

dt
¼ Fs0 þ

qs

ms
v̂ � B0ð Þ; (6)

where Fs0 � as0 þ qsE0=ms. The solution to this equation

considered in the present study is

v̂x ¼ v0? cos Xcsðt� t̂Þ þ /00
� 	

þ ubs

v̂y ¼ v0? sin Xcsðt� t̂Þ þ /00
� 	

v̂z ¼ vjj

9>=
>;; (7)

where vjj and v0? represent velocity components parallel and

perpendicular to the ambient magnetic field, respectively,

and Xcs � qsjB0j=ms represents the gyro frequency. We

assume that both electric field and external force are directed

in the y direction, and the ambient magnetic field is directed

in the z direction. Then, particles drift in the x direction across

the ambient magnetic field at the drift velocity ubs¼ qsFs0/B0

as schematically illustrated in Fig. 1. Here, the velocity vector

and the wavenumber vector are, respectively, defined as

v ¼ ðvx; vy; vzÞ � ðv0? cos /00 þ ubs; v
0
? sin /00; vjjÞ; (8)

k ¼ ðkx; ky; kzÞ � ðk? cos h; k? sin h; kjjÞ: (9)

where v0? �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvx � ubsÞ2 þ v2

y

q
. In contrast to the standard

velocity coordinate centered at ðvjj; v?Þ ¼ ð0; 0Þ, the present

velocity coordinate is centered at ðvjj; v?Þ ¼ ð0; ubsÞ. It

should be also noted that we consider a “local” dispersion rela-

tion where the spatial scale of the perturbation is much smaller

than the spatial inhomogeneity.17 That is, it is assumed that the

background field quantities such as fluid quantities and electro-

magnetic fields are in the equilibrium state and that the drift

velocity ubs is constant and independent of both position and

time. With these assumptions, we can take an arbitrary drift

velocity ubs for each species independently without consider-

ation of the external force as0 and spatial inhomogeneity.

Integrating the velocity over the time, we find the trajec-

tory which reaches the point ðr; vÞ when t0 ¼ t as

x̂ ¼ x� v0?
Xcs

sin Xcsðt� t̂Þ þ/00
� 	

� sin /00
� �

� ubsðt� t̂Þ

ŷ ¼ yþ v0?
Xcs

cos Xcsðt� t̂Þ þ /00
� 	

� cos /00
� �

ẑ ¼ z� vjjðt� t̂Þ

9>>>>>=
>>>>>;
:

(10)

Further taking the wavenumber vector k¼ðk?cosh;k?sinh;kjjÞ,
we obtain the Fourier component along the unperturbed

trajectory as

exp ik � r̂� i~x t̂½ �
¼ exp ik � r� i~xt½ �exp ið~x� vjjkjj �ubsk? coshÞðt� t̂Þ

� 	
�exp �i

v0?k?
Xcs

sin Xcsðt� t̂Þþ/00�h
� 	

� sin /00�h
� 	� �� �

¼ exp ik � r� i~xt½ �
X1

n¼�1

X1
l¼�1

Jl
v0?k?
Xcs

� �
Jn

v0?k?
Xcs

� �

�exp iðl�nÞð/00�hÞ
� 	

exp
h
ið~x� vjjkjj �nXcs

�ubsk? coshÞðt� t̂Þ
i
; (11)

FIG. 1. Schematic illustration of the coordinate in the present study.
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where h represents the wave normal angle relative to the drift motion across the magnetic field. Here, Jn[x] is the Bessel func-

tion of the first kind of order n with

exp ik sin w½ � ¼
X1

n¼�1
Jn k½ � exp inw½ �:

With the Maxwell equation ~xB ¼ k � E, we have

E1 þ v̂ �
k � E1

~x


 �
� @fs0

@v̂
¼

Ex1 1� v̂yky þ v̂zkz

~x


 �
þ Ey1

v̂ykx

~x
þ Ez1

v̂zkx

~x

Ex1

v̂xky

~x
þ Ey1 1� v̂xkx þ v̂zkz

~x


 �
þ Ez1

v̂zky

~x

Ex1

v̂xkz

~x
þ Ey1

v̂ykz

~x
þ Ez1 1� v̂xkx þ v̂yky

~x


 �

2
66666666664

3
77777777775
�

v̂x � ubs

v0?

@fs0

@v0?

v̂y

v0?

@fs0

@v0?

@fs0

@vjj

2
66666666664

3
77777777775

¼

1� v̂yky þ v̂zkz

~x


 �
v̂x � ubs

v0?

@fs0

@v0?
þ v̂xky

~x
v̂y

v0?

@fs0

@v0?
þ v̂xkz

~x
@fs0

@vjj

v̂ykx

~x
v̂x � ubs

v0?

@fs0

@v0?
þ 1� v̂xkx þ v̂zkz

~x


 �
v̂y

v0?

@fs0

@v0?
þ v̂ykz

~x
@fs0

@vjj

v̂zkx

~x
v̂x � ubs

v0?

@fs0

@v0?
þ v̂zky

~x
v̂y

v0?

@fs0

@v0?
þ 1� v̂xkx þ v̂yky

~x


 �
@fs0

@vjj

2
666666666664

3
777777777775
�

Ex1

Ey1

Ez1

2
66664

3
77775 � hs � E1;

where

@fs0

@v̂
¼

@v0?
@v̂x

@fs0

@v0?
@v0?
@v̂y

@fs0

@v0?
@v̂jj
@v̂z

@fs0

@vjj

2
6666666664

3
7777777775
¼

v̂x � ubs

v0?

@fs0

@v0?
v̂y

v0?

