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We study the evolution of an error field defined by the difference between two velocity fields
in statistically identical three-dimensional incompressible homogeneous turbulence. We as-
sume that the initial error resides only in a high wavenumber range. A theoretical analysis
based on a self-similarity assumption for the large-scale error field evolution shows that the
growth of the error energy spectrum is characterized by both the total error energy and the
integral length scales of the error field. Direct numerical simulation (DNS) of the error field
in incompressible turbulence in a periodic box shows that this characterization holds well in
a time period. In addition, scale-dependent error energy production is discussed by using the

DNS.

1. Introduction

Turbulence has strong nonlinearity and a large number of eddies exhibiting a wide range
of dynamically active scales. The time histories of flow quantities such as the velocity at any
fixed position are chaotic and therefore unpredictable, while the evolution of turbulent statis-
tics, e.g., the total kinetic energy and the total enstrophy, are reproducible. Let us consider two
statistically identical turbulent flows whose initial conditions are slightly different from each
other but whose boundary conditions are identical. The error field is defined by the difference
between the two velocity fields of the flows. Since the pioneering work by Lorenz,” many
studies have been conducted on the growth of the error field (e.g., see Refs. 2 and 3). The
correlation length scale of the error field increases as time progresses. At each wavenumber,
the error energy spectrum grows with time and saturates when the scale-by-scale correlation
between the velocity fields is completely lost.

We here confine ourselves to error growth in three-dimensional (3D) incompressible ho-

mogeneous turbulence, which is one of the most canonical turbulent flows. The first obser-
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vation of error growth using direct numerical simulation (DNS) was provided for 3D freely
decaying turbulence in a periodic box.” Using the test-field model, an Eulerian closure the-
ory, of the isotropic turbulence, Leith and Kraichnan® showed error energy amplification
and backward error energy transfer. In addition, they found an error energy spectrum Es(k, t)
obeying the form that Es(k,1) = A(t)k* + o(k*) at small k in an infinitely wide inertial sub-
range of the isotropic turbulence, where k is the wavenumber and A(z) is a function of only
the time ¢. This k* form was shown for isotropic turbulence at sufficiently high Reynolds num-
ber by numerical calculation based on an eddy-damped quasi-normal Markovian (EDQNM)
model.® It was suggested that this form arises from the large-scale property of Es(k) at
k — 0.29 The EDQNM results were verified by large-eddy simulation.” The predictabil-
ity was also characterized by the Lyapunov exponents of the error field.®'!)

The large-scale structure of a velocity field, which can be characterized by the velocity
correlation spectral tensor at k — 0, in 3D incompressible homogeneous turbulence plays
significant roles in the decay of the turbulence even though the Reynolds number is not high
enough.'>' In this paper, we study the contributions of the error field at large scales includ-
ing the scales of the error energy containing range on the error growth for two statistically
identical velocity fields in 3D incompressible homogeneous turbulence. An identical external
force is imposed on the velocity fields. In Sec. 2, we theoretically analyze the large-scale
structure of the error field, and discuss the implications of a self-similarity assumption of the
error growth at the large scales. We focus on the case where the scales of the error energy
containing range are much smaller than the integral length scales of the velocity fields. In
Sec. 3, we examine whether the theoretical results hold well for DNS of two nearly statisti-
cally identical velocity fields in incompressible turbulence in a periodic box. Moreover, the
scale-dependent nonlinear interactions are studied by using the DNS. Finally, Sec. 4 provides

our conclusions.

