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Relaxation functions of the Ornstein-Uhlenbeck process with fluctuating diffusivity
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We study the relaxation behavior of the Ornstein-Uhlenbeck (OU) process with time-dependent and fluctuating
diffusivity. In this process, the dynamics of the position vector is modeled by the Langevin equation with a
linear restoring force and a fluctuating diffusivity (FD). This process can be interpreted as a simple model
of relaxational dynamics with internal degrees of freedom or in a heterogeneous environment. By utilizing
the functional integral expression and the transfer matrix method, we show that the relaxation function can
be expressed in terms of the eigenvalues and eigenfunctions of the transfer matrix for general FD processes.
We apply our general theory to two simple FD processes where the FD is described by the Markovian two-state
model or an OU-type process. We show analytic expressions of the relaxation functions in these models and
their asymptotic forms. We also show that the relaxation behavior of the OU process with an FD is qualitatively
different from those obtained from conventional models such as the generalized Langevin equation.
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I. INTRODUCTION

Recently, diffusion of Brownian particles with time-
dependent and fluctuating diffusivity has been studied ex-
tensively in many contexts such as in heterogeneous envi-
ronments and a simple model of normal yet non-Gaussian
diffusion [1–11]. (The anomalous diffusion behavior of time-
dependent diffusivity models has been also studied [12,13].)
The Langevin equation with a time-dependent and fluctuating
diffusivity exhibits nontrivial diffusion behavior. If the system
is in equilibrium, the ensemble-averaged mean-square dis-
placement (MSD) reduces to just a normal diffusion which is
the same as the simple Brownian motion. However, this does
not mean that the diffusion behavior can be expressed as a nor-
mal and Gaussian process. If we consider the (time-averaged)
MSD data for individual realizations, the distribution of MSD
data around their ensemble-average does not obey the Gaus-
sian distribution. This is because the thermal noise becomes
non-Gaussian due to the multiplicative coupling between the
fluctuating diffusivity (FD) and the Gaussian noise. The non-
Gaussian nature becomes evident if we consider the higher-
order correlation functions. For example, we have shown that
the relative standard deviation of the time-averaged MSD (the
square of which is also known as the ergodicity breaking
parameter [14,15]) can be related to the correlation function
of an FD [7].

The concept of the FD seems to be useful in studying
the microscopic dynamical behavior of molecules with an
internal degrees of freedom and/or in heterogeneous envi-
ronments. For example, protein dynamics has many internal
degrees of freedom and the conformational dynamics exhibits

non-single-exponential-type relaxation behavior [5,16,17].
The diffusivity of the center of mass of an entangled
polymer depends on the end-to-end vector of the polymer
chain [7,18,19]. A molecule in a supercooled liquids exhibits
heterogeneous and fluctuating diffusion behavior, which is
known as dynamic heterogeneity [20–22]. We expect that
other dynamical behavior, such as the relaxation behavior, in
these systems reflects their FDs.

Unfortunately, from the viewpoint of experiments, the
direct observations of MSDs of individual molecules are not
easy in some systems. Instead of the direct observations of in-
dividual molecules, macroscopic measurements of relaxation
functions (response functions) are useful. The macroscopic
relaxation functions can be measured by imposing an external
perturbation on the system and monitoring the response of the
system. The linear-response theory gives the relation between
the time-correlation function of microscopic variables and the
macroscopic response function [23]. Thus we can study
the microscopic molecular-level dynamics from the macro-
scopic response functions. For example, we can investigate
the microscopic molecular dynamics of polymers from the
experimental data of the dielectric relaxation function (the
response function of the electric flux to the imposed electric
field) and the relaxation modulus (the response function of the
stress to the imposed strain) [24,25].

At the molecular level, we expect that the relaxation
dynamics can be described by a Langevin equation with a
restoring force. The Ornstein-Uhlenbeck (OU) process [26] is
the simplest model to describe such dynamics. For example,
in the harmonic dumbbell model for a polymer, the dynamics
is described as an OU-type process. The dynamics of a
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colloidal particle under an optical tweezer can also be mod-
eled as an OU-type process. If a molecule or a particle is in a
heterogeneous environment (such as a supercooled liquid), we
expect that the relaxation behavior is affected by an FD arising
from the heterogeneity. The relaxation behavior of a polymer
or a colloidal particle in a supercooled environment will be
affected by both a restoring force and a heterogeneous envi-
ronment. The dynamics of a protein may also be interpreted
as relaxation dynamics under a heterogeneous environment.

Thus we expect that the relaxation behavior of the sys-
tems with FDs would be informative in modeling and/or
analyzing the microscopic molecular dynamics of polymers
and supercooled liquids. However, the relaxation behavior
of the Langevin equation with an FD has not been studied
in detail. In this work we consider an OU-type process
with a time-dependent and fluctuating diffusivity as a simple
and analytically tractable relaxation model with an FD. We
analyze relaxation functions theoretically and show that the
relaxation functions are strongly affected by the dynamics of
the diffusivity. We give a formal expression for the relaxation
function for a general Markovian dynamics of diffusivity. We
show that the form of the relaxation function is determined as
a result of the competition between the relaxation (diffusion)
dynamics in the OU process and the transition dynamics of
the FD. Then we apply our result to two simple and solvable
models. One is the Markovian two-state model where the
diffusivity can take only two different values. The other is
the OU-type model where the noise coefficient obeys an OU
process. We discuss the properties of the relaxation functions
by the OU process with an FD and possible applications of
our theoretical results to the analyses of experimental data.

II. MODEL

We consider the dynamics of a position in a d-dimensional
space r. This position can be interpreted as the position
of a tagged particle in the system or a bond vector which
connects two particles (in the dumbbell model [27]). In both
cases, at the mesoscopic scale, the dynamics of the position
can be reasonably described by the Langevin-type equation.
We consider the dynamics of a particle or a bond vector in
a heterogeneous environment, where the diffusivity (or the
mobility) fluctuates in time. The effect of the inertia term
in a dynamic equation is generally small at the mesoscopic
scale and thus we can safely ignore the inertial term (the over-
damped limit). As a simple model to describe such systems,
we employ the Langevin equation with an FD [7]

dr(t )

dt
= D(t )

kBT
F(r, t ) +

√
2D(t )www(t ). (1)

Here kB is the Boltzmann constant, T is the temperature,
D(t ) is a time-dependent and fluctuating diffusivity, F(r, t )
is the force for the position, and www(t ) is the Gaussian white
noise. We limited ourselves to the case where the diffusion
coefficient is given as a scalar quantity. (In general, the
diffusion coefficient is a tensor quantity [7,28].) From the
fluctuation-dissipation relation of the second kind, the first
and second moments of the Gaussian noise www(t ) are 〈www(t )〉 =
0 and 〈www(t )www(t ′)〉 = 1δ(t − t ′), where 〈· · · 〉 represents the
statistical average and 1 is the unit tensor in d dimensions. We
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FIG. 1. Example of a realization of the stochastic process which
obeys the OUFD in one dimension x(t ). The solid black curve
represent the position x(t ) at time t and the background colors
represents the diffusivity D(t ). The position is fluctuating around the
origin x = 0 (dashed black line) due to the restoring force.

assume that the dynamics of D(t ) is statistically independent
of the noise www(t ). Namely, the dynamics of D(t ) is statistically
not affected by the dynamics of r(t ).