@fs0

@v0?
@fs0

@vjj

2
6666666664

3
7777777775
:

The vector h is rewritten as

hs �

cos Xcsðt� t̂Þ þ /00
� 	

1�
vjjkjj

~x


 �
@fs0

@v0?
þ

v0?kjj
~x

@fs0

@vjj

( )
þ sin Xcsðt� t̂Þ þ /00

� 	 ubsk? sin h
~x

@fs0

@v0?
þ

ubskjj
~x

@fs0

@vjj

sin Xcsðt� t̂Þ þ /00
� 	

1�
vjjkjj

~x


 �
@fs0

@v0?
þ

v0?kjj
~x

@fs0

@vjj

( )
� sin Xcsðt� t̂Þ þ /00

� 	 ubsk? cos h
~x

@fs0

@v0?

1� ubsk? cos h
~x


 �
@fs0

@vjj
þ cos Xcsðt� t̂Þ þ /00 � h

� 	 v0?k?
~x

vjj
v0?

@fs0

@v0?
� @fs0

@vjj

 !

2
6666666666664

3
7777777777775
:

It follows that

i
c2

~x
l0J1 ¼ �i

X
s

x2
ps

~x

ð
v

ðt

�1
hs � E1

X1
n¼�1

X1
l¼�1

Jl
v0?k?
Xcs

� �
Jn

v0?k?
Xcs

� �
exp iðl� nÞð/00 � hÞ

� 	(

�exp ið~x � vjjkjj � nXcs � ubk? cos hÞðt� t̂Þ
� 	

dt̂

)
d3v;
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¼
X

s

x2
ps

~x

ð v0? cos/00þubs

v0? sin/00

vjj

2
6664

3
7775

8>>><
>>>:

�
X1

n¼�1

Jn
v0?k?
Xcs

� �
nXcs

v0?k?
cosh� iJ0n

v0?k?
Xcs

� �
sinh

( )
1�

vjjkjj
~x


 �
@fs0

@v0?
þ

v0?kjj
~x

@fs0

@vjj

( )

þ Jn
v0?k?
Xcs

� �
nXcs

v0?k?
sinhþ iJ0n

v0?k?
Xcs

� �
cosh

( )
ubsk? sinh

~x
@fs0

@v0?
þ Jn

v0?k?
Xcs

� �
ubskjj

~x
@fs0

@vjj

Jn
v0?k?
Xcs

� �
nXcs

v0?k?
sinhþ iJ0n

v0?k?
Xcs

� �
cosh

( )
1�

vjjkjj
~x
�ubsk? cosh

~x


 �
@fs0

@v0?
þ

v0?kjj
~x

@fs0

@vjj

( )

Jn
v0?k?
Xcs

� �
1�nXcs

~x
�ubsk? cosh

~x


 �
@fs0

@vjj
þnXcs

~x

vjj
v0?

@fs0

@v0?

( )

2
6666666666666666664

3
7777777777777777775

�
X1

l¼�1

Jl
v0?k?
Xcs

� �
exp iðl�nÞð/00�hÞ
� 	

~x� vjjkjj �nXcs�ubsk? cosh
d3v

9>>=
>>; �E1: (12)

For the time integral in Eq. (12), we use the following formulas:

X1
n¼�1

Jn k½ � cos Xcsðt� t̂Þ þ /00
� 	

exp �inXcsðt� t̂Þ
� 	

exp �inð/00 � hÞ
� 	

¼ 1

2
cos h

X1
n¼�1

Jnþ1 k½ � þ Jn�1 k½ �
� �

exp �inXcsðt� t̂Þ
� 	

exp �inð/00 � hÞ
� 	

� i

2
sin h

X1
n¼�1

Jnþ1 k½ � � Jn�1 k½ �
� �

exp �inXcsðt� t̂Þ
� 	

exp �inð/00 � hÞ
� 	

¼
X1

n¼�1

n

k
Jn k½ � cos h� iJ0n k½ � sin h

� �
exp �inXcsðt� t̂Þ

� 	
exp �inð/00 � hÞ

� 	
;

X1
n¼�1

Jn k½ � sin Xcsðt� t̂Þ þ /00
� 	

exp �inXcsðt� t̂Þ
� 	

exp �inð/00 � hÞ
� 	

¼ 1

2
sin h

X1
n¼�1

Jnþ1 k½ � þ Jn�1 k½ �
� �

exp �inXcsðt� t̂Þ
� 	

exp �inð/00 � hÞ
� 	

� 1

2i
cos h

X1
n¼�1

Jnþ1 k½ � � Jn�1 k½ �
� �

exp �inXcsðt� t̂Þ
� 	

exp �inð/00 � hÞ
� 	

¼
X1

n¼�1

n

k
Jn k½ � sin hþ iJ0n k½ � cos h

� �
exp �inXcsðt� t̂Þ

� 	
exp �inð/00 � hÞ

� 	
;

X1
n¼�1

Jn k½ � cos Xcsðt� t̂Þ þ /00 � h
� 	

exp �inXcsðt� t̂Þ
� 	

exp �inð/00 � hÞ
� 	

¼ 1

2

X1
n¼�1

Jnþ1 k½ � þ Jn�1 k½ �
� �

exp �inXcsðt� t̂Þ
� 	

exp �inð/00 � hÞ
� 	

¼
X1

n¼�1

n

k
Jn k½ � exp �inXcsðt� t̂Þ

� 	
exp �inð/00 � hÞ

� 	
;

and ðt

�1
exp ið~x � vjjkjj � nXcs � ubsk? cos hÞðt� t̂Þ

� 	
dt̂ ¼ i

~x � vjjkjj � nXcs � ubsk? cos h
;
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where J0n½k� represents the differentiation of the Bessel func-

tion of the first kind with respect to argument k � v0?k?=Xcs.

For detailed derivation, see also Refs. 1, 2, and 19.