2. Basic Equations and Statistics of an Error Field
2.1 Basic equations

We consider two 3D incompressible homogeneous turbulent flows subject to an identical
external forcing F(x,t), where x is the position in the Cartesian coordinate system and x =
(x1, X2, x3). We assume that their initial fields are slightly different from each other. Their

velocity fields, denoted by u@(x, t) and u'V(x, 1), obey the Navier-Stokes equations,

1
ou + @ Vu® = ——vp® +yWu® + F, (1)
P
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with V-u®® = 0 (s = 0,1), where p(x, 1) is the pressure, v is the kinematic viscosity, p is
the fluid density, d, = 0/0t, V = (0., 0,, 03), and 9; = 0/0x;. We omit the arguments x and ¢
and write u¥ as u for brevity, unless otherwise stated. We set (u®y = 0, where (-) denotes an
ensemble average of -. In homogeneous turbulence, () is independent of the position x and
can be regarded as the spatial average.

The error field &(x, £) is defined as & = u'" — u. Equation (1) gives

0 =~ — (¢ + T = 9 (5 = ) 17, @
with V-§ = 0. Equation (2) yields

S0P = (@£ ) — W0 50 6, 3)
where the summation convention is used for repeated alphabetical subscripts. The total error
energy (1/2){|€?) is not conservative for inviscid flow, because {(d &€ ju;y on the right-hand

side of Eq. (3) can produce the error energy.
In the homogeneous turbulence, we define the velocity correlation spectral tensor IA?l(.js.)(k, 1)
(s = 0,1) and the error field correlation spectral tensor D;;(k,t) as the Fourier transform
of the two-point velocity correlation RSJS.)(r, t) and the two-point correlation of the error
field Dy;(r,t), respectively, where k is the wave vector, jo)(r) = (ugs)(x)ui.s)(x + r)) and
D;j(r,t) = (&i(x)éj(x + r)). Here, * denotes the Fourier transform of - such that Wk, t) =
Q2r)3 &3 W(r, t) exp(—ik-r)dr. We then define the kinetic energy spectra E®)(k, t) and the er-

ror energy spectrum Es(k, t) as

1 D(s
BV = 5 [ R @.ds., @

1 n
&wn=§fammwb 5)

where k = |k| and f -dS denotes the integral of - over the spherical surface with a radius of

|g| = k and a center at ¢ = 0. The integral length scale of g(x, ¢) in the jth Cartesian direction

is defined as

Lo = (s, t)if(x +re;, 1))dr
(g°(x, 1))

where e; is the unit vector pointing to the jth direction, and g = u; or &;.

; (6)

2.2 Large-scale structure of the error field
We study here the large-scale structure of the error field in 3D incompressible homo-
geneous turbulence. The large-scale structure of the error field can be characterized by the

error field correlation spectral tensor D; i(k,t). We assume that Dyi(k, 1) at an initial time in-
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stant ¢ = £, is nonzero only in a sufficiently high wavenumber range. The velocity correlation
spectral tensor I%E?)(k, to) is identical to I%E})(k, to) in the k range where D;;(k,t)) = 0. The
error energy spectrum Ej(k,t) can grow with time ¢, until the correlation between 2V (k, f)
and 4V (k, ) is completely lost at each k. In other words, the inequality, Es(k, 1) < 2E®(k, 1),
can hold for any k. Accordingly, it is natural to assume that D, i(k,t) = O’y at k — 0 if
R (k1) = O(k“) at k — 0, where b > c.

As is the case of so-called Batchelor turbulence!'®!'” in which the velocity correlation

spectral tensor at k — 0 is O(k?), we assume that
Dij(k, 1) = O(Kk*) (7)

at k — 0 and at a certain time instant ¢ = t,(> fy). Equation (7) implies that Es(k, f) takes the

form
Es(k,t) = A(OK* + o(k*) (8)

atk — 0.
The tensor D; i(k, 1) obeys the following equation derived from Eq. (2) with the divergence
free conditions V-u = 0 and V-£ = 0O:

