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Summary

Background: Parahaemophilia and haemophilia A (HA) are distinct hereditary bleeding disorders

caused by gene defects of factor V (FV) and factor VIII (FVIII), respectively. Simultaneous

deficiency of FV and FVIII is assumed to be combined FV/FVIII deficiency (F5F8D), that is an

autosomal recessive bleeding disorder caused by mutations in LMAN1 or MCFD2. We reported here

a Japanese family with simultaneous FV/FVIII deficiency by coinheritance of FV deficiency and

FVIII deficiency, but not by F5F8D.

Patients and Methods: Proband was 62-year-old man initially diagnosed as F5F8D, because his

plasma levels of FV and FVIII activities were 30% and 2% of normal. Those of his younger brother

and daughter were 33% and 19%, and 56% and 42%, respectively. We analysed their genomic DNAs

by direct sequencing for F5, F8, LMAN1 and MCFD2. In addition, we performed thrombin

generation assay (TGA) to estimate whole blood clotting activity. This study was approved by the

institutional committee for research ethics, and the written informed consent was obtained from all

participants.

Results and Discussion: In all patients analysed, we identified a nonsense mutation in F5

(c.1600C>T, p.R534*) and a missense mutation in F8 (c.6506G>A, p.R2169H), both of which have

been previously reported. There was no mutation causing F5F8D in LMAN1 or MCFD2. We detected



the FV R2 haplotype which consisted of multiple nucleotide substitutions on one allele of P1 and

P2, but not P3. In the TGA, P1 showed lower peak and lesser ETP values than normal, but shorter

tt-peak, higher peak and larger ETP values than the comparative HA patient with the same F8

mutation of P1, which may result in more rapid haemostasis than the comparative HA patients.

Conclusions: Mutations found in F5 and F8 were inherited independently in this family, resulting

in an unprecedent disease of moderate HA combined with parahaemophilia. This is the first report

of rare coinheritance of congenital FV and FVIII deficiencies.



Introduction

Factor V (FV) and Factor VIII (FVIII) are essential glycoproteins in blood coagulation acting as

cofactors in prothrombin and factor X activations, respectively. Congenital FV deficiency

(parahaemophilia) is a rare (1 in 1,000,000 births) autosomal recessive bleeding disorder caused by

decrease in FV activity resulting from various mutations of the FV gene (F5) [1, 2, 3, 4]. The most

common symptoms are mucosal and posttraumatic bleeding, whereas haemarthroses and muscle

haematomas are less frequently observed and life-threating haemorrhages are rare [5].

Congenital FVIII deficiency (Haemophilia A: HA) is an X-linked recessive bleeding disorder

caused by various mutations in the FVIII gene (F8) with estimated occurrence of 1 in 5,000 male

births, which is the most common congenital bleeding disorder worldwide [6]. Accurate laboratory

diagnosis and classification according to disease severity are critical prerequisites for therapeutic

intervention [7]. HA is classified according to residual FVIII activity as severe (<1%), moderate

(1-5%) and mild(<5-40%) [8, 9].

On the other hand, combined deficiency of FV and FVIII (F5F8D) is an autosomal recessively

bleeding disorder caused by mutations in either LMAN1 (lectin mannose-binding 1 [LMANL1] gene)

or MCFD2 (multiple coagulation factor deficiency 2 [MCFD2] gene) [10, 11], and is clinically

distinguished from chance coinheritance of HA and FV deficiency. F5F8D is characterized by a



mild-to-moderate bleeding tendency with simultaneous decreases of FV and FVIII to 5 to 30% of

normal in plasma [12, 13].

Prevalence of F5F8D is estimated to be rare (1 in 1,000,000 births) in the general population, but

an increased frequency is observed in regions where consanguineous marriages is practiced [14].