Let us consider the velocity-space integration. From the

definition of velocity, we obtain the Jacobian as

jJðv0?;/00Þj ¼ det

@vx

@v0?

@vx

@/00
@vy

@v0?

@vy

@/00

2
6664

3
7775

¼ det
cos /00 �v0? sin /00
sin /00 v0? cos /00

� �
¼ v0?: (13)

Assuming that distribution functions are gyrotropic, i.e., @fs0

@/00
¼ 0

(fs0½v� � fs0½vjj; v0?�) and that the wavenumber vector k is taken

in the x – z plane, i.e., h¼ 0 (kz ¼ kjj and kx¼ k?), we haveð
d3v ¼

ð2p

0

ð1
0

ð1
�1

v0?dvjjdv0?d/00 ¼
ð1

0

ð1
�1

2pv0?dvjjdv0?

(14)

andð2p

0

Jl k½ � cos /00 exp iðl� nÞ/00
� 	

d/00 ¼
2pn

k
Jn k½ �;ð2p

0

Jl k½ � sin /00 exp iðl� nÞ/00
� 	

d/00 ¼ �i
2pn

k
JnJ0n k½ �;ð2p

0

Jl k½ � exp iðl� nÞ/00
� 	

d/00 ¼ 2pJn k½ �:

By using these properties, Eq. (12) is rewritten as

i
c2

~x
l0J1

¼
X

s

x2
ps

~x2

X1
n¼�1

ð1
0

ð1
�1

2pv0?Sdvjjdv0?
~x � vjjkjj � nXcs � ubsk?

� E1;

(15)

where

Sxx¼ J2
n k½ �n

2X2
cs

v02?k2
?

 !
v02?kjj

@fs0

@vjj
þv0? ~x�vjjkjj �ubsk?

� �@fs0

@v0?

( )

þ J2
n k½ � nXcs

v0?k?


 �
ubs v0?kjj

@fs0

@vjj
þ ~x�vjjkjj �ubsk?
� �@fs0

@v0?

( )

þ J2
n k½ � nXcs

v0?k?


 �
ubs v0?kjj

@fs0

@vjj
þnXcs

@fs0

@v0?

 !

þJ2
n k½ �u2

bs kjj
@fs0

@vjj
þnXcs

v0?

@fs0

@v0?

 !
; (16)

Sxy¼ iJn k½ �J0n k½ � nXcs

v0?k?
v02?kjj

@fs0

@vjj
þv0?ð~x�vjjkjj�ubsk?Þ

@fs0

@v0?

( )

þiJn k½ �J0n k½ �ubs v0?kjj
@fs0

@vjj
þð~x�vjjkjj�ubsk?Þ

@fs0

@v0?

( )
;

(17)

Sxz¼ J2
n k½ � nXcs

v0?k?


 �
v0?ð~x�nXcs�ubsk?Þ

@fs0

@vjj
þnXcsvjj

@fs0

@v0?

( )

þ J2
n k½ �ubs ð~x�nXcs�ubsk?Þ

@fs0

@vjj
þnXcs

vjj
v0?

@fs0

@v0?

( )
;

(18)

Syx¼�iJn k½ �J0n k½ �nXcs

v0?k?
v02?kjj

@fs0

@vjj
þv0? ~x�vjjkjj�ubsk?

� �@fs0

@v0?

( )

�iJn k½ �J0n k½ �ubs v0?kjj
@fs0

@vjj
þnXcs

@fs0

@v0?

 !
; (19)

Syy ¼ J02n k½ � v02?kjj
@fs0

@vjj
þ v0?ð~x � vjjkjj � ubsk?Þ

@fs0

@v0?

( )
;

(20)

Syz¼�iJn k½ �J0n k½ � v0?ð~x�nXcs�ubsk?Þ
@fs0

@vjj
þnXcsvjj

@fs0

@v0?

( )
;

(21)

Szx ¼ J2
n k½ � nXcs

v0?k?
v0?vjjkjj

@fs0

@vjj
þ ~x � vjjkjj � ubsk?
� �

vjj
@fs0

@v0?

( )

þJ2
n k½ �ubs vjjkjj

@fs0

@vjj
þ nXcs

vjj
v0?

@fs0

@v0?

 !
; (22)

Szy ¼ iJn k½ �J0n k½ � v0?vjjkjj
@fs0

@vjj
þ ð~x � vjjkjj � ubsk?Þvjj

@fs0

@v0?

( )
;

(23)

Szz ¼ J2
n k½ � ð~x � nXcs � ubsk?Þvjj

@fs0

@vjj
þ nXcs

v2
jj

v0?

@fs0

@v0?

( )
:

(24)

Inserting Eq. (15) into Eq. (2) and deleting E1, we finally

obtain the dielectric permittivity tensor as

� ~x;k½ � ¼ Iþ
X

s

x2
ps

~x2

X1
n¼�1

ð1
0

ð1
�1

2pv0?Sdvjjdv0?
~x� vjjkjj � nXcs� ubsk?

:

(25)

III. DIELECTRIC PERMITTIVITY TENSOR FOR
SHIFTED bi-MAXWELLIAN VELOCITY DISTRIBUTION

The Maxwellian distribution is often used as a distribu-

tion of particle velocity at an equilibrium state. We use the

following shifted bi-Maxwellian distribution as a velocity

distribution at the present analysis:

fs vjj; v
0
?

� 	
¼ fsjj vjj½ �fs? v0?

� 	
; (26)

fsjj vjj½ � ¼
1ffiffiffiffiffiffi

2p
p

Vtsjj
exp �

ðvjj � udsÞ2

2V2
tsjj

" #
; (27)
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fs? v0?
� 	

¼ 1

2pV2
ts?

exp � v02?
2V2

ts?