Equation (1) can be interpreted as a simplified model for
the dynamics of supercooled polymer melts [29,30] or trapped
Brownian particles in heterogeneous environments [31–33].
For the case of a polymer chain in a supercooled melt, we con-
sider the end-to-end vector as the bond vector and the effective
potential can be expressed as a harmonic potential [19]. For
the case of a trapped Brownian particle, we consider the
situation where the Brownian particle is trapped by an optical
tweezer. The effective potential by an optical tweezer can be
approximated well by a harmonic potential [34]. Thus we
assume that the force in Eq. (1) is derived from a harmonic
potential U (r) = αkBT r2/2, where α is constant. (If the force
is purely entropic, α is independent of the temperature T [19].
However, in general, α depends on the temperature. Fortu-
nately, the explicit form of α and its temperature dependence
is not important for the analysis in this work.) The force
becomes F = −∂U (r)/∂r = −αkBT r and Eq. (1) reduces to
the following OU process with an FD (OUFD):

dr(t )

dt
= −αD(t )r(t ) +

√
2D(t )www(t ). (2)

We show an example of the OUFD process in Fig. 1. If D(t )
is constant, Eq. (2) reduces to a usual OU process [26] and
we can easily analyze it. (As clearly observed in Fig. 1, the
fluctuation of the diffusivity qualitatively affects the stochastic
process and thus generally the OUFD behaves in a different
way from a usual OU process.)

To fully describe the OUFD, we need a dynamic equation
for D(t ). We assume that the dynamics of D(t ) obeys a
Markovian stochastic process and D(t ) is sampled from the
equilibrium ensemble. (The effect of nonequilibrium initial
ensembles to the OU process with a constant diffusivity
was recently studied [35].) For example, we can employ a
Markovian jump processes between several discrete states for
the diffusivity or a Langevin equation for the diffusivity. In
any case, as long as the process is Markovian, we can for-
mally express the time-evolution equation for the probability
distribution of D by a master equation as

∂P(D, t )

∂t
= L̂P(D, t ), (3)
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where P(D, t ) is the probability distribution of D at time t and
L̂ is a linear operator (such as the Fokker-Planck operator and
the transition matrix [26]). Alternatively, more generally, we
assume that the diffusivity D(t ) is obtained from a Markovian
variable ξ (t ) as D(t ) = D(ξ (t )) and that its probability distri-
bution follows a master equation

∂P(ξ, t )

∂t
= L̂P(ξ, t ). (4)

Note that Eq. (3) is a special case for which D(t ) = ξ (t ).
To study the relaxational behavior of the OU process, we

consider the following relaxation function:

�(t ) ≡ 〈r(t ) · r(0)〉
〈r2(0)〉 . (5)

Here it should be noticed that the statistical average 〈· · · 〉 is
taken for both the noise www(t ) and the diffusion coefficient
D(t ). In this work we take the statistical average of www(t )
before that of D(t ). The order of two statistical averages does
not affect the results in most cases, including the equilibrium
systems. Equation (5) can be interpreted as the normalized
relaxation function of r(t ). If we interpret r(t ) as the bond
vector and it has an electric dipole, Eq. (5) can be related to
the dielectric relaxation function [24]. If we interpret r(t ) as
the position of a trapped particle, Eq. (5) can be related to the
ensemble-averaged MSD as

〈[r(t ) − r(0)]2〉 = 2〈r2(0)〉[1 − �(t )]. (6)

Therefore, if the relaxation function �(t ) exhibits some non-
trivial properties, we will observe them via the ensemble-
averaged MSD. This is in contrast to the case without a trap
potential, where the ensemble-averaged MSD exhibits just a
normal diffusion.

We calculate the relaxation function �(t ) for the OUFD,
from Eqs. (2) and (5). By integrating Eq. (2) from time 0 to t ,
we have

r(t ) = exp

[
−α

∫ t

0
dt ′D(t ′)

]
r(0)

+
∫ t

0
dt ′ exp

[
−α

∫ t

t ′
dt ′′D(t ′′)

]√
2D(t ′)www(t ′). (7)

Because D(t ), www(t ) (for t > 0), and r(0) are statistically
independent of each other, we take the average over www(t ) and
r(0). Then we have

〈r(t ) · r(0)〉 =
〈
exp

[
−α

∫ t

0
dt ′D(t ′)

]〉
〈r2(0)〉 (8)

and

�(t ) =
〈
exp

[
−α

∫ t

0
dt ′D(t ′)

]〉
. (9)

For comparison, we also consider another relaxation func-
tion defined as

�(t ) ≡ 〈[rx(t )ry(t )][rx(0)ry(0)]〉
〈[rx(0)ry(0)]2〉 . (10)

We have assumed that the dimension of the space is at least
2 (d � 2). Equation (10) can be interpreted as the normal-
ized relaxation function of the off-diagonal component of a

second-rank tensor r(t )r(t ). If we interpret r(t ) as a bond
vector, the relaxation function �(t ) can be related to the
relaxation modulus (the viscoelastic relaxation function) [24].
The relaxation function �(t ) can be calculated in a similar
way to �(t ). From Eq. (7) we have

〈rx(t )ry(t )rx(0)ry(0)〉 =
〈
exp

[
−2α

∫ t

0
dt ′D(t ′)

]〉

× 〈
r2

x (0)r2
y (0)

〉
(11)

and thus

�(t ) =
〈
exp

[
−2α

∫ t

0
dt ′D(t ′)

]〉
. (12)

If D(t ) is constant, �(t ) can be related to �(t ) simply as
�(t ) = �(2t ) = �2(t ). Thus the two relaxation functions are
essentially the same. However, in the case of the OUFD, the
relation between �(t ) and �(t ) is generally not that simple.

So far, the calculation of the relaxation functions �(t )
and �(t ) was rather straightforward [Eqs. (9) and (12)].
However, to obtain the explicit expression of these relaxation
functions, we need to evaluate the ensemble averages of the
state-dependent relaxation functions, which seem not to be
trivial. Because the relaxation functions �(t ) and �(t ) have
almost the same form, in the following we mainly consider
the relaxation function �(t ) unless explicitly stated. Once we
have the analytic expression for �(t ), one for �(t ) can be
easily obtained by replacing α by 2α. From Eq. (9) the relax-
ation function can be calculated if the statistics of the integral∫ t

0 dt ′D(t ′) is known. There are several different methods to
evaluate Eq. (9). In this work we will utilize the transfer
matrix method [36–38], but other methods can be employed as
well. For example, from the viewpoint of the renewal theory,
Eq. (9) can be related to the statistics of the occupation time
or the magnetization [39,40]. Thus we can utilize the methods
developed in the field of the renewal theory to analyze the
relaxation function. The analysis based on the renewal theory
will be discussed elsewhere [41]. Also, the propagator for
a free Brownian particle with an FD has a similar form to
Eq. (9) [10]. Thus the analysis for a free Brownian motion
would also be utilized to analyze the relaxation function and
vice versa.

