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Chapter 1

Introduction

1.1 Background

Shock wave is a representative phenomenon in compressible fluid dynamics, and can

be found in various fields of both engineering and science. In engineering applica-

tions, shock waves can be observed around a supersonic airplane, and their influences

on the aerodynamic flight performance have been discussed in terms of the effects

on the wave drag (Bushnell, 2004) and on the engine performance (Gnani, Zare-

Behtash, and Kontis, 2016).

One of the most important problems of shock waves is a sonic boom (Maglieri

et al., 2014), which is a noise pollution caused by the shock waves generated by

supersonic flight, and is known to be enormous damage for our living environment

and wildlife ecosystem (Pepper, Nascarella, and Kendall, 2003). As the demand for

the development of the next-generation supersonic transport increases in the recent

globalization, there is an urgent need to solve the sonic boom problem. There have

been some studies aimed at the reduction of the sonic boom. For example, in D-

SEND and D-SEND #2 projects by JAXA, the shape of the supersonic aircraft was
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studied for the realization of the low boom (Honda and Yoshida, 2012; Honda and

Yoshida, 2014).

On the other hand, the pressure waveforms of the shock waves are known to be

largely changed by the interaction with the atmospheric turbulence (Maglieri, 1966;

Pierce, 1971; Plotkin and George, 1972; Piacsek, 2002; Yamashita and Obayashi,

2009; Jeong, Shimoyama, and Hashimoto, 2013). Since the pressure waveforms are

closely related to the noise level of the sonic boom, it is necessary for us to develop

the prediction and modeling of turbulence effects on the shock wave.

The change in the shock characteristics after the interaction with turbulence can

also be seen in the shock-boundary layer interaction problems (Delery, 1985; Dolling,

2001; Tamba et al., 2015b; Agostini, Larchevêque, and Dupont, 2015; Ozawa, 2016;

Li et al., 2017; Fang et al., 2018; Zhuang et al., 2018). It is known that the shock

wave formed on a transonic airfoil induces the separation of the turbulent boundary

layer on the airfoil from the shock foot to the trailing edge, which causes the unsteady

motion of the shock wave (Seegmiller, Marvin, and Levy Jr., 1978; Delery, 1985).

It is also known that the boundary layer formed inside the air intake of a jet engine

interacts with the shock wave in the intake, resulting in the fluctuations of the total

pressure behind the shock wave (Delery, 1985). Hence, the shock wave characteris-

tics in ‘shock-turbulence interaction’ (Andreopoulos, Agui, and Briassulis, 2000) are

very important in aeronautical engineering problems.

Another notable result in shock-turbulence interaction problems is the amplifica-

tion of turbulence after the interaction with the shock wave, which can alter spatial

distributions of momentum, energy, chemicals, and heat of turbulence. Therefore, the

shock-turbulence interaction can have a strong influence on the mixing properties of
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turbulence. Such phenomena are observed, for instance, in star formations in galax-

ies by supernova explosions (Mac Low and Klessen, 2004) and in the magnetic field

downstream of the solar-wind termination shock, where large-scale fluctuations were

confirmed (Burlaga et al., 2006; Giacalone and Jokipii, 2007). In nuclear physics,

shock-turbulence interaction can be found in inertial confinement fusion (Thomas

and Kares, 2012), where the characteristics of turbulent mixing past a shock wave

are involved in the development or decay of the fusion.

Thus, both characteristics of the shock wave and turbulence are mutually affected,

so that fundamental study for the shock-turbulence interaction has a large potential

for understanding the phenomena and for the application to more efficient aeronauti-

cal products.

1.2 Previous studies on shock-turbulence interaction

1.2.1 Laboratory experiments

There have been some laboratory experiments on shock-turbulence interaction for the

fundamental research of both characteristics of the turbulence and the shock wave.

For the investigation of the shock wave effects on turbulence, Keller and Merzkirch,

1994 visualized the density field of compressible turbulence in shock tube experi-

ments by using the speckle method, where the flow past a grid interacts with a shock

wave reflected at the tube end. They found that the root-mean-squared (rms) density

fluctuations, the integral length scale, and the Taylor microscale of density fluctu-

ations are increased after the interaction with the shock wave. Barre, Alem, and
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Bonnet, 1996 conducted experiments on high Mach-number quasi-isotropic turbu-

lence interacting with a standing shock wave, where they discovered the increase

in the rms velocity fluctuation and the decrease in the longitudinal integral length

scale of the velocity fluctuations. Poggi, Thorembey, and Rodriguez, 1998 studied

turbulent characteristics of gaseous mixtures of SF6 and air induced by Richtmyer-

Meshkov instability in shock tube experiments. They measured velocity fluctuations

affected by the shock wave by using laser Doppler anemometry. Agui, Briassulis,

and Andreopoulos, 2005 also performed shock tube experiments on the interaction

between a shock wave and compressible turbulence, where they measured velocity

characteristics of turbulence with a multi-hot-wire probe before and after interaction

with a shock wave. They reported that in the shock-normal direction, the rms veloc-

ity fluctuation is increased, and the longitudinal integral length scale and the Taylor

microscale are decreased after the interaction, while the changes in such velocity

characteristics are small in the shock-tangential direction. The increase in the rms

velocity fluctuation and the decrease in the longitudinal integral length scale were

also reported in the experimental study on the interaction between a weak spherical

shock wave and low Mach-number grid turbulence (Kitamura et al., 2017).