" #
; (28)

where uds is the drift velocity in the direction parallel to

the ambient magnetic field and Vtsjj �
ffiffiffiffiffiffiffiffiffiffiffiffi
Tsjj=m

p
and Vts?

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ts?=m

p
in the direction parallel and perpendicular to the

ambient magnetic field, respectively, with Ts being tempera-

ture of particle species. Note that such shifted bi-Maxwellian

distributions are also common in laboratory plasmas.20,21

Figure 2 shows the shifted Maxwellian velocity distribution

in the vx – vy space. The perpendicular velocity coordinates

are defined as v0? �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvx � ubsÞ2 þ v2

y

q
. Note that the velocity

component parallel to the ambient magnetic field vjj is

defined from –1 to 1, while the perpendicular velocity v0?
is defined from 0 to1. It is also noted that the perpendicular

component of the velocity distribution function in the present

study is not the Maxwellian “ring” velocity distribution.22,23

We perform the velocity space integral of S as

K �
ð1

0

ð1
�1

2pv0?Sdvjjdv0?
~x � vjjkjj � nXcs � ubsk?

; (29)

where the velocity space integral should not be performed over

v? but should be over v0? because of the definition of the phase

angle in the velocity space in Eq. (14). For convenience, we

use the properties of the integrals of the shifted Maxwellian

ð1
�1

kjj
~x � vjjkjj � nXcs � ubsk?

@fsjj
@vjj

dvjj ¼ �
1

2V2
tsjj

Z00 fn½ � � �X 1

ð1
�1

nXcsfsjj
~x � vjjkjj � nXcs � ubsk?

dvjj ¼ �
nXcsffiffiffi
2
p

Vtsjjkjj
Z0 fn½ � � �X 2

ð1
�1

ð~x � vjjkjj � ubsk?Þfsjj
~x � vjjkjj � nXcs � ubsk?

dvjj ¼ 1� nXcsffiffiffi
2
p

Vtsjjkjj
Z0 fn½ � ¼ 1�X 2

ð1
�1

~x � nXcs � ubsk?
~x � vjjkjj � nXcs � ubsk?

@fsjj
@vjj

dvjj ¼ �
~x � nXcs � ubsk?

2V2
tsjjkjj

Z00 fn½ � � �X 3

ð1
�1

nXcsvjjfsjj
~x � vjjkjj � nXcs � ubsk?

dvjj ¼ �
nXcs

kjj
1þ ~x � nXcs � ubsk?ffiffiffi

2
p

Vtsjjkjj
Z0 fn½ �

 !
� �X 4

ð1
�1

vjjkjj
~x � vjjkjj � nXcs � ubsk?

@fsjj
@vjj

dvjj ¼ �
~x � nXcs � ubsk?

2V2
tsjjkjj

Z00 fn½ � ¼ �X 3

ð1
�1

ð~x � vjjkjj � ubsk?Þvjjfsjj
~x � vjjkjj � nXcs � ubsk?

dvjj ¼ uds �
nXcs

kjj
1þ ~x � nXcs � ubsk?ffiffiffi

2
p

Vtsjjkjj
Z0 fn½ �

 !
¼ uds �X4

ð1
�1

ð~x � nXcs � ubsk?Þvjj
~x � vjjkjj � nXcs � ubsk?

@fsjj
@vjj

dvjj ¼ �
ð~x � nXcs � ubsk?Þ2

2V2
tsjjk

2
jj

Z00 fn½ � � �X 5

ð1
�1

nXcsv2
jjfsjj

~x � vjjkjj � nXcs � ubsk?
dvjj ¼ �

nXcs

kjj
uds þ

~x � nXcs � ubsk?
kjj

1þ ~x � nXcs � ubsk?ffiffiffi
2
p

Vtsjjkjj
Z0 fn½ �

 !( )
� �X 6

and

FIG. 2. The shifted Maxwellian velocity distribution. The drift velocity is

set as ub¼ 2Vt. The velocity coordinates perpendicular to the ambient mag-

netic field are defined as v0? �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvx � ubÞ2 þ v2

y

q
.
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ð1
0

2pv0?J2
n k½ �f?dv0? ¼ In

a2

2

� �
exp � a2

2

� �
� An

ð1
0

2pJ2
n k½ � @f?

@v0?
dv0? ¼ �

1

V2
t?

In
a2

2

� �
exp � a2

2

� �
� � 1

V2
t?
An

ð1
0

2pv02?Jn k½ �J0n k½ �f?dv0? ¼
V2

t?k?
Xc

I0n
a2

2

� �
� In

a2

2

� �
 �
exp � a2

2

� �
� V2

t?k?
Xc
Bn

ð1
0

2pv0?Jn k½ �J0n k½ � @f?
@v0?

dv0? ¼ �
k?
Xc

I0n
a2

2

� �
� In

a2

2

� �
 �
exp � a2

2

� �
� � k?

Xc
Bn

ð1
0

2pv03?J02n k½ �f?dv0? ¼ V2
t?

2n2

a2
In

a2

2

� �
� a2I0n

a2

2

� �
þ a2In

a2

2

� �
 �
exp � a2

2

� �
� V2

t?
2n2

a2
An � a2Bn


 �
ð1

0

2pv02?J02n k½ � @f?
@v0?

dv0? ¼ �
2n2

a2
In

a2

2

� �
� a2I0n

a2

2

� �
þ a2In

a2

2

� �
 �
exp � a2

2

� �
� � 2n2

a2
An þ a2Bn;

where

fn ¼
~x � udskjj � nXcs � ubsk?ffiffiffi

2
p

kjjVtsjj
; a ¼

ffiffiffi
2
p

Vts?k?
Xcs

;

where In[x] and Zp[x] are the modified Bessel function of the first kind of order n and the plasma dispersion function,24

respectively,

Z0ðxÞ �
1ffiffiffi
p
p
ð1
�1

1

v� x
exp �v2½ �dv;

ZpðfnÞ � �
kjjffiffiffi
p
p
ð1
�1

vp
jj

~x � vjjkjj � nXcs � ubsk?
exp �

ðvjj � udsÞ2

2V2
tsjj

" #
dvjj:

Then, we obtain

Kxx ¼
ð1

0

ð1
�1

2pv0?Sxx

~x � vjjkjj � nXcs � ubsk?
dvjjdv0? ¼

n2X2
cs

k2
?