III. THEORY

To evaluate the statistical average over an FD, we in-
troduce the path probability [42] which gives the statisti-
cal weight for a certain realization of D(t ) or ξ (t ). We
express the diffusion coefficient as D(t ) = D(ξ (t )), where
ξ (t ) is a Markovian stochastic process [Eq. (4)]. [The
stochastic process ξ (t ) can be both a continuum stochas-
tic process and a discrete jump process.] The path prob-
ability is expressed as a functional of ξ (t ) and we de-
scribe it as P[ξ ]. The relaxation function �(t ) (9) can be
rewritten as

�(t ) =
∫

Dξ exp

[
−α

∫ t

0
dt ′D(ξ (t ′))

]
P[ξ ], (13)

where
∫
Dξ represents the functional integral (or the path

integral) over the stochastic variable ξ (t ) [42,43]. We
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assume that the measure of the functional integral is
determined appropriately so that the total probability be-
comes unity. Equation (13) has a form similar to the par-
tition function for the Ginzburg-Landau (GL) model in a
one-dimensional space [44]. (In the GL model, the free en-
ergy of a system is expressed as a functional of the order
parameter field ψ (x), as F[ψ]. Under a constant external
field which is conjugate to the order parameter h, an extra
term

∫
dx hψ (x) is added to the free-energy functional. The

partition function under the external field is expressed as Z =∫
Dψ exp[−(h/kBT )

∫
dx ψ (x) − F[ψ]/kBT ], which has the

same form as Eq. (13).) In analogy to the GL model, α and
D(ξ (t )) can be interpreted as an external field and the order
parameter which is conjugate to the applied external field,
respectively. (This situation would be similar to the Martin-
Siggia-Rose formalism [45].) This analogy leads us to employ
techniques developed for the GL model, such as the transfer
matrix method.

We rewrite the path probability as P[ξ ] = exp(−S[ξ ]),
where S[ξ ] is the dimensionless action functional [46]. (In
analogy to the GL model, this action functional can be in-
terpreted as the free-energy functional without an applied
external field.) For convenience, we consider the discretized
process for the diffusivity. Namely, we discretize time t as
t j = j	 (with 	 the time step size) and approximate the
function ξ (t ) by the set of discrete points ξ j ≡ ξ (t j ). Due to
the Markovian nature, the action functional can be rewritten
as

S[ξ ] ≈ 	
∑

j

s(ξ j+1, ξ j ), (14)

where s(ξ j+1, ξ j ) is a function of ξ j+1 and ξ j . The functional
integral can also be rewritten as

∫
Dξ · · · ≈ ∫ ∏

j dξ j · · · . For
simplicity, we assume that t/	 is a positive integer. Then we
can rewrite Eq. (13) as follows:

�(t ) ≈
∫ t/	∏

j=0

dξ j exp

⎡
⎣−	

t/	−1∑
j=0

αD(ξ j ) − 	

t/	−1∑
j=0

s(ξ j+1, ξ j )

⎤
⎦P(ξ0)

=
∫ t/	∏

j=0

dξ j exp

⎡
⎣−	

t/	−1∑
j=0

[s(ξ j+1, ξ j ) + αD(ξ j )]

⎤
⎦P(ξ0). (15)

Here P(ξ0) is the probability distribution of ξ at the initial
state and is given as the equilibrium probability distribution
P(ξ0) = Peq(ξ0). To derive Eq. (15), we have performed the
functional integration over ξ (t ′) for t ′ < 0 and t ′ > t , since
the relaxation function in Eq. (13) depends on ξ (t ′) only in
the time range 0 � t ′ � t . The functional integral over ξ (t ′)
for t ′ > t becomes unity and the functional integral over ξ (t ′)
for t ′ < 0 gives the initial probability distribution P(ξ0). The
function s(ξ, ξ ′) can be related to the linear operator L̂ in
Eq. (4). The formal solution of Eq. (4) for the time interval
	 = t j+1 − t j is

P(ξ, t j+1) = e	L̂P(ξ, t j ). (16)

On the other hand, the factor e−	s(ξ j+1,ξ j ) represents the tran-
sition probability from the state ξ j to the state ξ j+1 during the
time interval 	:

P(ξ j+1, t j+1) =
∫

dξ je
−	s(ξ j+1,ξ j )P(ξ j, t j ). (17)

By comparing Eqs. (16) and (17), we have the simple relation
between s(ξ, ξ ′) and L̂,∫

dξ ′e−	s(ξ,ξ ′ )P(ξ ′) = e	L̂P(ξ ), (18)

where P(ξ ) is an arbitrary function.
Equation (18) means that the action functional can be

calculated from the linear operator L̂. Then Eq. (15) can be
solved by utilizing the transfer matrix technique [36–38] in
a similar way. It is worth mentioning that a similar method
was employed by Bressloff and Newby [2,3] to analyze the
diffusion properties of a model with a time-dependent and

fluctuating diffusivity. We introduce the transfer operator Ŵ ,

e−	ŴP(ξ ) =
∫

dξ ′ exp{−	[s(ξ, ξ ′) + αD(ξ ′)]}P(ξ ′)

= e	L̂[e−	αD(ξ )P(ξ )], (19)

where we have utilized Eq. (18). Since 	 is small, the expo-
nential functions can be expanded into the power series of 	.
By keeping only the leading-order terms, we have

−ŴP(ξ ) ≈ [L̂ − αD(ξ )]P(ξ ). (20)

Therefore, we find that the transfer operator Ŵ consists of
two contributions. One is the time-evolution operator for the
diffusivity L̂ and the other is the diffusivity-dependent decay
factor −αD. We call the former the transition dynamics and
the latter the relaxation dynamics. At the limit of 	 → 0,
Eq. (20) becomes exact. Then, from Eqs. (15) and (19),
we have the following simple expression for the relaxation
function �(t ):

�(t ) =
∫

dξ e−tŴPeq(ξ ). (21)

Equation (21) means that the relaxation function �(t ) is
determined by the transfer operator W and the equilibrium
probability distribution of ξ .

To continue the calculation, we introduce the nth eigen-
value and eigenfunction of Ŵ , λn, and ψn(ξ ):

Ŵψn(ξ ) = λnψn(ξ ). (22)

For simplicity, here we assume that the eigenvalues are in
ascending order (λn � λm if n < m). We construct the basis
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set by the eigenfunctions as∫
dξ ψ†

n (ξ )ψm(ξ ) = δnm, (23)

where ψ†
n (ξ ) is the eigenfunction of the adjoint operator of

Ŵ . [In general, the transfer operator is not self-adjoint and
thus ψ†

n (ξ ) does not coincide with ψn(ξ ). The eigenfunctions
ψn(ξ ) and ψ†

n (ξ ) form a biorthogonal basis set [47].]
Then Eq. (15) can be rewritten in terms of the eigenvalues

and eigenfunctions. We can rewrite Eq. (21) with the eigen-
values and eigenfunctions as

�(t ) =
∫

dξ
∑

n

e−tλnψn(ξ )
∫

dξ ′ψ†
n (ξ ′)Peq(ξ ′)

=
∑

n

φne−tλn , (24)

where

φn ≡
∫

dξ ψn(ξ )
∫

dξ ′ψ†
n (ξ ′)Peq(ξ ′). (25)

From Eq. (24) we conclude that the relaxation function of the
OUFD is given as the sum of single-exponential relaxations,
in the case where the dynamics of the diffusivity is described
by a Markovian stochastic process. The relaxation rate and
intensity of the nth mode are λn and φn, respectively. The
relaxation time of the nth mode is simply given as τn ≡ 1/λn.
At the long time region, only the eigenmode with the smallest
eigenvalue is dominant and the relaxation function asymp-
totically approaches a single-exponential-type relaxation. The
longest relaxation time is τn with the smallest n. Intuitively,
the relaxation rate λn is determined by the competition be-
tween the relaxation dynamics of the OU process which
is characterized by the operator −αD(ξ ) and the transition
dynamics of the diffusivity which is characterized by the
operator L̂.