The effects of turbulence on the shock wave characteristics have also been stud-

ied. Dosanjh, 1956 conducted shadowgraph visualization in the shock-tube exper-

iments of the interaction between a planar shock wave and turbulence, where they

found that the shock wave front is fluctuated by the interaction. Experiments on in-

teraction between a blast wave and a slit jet were also conducted (Lipkens and Black-

stock, 1998a; Lipkens and Blackstock, 1998b). They investigated the characteristics
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of overpressure behind the blast wave interacting with the jet, such as peak overpres-

sure and rise time required for the overpressure to reach a peak value. Their work

revealed that the fluctuations of both peak overpressure and rise time are increased

with the jet velocity or with the length of turbulence, and that the relative intensity

of those fluctuations are increased with the shock propagation distance. Kim, Sasoh,

and Matsuda, 2010 also experimentally studied the interaction between a blast wave

and a jet, where they investigated the relation between the shock front geometry and

the overpressure modulation behind the shock caused by turbulence. They found the

peak overpressure is increased when the shock wave front is locally flattened. Sasoh

et al., 2014 conducted wind tunnel experiments on interaction between a weak spher-

ical shock wave and grid turbulence. Such quasi-homogeneous isotropic turbulence

as grid turbulence enabled them to independently investigate the effects of velocity

fluctuation on the shock characteristics apart from the effect of an inhomogeneous

mean velocity profile. They showed that the peak overpressure fluctuation intensity

linearly increases with the rms velocity fluctuation of turbulence. In the recent study

by Tamba et al., a counter-driver shock tube was developed for the shock-turbulence

interaction study, where the strength of the shock wave and that of turbulence can be

independently set (Tamba et al., 2015a). From their shadowgraph visualization of the

shock wave, they found that the deformation of the shock wave front becomes larger

with the larger relative strength of turbulence to shock wave (Tamba et al., 2019).
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1.2.2 Numerical simulations and theories

Numerical and theoretical studies have mainly been performed for the interaction

between a planar shock wave and homogeneous isotropic turbulence for the sim-

plification of the shock-turbulence interaction phenomena. This is important for

understanding the basic elements of the phenomena. Most numerical studies have

focused on the change in the turbulence characteristics after the interaction. The

amplification of the turbulent kinetic energy after the interaction were reported in

numerical simulations and theories (Lee, Lele, and Moin, 1993; Larsson and Lele,

2009; Donzis, 2012a; Ryu and Livescu, 2014; Kitamura et al., 2016; Tanaka et al.,

2018; Chen and Donzis, 2019). Larsson and Lele, 2009 found that the Kolmogorov

microscale decreases, the vorticity variance increases, and the Reynolds stresses be-

comes anisotropic by the interaction. Linear interaction analysis and direct numeri-

cal simulations by Ryu and Livescu, 2014 showed that the topology of the turbulent

structure is changed past shock wave.

Remarkable findings related to the change in the shock wave characteristics by

turbulence have also been obtained by numerical and theoretical studies. The atten-

uation of the shock wave strength by the interaction with turbulence was confirmed

in the theoretical study by Lele, 1992. The numerical simulations by Lee, Lele,

and Moin, 1993 found that a clear shock wave front can disappear in the case of

the interaction between strong turbulence and a weak shock wave. The similar phe-

nomenon was also observed in other previous studies (Larsson and Lele, 2009; Lars-

son, Bermejo-Moreno, and Lele, 2013), where the existence of ‘shock holes’ or local

disappearance of jumps in physical quantities across the shock wave was confirmed.

When a large part of the shock surface is occupied by the shock holes, this shock
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wave is called a broken shock wave. The condition under which the shock wave

is broken by interaction with turbulence was investigated numerically (Larsson and

Lele, 2009; Larsson, Bermejo-Moreno, and Lele, 2013) and theoretically (Donzis,

2012b). Larsson, Bermejo-Moreno, and Lele, 2013 showed that density jump across

the shock wave is correlated with the streamwise shock position variance caused by

the shock wave deformation. Recently, Sethuraman and Sinha, 2020 performed di-

rect numerical simulations and linear interaction analysis on the effects of incoming

turbulence strength on the fluctuations in thermodynamic quantities such as pressure,

density, temperature, and entropy downstream of the shock wave. They found that

such thermodynamic variances past the shock wave increase with the turbulent Mach

number for a fixed shock Mach number.

1.3 Objective and structure of this thesis

From the important findings of the previous studies on the shock-turbulence inter-

action, this thesis picks up the statistical properties of the fluctuations of the over-

pressure behind the shock wave induced by the interaction with velocity fluctuations

of turbulence. There are various factors of turbulence that can be important in the

interaction with the shock wave. In some situations, temperature fluctuations in tur-

bulence induced by compressibility or other flow conditions can be important since

the speed of sound is directly related to temperature. All turbulent flows should have

velocity fluctuations, whose influence is, therefore, essential in turbulent effects on

the shock wave. Therefore, the thesis focuses on the effects of velocity fluctuations
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on the shock wave. On the other hand, since few experimental studies have con-

sidered the shock wave and turbulence strength parametrically, the systematical data

have not been obtained adequately for the investigation of the dependence of shock

wave statistics on the conditions of the shock wave and turbulence. In the inner-

shock tube experiments conducted in various previous studies, the shock-turbulence

interaction can easily be formed, however, the repetition of the interaction experi-

ments needed for the statistical analyses have been limited due to the structure of the

diaphragm. Moreover, the turbulent flow generated in the shock tube often has tem-

perature fluctuations due to compressibility effects, and it is difficult to investigate

effects of velocity fluctuations independently from those of temperature. It is also

difficult to evaluate the turbulence conditions correctly since the sampling time for

the turbulence measurement obtained at one run of each interaction experiment is de-

pendent on the shock tube system. Numerical studies are advantaged to obtain such

statistics, however, most of them have considered compressible turbulence, where

the thermodynamic fluctuations are significant, so that the effect of the velocity fluc-

tuations on the shock wave statistics has not been identified.

It is also important to understand the mechanism of how the velocity fluctuations

of turbulence induce the overpressure fluctuation behind the shock wave. The process

of the interaction can be studied if both instantaneous velocity and overpressure are

accessible. However, most experimental studies conducted measurement of one of

turbulence or shock wave.

It should also be mentioned that most previous studies treated homogeneous tur-

bulence for the interaction problems because of the simplification of the phenomena.

For the next step, it is of interest to investigate how the inhomogeneity of turbulence
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affects the shock wave. Some previous experiments treated inhomogeneous turbu-

lence such as jet, however, they did not focus on the effects of the inhomogeneity on

the shock wave characteristics.