O,Dijhe.t) = iky [ Piy {Winj(h) + Wouyj(he) + Vi ()|
=P i Wini(= k) + Woi(=K) + Voi(=K)}| = 20 Dyl 1), (9)
where P;; = 6;; — k,-kj/kz, 0;; is Kronecker’s delta, and ‘A/[ﬂ(k) and W,-ﬂ(k) are the Fourier
transforms of V;;;(r) and W;;(r), respectively, defined as
Via(r) = (&(0)&;(0)&1(x + 1)), (10)
Wiji(r) = (&i(0)u;(x)§(x +1)). (11)

Furthermore, k,f/,-j,(k) = le,-ﬂ(k) = 0, because (8/dr)V;(r) = 0 and (8/0r)W,;(r) = 0.
Provided that ‘7ij1(k) and W; (k) can be respectively rewritten as v, (k) = ‘A/l.oﬂ + O(k) and

Wii(k) = W?ﬂ + O(k) at k — 0, then k,‘A/l.Oﬂ = k,WiOﬂ = 0 for any k. Therefore, Vgl = 0 and
Wo

i1 = 0. Accordingly, we find that at k—0,

0,Dij(k, 1) = O(k*) (12)

which implies that Eq. (7) holds for any ¢ (> #;) and that the time derivative of A in Eq. (8)
need not be zero in general for any ¢ (> t,). The closure theories™® showed that d,Es(k, t) > 0
in the inertial subrange for developed isotropic error fields in 3D incompressible isotropic

turbulence.
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Instead of Eq. (7), we can assume that, at an initial time instant 7, D; (k) = O(k°), and
therefore that Es(k, %)) = Axk* + o(k?), where A, is a k-independent constant. On the basis
of the arguments of Refs. 14, 18, and 19 about the large-scale structure of velocity fields in
incompressible homogeneous turbulence, it is shown that A, is time independent under an ap-
propriate condition. This independence means that A, = 0 for any #(> ), if we consider only
the case in which the initial error energy spectrum is confined to a high enough wavenumber

range.

2.3 Self-similar evolution of the error field

First, we introduce a vector potential a(x,t) such that € = V x @ and V.a = 0. The
correlation spectral tensor Aok, t) is defined by the Fourier transform of {a,(x, t)a,(x+r, 1)),
where we use no summation convention for the Greek subscripts. Equations (7) and (12) mean
Aok, t) = OK°) and 8,4, (k, ) = O(K®), respectively. Therefore, because Vea = 0, A, (k, 1)

at k — 0 can be written as
Aaa(k’ t) = Pia/Pja/Mij(t) + 0(1)a (13)

where M;;(t) is time dependent and k independent. In this paper, we consider a case in which
the force F is identical so that no external force is imposed on the error field. Therefore, we
assume that the time dependence of M;;(¢) is independent of i and j for nonzero M;;(¢) after a
transient time period, and we set M;;(f) = C(H)M,; i» where M, ; 1s independent of time ¢. This
time independence implies that A, (k, £)/C(¢) is time independent at k — 0 for any fixed k/k.

Next, we argue a certain self-similarity of Aok, 1), similar to the argument of Ref. 18
that discussed a type of self-similarity of the velocity correlation spectral tensor taking a
form of O(k°) at k — 0. We assume that A,,(k, ) evolves at large scales including the scales
comparable to the integral length scale of the error field in accordance with a self-similar

form

Avall,1) = C(1) faal©), (14)

in a certain time range and domain of the wave vector space k including small enough k
range, where £ is a self-similar variable defined as { = (k1 €1(t), k2l2(2), k3l5(1)), fou(d) is a
dimensionless function, and ¢,(¢) is a length scale in the mth Cartesian direction. Because
Avalle,t) = OK®) at k — 0, f,0(&) = O(IZ°) at £ — 0. Tt should be noted that C(¢) has dimen-
sions of (velocity)’x(length)’. We do not impose self-similarity in the viscosity-dominant
wave vector range for the error field where the nonlinear error energy production is negligi-

ble compared to the error energy dissipation. The coefficient C(¢) in Eq. (14) arises from the

5/15



J. Phys. Soc. Jpn.

time independence of f,,({) at { — 0 for fixed {/|{| and the time dependence of Aaa(k, 1) at
k — 0 for fixed k/k . Note that {/|{|(= k/k) is time independent for fixed k, if k/k = (1,0, 0),
(0,1,0) or (0,0, 1).