The relaxation function �(t ) can be calculated in almost
the same way. As we mentioned, the expression for �(t ) is ob-
tained by replacing α in one for �(t ) by 2α [Eqs. (9) and (12)].
This can be done by employing the following transfer operator
instead of Eq. (20): −Ŵ ′P(ξ ) = [L̂ − 2αD(ξ )]P(ξ ). Alterna-
tively, if we have the analytical expressions for λn, ψn(ξ ), and
ψ†

n (ξ ), we obtain the eigenvalue and eigenfunctions for Ŵ ′ by
simply replacing α in them by 2α.

The number of relaxation modes is finite if the diffusivity
is a discrete variable and the number of states is finite. This
corresponds to the case of the Markovian N-state model,
where the dynamics of the diffusion coefficient is described
by a stochastic jump process between states. In this case,
the stochastic variable ξ (t ) can take only N values and the
probability distribution function P(ξ ) reduces to the probabil-
ity distributions for discrete states Pn (with n = 1, 2, . . . , N
the index for the discrete state). In the Markovian N-state
model, the equilibrium probability distribution is expressed
by an N-dimensional vector as Peq,n and the transition matrix
is an N × N matrix Ln,n′ . Thus the transfer operator is also an
N × N matrix and the number of eigenvalues is N . Then there
are N relaxation modes (some modes may be degenerated and
intensities of some modes may be zero) and the relaxation

function �(t ) becomes

�(t ) =
N∑

n=1

φne−tλn . (26)

In the simplest Markovian two-state model (N = 2), we have
only two relaxation modes. We show the detailed calculations
for the Markovian two-state model in the next section.

IV. DISCUSSION

A. Two-state model

As a simple yet nontrivial example, we consider a simple
model where the diffusivity obeys the Markovian two-state
model [7,22] [where the stochastic variable ξ (t ) can take only
two values]. As we mentioned, there are only two relaxation
modes in this case [N = 2 in Eq. (26)]. Here we analyze
the behavior of the two-state model in detail. We describe
two states in the model as the fast ( f ) and slow (s) states
and describe the probability distributions of the fast and slow
states as Pf (t ) and Ps(t ). We describe the diffusivity at the fast
and slow states as D f and Ds (D f � Ds). Equation (4) now
reduces to the simple equation

d

dt

[
Pf (t )
Ps(t )

]
=

[−k f ks

k f −ks

][
Pf (t )
Ps(t )

]
, (27)

where k f and ks are the transition rate from the fast to slow
states and from the slow to fast states, respectively. The
equilibrium distribution is simply given as

Peq, f = ks

k f + ks
, Peq,s = k f

k f + ks
. (28)

As we showed in Sec. III, this model has only two relax-
ation modes. The explicit form of the relaxation function can
be analytically calculated as

�(t ) = φ−e−tλ− + φ+e−tλ+ , (29)

where λ± and φ± are, respectively, the relaxation rates and
intensities of two relaxation modes. Their explicit forms are
given as follows, with the relaxation rate defined as μh ≡ αDh

(h = f , s):

λ± ≡ 1
2

[
μ f + μs + k f + ks

±
√

(μ f + μs + k f + ks)2 − 4(k f μs + ksμ f + μ f μs)
]
,

(30)

φ± ≡ 1

λ+ − λ−

[
±k f μs + ksμ f

ks + k f
∓ λ∓

]
. (31)

(See Appendix A for the derivation.) From Eq. (31) we have
φ+ + φ− = 1. [This is trivial since the relaxation function
�(t ) is normalized.]

The relaxation times of two modes are given as τ± ≡ 1/λ±.
From Eq. (30), the explicit expressions of 1/λ± contain both
the relaxation and transition rates. This means that the relax-
ation times do not coincide with the relaxation times naively
estimated as the inverse relaxation rates 1/μ f and 1/μs. Also,
from Eq. (31), the intensities for two modes are also affected
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by both the relaxation and transition rates. Therefore, we
conclude that the behavior of the relaxation function �(t ) is
generally not simple, even for the simple Markovian two-state
model.

Although the behavior of the relaxation function �(t )
given by Eq. (29) is generally not simple, the relaxation
function reduces to simple forms for some special cases.
Here we consider two limiting cases. The first case is the
case where the transition between the fast and slow states is
sufficiently fast. In this case we assume that k f , ks 	 μ f , μs.
The relaxation rates reduce to λ− ≈ (k f μs + ksμ f )/(k f + ks)
and λ+ ≈ k f + ks and the intensities reduce to φ− ≈ 1 and
φ+ ≈ 0. Therefore, in this case the second mode disap-
pears and the single-exponential-type relaxation behavior is
recovered:

�(t ) ≈ exp

(
−k f μs + ksμ f

k f + ks
t

)
. (32)

Equation (32) means that the relaxation time is given as the
harmonic average of the relaxation times of the fast and slow
states. Intuitively, this result can be understood as follows:
Due to the fast transition between the fast and slow states, the
diffusivity D(t ) can be replaced by the equilibrium average
〈D〉. Then the effective relaxation rate is estimated to be

α〈D〉 = α(D f Peq, f + DsPeq,s) = k f μs + ksμ f

k f + ks
, (33)

which coincides with λ−.
The second case is the case where the transition between

fast and slow states is sufficiently slow. We assume that
k f , ks 
 μ f , μs and then the relaxation rates become λ− ≈
μs and λ+ ≈ μ f and the relaxation intensities are φ− ≈
k f /(k f + ks) and φ+ ≈ ks/(k f + ks). Therefore, the relaxation
function �(t ) consists of two modes with the relaxation times
determined solely by the relaxation rates μ f and μs:

�(t ) ≈ k f

k f + ks
e−μst + ks

k f + ks
e−μ f t . (34)

In this case we have two relaxation modes and thus non-
single-exponential-type behavior is observed. The relaxation
times coincide with the relaxation times of the pure fast and
slow states and the intensities correspond to the equilibrium
fractions φ− ≈ Peq,s and φ+ ≈ Peq, f [Eq. (28)]. Intuitively,
this case corresponds to the mixture of two statistically inde-
pendent relaxation processes. Because the transition rates are
small, the system can fully relax before the transition occurs.
Thus the relaxation times are not affected by the transition
dynamics and the intensities are just given as the equilibrium
probabilities.

We show the relaxation function �(t ) for various transition
and relaxation rates in Fig. 2. For simplicity, here we limit
ourselves to the case where two transition rates are the same:
k f = ks. In this case, we have essentially two freely tun-
able parameters κ ≡ k f /μ f = ks/μ f and μs/μ f . Figure 2(a)
shows the relaxation function for μs/μ f = 10−2 and various
values of κ . The asymptotic forms for the fast and slow transi-
tion limits [Eqs. (32) and (34)] are also shown for comparison.
We can observe that even if the value of μs/μ f is constant, the
relaxation function largely changes if we change κ . For small-
and large-κ cases, we observe that the asymptotic forms work
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μf t
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1
101
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(b)

(κ = 10-2)

Φ
(t)

μf t

μs/μf = 10-3
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1

FIG. 2. Relaxation function �(t ) for the OUFD by the
Markovian two-state model. (a) The relaxation rate is μs/μ f = 10−2

and the transition rate varies. The solid curves represent data for κ =
k f /μ f = ks/μ f = 10−2, 10−1, 1, and 101. The dotted gray curves
represent asymptotic forms [Eqs. (32) and (34)]. (b) The transition
rate is constant κ = 10−2 and the relaxation rate varies. The solid
curves represent data for μs/μ f = 1, 10−1, 10−2, and 10−3. The
dotted gray curves represent the asymptotic forms.

as good approximations. Figure 2(b) shows the relaxation
function for κ = 10−2 and various values of μs/μ f . For the
case of μs/μ f = 1, the relaxation function trivially reduces
to a single-exponential form �(t ) = exp(−μ f t ). For the case
of small μs, we consider the condition μs/μ f 
 κ 
 1 and
have λ+ ≈ μ f , λ− ≈ μ f κ , and φ+ ≈ φ− ≈ 1/2. We observe
that the data for small and large μs/μ f agree well with the
asymptotic forms.