In this thesis, to solve the above questions, repetitive shock-turbulence interaction

experiments are conducted by using a diaphragm-less shock tube and a wind tunnel,

and the statistics are systematically investigated for the shock wave after the inter-

action with homogeneous or inhomogeneous turbulence with a low turbulent Mach

number, where turbulence itself does not have compressibility effects. The same

shock wave generator is used throughout the experiments conducted in this thesis

while various turbulence conditions are considered depending on the purpose.

In Chapter 2, wind tunnel experiments on the interaction between a shock wave

and grid turbulence with a low turbulent Mach number are reported, where the inten-

sities of the shock wave and turbulence are varied. The dependence of the overpres-

sure behind the shock wave on the shock Mach number and turbulent Mach number

is evaluated, and compared with a theoretical model developed based on the shock

wave geometry. The model is also used to discuss the presence of the shock holes

and criterion for broken shock wave.

In the study in Chapter 3, simultaneous measurements of the turbulence veloc-

ity and the overpressure behind the shock wave are conducted for the shock wave

propagating in the grid turbulence with the same experiential set up as in Chapter 2.

The correlation between the instantaneous velocity and the overpressure is discussed.

The theoretical model developed in Chapter 2 is also considered for the explanation

of the experimental results.
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In Chapter 4, the interaction between cylinder wakes and the shock wave is in-

vestigated with the same wind tunnel facility, where the effects of inhomogeneity of

turbulence on shock wave overpressure characteristics are investigated. The effects

of the inhomogeneity on the shock wave modulation are compared with that of the

homogeneous turbulence.
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Chapter 2

Statistics of overpressure fluctuations

behind a shock wave interacting with

turbulence

2.1 Introduction of this chapter

In the previous numerical simulations, it was found that the shock wave propaga-

tion in turbulence can result in the shock holes, which are locally broken regions

of the shock wave, across which jumps in physical quantities do not exist (Lee,

Lele, and Moin, 1993; Larsson and Lele, 2009; Larsson, Bermejo-Moreno, and Lele,

2013). Numerical studies (Lee, Lele, and Moin, 1993; Larsson and Lele, 2009; Lars-

son, Bermejo-Moreno, and Lele, 2013; Tanaka et al., 2018) and a theoretical study

(Donzis, 2012b) have been attempted to find parameters that characterize the influ-

ence of turbulence on the shock wave. These previous studies have considered the

shock Mach number MS0 =US0/a0, turbulent Mach number MT =
√

2kT/a0, and tur-

bulent Reynolds number Reλ = urmsλ/ν as dominant parameters in the turbulence
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effects on the shock wave, where a0 is the speed of sound in front of the shock wave,

US0 is the propagation speed of the shock wave, kT is the turbulent kinetic energy,

urms is the root-mean-squared (rms) velocity fluctuation, λ is the Taylor microscale,

and ν is the kinematic viscosity. For example, previous numerical and theoretical

studies have proposed various criteria under which the shock holes appear. It is sug-

gested that the shock holes appear when M2
T/(M

2
S0−1)≳ 0.1 in Lee, Lele, and Moin,

1993, M2
T/(M

2
S0 − 1) ≳ 0.06 in Larsson and Lele, 2009 and MT/(MS0 − 1) ≳ 0.6 in

Donzis, 2012b and Larsson, Bermejo-Moreno, and Lele, 2013. The non-dimensional

parameters MT/(MS0 −1) and M2
T/(M

2
S0 −1), considered as the measure of the rela-

tive strength of turbulence to the shock wave, are often used to understand the inter-

action between turbulence and the shock wave (Lee, Lele, and Moin, 1993; Larsson

and Lele, 2009; Donzis, 2012b; Larsson, Bermejo-Moreno, and Lele, 2013; Tanaka

et al., 2018). However, so far, there are no consensuses on non-dimensional pa-

rameters that characterize the turbulence effects on the shock wave. Donzis, 2012b

theoretically indicated that the variance of the fluctuation in the dilatation of the

shock wave normalized by the mean dilatation increases with MT/(MS0 −1). Here,

the dilatation is defined as the minimum velocity gradient in the shock propagation

direction, which represents the discontinuity and strength of the shock wave. The

dilatation fluctuation was estimated from the ratio of the velocity jump across the

shock wave and shock thickness fluctuation in the analysis, where the fluctuations of

the velocity jump are ignored. However, the fluctuations of the pressure jump, that

is closely related to the fluctuations of the velocity jump by the Rankine-Hugoniot

relations, were confirmed in previous studies (Lipkens and Blackstock, 1998b; Lee,

Lele, and Moin, 1993; Larsson, Bermejo-Moreno, and Lele, 2013; Sasoh et al., 2014;
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Tanaka et al., 2018). Numerical simulations have shown that the turbulent velocity

fluctuation in the shock normal direction has correlation with the fluctuation of the

overpressure behind the shock wave at a low turbulent Mach number (Tanaka et al.,

2018). It is therefore important to experimentally and theoretically examine the re-

lation between these parameters and the jump in physical variables across the shock

wave.

In the present study, experiments are conducted for the interaction between a

weak spherical shock wave and grid turbulence. A spherical shock wave is one of

the canonical shock waves, and it has been extensively studied by theories, experi-

ments, and numerical simulations (Landau, 1945; Chisnell, 1957; Whitham, 1958;

Friedlander, 1946; Needham, 2010; Liang, Wang, and Chen, 2002). A weak shock

wave is expected to be suitable for the investigation of the parameters MT/(MS0−1)

and M2
T/(M

2
S0 −1) since the difference between these two parameters becomes large

for such a shock wave with MS0 ≈ 1. The interaction between a weak shock wave

and turbulence is also important in various problems. For example, the shock wave in

the sonic boom problem is weak at the ground level, and the measured overpressure

is of order of 101 to 102 Pa (Carlson, 1967). Predictions of the sonic boom caused

by the shock wave during the supersonic flight need models for the influences of the

atmospheric turbulence on the shock wave (Pierce, 1971).