In the algebra similar to that used by Ref. 18, we find that

/€ ~ const. (15)

for any i and j in the self-similar evolution. The details of the algebra are shown in the
Appendix. The length scale ¢,, can be rewritten as ¢,, = ¢, {(t), where c,, is a constant. We
assume that the time dependence of ¢, is independent of the component @. We can therefore
set { = kC instead of { = (ki £,(¢), ko l2(1), k3€3(1)). The spectral correlation tensor of the error

field D, (k, t) can be rewritten as
Dyo(k,t) = (K = k2)Aii(k, 1) = K Ago (K, 1) = COE(haa(), (16)

at the large scales, where /,,({) = (I” = £2)fi(§) = &1 fua-
We assume that Eq. (16) is a good approximation of Doo(k,t) in the (k,1) range and

that the right-hand side of Eq. (16) mostly contributes to integrals such as &3 Dok, dk.
Substitution of Eq. (16) into fn@ Do (k, t)dk shows that

&) = f Dok, Dk
]R3

12

CO(1) f hao(§)dS. (17)
R3
Because ¢ is time independent, we find that
(E20° ~ const. X C(1). (18)

On the basis of Egs. (6) and (16), the integral length scale of the error field in the x; direction,
Ly(&,), results in

jl‘gz ﬁaa(oa k2, k}, t)dkzdk?,
ﬂ- A
s Doalk, H)dk
CL™ [ hea(0, 0, 3)dod s
T

Ct [ hoald)dd
const. X £(1). (19)

Ll (é‘:a) =

12

12

Similarly, we obtain L,,(&,) =~ const. X £(¢) for m = 2, and 3. Therefore, we denote L,(&,) as
L4(1), irrespective of a. Substituting Eq. (16) into Eq. (5), and using Egs. (18) and (19), we
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find that
Es(k,t)
(1P L#
at the large scales. Equation (18) reduces to (|&*)(L¥)’ =~ const. X C(¢): this result can be

~ time independent (20)

obtained by using a dimensional analysis similar to the analysis of Ref. 2 for a certain type
of isotropic passive scalar field in 3D incompressible homogeneous turbulence in which the
scalar spectrum is proportional to k* at k — 0.

The vector potential of an incompressible velocity field plays an important role in the
dynamical behavior of Loitsyansky’s integral®” for Batchelor turbulence in which the energy
spectrum E(k) takes a form that E(k) = C4k* + o(k*) at k — 0. The integral is equivalent to
Cy.

2.4 Nonlinear error energy interactions
Using a sharp spectral cutoff filter, we can decompose a field g(x) into two contributions,
a grid scale (GS) contribution g(x, k.) and a sub-grid scale (SGS) contribution g’(x, k), where

k. is the cutoff wavenumber. The GS contribution g(x, k.) is defined as

1
Bk = o fR H(x — () 1)
) { I for k<k
Atk) = , 22)
0 for k>k,

while the SGS contribution g’(x,k.) is given by g'(x,k.) = g(x) — g(x,k.). Note that
8(x, k.)g'(x, k) = 0.
Application of this filter to Eq. (2) results in
1. - . . -
§3z<|§|2> = POke, 1) + P (ke, 1) = V(0,E:0,E), (23)
where
P(kes1) = ((0,€)(E i), (24)
P (kes 1) = ((0,€)E s — E1)) + D) wi; = W;ED)) + (BN EE - EE)). (25)
Here, we used V- = 0 and V-£ = 0. The two types of nonlinear terms, P¢(k,, r) and P (k,, 1),
produce the GS error energy (1/ 2)6,(|E|2>. The term PY(k.) indicates the error energy produc-