LMANL1 is a mannose-selective lectin cycling between the endoplasmic reticulum (ER) and the ER-

Golgi intermediate compartment (ERGIC) [15, 16], and forms a Ca?'-dependent complex with

MCFD2, which is a small soluble protein having an EF-hand domain that interacts with LMAN1

[10, 17]. The LMAN1-MCFD2 complex is proposed as a cargo receptor that transports FV and

FVIII from the ER to the Golgi [10, 18, 19]. Furthermore, Nishio et al. reported that MCFD2 but

not LMAN1 may undergoes significant conformational alterations upon complex formation and

provided a structural basis for the cooperative interplay between LMAN1 and MCFD2 in capturing

FV and FVIII [20]. Thus, mutations in LMAN1 or MCFD2 are responsible for simultaneous

deficiency of FV and FVIII. However, the possibility of additional locus heterogeneity and the

involvement of a third F5F8D gene was also pointed out [21].

Coinheritance of parahaemophilia and HA is indistinguishable from F5F8D by laboratory

coagulation tests and clinical symptom, but it is extremely rare due to the low frequency of both

disorders in general population as mention above. Ultimate confirmation of F5F8D comes from



mutation identification in either LMAN1 or MCFD2, whereas parahaemophilia and HA are

confirmed by identification of abnormality in F5 and F8, respectively. However, no routine genetic

testing is currently available for these bleeding diseases, especially mutation analysis for F5F8D is

done on a research basis in several medical centres. In this study, we performed genetic analysis of

a Japanese family with simultaneous deficiency of FV and FVIII, and confirmed the decreases of

FV and FVIII activities resulted from coinheritance of FV deficiency and FVIII deficiency not by

F5F8D, in other word, this family is a rare case of moderate HA combined with FV deficiency.



Materials and Methods

Patients

Proband (P1) was 62-year-old man initially diagnosed as F5F8D, because his plasma levels of

FV:C and FVIII:C were 30% and 2% of normal, respectively. He had clinical history of FVIII

replacement therapy at tooth extraction bleeding and right upper arm hematoma, and also suffered

from hepatitis C virus infection. His younger brother (P2) was 59-year-old man and showed similar

low plasma levels of FV and FVIII (33% and 19%). He had liver cirrhosis, hepatocellular carcinoma,

hypertension and esophageal varices. And proband’s daughter (P3) was also seen deficiency of FV

and FVI1I1 activity (50% and 46%) (Fig.1). Later on, his maternal cousin (not included in this study)

was found to be mild HA without FV deficiency, and we suspected that their FV/FVIII deficiency

could be caused by abnormalities in both F5 and F8, not F5F8D. Therefore, we analysed F5, F8,

LMAN1 and MCFD?2 to accurately diagnose this family disease. The study was approved by the

Institutional Committee for Research Ethics, and all participants participate with written informed

consents.

DNA sequencing analysis of F5, F8, LMAN1 and MCFD?2

The genomic DNA samples were isolated from peripheral blood leukocytes by established
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methods [22]. We amplified all exons and intron—exon junctions of F5, F8, LMAN1 and MCFD?2 by

polymerase chain reaction (PCR) using respective gene-specific primers and KOD FXneo DNA

polymerase (Toyobo Co., Ltd., Osaka, Japan) or AmpliTag Gold Mix (Applied Biosystems, Thermo

Fisher Scientific Inc) as described previously [23,24]. PCR products were analysed on 1.5% agarose

gel electrophoresis with 1 pg/ml of ethidium bromide, purified using QIAEX Il (QIAGEN, GmbH,

Germany), and subjected to direct cycle sequence analysis using BigDye Terminator v3.1 Cycle

Sequencing kit (Applied Biosystems, Foster City, USA) and ABI PRISM 310 Genetic Analyzer.