The purpose of this chapter is to experimentally and theoretically assess the non-

dimensional parameters that characterize the effects of turbulent velocity fluctuations

on the shock wave characteristics. A shock deformation model is proposed for the

investigation of the turbulence effects on the shock wave. The shock deformation

model can also be used for the explanation of the response time of the overpressure
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modulation of the shock wave by turbulence, which is addressed in Chapter 3. The

model considers the shock wave deformation caused by a non-uniform velocity pro-

file. The model is extended to investigate the shock Mach number fluctuation caused

by the deformation: following the approximate theory by Whitham, 1957, the present

model obtains the local shock Mach number fluctuation from the change in the ray

tube area associated with the deformation. The present model is compared with the

experimental results of the statistics of the overpressure fluctuation behind the shock

wave.

2.2 Experimental methods

2.2.1 Experimental setup

Experiments are conducted for the interaction between a spherical shock wave and

grid turbulence in a wind tunnel for various values of MT and MS0 in order to cover a

wide range of MT/(MS0 − 1) and M2
T/(M

2
S0 − 1). Here, the present experiments are

restricted to grid turbulence at a low turbulent Mach number (incompressible turbu-

lence) to prevent fluctuations of thermodynamic properties from affecting the shock

wave. Because grid turbulence is a good approximation of homogeneous isotropic

turbulence, the influence of mean velocity gradients does not exist unlike in free

shear flows (Kim, Sasoh, and Matsuda, 2010).

Figure 2.1(a) and (b) show the schematic and side view of the experimental setup,

respectively. The wind tunnel and the shock generator used in this study are the

same as those in the previous studies (sasoh2014statistical,kitamura2017changes). A

square grid with a mesh size of M (a solidity of 0.36) is installed at the entrance to the
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FIGURE 2.1: (a) Schematic and (b) side view of experimental setup．
Lengths are shown in mm.

test section. The schematic of the grid and the definition of M are shown in Fig. 2.2.

Grid turbulence with the mean streamwise velocity of U0 develops behind the grid.

The detailed properties of the grid turbulence in the present wind tunnel are reported

in Kitamura et al., 2014. The shock wave is produced with the shock generator based

on a quick piston, which is controlled with solenoid valves SV1 and SV6 (SMC,

VG342R-06-6G-06N), and SV2 to SV5 (SMC, AV2000-N02G-6DZ) (see Fig. 2.3).

By opening SV2 to SV5, dry air of 900 kPa flows into the driver gas reservoir and the

rear of the piston. SV6 is used for the minute adjustment of the driver gas pressure.

When SV1 is opened, the driver gas is released into the driven gas in the shock tube

(air of ambient pressure). The total length and the inner diameter of the tube are 3.4
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FIGURE 2.2: Schematic of grid.

FIGURE 2.3: Schematic of the shock generator. Lengths are shown in
mm.

m and 23.3 mm, respectively. After the shock wave is ejected from the open end of

the shock tube, it spherically spreads and propagates in the grid turbulence developed

in the test section. A pressure transducer (PCB Piezotronics Inc., 113B27) mounted

on the horizontal plate is used for the overpressure measurements. The measurement

plate is fixed 75 mm above the wall of the wind tunnel to prevent the boundary layer

from affecting the measurements. The pressure transducer is mounted near the edge

of the plate so that the pressure measurement is not affected by the growth of the

Mach stem. The rise time of the pressure transducer is less than 1 µs. The resolu-

tion of the pressure measurements by our pressure transducer is 0.007 kPa. Pressure
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FIGURE 2.4: Example of the time history of the overpressure for case
1.

transducers with similar performance have been used for the overpressure measure-

ments in the experiments on shock/turbulence interactions (e.g., Sasoh et al., 2014

and Kim, Sasoh, and Matsuda, 2010). Sasoh et al., 2014 used the same experimental

facility, and measured the overpressure with the pressure transducer with the same

resolution as in this thesis. In their study, the overpressure fluctuations caused by

turbulence were well resolved for the investigations of the turbulence effects on the

histogram of overpressure fluctuations, averaged overpressure, and rms overpressure

fluctuations (Sasoh et al., 2014). The pressure signals are sampled at a frequency of

1 MHz with an oscilloscope (YOKOGAWA, DL850E), where the sampling is started

before the shock wave is ejected.

The experiments are conducted for eight conditions shown in Tab. 2.1, which are

considered by changing M, U0, and the streamwise location of the pressure measure-

ments, which is shown as the streamwise distance L from the open-end of the shock

tube to the pressure measurement location. For each case, 400 runs of the shock

wave ejections are conducted to take ensemble average, which is denoted by ⟨ ⟩. Fig-

ure 2.4 shows an example of the time history of the overpressure for case 1 with the

definition of the peak overpressure ∆p observed upon the arrival of the shock wave.
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The overpressure sharply rises by the arrival of the shock wave and gradually decays

with time because of an expansion wave that follows the shock wave. This waveform

is typical for a spherical shock wave and similar to those obtained in previous studies

(Needham, 2010; Lipkens and Blackstock, 1998b; Kim, Sasoh, and Matsuda, 2010;

Salze et al., 2014; Liang, Wang, and Chen, 2002).

2.2.2 Estimation of shock Mach number

The estimation of the shock Mach numbers MS0 of the present experimental con-

ditions shown in Tab. 2.1 is described here. It should be noted that ∆p is the peak

overpressure behind the shock wave reflected on the plate with the angle of incidence

θ . Here, θ is the angle of the shock ray from the vertical direction. According to

Lahiri and Ho, 2011 and Schwer, 2017, ∆p measured at the pressure transducer can

be represented as

∆p(θ) = ∆p(90◦)(1+ cosθ −2cos2 θ)+∆p(0◦)cos2 θ . (2.1)

For a weak shock wave (MS0 → 1) as used in the present experiments, Eq. (2.1) can

be simplified as

∆p(θ) =
1
2
(cosθ +1)∆p(0◦), (2.2)

where ∆p(0◦) = 2∆p(90◦) is used according to the Rankine-Hugoniot relations for

MS0 → 1. Equation (2.2) represents the linear wave reflection at free end. The shock

ejections are tested for four different θ at L = 540 [mm] without flow (U0 = 0 [m/s]).