tion arising from GS interactions of % and &,, while P° (k) indicates the error energy produc-

tion due to the nonlinear interactions of the GS and SGS contributions, g and g’, where g = u;

oré;.
The decomposition of ((8,€,)& ju;+(0;&)u i&+(0;&)E ;) into PC (k.) and P° (k,) is uniquely
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determined. The expressions of each nonlinear term cannot be uniquely determined. The term
(0 ,E,.)ﬁ can be expressed in other forms, by the use of ul(.l). For example, we can rewrite
(0 ,E,.)ﬁ as (0 ,E,.)ﬁ = (0 ,-E,.) (g—“ jul(.l) - %) Accordingly, we do not mention the role of

each individual term of P° (k.).

3. Direct Numerical Simulation
3.1 Method and parameters

We performed DNS of two incompressible turbulent flows obeying Eq. (1) with the in-
compressibility conditions in a (27)* periodic box, using a Fourier spectral method and a
fourth order Runge-Kutta method. The aliasing errors are removed by a phase shift method
and a sharp spectral cutoff filter. The Fourier modes satisfying k < V2N'/3/3 are retained,
where N is the number of grid points and N = 5123, As the force F, we employ a negative
viscosity only in the low wavenumber range of k < 2.5 such that (|u|*) remains unity. The
kinematic viscosity v is 3.2 x 107, and the time increment is 1.0 x 107>. Here and in the
following, (-) denotes the spatial average. The initial time instant 7, is set to zero.

The initial field u(x, 0) is a statistically quasi-stationary fully-developed turbulent flow
obtained by a preliminary DNS using the same method. The Taylor microscale Reynolds
number is R, = 243 and k. ~ 1, where R, is defined as R, = w'A/v, 1 = (15vu’?/{e))'/?,
u = \/W(: 1/ \/§), kmax 1S the maximum wavenumber, and 7 is the Kolmogorov micro-
length scale defined by (v*/{€))"/*. The initial field u"(x, 0) is slightly different from u(x, 0).
The difference exists only in the Fourier modes in a high wavenumber range, k > k;, where
we set k; = 0.985ky.x. The field 2V (k,0) in k > k; is randomized while keeping the energy
spectrum of u and satisfying the solenoidal condition. The initial total error energy is 3.1 X
1075,

The DNS was run up to t = 2.5T, where T is the initial large-eddy turnover time defined
asT = L"/u’,and L" = (1/3){L;(uy) + L>(uy) + L3(u3)} at t = 0. The two flows are statistically
nearly identical. The spectrum E©(k, r) remains almost unchanged and excellently agrees
with EM(k, ). We confirmed that L;(&)) ~ L,(&) ~ Ls(&3). Therefore, we define L¢ as

_ Li) + L&) + L&)
S .

For brevity, we omit figures presenting E©(k, t) and EV(k, ) at different time instants and

L

(26)

the time development of L,(&,) (o = 1,2, 3).
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Fig. 1. Evolution of (a) the error energy (1/2)(|€?]) and (b) the integral length scale L¢.

3.2 Numerical results

Figure 1(a) shows that the error energy grows rapidly for /T > 0.1. It can be seen in
Fig. 1(b) that the length scale L increases monotonically with time. Figure 2 shows the
error energy spectra Es(k, t) at different time instants. We can see that Es(k) is approximately
proportional to k* in a low wavenumber range for 0.25 < /T < 2,i.e., 7 < t/T < 87, where
7 ~ 0.25. The growth of Es(k) with Es(k) oc k* is in accordance with the simulation based
on the test-field model,” numerical calculations using the EDQNM model, and the large-
eddy simulation results.” Yamazaki et al.>" examined the influence of the DNS resolutions
on incompressible turbulence in a periodic box. The spectrum of the difference field between
turbulent flows with kye7 ~ 1 and k. ~ 2 increases with k as approximately k* for a low
wavenumber range.