Activity and antigen measurement of FV and FVIII, and thrombin generation assay (TGA)

We measured the FV and FVIII activities using one stage clotting assay. FV and FVIII antigens

were quantified using enzyme-linked immunosorbent assay (ELISA) kit (Cedarliane Laboratories

Ltd., Hornby, Ontario, Canada) and VisuLize™ FVIII Antigen Kit (Affinity Biologicals Inc.,

Ancaster, Ontario, Canada) according to the manufacturers’ instructions, respectively. In addition,

we performed thrombin generation assay (TGA) to estimate whole blood clotting activity of P1,

normal subject, and two other comparative HA patients with the same F8 mutation as P1. The

calibrated automated thrombography (CAT, Thrombinscope BV: Thermo Fisher Scientific, MA,

USA) was used for TGA using citrated platelet poor plasma (PPP). Thrombin generation curves and
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the area-under-the-curve (endogenous thrombin potential, ETP) were calculated using the

Thrombinoscope TM software. Lag time, time to peak (tt-peak), peak thrombin and ETP were

adopted by endpoint parameters.
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Results and Discussion

Proband (P1) was initially diagnosed as F5F8D due to a decreased FV:C (30%) and FVIII:C (2%).

His brother (P2) and daughter (P3) also had low FV:C and FVIII:C (Fig.1). We performed sequence

analysis of all exons of F5, F8, LMAN1 and MCFD, including exon/intron boundaries, by direct

sequencing using genome DNAs. We did not find any causative mutations leading to F5F8D in

LMAN1 or MCFD2; however, we identified causative mutations in F5 and F8, both of which were

previously reported mutations [25, 26].

In F5, a heterozygous nonsense mutation (¢.1600C>T, p.Arg534%*) in exon 10, previously reported

as a nonsense mutation located on the same amino acid position of FV Leiden (FVL) mutation

(Arg506GIn: p.Arg534GIn, ¢.1601G>A), according to the nomenclature recommended by the

Human Genome Variation Society) [25], was identified in all three patients (Fig. 2A). The codon

of 534Arg (CGA) contained a CpG dinucleotide known as one of the hotspots for gene mutation;

therefore, ¢.1600C>T and ¢.1601G>A mutations seemed to be relatively frequent to occur. This

nonsense mutation appeared to be truncated, resulting in premature termination of FV translation

into a non-functional protein. However, the mutated FV may not be present in plasma due to

intracellular degradation of aberrant truncated FV and/or nonsense decay of mutant FV mRNAs.

In F8, we identified a causative missense mutation (¢c.6506G>A, p.Arg2169His) in exon 23, P1
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and P2 were hemizygous for this missense mutation, and P3 was a carrier (Fig. 2B). This F8

mutation occurred at CpG dinucleotide of the gene mutation hotspot, and many cases were

previously reported as a mild HA [26]. The 2169Arg of FVII11 is a surface-exposed residue located

on C1 domain and a well-conserved amino acid among species. It has been reported that the C1 and

C2 domains contribute to von Willebrand factor (VWF) binding for circulating FVIII stabilization

and the p.Arg2169His mutation is associated with reduction of VWF binding [27, 28]. Liu et al.

reported that Arg2169Cys decreased FVIII-VWEF binding less than 1% of normal [27]. Currently,

103 cases with this mutation have been reported in the Leiden Open Variation Database 3.0

(https://databases.lovd.nl/shared/genes/F8) and it is one of the most frequent mutations causing

mild or moderate HA worldwide. Thus, the reduction in FVIII activity in this family seemed to be

caused by p.Arg2169His leading to instability of FVIII.

In contrast, there was no causative mutation in LMAN1 or MCFD2 leading to F5F8D. To date,

extensive genetic analyses of F5F8D patients have revealed many causative mutations in LMAN1

and MCFD2. It has been showed that about 70% of F5F8D patients have mutations in LMANL1 and

the other 30% in MCFD2 [17, 24]. But in few cases, the genetic factor causing simultaneous

deficiency of FV and FVIII is still unclear [21]. We presented here that the chance coinheritance

of congenital deficiencies of FV and FVIII is quite rare but could be the third candidate for the
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simultaneous deficiency of FV and FVIII. Thus, mutations found in F5 and F8 of the proband were