ð1
�1

kjj
~x � vjjkjj � nXcs � ubsk?

@fsjj
@vjj

dvjj

ð1
0

2pv0?J2
n k½ �fs?dv0?

þ n2X2
cs

k2
?

ð1
�1

ð~x � vjjkjj � ubsk? cos Þfsjj
~x � vjjkjj � nXcs � ubsk?

dvjj

ð1
0

2pJ2
n k½ � @fs?

@v0?
dv0?

þ nXcsubs

k?

ð1
�1

kjj
~x � vjjkjj � nXcs � ubsk?

@fsjj
@vjj

dvjj

ð1
0

2pv0?J2
n k½ �fs?dv0?

þ nXcsubs

k?

ð1
�1

ð~x � vjjkjj � ubsk? cos Þfsjj
~x � vjjkjj � nXcs � ubsk?

dvjj

ð1
0

2pJ2
n k½ � @fs?

@v0?
dv0?

þ nXcsubs

k?

ð1
�1

kjj
~x � vjjkjj � nXcs � ubsk?

@fsjj
@vjj

dvjj

ð1
0

2pv0?J2
n k½ �fs?dv0?

þ nXcsubs

k?

ð1
�1

ð~x � vjjkjj � ubsk? cos Þfsjj
~x � vjjkjj � nXcs � ubsk?

dvjj

ð1
0

2pJ2
n k½ � @fs?

@v0?
dv0?

þu2
bs

ð1
�1

kjj
~x � vjjkjj � nXcs � ubsk?

@fsjj
@vjj

dvjj

ð1
0

2pv0?J2
n k½ �fs?dv0?

þu2
bs

ð1
�1

nXcs@fsjj
~x � vjjkjj � nXcs � ubsk?

dvjj

ð1
0

2pJ2
n k½ � @fs?

@v0?
dv0?

¼ � n2X2
cs

k2
?
X1An �

n2X2
cs

V2
ts?k2

?
ð1� X 2ÞAn �

nXcsubs

k?
X1An �

nXcsubs

V2
ts?k?

ð1� X2ÞAn

� nXcsubs

k?
X1An þ

nXcsubs

V2
ts?k?

X2An � u2
bsX1An þ u2

bs

X2

V2
ts?
An

¼ �ðV2
ts?X1 � X 2Þ n2 2

a2
þ n

4ubsk?
a2Xcs

þ u2
bs

V2
ts?

 !
An � n2 2

a2
An þ n

2ubsk?
a2Xcs

An; (30)
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Kxy¼
ð1

0

ð1
�1

2pv0?Sxy

~x�vjjkjj�nXcs�ubsk?
dvjjdv0?¼ i

nXcs

k?

ð1
�1

kjj
~x�vjjkjj�nXcs�ubsk?

@fsjj
@vjj

dvjj

ð1
0

2pv02?Jn k½ �J0n k½ �fs?dv0?

þi
nXcs

k?

ð1
�1

ð~x�vjjkjj�ubsk?Þfsjj
~x�vjjkjj�nXcs�ubsk?

dvjj

ð1
0

2pv0?Jn k½ �J0n k½ �@fs?
@v0?

dv0?þ iubs

ð1
�1

kjj
~x�vjjkjj�nXcs�ubsk?

@fsjj
@vjj

dvjj

�
ð1

0

2pv02?Jn k½ �J0n k½ �fs?dv0?þ iubs

ð1
�1

ð~x�vjjkjj�ubsk?Þfsjj
~x�vjjkjj�nXcs�ubsk?

dvjj

ð1
0

2pv0?Jn k½ �J0n k½ �@fs?
@v0?

dv0?¼�i
nXcs

k?

V2
ts?k?
Xcs

X1Bn

� i
nXcs

k?

k?
Xcs
ð1�X 2ÞBn� iubs

V2
ts?k?
Xcs

X1Bn� iubs
k?
Xcs
ð1�X2ÞBn¼�i nþubsk?

Xcs


 �
V2

ts?X1�X 2

� �
Bn� inBn� i

ubsk?
Xcs
Bn; (31)

Kxz ¼
ð1

0

ð1
�1

2pv0?Sxz

~x � vjjkjj � nXcs � ubsk?
dvjjdv0? ¼

nXcs

k?

ð1
�1

~x � nXcs � ubsk?
~x � vjjkjj � nXcs � ubsk?

@fsjj
@vjj

dvjj

ð1
0

2pv0?J2
n k½ �fs?dv0?

þ nXcs

k?

ð1
�1

nXcsvjjfsjj
~x � vjjkjj � nXcs � ubsk?

dvjj

ð1
0

2pJ2
n k½ � @fs?

@v0?
dv0? þ ubs

ð1
�1

~x � nXcs � ubsk?
~x � vjjkjj � nXcs � ubsk?

@fsjj
@vjj

dvjj

�
ð1

0

2pv0?J2
n k½ �fs?dv0? þ ubs

ð1
�1

nXcsvjjfsjj
~x � vjjkjj � nXcs � ubsk?

dvjj

ð1
0

2pJ2
n k½ � @fs?

