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ABSTRACT: Estrogenic and cardiotonic steroidal skeletons were concisely constructed via Mizoroki-Heck and intramolecular 

Diels-Alder (IMDA) reactions. Simple modification of the dienophile unsaturation of the IMDA precursor enabled representative 

AB-ring systems of both steroid classes to be accessed from the same intermediate. The diastereoselectivity of the IMDA reaction 

used to access the cardiotonic steroidal skeleton was found to be significantly enhanced by performing the reaction in water. 

Highly oxy-functionalized steroidal skeletons are privileged 

structures1 in the context of drug discovery (Figure 1).2 Cardi-

otonic steroids, such as digoxin and ouabain, and their deriva-

tives are of particular interest,3 having proven utility in the 

suppression of Th17 cell differentiation by antagonizing 

RORγt transcriptional activity4 and in the inhibition of the α4-

isoform of Na+/K+-ATPase.5 Hence, a variety of approaches 

towards their synthesis have been disclosed.6,7 However, these 

approaches are somewhat limited in that the target molecules 

obtained do not bear pendant alkene and hydroxy groups from 

which the oxy-functionalities necessary for the optimization of 

drug candidates could be derived. We hypothesized that more 

potent and/or isoform-selective drug candidates could be effi-

ciently obtained if the synthesis was redesigned to proceed 

through an intermediate allowing facile oxy-functionalization 

of the steroidal skeleton. Herein, we disclose a new synthesis 

of the core skeletons of both estrogenic and cardiotonic ster-

oids, both of which could serve as versatile synthetic interme-

diates for a wide variety of functionalized steroids. 

 

Figure 1. Structures of highly oxy-functionalized steroids and 

derivatives. 

Recently, we reported the synthesis of estradiol analogues 

which we used to validate the proposed structures of a candi-

date of endogenous digitalis-like factor (EDLF)8 (Figure 1).9 

In our synthetic approach as shown in Scheme 1, the Mizoro-

ki-Heck reaction of bromoarene and alkene followed by a 



 

Friedel-Crafts-type cyclodehydration were used to construct 

an estrogenic skeleton, which bore an alkene on the B- and C-

rings for subsequent installation of the oxy-functionalities 

necessary to access seven regio- and stereoisomers of the 

2,14-dihydroxyestradiols. We envisaged that this synthetic 

approach would also be applicable to the construction of the 

cardiotonic steroidal skeleton; and further anticipated access 

of both estrogenic and cardiotonic targets via a common in-

termediate. For example, Mizoroki-Heck reaction of 2-pyrone 

triflate 110 and alkene A followed by intramolecular Diels-

Alder (IMDA) reaction of 2-pyrone11,12 was anticipated to 

yield estrogenic and cardiotonic steroidal compounds D and F 

via common intermediate C (Scheme 2). IMDA reaction of C 

with concomitant decarboxylation would lead to estrogenic 

compound D; whereas partial reduction of the alkyne followed 

by a different IMDA reaction would produce cardiotonic ste-

roidal compound F bearing a bridged lactone, which could be 

transformed into a series of cardiotonic steroids. 

Scheme 1. Previous approach to estrogenic compound.  

 

 

Scheme 2. Synthetic plan.  

 

  Synthesis of precursors 6a and 7 for the IMDA reaction 

commenced with the Mizoroki-Heck reaction of 2-pyrone 

triflate 1 and alkene 2 (Scheme 3). By stirring 213 and 1, with a 

catalytic amount of Pd2(dba)3·CHCl3 and Et3N in DMF, 3 was 

obtained in 66% yield as a single diastereomer, along with its 

regioisomer 4 in 28% yield. To obtain alkyne 6a, lactone 3 

was treated with lithium trimethylsilylacetylide in the presence 

of BF3·OEt2 in THF to afford ynone 5. Reduction of the result-

ing ketone of 5 using Luche conditions provided the desired 

alkyne 6a in 48% yield from 3 as an 85:15 mixture of epimers. 

Alkene 7 was obtained in good yield by a two-step sequence 

involving removal of the TMS group in 6a and subsequent 

half reduction of the alkyne in the resulting 6b. 

  With the precursors 6a and 7 in hand, we surveyed their reac-

tivities in the IMDA reaction (Scheme 4 and Table 1). Upon 

heating alkyne 6a in toluene at 130 °C in a sealed-tube, estro-

genic compound 8 was exclusively obtained (Scheme 4).  

 

Scheme 3. Synthesis of precursors 6a and 7 for the IMDA 

reaction. 

 

Scheme 4. IMDA reaction of alkyne 6a. 