independently inherited in this family, resulting in an unprecedented rare case with parahaemophilia

and moderate HA. In our knowledge, this is the first report of such a rare case of simultaneous

deficiency of FV and FVIII caused by coinheritance of parahaemophilia and moderate HA, not by

mutations in LMAN1 or MCFD2. In some of the cases of combined deficiency of coagulation FV

and FVIII, it is necessary to analyse gene defects not only in LMAN1 and MCFD2, but also in F5

and F8. In a typical F5F8D patient due to mutation in LMAN1 or MCFD2, both FV:C and FVIII:C

are both mildly decreased. Taken together with our data, it was suggested that if there was a

significant difference between FV and FVIII activities, independent mutations in F5 and F8 may

be suspected.

To evaluate the haemostatic functions leading to the clinical symptoms, we compared several

clotting assay parameters of P1 with those of comparative HA patients with the same F8 mutation

(Table 1). Although P1 had similar values of FVIII antigen and activity to the comparative HA

patients, he showed very mild bleeding tendency and haemophilia arthropathy with an apparently

better joint score [29], despite moderate HA. In TGA, P1 showed lower peak and lesser ETP values

than the normal subject; however, he showed shorter tt-peak, higher peak and larger ETP values

than the comparative HA patients, which may lead to more rapid haemostasis than the comparative
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HA patients (Fig. 3). In addition, we performed haplotype analysis of F5 and detected an FV R2

haplotype consisting of multiple nucleotide substitutions in the other allele without FV nonsense

mutation in both P1 and P2, but not in P3 (Table 2).

FV R2 haplotype is a common genetic variation among several distinct populations [30] and the

allelic frequency of FV R2 haplotype in the Japanese population was calculated to be 5.3% [31].

Plasma-based assays revealed that the FV R2 haplotype was associated with mild activated protein

C (APC) resistance [32, 33]. APC resistance is the most common hereditary thrombotic disorder

among Caucasians, especially the majority of these cases are caused by variant of the FV molecule,

known as the famous FVL [34]. FVL mutation causes APC resistance by reducing the susceptibility

of activated FV (FVa) to APC-mediated inactivation and additionally impairing APC cofactor

activity of FV in activated FVIII (FVIIIa) inactivation, leading to thrombotic tendency. In our cases

(P1 and P2), since FV expression of one allele was abolished by nonsense mutation, only FV derived

from the other allele with a mild APC resistance R2 haplotype seemed to be present, alleviating the

bleeding tendency. Similarly, a pseudo-homozygous patient for APC resistance exhibiting both

nonsense and FV Leiden mutations, who did not suffer from any bleeding episodes, but reported

one episode of thrombophlebitis, was reported [35]. However, further studies and long-term clinical

evaluation are needed to elucidate the confident association between FV and FVIII abnormalities
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and clinical symptoms in our cases.

Conclusions

We reported here the first report of a rare case of coinheritance of congenital FV and FVIII

deficiencies. Mutations found in F5 and F8 were inherited independently in this family, resulting

in an unprecedent disease of parahaemophilia combined with moderate HA. We proposed that a

chance coinheritance of congenital FV and FVIII deficiencies could be the third mechanism for

inherited F5F8D.
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Figure legends

Fig 1. Pedigree of cases suspected of combined FV/FVIII deficiency.
The proband (P1: black arrow) was suspected of combined FV/FVIII deficiency, due to his low
values of both FV:C and FVIII:C. In addition, the brother (P2) and daughter (P3) of the proband

also had low values of both FV:C and FVIII:C.

Fig 2. DNA sequences around mutations in F5 and F8.

A. Sequence analysis of F5. Nucleotides and predicted amino acids sequences surrounding the
mutation of exon 10 in the F5. Arrows indicate the site of mutation. The mutation was a C-to-T
transition at nucleotide 1600, leading to a substitution of CGA (Arg) with TGA (Stop Codon) at
codon 534 (c.1600C>T, p.Arg534*), which was heterozygous in all three patients.