Figure 2.5 (a) plots ⟨∆p⟩ against θ , which agrees well with Eq. (2.2). Since Eq. (2.1)
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is for the case of regular reflection (Schwer, 2017), it can be confirmed that the pres-

sure measurements in the present study are not affected by complex reflection phe-

nomena such as Mach reflection, in which the geometry of the incident and reflected

shock waves and the relation between the overpressure behind them are different

from those for the regular reflection (Ben-Dor, 1992).

According to the Rankine-Hugoniot relations, the relation between ∆p(θ) and

the shock Mach number behind the shock wave reflected at the wall, MS0R(θ) is

⟨∆p(θ)⟩= 2γ p0

γ +1
(M2

S0R(θ)−1), (2.3)

where p0 is the mean pressure in front of the shock wave and γ is the heat capacity

ratio. From Eqs. (2.2) and (2.3), the shock Mach number behind incident shock wave

MS0 can be estimated as

MS0 = MS0R(0) =

√
1+

γ +1
γ p0

⟨∆p(θ)⟩
cosθ +1

. (2.4)

Figure 2.5 (b) plots MS0 against θ . The uncertainty of MS0 estimation caused by

changing θ is of order of 10−4, and the estimation does not seem to be dependent on

θ . Here, the shock Mach number of each shot of shock wave, MS is

MS =

√
1+

γ +1
γ p0

∆p(θ)
cosθ +1

. (2.5)
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FIGURE 2.5: (a) ⟨∆p⟩ plotted against θ . Black solid line shows
Eq. (2.2). Plots are obtained at L = 540 [mm] for the shock waves
propagating in the test section without flow. (b) MS0 estimated from
⟨∆p(θ)⟩ and Eq. (2.4) plotted against θ . Broken line shows MS0R(0).

By considering the zero- and first- order terms of the Taylor series of Eq. (2.5), one

can obtain the following equation:

MS ≈ MS0 +
γ +1

2γM2
S0

∆p′

p0(cosθ +1)
, (2.6)

where ∆p′ = ∆p−⟨∆p⟩. The overpressure fluctuation is ∆p′/p0 = O(10−4) in each

shot, therefore, according to Eq. (2.6), the shock Mach number fluctuation in each

shot, M′
S = MS −MS0 is of O(10−4). Hence, the shock Mach numbers MS0 shown in

Tab. 2.1 are estimated with ⟨∆p⟩ by considering Eq. (2.4).
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2.2.3 Characteristics of grid turbulence

Streamwise velocity measurements by hot wire anemometry (DANTEC DYNAM-

ICS, Streamline) with an I-type hot wire probe (DANTEC DYNAMICS, 55P11) are

conducted in grid turbulence. Statistics of the streamwise velocity are computed with

a time average denoted with subscript ∗ave. Table 2.1 summarizes the characteristics

of the grid turbulence at the same streamwise location as the pressure transducer. As

examples of the velocity measurements, Figs. 2.6 (a) to (c) show the velocity charac-

teristics of grid turbulence for M = 100 [mm] at U0 = 10 and 20 [m/s] as a function

of the streamwise distance from the grid, x1. The measurements are repeated three

times for each point of x1, where the measurement errors are within 1% for the cal-

culation of the velocity characteristics. Figure 2.6 (a) shows the streamwise velocity

variance u2
rms = (U2 −U2

ave)ave divided by U2
ave, (urms/Uave)

2. (urms/Uave)
2 is known

to decay with the following power law (Krogstad and Davidson, 2010):

u2
rms

U2
ave

= n0

(x1

M
− x0

M

)nK
. (2.7)

n0, x0, and nK are determined by the nonlinear least-square method as conducted

in Kitamura et al., 2014. The power laws calculated for the grid turbulence of

the present study are (urms/Uave)
2 = 0.059(x1/M − 2.5)−1.1 for U0 = 10 [m/s] and

(urms/Uave)
2 = 0.071(x1/M − 2.2)−1.1 for U0 = 20 [m/s], where the virtual origins

x0/M are 2.5 and 2.2, respectively. The decay exponent nK =−1.1 agrees with pre-

vious experiments (Kitamura et al., 2014) for a similar range of x1/M.
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Figure 2.6 (b) shows the Taylor microscale λ , which is defined as

λ 2 =
u2

rms
U2

ave(∂u/∂ t)2
ave

, (2.8)

where the Taylor’s hypothesis is used to replace spatial derivative ∂/∂x1 in the de-

nominator in the original definition of λ with time derivative. λ is known to increase

with the following power law (Krogstad and Davidson, 2010):

λ 2

M2 =
10

nKReM

(x1

M
− x0

M

)
. (2.9)

Black and red lines in Fig. 2.6(b) are obtained with Eq. (2.9) for U0 = 10 [m/s] and 20

[m/s], respectively, which agree well with the present experimental results. x0/M in

the present experiments are obtained as 2.0 and -6.7 for U0 = 10 [m/s] and 20 [m/s],

respectively.

The Taylor’s hypothesis is also applied to the calculation of the longitudinal in-

tegral length scale Lu as

Lu =
∫ ∞

0

[u(x1)u(x1 +Uavet)]ave

u2
rms(x1)

Uavedt. (2.10)

As in the previous study of grid turbulence (Krogstad and Davidson, 2010; Kitamura

et al., 2014), Lu increases with a power law of (x/M − x0/M). The nonlinear least-

square method yields Lu/M = 0.089(x1/M−1.5)0.69 for U0 = 10 [m/s] and Lu/M =

0.086(x1/M−1.3)0.74 for 20 [m/s], respectively.

The turbulent Mach number is defined with MT =
√

3urms/a0 in isotropic turbu-

lence. The same definition is also used for the grid turbulence in this thesis because
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the rms values of streamwise and transverse velocity fluctuations are close to each

other (Kitamura et al., 2014). At the pressure transducer location, MT changes de-

pending on M, U0, and L while the shock Mach number MS0 depends on L because

of the decay of MS0 with the propagation of the spherical shock wave.
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FIGURE 2.6: (a) (urms/Uave)
2, (b) (λ/M)2, and (c) Lu/M plotted

against (x1−x0)/M for M = 100 [mm] at U0 = 10 and 20 [m/s]. Black
and red lines in (b) are obtained with Eq. (2.9).