@v0?
dv0?

¼ � nXcs

k?
X 3An þ

nXcs

k?

X4

V2
ts?
An � ubsX3An þ ubs

X4

V2
ts?
An ¼ � n

2k?
a2Xcs

þ ubs

V2
ts?


 �
V2

ts?X 3 � X4

� �
An; (32)

Kyx ¼
ð1

0

ð1
�1

2pv0?Syx

~x � vjjkjj � nXcs � ubsk?
dvjjdv0? ¼ i

nXcs

k?

ð1
�1

kjj
~x � vjjkjj � nXcs � ubsk?

@fsjj
@vjj

dvjj

ð1
0

2pv02?Jn k½ �J0n k½ �fs?dv0?

�i
nXcs

k?

ð1
�1

ð~x � vjjkjj � ubsk?Þfsjj
~x � vjjkjj � nXcs � ubsk?

dvjj

ð1
0

2pv0?Jn k½ �J0n k½ � @fs?
@v0?

dv0? � iubs

ð1
�1

kjj
~x � vjjkjj � nXcs � ubsk?

@fsjj
@vjj

dvjj

�
ð1

0

2pv02?Jn k½ �J0n k½ �fs?dv0? � iubs

ð1
�1

nXcsfsjj
~x � vjjkjj � nXcs � ubsk?

dvjj

ð1
0

2pv0?Jn k½ �J0n k½ � @fs?
@vjj

dv0?

¼ i
nXcs

k?

V2
ts?k?
Xcs

X1Bn þ i
nXcs

k?

k?
Xcs
ð1� X2ÞBn þ i

ubsk?
Xcs

V2
ts?X1Bn � i

ubsk?
Xcs
X2Bn ¼ �Kxy; (33)

Kyy ¼
ð1

0

ð1
�1

2pv0?Syy

~x � vjjkjj � nXcs � ubsk?
dvjjdv0? ¼

ð1
�1

kjj
~x � vjjkjj � nXcs � ubsk?

@fsjj
@vjj

dvjj

ð1
0

2pv03?J02n k½ �fs?dv0?

þ
ð1
�1

ð~x � vjjkjj � ubsk?Þfsjj
~x � vjjkjj � nXcs � ubsk?

dvjj

ð1
0

2pv02?J02n k½ � @fs?
@v0?

dv0? ¼ �V2
ts?X 1

2n2

a2
An � a2Bn


 �
� ð1� X2Þ

2n2

a2
An � a2Bn


 �

¼ � V2
ts?X1 � X 2

� �
n2 2

a2
An � a2Bn


 �
� n2 2

a2
An þ a2Bn; (34)

Kyz ¼
ð1

0

ð1
�1

2pv0?Syz

~x� vjjkjj � nXcs� ubsk?
dvjjdv0? ¼ �i

ð1
�1

~x� nXcs� ubsk?
~x� vjjkjj � nXcs� ubsk?

@fsjj
@vjj

dvjj

ð1
0

2pv02?Jn k½ �J0n k½ �fs?dv0?

�i

ð1
�1

nXcsvjjfsjj
~x� vjjkjj � nXcs� ubsk?

dvjj

ð1
0

2pv0?Jn k½ �J0n k½ �@fs?
@v0?

dv0? ¼ i
V2

ts?k?
Xcs

X3Bn� i
k?
Xcs
X 4Bn ¼ i

k?
Xcs

V2
ts?X3�X4

� �
Bn;

(35)

Kzx ¼
ð1

0

ð1
�1

2pv0?Szx

~x � vjjkjj � nXcs � ubsk?
dvjjdv0? ¼

nXcs

k?

ð1
�1

vjjkjj
~x � vjjkjj � nXcs � ubsk?

@fsjj
@vjj

dvjj

ð1
0

2pv0?J2
n k½ �fs?dv0?

þ nXcs

k?

ð1
�1

vjjð~x � vjjkjj � ubsk?Þfsjj
~x � vjjkjj � nXcs � ubsk?

dvjj

ð1
0

2pJ2
n k½ � @fs?

@v0?
dv0? þ ubs

ð1
�1

vjjkjj
~x � vjjkjj � nXcs � ubsk?

@fsjj
@vjj

dvjj

�
ð1

0

2pv0?J2
n k½ �fs?dv0? þ ubs

ð1
�1

nXcsvjjfsjj
~x � vjjkjj � nXcs � ubsk?

dvjj

ð1
0

2pJ2
n k½ � @fs?

@v0?
dv0?

¼ � nXcs

k?
X 3An �

nXcs

V2
ts?k?

ðuds � X4ÞAn � ubsX3An þ
ubs

V2
ts?
X 4An ¼ Kxz � n

udsXcs

V2
ts?k?

An; (36)
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Kzy ¼
ð1

0

ð1
�1

2pv0?Szy

~x � vjjkjj � nXcs � ubsk?
dvjjdv0? ¼ i

ð1
�1

vjjkjj
~x � vjjkjj � nXcs � ubsk?

@fsjj
@vjj

dvjj

ð1
0

2pv02?Jn k½ �J0n k½ �fs?dv0?

þi

ð1
�1

vjjð~x � vjjkjj � ubsk?Þfsjj
~x � vjjkjj � nXcs � ubsk?

dvjj

ð1
0

2pv0?Jn k½ �J0n k½ � @fs?
@v0?

dv0? ¼ �i
V2

ts?k?
Xcs

BnX3 � i
k?
Xcs
Bn uds � X4ð Þ

¼ �Kyz � i
udsk?
Xcs
Bn; (37)

Kzz ¼
ð1

0

ð1
�1

2pv0?Szz

~x � vjjkjj � nXcs � ubsk?
dvjjdv0? ¼

ð1
�1

ð~x � nXcs � ubsk?Þvjj
~x � vjjkjj � nXcs � ubsk?