Except for the special cases examined above, in general,
the two relaxation times cannot be simply related to the relax-
ation rates of the fast and slow states. In addition, we cannot
determine the relaxation and transition rates solely from the
relaxation function �(t ), even if �(t ) can be approximately
expressed as the sum of two relaxation modes. To investigate
whether the relaxation behavior is really affected by the FD
or not, we can utilize another relaxation function �(t ). The
relaxation function �(t ) can be obtained by replacing α in
�(t ) by 2α, as we mentioned. Thus, for the current case
we have

�(t ) = φ′
−e−tλ′

− + φ′
+e−tλ′

+ , (35)

with λ′
± and φ′

± defined as

λ′
± ≡ 1

2

[
2μ f + 2μs + k f + ks

±
√

(2μ f + 2μs + k f + ks)2 − 8(k f μs + ksμ f + 2μ f μs)
]
,

(36)

φ′
± ≡ 1

λ′+ − λ′−

[
±2(k f μs + ksμ f )

ks + k f
∓ λ′

∓

]
. (37)
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We consider two limiting cases again. For the case where
k f , ks 	 μ f , μs, Eq. (35) reduces to a simple exponential
form as

�(t ) ≈ e−2α〈D〉t ≈ �(2t ) ≈ �2(t ). (38)

Thus we find that in this case the relaxation behavior is the
same as the usual OU process with a constant diffusivity. On
the other hand, for k f , ks 
 μ f , μs, the relaxation function
�(t ) simply reduces as

�(t ) ≈ Peq,se
−2μst + Peq,se

−2μ f t ≈ �(2t ) �= �2(t ). (39)

This means that the relation between �(t ) and �(t ) becomes
different from one for the constant diffusivity case. In general,
the relation between �(t ) and �(t ) is not simple. We conclude
that by combining the two relaxation functions �(t ) and �(t ),
we are able to extract some information on the FD such as the
transition rates between states. For example, if we have four
relaxation times 1/λ± and 1/λ′

± from relaxation functions,
we can determine relaxation and transition rates μ f , μs, k f ,
and ks.

This analysis method will be useful to analyze relaxation
functions obtained by experiments. The dielectric relaxation
functions obtained by the dielectric measurements can be
related to the relaxation function �(t ). The relaxation moduli
obtained by rheological measurements can be related to the
relaxation function �(t ). Matsumiya et al. [25] reported
both the rheological and dielectric relaxation data for glassy
polystyrene samples with various molecular weights. They
showed that the storage modulus and the dielectric relaxation
function of the same sample have almost the same form, but
the relaxation times are different. Although their data cannot
be simply expressed as two relaxation modes, analyses based
on our results would be informative to understanding the
nature of glassy dynamics in polymers.

B. Ornstein-Uhlenbeck-type model

We consider another simple case, where the dynamics of
the diffusivity obeys an OU-type process. While the diffusi-
vity is a discrete variable in the two-state model, the dif-
fusivity is a continuum variable in this model. Thus the
relaxation function consists of infinite relaxation modes (at
least formally).

Since the diffusivity should be positive, we introduce the
noise coefficient whose square gives the diffusion coefficient

D(t ) = D̄b2(t ), (40)

where b(t ) is the noise coefficient, which can be both positive
and negative, and D̄ is constant. We interpret b(t ) as the
stochastic variable ξ (t ) in Eqs. (4), (21), and (24). For the dy-
namics of b(t ), we employ the following Langevin equation:

db(t )

dt
= −kb(t ) +

√
2kw′(t ). (41)

Here k is the rate constant and w′(t ) is the Gaussian white
noise whose first and second moments are given as 〈w′(t )〉 =
0 and 〈w′(t )w′(t ′)〉 = δ(t − t ′). Equation (41) is an OU pro-
cess. A similar model for the noise coefficient was employed
to model the diffusion behavior in a heterogeneous medium

(the diffusing diffusivity model) [9,10,48]. In the diffusing
diffusivity model, the diffusion coefficient is expressed as the
square of a vector variable which obeys an OU process. Our
model can be interpreted as a one-dimensional version of the
diffusing diffusivity model.

Because the stochastic process for the diffusion coefficient
is fully specified, now we can calculate the explicit form of
the relaxation function �(t ). Unlike the case of the two-state
model, the OU-type model has infinite relaxation modes. The
explicit expression for the relaxation function is

�(t ) =
∞∑

n=0

φn exp{−k[(2n + 1)γ − 1/2]t}, (42)

where we have defined γ ≡ √
μ/k + 1/4, with μ ≡ αD̄, and

φn ≡
{ √

2n!
2n[(n/2)!]2

γ 1/2(γ−1/2)n

(γ+1/2)n+1 for n even
0 for n odd.

(43)

(The detailed calculations are shown in Appendix B.) From
Eq. (43), only the modes with even n survive. We set n = 2m
and rewrite Eq. (42) as

�(t ) =
∞∑

m=0

√
2(2m)!

22m(m!)2

γ 1/2(γ − 1/2)2m

(γ + 1/2)2m+1

× exp{−k[(4m + 1)γ − 1/2]t}. (44)

The longest relaxation time τ0 is the inverse of the relax-
ation rate for n = 0 by Eq. (42):

τ0 ≡ 1

λ0
= 1

k(
√

μ/k + 1/4 − 1/2)
. (45)

If the transition dynamics is much faster or slower than the
relaxation dynamics, we have simple approximate forms for
the longest relaxation time:

τ0 ≈
{

1/μ, k 	 μ

1/
√

kμ, k 
 μ.
(46)

Equation (46) means that the relaxation behavior of this
model is largely affected by the transition rate if the transition
dynamics is slow. We consider two limiting cases in detail,
as the case of the Markovian two-state model. First, we
assume that the transition dynamics is much faster than the
relaxation dynamics and that k 	 μ. In this case, we have
γ ≈ 1/2 + μ/k and the intensity becomes

φn ≈
{

1 for n = 0
0 otherwise. (47)

Therefore, the relaxation function reduces to the single-
exponential form

�(t ) ≈ exp(−μt ). (48)

From Eq. (48), the relaxation time 1/μ is independent of
the transition rate k. This is the same as the case of the
Markovian two-state model. As before, this result can be
intuitively understood by considering the equilibrium average
of the relaxation rate

α〈D〉 = α

∫ ∞

−∞
db D̄b2Peq(b) = μ, (49)

032127-7



UNEYAMA, MIYAGUCHI, AND AKIMOTO PHYSICAL REVIEW E 99, 032127 (2019)

10-3

10-2

10-1

100

10-2 10-1 100 101 102 103 104

Φ
(t)

μt

k/μ = 10-6

10-4

10-2

1
102

FIG. 3. Relaxation function �(t ) for the OUFD. The noise coef-
ficient obeys the OU model. The solid curves represent the relaxation
functions for k/μ = 10−6, 10−4, 10−2, 1, and 102, calculated by
Eq. (44). The dotted gray curves represent the asymptotic forms for
k/μ 	 1 [Eq. (48), left] and k/μ 
 1 [Eq. (50), right].

where Peq(b) = e−b2/2/
√

2π is the equilibrium distribution for
the noise coefficient.