2.3 Experimental results

2.3.1 Averaged peak overpressure

Figure 2.7 plots ⟨∆p⟩ against the distance between the open end of the shock tube

and pressure measurement location, RSP =
√

L2 +1552 [mm]. According to Landau,

1945, ⟨∆p⟩ of a spherical shock wave decays with RSP as ⟨∆p⟩∝ 1/(RSP
√

ln(RSP/k1),
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TABLE 2.1: Experimental conditions. ReM = U0M/ν is the grid
Reynolds number. urms, MT, and MS0 are values at the pressure mea-

surement location (1945−L [mm] behind the grid).

Case 1 2 3 4 5 6 7 8
M [mm] 15 50 100 50 100 100 100 100
U0 [m/s] 10 10 10 10 10 10 20 20
ReM ×10−4 0.98 3.3 6.5 3.4 6.7 6.5 13 13
L [mm] 155 155 155 540 540 1000 1000 1445
urms [m/s] 0.141 0.316 0.545 0.377 0.636 0.850 1.76 3.20
MT ×104 7.12 15.9 27.4 19.0 32.0 42.8 88.7 161
MS0 1.021 1.021 1.021 1.004 1.004 1.002 1.002 1.001

where k1 is a constant. The least square method applied to ⟨∆p⟩ in present study

yields ⟨∆p⟩ = 830/(RSP
√

ln(RSP/179)) [kPa]. The changes in ⟨∆p⟩ in cases with

a same RSP are less than 2 % despite that they have different turbulence conditions,

confirming that the difference in MT considered in our experiments does not have

large effects on ⟨∆p⟩.
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FIGURE 2.7: ⟨∆p⟩ of each case plotted against RSP. The solid line
shows ⟨∆p⟩= 830/(RSP

√
ln(RSP/179)) [kPa].

2.3.2 Peak-overpressure fluctuations

Statistical analyses are conducted for the fluctuation of ∆p defined as ∆p′ = ∆p−

⟨∆p⟩. Figure 2.8 shows the probability density functions (pdfs) of ∆p′ normalized by
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∆p′rms = ⟨∆p′2⟩1/2. The Gaussian profile is also shown in Fig. 2.8, which seems to be

in good agreement with the experimental results. To quantitatively evaluate the Gaus-

sianity of the pdfs in Fig. 2.8, the skewness ⟨∆p′3⟩/∆p′3rms and flatness ⟨∆p′4⟩/∆p′4rms

are plotted against M2
T/(M

2
S0 − 1) in Fig. 2.9. The skewness and flatness of ∆p′

range from 0 to 0.4 and from 2.8 to 3.5, respectively, which are close to the val-

ues of the Gaussian profile (0 for skewness and 3 for flatness). Thus, the pdf of

∆p′ is close to the Gaussian profile for O(10−6) ≤ M2
T/(M

2
S0 − 1) ≤ O(10−2). Nu-

merical simulations (Lee, Lele, and Moin, 1993; Larsson and Lele, 2009; Larsson,

Bermejo-Moreno, and Lele, 2013) have investigated the density jump ∆ρ across the

shock wave, where a linear relation can be found between ∆p′ and the density jump

fluctuation ∆ρ ′ as ∆p′/⟨∆p⟩= m∆ρ ′/⟨∆ρ⟩ (Eq. (A.5)). In numerical simulations by

Larsson, Bermejo-Moreno, and Lele, 2013, the pdfs of ∆ρ are slightly skewed at

higher MT for O(10−2)≤ M2
T/(M

2
S0 −1)≤ O(10−1). However, the skewness of ∆ρ

at M2
T/(M

2
S0 − 1) = 0.018 and 0.11 estimated from their pdfs of ∆ρ are about 0.44

and 0.65, respectively, which are also not far from the Gaussian value.
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FIGURE 2.8: Pdfs of ∆p′/∆p′rms of each case. Symbols are common
to Fig. 2.7. Black solid line shows the Gaussian profile.

In experiments of shock waves, there exist the peak-overpressure fluctuations that
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FIGURE 2.9: Skewness (triangle) and flatness (square) of ∆p′ as a
function of M2

T/(M
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S0 −1).

are inherently caused by an experimental facility. In our study, these can be evaluated

by the experiments of the shock wave ejected in the flow without the grid, where

the rms value of ∆p′ is denoted by (∆p′w/o)rms. Following Sasoh et al., 2014, the

peak-overpressure fluctuations caused by turbulence are evaluated as σ∆p = [∆p′2rms−

(∆p′w/o)
2
rms]

1/2.

Figures 2.10(a) and (b) show σ∆p/⟨∆p⟩ plotted against MT/(MS0−1) and M2
T/(M

2
S0−

1), respectively. Figure 2.10 includes the experimental results of Sasoh et al., 2014

for MS0 = 1.0009 and low MT = O(10−4-10−3). It also includes results of numerical

simulations in two papers, which investigated a planar shock wave propagating in

homogeneous isotropic turbulence with low MT = O(10−4) (Tanaka et al., 2018) and

with high MT = 0.15 or 0.37 (Larsson, Bermejo-Moreno, and Lele, 2013). MS0 is

1.1, 1.3, or 1.5 in Tanaka et al., 2018 while it is 1.5 in Larsson, Bermejo-Moreno,

and Lele, 2013. Here, σ∆p/⟨∆p⟩ in Larsson, Bermejo-Moreno, and Lele, 2013 is ob-

tained from Eq. (A.6) with density statistics calculated from the pdfs of the density

jump across the shock wave presented in their paper. For fixed MS0 (MS0 = 1.0009 in

Sasoh et al., 2014 and MS0 = 1.002, 1.004, and 1.021 in the present study), σ∆p/⟨∆p⟩
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tends to increase with MT. However, the results with different MS0 follow a differ-

ent line in Fig. 2.10(a). On the other hand, σ∆p/⟨∆p⟩ plotted against M2
T/(M

2
S0 −1)

tends to collapse onto a single line in the logarithmic plot in Fig. 2.10(b), where

σ∆p/⟨∆p⟩ obeys a power law of M2
T/(M

2
S0 −1). The least square method applied to

the data points in Fig. 2.10(b) yields σ∆p/⟨∆p⟩= 0.669[M2
T/(M

2
S0−1)]0.489 as shown

in Fig. 2.10(b). The spherical shock waves used in Fig. 2.10 have different curvature

radii RSP depending on the experiments. In the present experiments, RSP ranges be-

tween 219 mm and 1453 mm while RSP = 215 [mm] is constant in Sasoh et al., 2014.