@fsjj
@vjj

dvjj

ð1
0

2pv0?J2
n k½ �fs?dv0?

þ
ð1
�1

nXcsv2
jjfsjj

~x � vjjkjj � nXcs � ubsk?
dvjj

ð1
0

2pJ2
n k½ � @fs?

@v0?
dv0? ¼ � X 5 �

X6

V2
ts?


 �
An: (38)

Note that
P

n nAn ¼
P
Bn ¼ 0 in Eqs. (30), (31), (34), (36),

and (37) due to the identity of the modified Bessel function.

It is also easy to extend the present dielectric permittivity

tensor to Maxwellian ring velocity distributions by replacing

the integrals over the velocity space perpendicular to the

ambient magnetic field (An and Bn) with the numerical ones

shown in Ref. 23.

IV. NUMERICAL TESTS

A. Electron cyclotron drift and modified two-stream
instabilities

As an unstable plasma, we assume that there are two ion

and one electron components drifting across magnetic fields

with different drift velocities. Such a situation is often

observed in the transition region of perpendicular collision-

less shocks where a part of upstream ions are reflected at the

shock front.13 The following physical parameters of the three

plasma components for the present linear analysis were

obtained in the shock foot region of a perpendicular colli-

sionless shock in the previous particle-in-cell simulation.14

There were incoming ions (with subscript “i”), reflected ions

(with subscript “r”), and electrons (with subscript “e”) in the

shock foot region. In order to make a direct comparison with

the previous study,14 we normalize the velocity and angular

frequency by the upstream thermal velocity and plasma fre-

quency of electrons, Vte1 and xpe1, respectively. The drift

velocity, the thermal velocity, and the angular frequency of

electrons are ube/Vte1¼ 0.32, Vte/Vte1¼ 1.75, and xpe/

xpe1¼ 1.76, respectively. The drift velocity, the thermal

velocity, and the angular frequency of incoming ions are ubi/

Vte1¼ 2.12, Vti/Vte1¼ 0.42, and xpi/xpe1¼ 0.26, respec-

tively. The drift velocity, the thermal velocity, and the angu-

lar frequency of reflected ions are ubr/Vte1¼�1.85, Vtr/

Vte1¼ 0.32, and xpr/xpe1¼ 0.24, respectively. The upstream

electron cyclotron frequency was Xce1/xpe1¼ 0.25, but the

local electron cyclotron frequency in the shock foot region

was Xce/xpe1¼ 0.92 by the compression of the upstream

plasma. A reduced ion-to-electron mass ratio mi/me¼ 25 was

used in the previous study.14 The value of the upstream ther-

mal velocity of electrons was assumed to be Vte1¼ 0.1c,

where c represents the speed of light. We use the secant

method as a complex-root finder to solve the dispersion Eq.

(25) numerically.23

Figure 3 shows the numerical solutions to the linear dis-

persion Eq. (25) for a three-component plasma in the foot

region of a perpendicular collisionless shock. It is again

noted that the linear dispersion relation was solved with the

coordinate transformation from the shock-rest frame to the

electron rest frame and that the ions were assumed to be

FIG. 3. Linear dispersion relations for a three-component plasma in the foot

region of a perpendicular collisionless shock.14 The x axis is parallel to the

direction of the particle drifts and is perpendicular to the ambient magnetic

field. (a) Higher frequency range (x>Xce), which corresponds to the elec-

tron cyclotron drift instability (ECDI). The angle of the wave vector relative

to the ambient magnetic field is 90�. (b) Low frequency range (x<Xce),

which corresponds to the modified two-stream instability (MTSI). The angle

of the wave vector relative to the ambient magnetic field is 64� for the

forward-propagating wave and 60� for the backward-propagating wave.
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unmagnetized in order to apply the standard linear dispersion

solvers in the previous study.14

Panel (a) shows the result for a higher frequency range

(x>Xce), which corresponds to the electron cyclotron drift

instability (ECDI). The angle of the wave vector relative to

the ambient magnetic field is 90�. We compare panel (a)

with Fig. 6(d) in Ref. 14 and find that these results are in

excellent agreement.

Panel (b) in Fig. 3 shows the result for a low frequency

range (x<Xce), which corresponds to the modified two-stream

instability (MTSI). The angle of the wave vector relative to the

ambient magnetic field is 64� for the forward-propagating wave

and 60� for the backward-propagating wave. We also compare

panel (b) with Fig. 5(d) in Ref. 14 and find that these results are

in excellent agreement.

B. Lower-hybrid drift instability

A linear analysis of the LHDI was conducted by

Davidson et al.17 In their study, ion and electron components

drifting across magnetic fields with different drift velocities

were assumed as an unstable plasma. In one of their numeri-

cal analysis, parameters were set as mi=me ¼ 1836; Ti=Te

¼ 1; xpe=xce ¼
ffiffiffiffiffiffiffiffi
125
p

; ubi ¼ �
ffiffiffi
2
p

Vti, and ube ¼
ffiffiffi
2
p

Vti and

they found a positive growth rate at a frequency equal to sev-

eral xLHR. We solved the linear dispersion Eq. (25) numeri-

cally with these parameters, but did not find any solution

with a positive growth rate. We also performed a two-

dimensional full particle-in-cell simulation with these parame-

ters in a uniform and doubly periodic system and confirmed

that no waves are excited. As described in Introduction,

Davidson et al. assumed unmagnetized ions and neglected har-

monic cyclotron resonance of electrons by setting n¼ 0 on the

order of the Bessel function.17 The present study suggests that

the unmagnetized ions enhanced the effect of the ion Landau

resonance artificially.