Second, we assume that the transition dynamics is much
slower than the relaxation dynamics. In this case we have
k 
 μ and γ 	 1, but it is rather difficult to calculate the
approximate form for the relaxation function from Eq. (44)
under these conditions. Fortunately, we can calculate the
approximate form starting from the dynamic equation. The
result is

�(t ) ≈ 1√
1 + 2μt

. (50)

(See Appendix C for detailed calculations.)
Thus, in this case, we observe the power-law type behavior

at the long time region, �(t ) ∝ t−1/2 (t � 1/2μ). Such power-
law type relaxation behavior is also observed for polymers
(the Rouse model) [19] and critical gels [49]. In most cases,
the power-law-type relaxation is interpreted as the relaxation
of fractal structures where the relaxation time distribution
is given as a power-law-type distribution. Our result gives
another interpretation: The power-law-type relaxation can
also be attributed to the FD. As in the case of the two-state
model, intuitively, the relaxation function is expressed as the
sum of relaxation modes and their intensities are given as
the equilibrium probability distribution. In the same way,
Eq. (50) can be reproduced as the average of the relaxation
function with respect to the equilibrium distribution of the
noise coefficient:

�(t ) ≈
∫ ∞

−∞
db e−αD̄b2t Peq(b) = 1√

1 + 2μt
. (51)

The same expression as Eq. (51) can be obtained by substitut-
ing the approximate transfer operator [Eq. (C1)] directly into
Eq. (21).

We show the relaxation function for various values of k/μ,
directly calculated by Eq. (44), in Fig. 3. For comparison,
the asymptotic forms for k/μ 	 1 and k/μ 
 1 [Eqs. (48)
and (50)] are also shown in Fig. 3. We observe that for
sufficiently large k/μ, the relaxation function �(t ) is well
approximated by the asymptotic form. On the other hand, for
small k/μ such as k/μ = 10−6, we observe the deviation from
the asymptotic form. This is because the longest relaxation

time is finite for finite k/μ, as shown in Eqs. (45) and (46). In
the relatively short time region (t � 1/

√
kμ), the asymptotic

form works well.
It is straightforward to show that the relation between the

two relaxation functions �(t ) and �(t ) becomes almost the
same as the case of the Markovian two-state model [Eqs. (38)
and (39)]. This implies that the OUFD satisfies the relations
�(t ) ≈ �2(t ) ≈ �(2t ) and �(t ) ≈ �(2t ) for sufficiently fast
and slow transition rates, respectively. These approximate
relations are expected to be independent of the details of the
dynamics for the diffusivity.

C. Comparison with other models

It would be informative to compare the results of the
OUFD with other models. Here we consider two models. One
is the generalized Langevin equation (GLE) model, which is
obtained by the projection operator method [23] and widely
utilized to describe the dynamics of coarse-grained variables.
The other is the multimode OU process in which multiple
OU processes are linearly combined. Currently, these conven-
tional models are utilized as standard models to analyze exper-
imental data. The GLE is widely utilized to analyze diffusion
behavior of particles in viscoelastic environments [50,51].
The multimode OU process is also widely utilized to analyze
and model non-single-exponential relaxation functions [52].
However, from the viewpoint of the FD, analyses based on
these conventional models may not be physically reasonable
for some systems. Thus it would be informative to compare
the properties of relaxation functions in conventional models
with those in the OUFD.

First, we consider the GLE with the memory function (the
generalized OU process). In the generalized OU process, the
dynamic equation for r(t ) is described as a linear GLE. For
simplicity, we assume that the dynamics is isotropic and the
memory kernel can be expressed as a scalar quantity. We can
describe the dynamic equation as

dr(t )

dt
= −αD̄

∫ t

−∞
dt ′K (t − t ′)r(t ′) +

√
D̄η(t ), (52)

where D̄ is constant (the reference diffusion coefficient),
K (t ) is the memory kernel, and η(t ) is the Gaussian colored
noise. The fluctuation-dissipation relation of the second kind
requires the noise to satisfy the following relations: 〈η(t )〉 = 0
and 〈η(t )η(t ′)〉 = K (|t − t ′|)1. The memory kernel can be
simply related to the two-point-correlation function [which is
proportional to the relaxation function �(t )]. Fox [53] showed
that the memory kernel satisfies the relation

�̃(u) = 1

u + αD̄K̃ (u)
, (53)

where �̃(u) and K̃ (u) are the Laplace transforms of the
relaxation function �(t ) and the memory kernel K (t ): �̃(u) ≡∫ ∞

0 dt e−ut�(t ) and K̃ (u) ≡ ∫ ∞
0 dt e−ut K (t ). From Eq. (53)

we can tune the memory kernel and reproduce the relaxation
function �(t ) by the OUFD [Eq. (24)]. For example, in the
case of the Markovian two-state model, the Laplace trans-
forms of the relaxation function are calculated as follows,
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from Eq. (29):

�̃(u) = φ−
λ− + u

+ φ+
λ+ + u

. (54)

From Eqs. (53) and (54) we find that the following Laplace-
transformed memory kernel reproduces the same relaxation
function as the Markovian two-state model:

K̃ (u) = 1

αD̄

[
(φ−λ− + φ+λ+) − φ−φ+(λ+ − λ−)2

u + (φ−λ+ + φ+λ−)

]
.

(55)

By performing the inverse Laplace transform, we have the
following simple expression in the time domain:

K (t ) = 1

αD̄
[(φ−λ− + φ+λ+)δ(t ) − φ−φ+(λ+ − λ−)2

× e−(φ−λ++φ+λ− )t ]. (56)

However, the thus obtained GLE [Eq. (52) with (56)] can-
not reproduce the relaxation function �(t ) by the OUFD. The
linear GLE (52) gives r(t ) as a Gaussian process. By utilizing
Wick’s theorem, the multipoint-correlation functions of r(t )
can be decomposed into two-point-correlation functions. For
the case of the four-point correlation, which appears in the
relaxation function �(t ), we have

〈[rx(t )ry(t )][rx(0)ry(0)]〉
= 〈rx(t )ry(t )〉〈rx(0)ry(0)〉 + 〈rx(t )rx(0)〉〈ry(t )ry(0)〉

+ 〈rx(t )ry(0)〉〈ry(t )rx(0)〉
= 〈rx(t )rx(0)〉〈ry(t )ry(0)〉. (57)

In the last line of Eq. (57), we have utilized the fact that
the system is isotropic and there is no correlation between
rx(t ) and ry(t ). From Eq. (57), the relaxation function �(t )
is simply given as

�(t ) = �2(t ). (58)

Equation (58) means that the relaxation functions �(t ) and
�(t ) contain essentially the same information. Here it should
be stressed that Eq. (58) holds for any kernel functions. In
the case of the Markovian N-state model, Eq. (58) generally
consists of N (N + 1)/2 relaxation modes. This is clearly
different from the case of the OUFD, where we have only N
relaxation modes for �(t ). Therefore, we conclude that the
OUFD cannot be expressed as the GLE. The effects of an FD
seem to be clearly observed when we analyze higher-order
correlation functions. This is consistent with the fact that the
Langevin equation with an FD in the absence of the poten-
tial exhibits only the normal diffusion behavior on average
and the effects of an FD are observed in the higher-order
fluctuations [7].