Figure 3 shows the kLf-dependence of the normalized error energy spectra
Es(k)/({|€*YLF). The k*-like spectra are observed for kLY < 0.5. We can observe good col-
lapse of the normalized spectra for 0.5 < ¢t/T < 1.5,1.e., 2t < t/T < 67. This collapse shows

that the error growth is well characterized by (|€*) and L¢ at the large scales of the error
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Es(k,t)

0.01 0.1 1

Fig. 2. (Color online) The error energy spectra Es(k, ) versus kn at different time instants /7 = nt (n =
1,--+,10), where T ~ 0.25. The spectra are plotted from bottom to top starting with Es(k, 7). The solid gray line
denotes 2E@ (k) at ¢/T = 0.

Es(k,t)/((1€1*)L%)

kLS

Fig. 3. (Color online) Normalized error energy spectra Es(k, 1)/ ((EPYLE) versus kLf at t/T = nt, where
n=1,---,8.

field including the scales in the error energy containing range. This is in accordance with Eq.
(20), which was theoretically obtained on the basis of both a self-similarity assumption of the
large-scale error evolution and the large-scale properties of the error field.

In the DNS we consider here, L¥ < L and L* is comparable to the box size. Therefore,
the DNS does not resolve the velocity field at k — 0 in the sense that E”(k, ) does not take
a form that EQ(k, 1) oc k” at kL* < 1 (1 < b < 4). We thus speculate that the contributions of
the unresolved @ (k) to the nonlinear convection terms in Eq. (9) are negligible here. Kida and
Ohkitani® found the growth of A’(7) in the form that E;(k, 1) ~ A (1)k* for a low wavenumber
range, using DNS in a periodic box. Note that their initial error energy spectrum has its

maximum in the low wavenumber range. We discussed the invariance of A, in the form that
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Fig. 4. (Color online) The kCLf-dependence of (a) PY(k.)/(€) and (b) P (k.)/(e) att/T =nt (n=3,---,8).

Es(k,fy) = Ayk* + o(k?) at the end of Sec. 2.2. The invariance or the form can break if the
large-scale motion is not well resolved owing to the smallness of the computational domain.

To obtain a deeper insight of the nonlinear dynamics in the error growth, we examine
two types of scale-dependent error energy production, PY(k., ) and P° (k,, t), which are de-
fined by Egs. (24) and (25), respectively. Figures 4(a) and 4(b) show the kL¢-dependence of
PC(k., 1)/{€)y and P° (k., t)/{€) as functions of k.1 at different time instants, respectively, where
(€) is quasi-stationary and is the mean kinetic energy dissipation rate of the field u?. In Fig.
4(a), we can see that PY(k.,t) > O irrespective of k.L¢ and ¢. This positive production im-
plies that the GS interactions increase the GS error energy (1/ 2)(|§‘|2>. The production PY(k,)
monotonically increases with k.. The increment of PY(k.) corresponds to the production of
the error energy spectrum Es(k.). Figure 4(a) shows that the GS interactions actively produce
Es(k.) in the range 2 < k.L* < 5. In Fig. 4(b), we can see that for k.L¢ < 2, PS(k.) > 0.
This positive P° (k.) means that the GS error energy is produced due to the interactions be-

tween the GS and SGS contributions of # and &. Figure 5 shows that P° (k) is much larger
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k.L¢

Fig. 5. (Color online) A replot of PS (k.)/(€) and P (k.)/{€) at t/T = 3t and 67. The solid and dashed lines
denote P (k.)/(€) and PC(k.)/{€), respectively.

than PY(k.) in k.L* < 0.5 where the k*-like error spectra are observed in Fig. 3. Therefore,
PS (k.) plays a significant role in the growth of the k*-like error energy spectrum, which is in
accordance with predictions by closure theories.”® The production P (k., f) has a minimum
near k.L¥ ~ 5, irrespective of . The minimum value is negative and becomes smaller with
increasing time, which means that the depletion of the GS error energy due to the interactions

between the GS and SGS contributions becomes stronger, as time progresses.