Next, let us consider a simple Harris current-sheet equi-

librium without a background component

Bz y½ � ¼ B0tanh
y

L

� �
; (39)

N y½ � ¼ N0 sech2 y

L

� �
: (40)

The parameters are assumed to be mi=me ¼ 512; Ti=Te

¼ 1; xpe0=Xce0 ¼ 5, and ri/L¼ 2 which are identical to those

of the previous study,18 where ri �
ffiffiffi
2
p

Vti=Xci0 is the ion

thermal gyro radius. The speed of light and the half-

thickness of the current layer are obtained as c/Vte¼ 10

and L/kDe¼ 80, where kDe�Vte/xpe is the Debye length.

Daughton found a positive growth rate of the LHDI in his

linear analysis at y/L¼ 0.5–2 and confirmed it by a two-

dimensional particle-in-cell simulation of the current sheet.18

It should be noted that the present study cannot be com-

pared with the previous study18 directly, since the present

study uses a coordinate system in the B0 – ub plane (i.e., z – x
plane with kz ¼ kjj; kx ¼ k?; ky ¼ 0 and h¼ 0), while the pre-

vious study18 used a coordinate system in the ub – (ub � B0)

plane (i.e., x – y plane with kz ¼ 0; kx ¼ k? cos h; ky

¼ k? sin h). In the previous study,18 it is difficult to distin-

guish between fluid instabilities due to the spatial inhomoge-

neity and velocity-space instabilities due to @f=@vjj or

@f=@v?, since the previous study considered the entire current

sheet and both instabilities can be generated. On the other

hand, the present study uses a local model where the back-

ground physical quantities are assumed to be uniform. Hence,

the present study deals only with the velocity-space instabil-

ities at a local position in the Harris sheet equilibrium.

The local drift velocity, angular plasma, and cyclotron

frequencies of electrons at y/L¼ 0.5 are ube/Vte¼ 0.125, xpe/

xpe0¼ 0.8868, and Xce/xpe0¼ 0.09242, respectively, and the

local drift velocity, angular plasma, and cyclotron frequencies

of ions at y/L¼ 0.5 are ubi/Vte¼�0.125, xpi/xpe0¼ 0.03919,

and Xci/xpe0¼ 1.8051� 10�4, respectively. Figure 4 shows

the numerical solutions to the linear dispersion Eq. (25) for a

two-component plasma at the Harris current sheet. Panel (a)

shows the result for wave modes with wave normal angles

quasi-parallel to the ambient magnetic field. The quasi-

parallel modes have the maximum growth rate at a frequency

x<xLHR and a wavenumber kjjdi � 2. The growth rate of

the exactly parallel mode is maximum, but the growth rate of

quasi-parallel modes is almost the same as that of the exactly

parallel mode. It is suggested that these quasi-parallel modes

are excited by an energy anisotropy between the parallel and

perpendicular kinetic energies of particles. We do not find

any solution to these modes for wave normal angles of >7�

relative to the ambient magnetic field.

FIG. 4. Linear dispersion relations for a two-component plasma at the

Harris current sheet.18 The z axis is parallel to the ambient magnetic field.

The x axis is perpendicular to the ambient magnetic field and is parallel to

the direction of the particle drifts. (a) Wave modes with wave normal angles

quasi-parallel to the ambient magnetic field. (b) Wave modes with wave nor-

mal angles quasi-perpendicular to the ambient magnetic field.
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Panel (b) shows the result for wave modes with wave

normal angles quasi-perpendicular to the ambient magnetic

field. The perpendicular mode has no positive growth rate. A

wave mode with a wave normal angle of �80� relative to the

ambient magnetic field has the maximum growth rate. These

modes have a large growth rate at a frequency x � xLHR and

a wavenumber k?
ffiffiffiffiffiffiffi
reri
p � 2, whose characteristics are simi-

lar to those of the LHDI at the intermediate scale but not

the same. In the present study, unstable modes exist neither

k?
ffiffiffiffiffiffiffi
reri
p � 1 nor k?re �1. The cyclotron resonance condition

of ions xLHR � nXci þ k?ubi is easily satisfied at k?
ffiffiffiffiffiffiffi
reri
p

� 2 (here, xLHR �22.5 Xci). We found that the electron

cyclotron resonance at n¼ 1 is dominant, while a wide range

of the ion cyclotron resonance at n¼ 1–23 contributes to the

positive growth rate of the LHDI. There is no positive

growth rate when the cyclotron resonance is neglected (i.e.,

n¼ 0 only). It is also found that the short wavelength that

mode at k?re �1 hardly satisfies the cyclotron resonance

condition with the present parameters.

We also performed a large-scale two-dimensional full

particle-in-cell simulation with these parameters in a uniform

and doubly periodic system and confirmed that the unstable

wave modes shown in Fig. 4 were excited.

V. CONCLUSION

A theoretical linear dispersion relation for plasma

with a drift across the magnetic field for a local model

was derived. Then, the dielectric permittivity tensor for

shifted Maxwellian velocity distributions is obtained by

using the plasma dispersion function and the modified

Bessel function. The linear dispersion relations of ECDI

and MTSI obtained by using the new dielectric permittivity

tensor are in excellent agreement with the previous

study.14 The linear dispersion relations of the LHDI with

an in-plane ambient magnetic field show the importance

of the cyclotron resonance of both ions and electrons at x
� xLHR. The extension of the present study to h 6¼ 0 cases

(with out-of-plane ambient magnetic field) is left as a

future study.

The obtained dielectric permittivity tensor can be easily

implemented to numerical linear dispersion solvers. Given

the successful tests of our solvers shown in this paper, the

present method would be applicable to various other targets

in collisionless plasma with a drift across magnetic field.
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