B. Sequence analysis of F8. Nucleotides and predicted amino acids sequences surrounding the
mutation of exon 23 in the F8. Arrows indicate the site of mutation. The mutation was a G-to-A
transition at nucleotide 6506, leading to a substitution of CGT (Arg) with CAT (His) at codon

2169 (c.6506G>A, p.Arg2169His), which was hemizygous in P1 and P2, and heterozygous in P3.

Fig 3. TGA of the proband and comparative HA patients.

The thrombin generation assay (TGA) was performed using plasmas of the proband (P1) and the
comparative HA patients (A and B) with the same mutation in F8. P1 showed lower peak and lesser
ETP values than normal pooled plasma (NPP); however, he showed shorter tt-peak, higher peak and

larger ETP values than comparative HA patients.
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Table 1. Clinical characteristics and clotting assay parameters.

Age BMI Joint Score®™ PT (sec) APTT (sec) FVIIEC (%) FVIIEAg (%)

P1 62 32.7 0 12.4 72.9 2 1.8
Comparative Patient A 70 25.1 9 11.0 59.1 4 3.4
Comparative Patient B 63 16.9 7 10.9 49.9 7 0.9

*, Pettersson et al. [29]
We compared clinical characteristics and several clotting assay parameters of P1 with those of comparative HA patients with the

same mutation in F8.
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Table 2. Mutation and polymorphism analysis in F5 including FV R2 haplotype.

Locate Nucleotide Amino acid P1 alleles P2 alleles P3 alleles
* R2 * R2 *
Exon 2 C.237A>G p.GIn79= G A G A G G
Exon 4 c.405G>A p.Alal35= G A G A G G
Exon 4 €.552G>T p.Serl84= G T G T G G
Exon 8 €.1238T>C p.Met413Thr T C T C T T
Exon 9 €.1380C>T p.Asn460= C T C T C C
Exon 10 €.1538G>A p.Arg513Lys G G G G G A
Exon 10 c.1600C>T p.Arg534” T C T C T C
Exon 11 c.1716G>A p.Glu572= G A G A G G
Exon 12 €.1926C>A p.Thr642= Cc A C A C C
Exon 13 €.2289A>G p.Glu763= A G A G A A
Exon 13 €.2450A>C p.Asn817Thr A C A C A A
Exonl3 c.3804T>C p.Ser1268= T C T C T T
Exonl3 €.3853C>A p.Leul285lle C A C A C A
Exonl3 €.3980A>G p.His1327Arg A G A G A A
Exonl3 c.4189C>T p.Leul397Phe C C C C C T
Exonl6 €.5290A>G p.Met1764Val A G A G A A

* Nonsense allele; R2, FV R2 haplotype allele.

Numerous single nucleotide polymorphisms including FV R2 haplotype were observed in F5 of P1, P2 and P3 together with
nonsense mutation (c.1600C>T, p.Arg534*). P1 and P2 had the nonsense mutation in one allele and FV R2 haplotype mutations in

the other allele.
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Fig 1. Pedigree of cases suspected of combined FV/FVIII deficiency.

O

P1 P2

f 62-yo 59-yo
FV:C 30% FV:C 33%
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p3()
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FV:C 50%
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Fig 2. DNA sequences around mutations in F5 and FS8.

A c.1600

4
Patient 1

Asp Arg Arg  Gly lle
Normal GACAGGCGA GGAATA
U
Mutant GACAGGTGAGGA ATA

Asp Arg Stop

(F5 exon 10: ¢.1600C>T, p.Arg534*)

c.6506

s NN

Tyr lle Arg Leu His

Normal TAC ATC CGT TTG CAC
<&

Mutant TAC ATC CAT TTG CAC

Tyr lle His Leu His

(F8exon 23: ¢c.6506G>A, p.Arg2169His)
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Fig 3. TGA of the proband and comparative HA patients.
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