 

  Construction of the cardiotonic steroidal skeleton was next 

examined (Table 1). First, alkene 7 (a 90:10 mixture of C6-

epimers) was heated at 90 °C in THF in a sealed tube. The 

undesired cycloadducts 10a and 11a as major diastereomers 

for each starting epimer and only a trace amount of desired 9a 

were obtained (entry 1);14 the structures of 9a and 10a were 

unambiguously confirmed by single crystal X-ray diffraction 

analysis; the former after derivatization to the corresponding 

p-bromobenzoate 9b.15 The relative stereochemistry of 11a 

was determined by NOESY analysis of the corresponding p-

bromobenzoate. A variety of conventional organic solvents 



 

were screened (THF, CH2Cl2, DMSO, HFIP, and MeOH) in an 

attempt to reverse the diastereoselectivity of this reaction; 

however, only the undesired diastereomers along with a sub-

stantial amount of the recovered 7 were consistently obtained 

(entries 2-6). In contrast, use of H2O as the solvent dramatical-

ly increased both the reaction rate and diastereoselectivity 

(entry 7).16,17 This result was not improved by conducting the 

reaction in THF-H2O (entry 8) or under the Grieco conditions 

(ethereal LiClO4, entry 9).18 The highest diastereoselectivity 

was observed upon conducting the reaction in an aqueous so-

lution of LiCl, an additive expected to increase the hydropho-

bic effect19 [83% yield (9a:10a:11a = 59:33:8), entry 10]. 

 

Table 1. IMDA reaction of alkene 7. 

 

  Based on these results, stereochemical outcomes of the 

IMDA reaction using major epimer (6R*)-7 could be rational-

ized (Figures 2 to 4). Cycloadducts 12 and 13 were not ob-

served, presumably because severe steric repulsions around 

the carbonyl moiety in disfavored exo TS-3 and TS-4. How-

ever, endo TS-1 and TS-2 do not suffer from such steric repul-

sions; of these two, endo-chair TS-2 is expected to be favored 

over endo-boat TS-1 due to the chair-like conformation of the 

B-ring, leading to 10a as a major diastereomer. DFT calcula-

tions also support this account for the observed diastereoselec-

tivity (Figure 3), with a decreased free energy of activation 

(ΔΔG‡) for TS-1 in H2O (+1.08 kcal/mol in H2O for TS-1a vs 

+2.05 kcal/mol in THF for TS-1b).20 Additionally, the α-face 

of the endo-boat TS-1a is expected to be hydrophobic owing 

to the orientation of the oxy-functionalities of the 2-pyrone to 

the β-face (Figure 4). Therefore, based on the hydrophobic 

nature of the α-face, the enhanced diastereoselectivity of 9a in 

water (Table 1, entries 7 and 10) might also be rationalized by 

reference to the aggregation of substrates by hydrophobic in-

teractions through the α-face,21 stabilizing the favorable con-

formation leading to the endo-boat TS-1. 

 

 
Figure 2. Possible transition state structures TS-1 to TS-4 of 

IMDA reaction using major epimer (6R*)-7. 



 

 

 

Figure 3. DFT calculated transition structures (a) TS-1a to 

TS-4a in H2O and (b) TS-1b to TS-4b in THF, and their cal-

culated free energies of activation (ΔΔG‡) at the B3PW91/6-

311+G(2d,2p)/SMD(solvent)//B3PW91/6-

311+G(d,p)/CPCM(solvent) level of theory. 

 

Figure 4. Space-filling model of the DFT calculated transition 

state structures TS-1a and TS-2a in H2O. 

 

  In conclusion, we have successfully developed a new and 

concise synthesis of the highly functionalized core skeletons 

of the estrogenic and cardiotonic steroids, which are otherwise 

difficult to obtain. The key steps in our synthesis are Mizoro-

ki-Heck and IMDA reactions, which is particularly efficient as 

it proceeds through a common intermediate. Because the ob-

tained compounds bear pendant alkene and hydroxy groups,9 

they are anticipated to be useful precursors for both natural 

and unnatural steroids. We also made the serendipitous and 

unusual discovery that the diastereoselectivity of the IMDA 

reaction could be significantly enhanced by polar oxy-

functionalities (such as unprotected hydroxy and carbonyl 

groups) present in the substrate when the reaction was under-

taken in water, and rationalized our findings using DFT calcu-

lations. This discovery is expected to constitute a general 

method to exert diastereocontrol over substrates bearing free 

hydroxy groups.17,22 Its further study and application to the 

synthesis of biologically interesting steroids is ongoing and 

will be reported in due course. 
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