4. Conclusions

We studied the error growth in 3D incompressible homogeneous turbulence. We argued
that the error energy spectrum Ej(k,t) can grow with time while keeping the form that
Es(k,t) oc k* at k — 0. It was shown that the growth is well characterized by the error
energy (1/2){|€*) and an integral length scale of the error field L¢ by the theoretical analysis
based on a self-similarity assumption for the error field evolution at the large scales including
the scales of the error energy containing range. We carried out DNS of two incompressible
turbulent flows in a periodic box at R, = 243. These flows are statistically nearly identical and
quasi-stationary. The difference between these velocity fields in k space is initially only in
the high wavenumber range. The DNS showed that the normalized spectra Es(k, t)/({|&*)L?)
well collapse in a certain time period, which implies that the characterization of Es(k,t) by
both (1/2){|&*) and L? is appropriate. The spectrum Es(k,t) approximately obeys k* in the
low wavenumber range, kL* < 0.5. These DNS results suggest that large-scale error field
properties play significant roles in the error growth. In addition, the scale-dependent nonlin-

ear error energy production was discussed. A spectral cutoff filter splits the velocity and error
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fields into two contributions, the GS and SGS contributions. The GS contributions consist
only of the Fourier modes of the velocity and error fields satisfying k < k., while the SGS
contributions consist of Fourier modes of the velocity and error fields satisfying k > k.. It
was shown that the k* form of Ej(k) is mainly due to the interactions of the GS and SGS
contributions. The error energy is produced mainly by the nonlinear interactions of only the
GS contributions. These interactions are active in 2 < k.L¢ < 5.

The laws governing the time evolutions of (|&|*) and Lf remain issues. The Reynolds
number of the flows obtained by the DNS is not sufficiently high. A DNS study of these laws
will require much higher computational cost. A Lagrangian closure theory without ad hoc

parameters®? could be useful.
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Appendix: Derivation of Eq. (15)

We define the zeroth order term in k of A,.(k,1)/C(f) at k — 0 by ®y,(k): O, (k) =
PioPioM;; = (8i0 — kika)(8jo — ko) M;;, where k = k/k and |k| = 1. Tn the self-similar state,
®,, (k) is time-independent. Let us consider the domain where 0 < k; < 1 and k3 = 0. We
obtaink; = 1/ VI + o and k» = o/ V1 + o, where o = k»/k, = ka/ky. Expanding @, (k) in

the powers of o for |o| < 1 at ky = 0, we have
ook, K2, 0) = Y Zp0”, (A1)
m=0

where =, is a constant independent of ¢ and k. Therefore, (I)aa(fq, ko, 0) is a function of only

o. Equation (14) gives
Dok, k2, 0) = f,(Z1, 22, 0) (A-2)

at k — 0 implying £ — 0, where f° ({) is the zeroth order term in || of f,,(£) and £ = £/|{].
Equations (A-1) and (A-2) imply that 20(21, 5»,0) is a function of only " = 5> /& for small
o, because the right-hand side is a function of only Zl and Zz, while the left-hand side is
a function of only o. It is to be noted that o = yAd” where y = {,/{,. Hereafter we write
D@0 (ki, ky,0) and f2 (21, 2,0) as D, (yA’) and f2 (). Because f° (£) is time independent

for any £, we find that [(d”/d/l’”) C?a(/l’)] is time independent for a positive integer n.

=0
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Here, we can take n = 2 because =, # 0 in general. Using Eq. (A-2), we find that

a}’l
— D, (yA") =n!E,y" = time independent, (A-3)
aﬂ/n =0

which implies that y(= ¢, /¢,) is constant. In the same way, we find that £, /{5 is also constant.

Therefore, we obtain Eq. (15).
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