Some of the experiments in the present study and in Sasoh et al. are conducted for

similar values of M2
T/(M

2
S0 − 1) but with different RSP. Comparison among these

experiments shows that the relation between σ∆p/⟨∆p⟩ and M2
T/(M

2
S0 −1) is not af-

fected by RSP.

2.4 Shock deformation model of turbulence effects on

shock wave

2.4.1 Shock wave deformation by non-uniform velocity profile

The overpressure fluctuations behind a shock wave interacting with turbulence are

studied with a shock deformation model, which considers a planar shock wave de-

formed by a local velocity fluctuation. In this model, the effects of turbulence on a

shock wave are explained with the shock wave deformation due to non-uniformity

of the velocity field. The model assumes that the velocity gradient in the tangential
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FIGURE 2.10: σ∆p/⟨∆p⟩ plotted against (a) MT/(MS0 − 1) and (b)
M2

T/(M
2
S0 − 1). Present experimental results are shown by symbols

with color, which are common to Fig. 2.7. σ∆p/⟨∆p⟩ obtained by
Sasoh et al., 2014 and Tanaka et al., 2018 are also plotted in the
figures. σ∆p/⟨∆p⟩ estimated from the results by Larsson, Bermejo-
Moreno, and Lele, 2013 are also shown for comparison. The straight
line in (b) shows the power law σ∆p/⟨∆p⟩= 0.669[M2

T/(M
2
S0−1)]0.489

obtained by using the least squared method for σ∆p/⟨∆p⟩.

direction to the shock wave surface plays an important role in the shock deforma-

tion. The importance of the velocity gradient in the tangential direction was also

confirmed in the recent numerical simulations, where strong correlation between the

pressure gradient across the shock wave in the local shock normal direction and the

velocity gradient of turbulence was reported (Tanaka et al., 2018). Therefore, the

effects of turbulence are studied with the simplified model with the velocity profile

that is non-uniform in the shock tangential direction. The model is used to estimate
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the overpressure fluctuation level induced by the deformation.

The velocity fluctuation in the model is given by an axisymmetric velocity profile

uM(x,r), where x and r are the axial and radial coordinates. Temporal evolution of

velocity fluctuations is not taken into account because of the small velocity fluctua-

tion urms ≪US0 as in the present experiments, where the time scale of the turbulence

is much larger than that of the shock wave propagation. A simple profile of uM is

considered in the model:

uM(x,r) =


u (0 ≤ r ≤ r0 and 0 ≤ x ≤ xl)

0 otherwise

, (2.11)

which has a constant velocity u in the cylindrical region defined with r0 and xl . The

model considers influences of turbulence, where a large part of turbulent kinetic en-

ergy is contained in large-scale turbulent motions. Therefore, the distribution of uM

is related to large-scale motions. Thus, both r0 and xl are comparable with an integral

length scale, where anisotropy of large scales is assumed to be weak as in the case of

grid turbulence.

The model considers the planar shock wave propagating into the velocity field

uM(x,r) in x direction as illustrated in Fig. 2.11(a). The velocity of the shock wave

movement is given by the sum of the shock propagation velocity US0 = a0MS0 and

the fluid velocity on the shock wave. The shock movement velocity is US0 for r > r0

and US0+u for r ≤ r0. Therefore, once the planar shock wave begins to propagate in

the region with the velocity fluctuation u, the velocity of the shock wave movement

becomes non-uniform and the shock wave begins to be deformed. However, since
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FIGURE 2.11: (a) Shock wave deformation due to a local velocity
fluctuation u and (b) reflected wave propagation on the shock wave

surface.

the shock wave surface needs to be connected at r = r0, the inclination of the surface

occurs from r = r0. Therefore, the shock ray at r = r0 also begins to be inclined

as shown in Fig. 2.11(a), where the trajectories of the shock rays passing through

(x,r) = (0,r0) are also shown with blue lines. The region surrounded by the infi-

nite number of these shock rays is called a ray tube. In this model, the following
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simplifications are considered for the calculation of the shock wave geometry:

• the deformation is so small (xA(t)≈ xB(t)) that xR(t) = xA(t) is considered at

time t for the calculation of rR

• the shock wave surface area in the ray tube is equivalent to the cross sectional

area of the ray tube at time t

• the inclination of the shock surface is linearly caused

• MS is uniform in the cross section of the ray tube

The cross-sectional area A of the ray tube changes from A = πr2
0 at x = 0 as the

shock wave propagates. Once the trajectory of the shock ray (xR,rR) is determined,

A at given x = xR can be computed as A = πr2
R. The change in the area A results

in the change in the shock Mach number MS of the area (Whitham, 1957). The

present model considers the turbulence effects on the shock Mach number through

the change in A due to the velocity fluctuation uM.

In the following discussion, the trajectories of the shock rays are obtained from

the geometry of the shock wave because the shock ray is locally perpendicular to the

shock wave surface. The change in MS causes the pressure change behind the shock

wave in the region of r ≤ r0. Then, a spherical reflected wave is formed because of

the pressure change as shown in Fig. 2.11(b). For simplicity, the reflected wave is

assumed to be isentropic, and the propagation of the reflected wave in the region of

r ≤ r0 is not discussed below. The intersection of the non-deformed part of the shock

wave and the reflected wave is shown as point A in Fig. 2.11(b). The reflected wave

propagates with the characteristic velocity represented as the sum of the fluid velocity

and sound speed behind the shock wave (Grasso and Pirozzoli, 2000). Figure 2.11(b)
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shows the schematic of the reflected wave propagation on the shock wave surface,

where a2 and U2 are the sound speed and fluid velocity behind the shock wave in

the laboratory coordinate system, respectively. Here, U2 and a2 are assumed to be

constant and independent from the change in MS because M′
S ≡ MS −MS0 ≪ MS0.