Next we consider the multimode OU process. We express
the position r(t ) as the sum of N modes. If we express the kth
mode as rk (t ), r is expressed as the (weighted) sum of rk ,

r(t ) =
N∑

k=1

ckrk (t ), (59)

where ck represents the weight factor for the kth mode and ck

is normalized to satisfy
∑N

k=1 c2
k = 1. We assume that modes

are statistically independent and each mode obeys an OU
process,

drk (t )

dt
= −αDkrk (t ) +

√
2Dkwwwk (t ), (60)

where Dk is the diffusion coefficient of the kth mode (Dk

is assumed to be constant) and wwwk (t ) is the Gaussian white
noise. In addition, wwwk (t ) satisfies the following relations:
〈wwwk (t )〉 = 0 and 〈wwwk (t )wwwl (t ′)〉 = δkl1δ(t − t ′).

Equation (60) is just a usual OU process and thus the
relaxation function �(t ) can be calculated straightforwardly.
The two-time-correlation function is calculated to be 〈rk (t ) ·
rl (0)〉 = δkl〈r2

k (0)〉e−αDkt and thus the relaxation function
�(t ) becomes

�(t ) =
N∑

k=1

c2
ke−αDkt . (61)

To reproduce the correlation function �(t ) in the Markovian
two-state model, we simply set N = 2 and then we have
αD1 = λ−, αD2 = λ+, c1 = φ

1/2
− , and c2 = φ

1/2
+ .

As in the case of the GLE, even if we employ the thus
determined parameters, the multimode OU process cannot
reproduce the correlation function �(t ) correctly. Due to the
Gaussian nature, the relaxation function �(t ) in the multi-
mode OU process can be calculated in a similar way to the
case of the GLE. The result is the same as Eq. (58). Therefore,
the situation is the same as the case of the generalized OU
model with the memory kernel. (Actually, the multimode OU
is a Gaussian process and it can also be expressed as the
linear GLE.) The relaxation function �(t ) has N (N + 1)/2
relaxation modes in the multimode OU model, whereas there
are N modes in the OUFD. We conclude that the OUFD
cannot be expressed as the multimode OU process.

From the discussion above, we conclude that the OU
process with an FD belongs to a different class of dynamic
equations compared with widely utilized stochastic dynamic
equation models such as the GLE. (This conclusion is rather
trivial, since two independent stochastic processes are mul-
tiplicatively coupled in the OUFD, whereas the couplings
of stochastic processes in the GLE and the multimode OU
process are additive.) The importance of an FD is especially
observed via higher-order correlations. In analogy to the non-
Gaussianity parameter for diffusion processes [54], we can
introduce a simple yet useful quantity which distinguishes
the OUFD from the linear GLE and the multimode OU
process:

A(t ) = �(t )

�2(t )
− 1. (62)

This quantity becomes zero if a relaxation process can be
described by the linear GLE or the multimode OU process.
Conversely, if it is nonzero, that process cannot be described
by popular conventional models, whereas the OUFD can
successfully describe it. Although it would not be easy to
experimentally observe two relaxation functions �(t ) and
�(t ) for the same system, the combination of two relaxation
functions [such as Eq. (62)] enables us to investigate hetero-
geneous dynamics of the systems. We consider that an FD
will be especially useful to model and/or analyze dynamics
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and relaxation behavior in heterogeneous environments such
as supercooled liquids [20–22]. It will be also informative to
apply the concept of the FD to analyze the single-molecule
dynamics of proteins [16,17].

V. CONCLUSION

In this work we studied the relaxation behavior of the
OUFD. We modeled the stochastic process with a linear
restoring force and a thermal noise, both coupled to a
time-dependent and fluctuating diffusivity. We showed that
the relaxation functions �(t ) and �(t ) are expressed in
terms of the integral of the diffusion coefficient over time
[Eqs. (9) and (12)]. To calculate the explicit forms of a
relaxation function, we utilized the functional integral ex-
pression with the action functional and the transfer matrix
method. We derived the simple expression for the relaxation
function as the sum of relaxation modes [Eq. (24)]. The
relaxation rate and the intensity of each mode are calcu-
lated from the eigenvalue and eigenfunction of the transfer
matrix.

As analytically solvable models we studied the Markovian
two-state model and the OU-type model for the noise coef-
ficient. The two-state model has only two relaxation modes,
but the relaxation modes and relaxation intensities depend
on both the relaxation rates and the transition rates. This is
because the relaxation behavior of the OUFD is determined
as a result of the competition between the relaxation dy-
namics and the transition dynamics. If the transition rates
are sufficiently larger or smaller than the relaxation rates,
the corresponding relaxation function reduces to a simple
asymptotic form. The situation is similar to the case when
the dynamics for the noise coefficient is described by the OU
process. In this model, the noise coefficient is a continuum
stochastic variable and we have infinite relaxation modes.
We showed that if the transition rate is sufficiently smaller
than the relaxation rate, the relaxation function exhibits a
power-law-type behavior. Because the relation between two
relaxation functions �(t ) and �(t ) is not simple as in the
cases of the GLE and the multimode OU process, we conclude
that the OUFD is qualitatively different from those conven-
tional models. Thus, it is important and possible to unravel
the underlying dynamics by analyzing the two relaxation
functions.

We believe that our model and analysis would be use-
ful to analyze some experimental data for supercooled liq-
uids, polymers, and proteins. Work on the formulation of
the relaxation function from the viewpoint of the renewal
theory and the extension of this work are left for future
study.
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APPENDIX A: RELAXATION MODES
FOR THE TWO-STATE MODEL

In this Appendix we show the calculations for the two-state
model in Sec. IV A. From Eq. (27), the transfer operator can
be expressed in a 2 × 2 matrix form

Ŵ =
[
μ f + k f −ks

−k f μs + ks

]
, (A1)

where we have expressed the relaxation rate at each state
as μh = αDh (h = f , s). The eigenvalues of the matrix in
Eq. (A1) are obtained as

λ± = 1
2

[
μ f + μs + k f + ks

±
√

(μ f + μs + k f + ks)2 − 4(k f μs + ksμ f + μ f μs)
]
.

(A2)

The first and second eigenvalues correspond to λ− and λ+,
respectively. We describe the second and first eigenvectors as

ψ± = [ψ±, f , ψ±,s]T. The eigenvectors are calculated to be

ψ± =
[
λ± − μs

μ f − λ±

]
. (A3)

From Eq. (A3) the relaxation function can be expressed
as follows, with the thus obtained eigenvalues and eigenvec-
tors [Eqs. (A2) and (A3)] and the equilibrium distribution
[Eq. (28)]:

�(t ) = [1 1] [ψ− ψ+]

[
e−tλ− 0

0 e−tλ+

]

× [
ψ− ψ−1

+
] [

Peq, f

Peq,s

]
. (A4)

Equation (A4) can be rewritten in a simple form as �(t ) =
φ−e−λ−t + φ+e−λ+t if we introduce the relaxation intensities
defined as

φ− = 1

λ+ − λ−

[
λ+ − k f μs + ksμ f

ks + k f

]
, (A5)

φ+ = 1

λ+ − λ−

[
k f μs + ksμ f

ks + k f
− λ−

]
. (A6)

Thus we have Eqs. (30) and (31) in the main text.

APPENDIX B: RELAXATION MODES FOR THE
ORNSTEIN-UHLENBECK-TYPE MODEL

In this Appendix we show the calculations for the OU-type
model in Sec. IV B. First we convert Eq. (41) into the Fokker-
Planck equation. Following a standard procedure [26], we
have the Fokker-Planck equation for the distribution function
of b, P(b, t ),

∂P(b, t )

∂t
= L̂P(b, t ), (B1)
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with the Fokker-Planck operator defined as

L̂P = k
∂

∂b

[
bP + ∂P

∂b

]
. (B2)

Obviously, the equilibrium distribution Peq(b) is a Gaussian:
Peq(b) = e−b2/2/

√
2π .

From Eqs. (20) and (B2), the transfer operator can be
explicitly expressed as

−Ŵψ = −μb2ψ + k
∂

∂b

[
bψ + ∂ψ

∂b

]
, (B3)

where μ ≡ αD̄. The eigenvalue λ and the eigenfunction ψ (b)
satisfy the eigenvalue equation

Ŵψ (b) = λψ (b). (B4)

Here we introduce the variable transform to make the transfer
operator self-adjoint [47]:

ψ̃ (b) ≡ eb2/4ψ (b) = e−b2/4ψ†(b). (B5)

Then we have the eigenvalue equation

γ 2b2ψ̃ − d2ψ̃

db2
=

(
λ

k
+ 1

2

)
ψ̃, (B6)

where γ = √
μ/k + 1/4. Roughly speaking, the parameter

γ represents the competition between the transition and
relaxation. If the transition becomes faster than the relax-
ation, γ decreases. If the relaxation becomes faster than the
transition, γ increases. It should be noted that γ satisfies
γ > 1/2. This eigenvalue equation has the same form as
the Schrödinger equation for a one-dimensional harmonic
potential [55] and thus we can calculate eigenfunctions and
eigenvalues straightforwardly. The nth eigenvalue and eigen-
function (n = 0, 1, 2, . . . ) are given as

λn = k[(2n + 1)γ − 1/2], (B7)

ψ̃n(b) =
(

γ 1/2

π1/22nn!

)1/2

Hn(
√

γ b)e−γ b2/2, (B8)

where Hn(x) is the nth-order Hermite polynomial [55,56].
The relaxation function can be expressed with the eigen-

values and eigenfunctions. From Eqs. (B5), (B7), and (B8)
we have

�(t ) =
∞∑

n=0

φn exp{−k[(2n + 1)γ − 1/2]t}, (B9)

with

φn = γ 1/2

π2n+1/2n!

[∫ ∞

−∞
db Hn(

√
γ b)e−γ b2/2−b2/4

]2

. (B10)

The integral in Eq. (B10) can be calculated analytically. We
rewrite Eq. (B10) as

φn = γ −1/2

π2n+1/2n!
I2
n , (B11)

where In is the following integral:

In ≡
∫ ∞

−∞
ds Hn(s)e−s2/2−s2/4γ . (B12)

For n = 0, the integral I0 can be easily calculated, because
H0(s) = 1. We have

I0 =
∫ ∞

−∞
ds e−s2/2−s2/4γ =

√
2πγ

γ + 1/2
. (B13)

Also, the integral In can be calculated easily for odd n. In this
case, from the symmetry of the Hermite polynomial Hn(s) =
−Hn(s), the integrand in Eq. (B12) is an odd function of s.
Then we simply have

In = 0 for n odd (B14)

and thus the odd n modes vanish:

φn = 0 for n odd. (B15)

Thus now we need to calculate the integral In for even
n � 2. By utilizing the recurrence relation for the Hermite
polynomial [55,56]

Hn+1(s) = 2sHn(s) − 2nHn−1(s), (B16)

we have

In =
∫ ∞

−∞
ds[2sHn−1(s) − 2(n − 1)Hn−2(s)]e−s2/2−s2/4γ

= 2
∫ ∞

−∞
ds sHn−1(s)e−s2/2−s2/4γ − 2(n − 1)In−2

= 2

1 + 1/2γ

∫ ∞

−∞
ds

dHn−1(s)

ds
e−s2/2−s2/4γ − 2(n − 1)In−2,

(B17)

where in the last line we have utilized the partial integral.
We utilize another recurrence relation for the Hermite poly-
nomial [55,56]:

dHn(s)

ds
= 2nHn−1(s). (B18)

Finally, we have the recursive relation for the integral In,

In = 4(n − 1)

1 + 1/2γ
In−2 − 2(n − 1)In−2

= 2(n − 1)
γ − 1/2

γ + 1/2
In−2, (B19)

and from Eqs. (B13) and (B19) the solution is

In = 2n/2(n − 1)!!

(
γ − 1/2

γ + 1/2

)n/2

I0

=
√

2π2n/2(n − 1)!!
γ 1/2(γ − 1/2)n/2

(γ + 1/2)n/2+1/2
. (B20)

Here n!! represents the double factorial of n [57].
By substituting Eq. (B20) into (B11) and utilizing some

relations for the double factorial and the factorial [57], the
intensity of the nth mode is explicitly expressed as

φn = γ −1/2

π2n+1/2n!
I2
n =

√
2n!

2n[(n/2)!]2

γ 1/2(γ − 1/2)n

(γ + 1/2)n+1
. (B21)
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Equations (B9), (B15), and (B21) give Eqs. (42) and (43) in
the main text.

APPENDIX C: SLOW TRANSITION LIMIT OF
THE ORNSTEIN-UHLENBECK-TYPE MODEL

In this Appendix we show the detailed calculation of the re-
laxation function of the OU-type model at the slow transition
limit where k 
 μ. As we mentioned in the main text, it is
difficult to obtain an approximate form for (42). Instead, here
we approximate the transfer operator and solve the eigenvalue
equation with the approximate transfer operator. For k 
 μ,
the transfer operator [Eq. (B3)] can be approximated as

−Ŵψ ≈ −μb2ψ. (C1)

From Eq. (C1), the eigenvalue equation [Eq. (B6)] can be
simply approximated as

λψ (b) ≈ μb2ψ (b). (C2)

Equation (C2) is not a differential equation, unlike Eq. (B6).
Formally, we have the eigenvalue and the eigenfunction for
Eq. (C2),

ψ (b, a) = ψ†(b, a) = δ(b − a), λ(a) = μa2, (C3)

where a is the index of the eigenvalue and eigenfunction and
a is a continuum variable. [The eigenvalue is not in ascending
order in a, but here we do not need the eigenvalues to be
ordered, thus we simply use Eq. (C3).] The sum over all the
eigenmodes should be replaced by the integral over the index
a. Therefore, we have the following approximate expression
for the relaxation function �(t ):

�(t ) ≈
∫ ∞

−∞
da

[ ∫ ∞

−∞
db δ(b− a)

×
∫ ∞

−∞
db′δ(b′ − a)

1√
2π

e−b′2/2

]

e−μa2t ≈ 1√
1 + 2μt

. (C4)

Thus we have Eq. (43) in the main text.
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