The propagation velocity of the reflected wave in the r direction on the shock wave

surface, uA, is obtained from the geometrical relation of a2, US0, and U2:

uA =
√

a2
2 − (US0 −U2)2, (2.12)

which is also constant. The initial position of point A is (xA,rA) = (0,r0). Therefore.

the trajectory of point A (xA,rA) is given by

xA(t) = US0t, (2.13)

rA(t) = uAt + r0. (2.14)

According to the Rankine-Hugoniot relations,

U2 =
2a0

γ +1

(
MS0 −

1
MS0

)
, (2.15)

and

a2 = a0

√
(2γM2

S0 − γ +1){(γ −1)M2
S0 +2}

(γ +1)MS0
. (2.16)

In Fig. 2.11(b), α denotes the angle between the trajectory of point A and x axis in the

laboratory coordinate system. From Eqs. (2.12), (2.15), and (2.16), tanα = uA/US0
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is written as a function of MS0:

tanα =
1

M2
S0

√
{(γ −1)M2

S0 +2}(M2
S0 −1)

γ +1
. (2.17)

As the shock wave propagates, point A also propagates in r direction at speed uA, and

the inclined region of the shock wave expands. The phenomenon of the expansion

of the inclined region caused by the reflected wave was also confirmed by previous

experimental study on shock wave reflections over wedges (Sasoh, Takayama, and

Saito, 1992) and theoretical study on shock-vortex interactions (Clavin, 2013). In

the present model, the shock wave surface in r0 ≤ r ≤ rA is described by the line

connecting points A and B in Fig. 2.11(a). The trajectory of point B is obtained from

(dxB/dt,drB/dt) = (US0 +a0M′
S +u,0), where the change in the Mach number due

to the interaction with the velocity fluctuation is taken into account as a0M′
S:

xB(t) = (US0 +u)t +a0

∫ t

0
M′

S(t
∗)dt∗, (2.18)

rB(t) = r0. (2.19)

Note that M′
S is assumed to be uniform in the cross section of the ray tube for sim-

plicity. Because the shock ray is perpendicular to the line AB, the trajectory of the

shock ray (xR,rR) can be determined as

tanθR ≡ drR

dxR
=

xB − xA

rA − rB
. (2.20)
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Substituting Eqs. (2.13), (2.14), (2.18), and (2.19) into Eq. (2.20) yields

tanθR =
ut +a0

∫ t
0 M′

S(t
∗)dt∗

uAt
. (2.21)

With the trapezoidal rule, the integration in the numerator in Eq. (2.21) can simply

be estimated as
∫ t

0 M′
S(t

∗)dt∗ ≈ M′
St/2 with the initial condition M′

S = 0 at t = 0:

tanθR ≈
u+a0M′

S/2
uA

. (2.22)

For the ray tube whose radius is r0 at xR = 0, its radius rR at any time t can be

calculated with Eq. (2.22). Then, the radius deviation r′R = rR − r0 is

r′R =
∫ xR

0
tanθRdx∗R ≈

∫ xR

0

u+a0M′
S/2

uA
dx∗R. (2.23)

The deviation of A = πr2
R from A0 = πr2

0, A′ = A−A0 can be written as

A′ ≈ 2πr0r′R ≈ 2πr0

∫ xR

0

u+a0M′
S/2

uA
dx∗R, (2.24)

where small deformation A′ ≪ A0 is assumed in the model. Equation (2.24) gives

the fluctuation of the ray tube area as a function of xR(t), which increases with time

as the shock wave propagates. A′/A0 can be written as

A′

A0
≈

2πr0r′R
πr2

0
≈ 2

∫ xR

0

u+a0M′
S/2

US0 tanα
dx∗R
r0

≡ 2ξ , (2.25)

where ξ is defined as ξ ≡ A′/2A0.
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2.4.2 Shock Mach number fluctuation for a weak shock wave

Hereafter, a weak shock wave is considered in the model as the present experiments

are conducted for weak shock waves. The analysis for a strong shock wave is pre-

sented in Appendix B. The shock Mach number MS of the ray tube with the area A is

obtained from the relation (Whitham, 1957)

A
A0

= exp
(
−
∫ MS

MS0

g(M∗
S)dM∗

S

)
, (2.26)

where M∗
S is an integration variable. Here,

g(MS)≡
MS

M2
S −1

(
2µ +1+

1
M2

S

)(
1+

2
γ +1

1−µ2

µ

)
(2.27)

and

µ2 ≡
(γ −1)M2

S +2
2γM2

S − γ +1
, (2.28)

where γ is the heat capacity ratio. For a weak shock wave (MS0 → 1), Eq. (2.26) can

be simplified (Whitham, 1959) as

A
A0

≈
(

MS0 −1
MS −1

)2

. (2.29)

For MS0 ≲ 1.1, the error of the A–MS relation calculated with Eq. (2.29) from that

calculated with Eq. (2.26) is within 10%. From Eqs. (2.25) and (2.29), the following

relation is obtained for the shock Mach number of the deformed shock wave:

(
MS0 −1
MS −1

)2

−1 ≈ 2ξ , (2.30)
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which can be rewritten as

M′
S ≈ (

√
2ξ +1−1)(1−MS0)√

2ξ +1
≈ ξ (1−MS0), (2.31)

where
√

2ξ +1 ≈ ξ + 1 is used because A′ ≪ A0. Differentiating both sides of

Eq. (2.31) with respect to xR gives the following differential equation:

dM′
S

dxR
≈ 1−MS0

r0

u+a0M′
S/2

US0 tanα
. (2.32)

The solution of Eq. (2.32) is

M′
S ≈−2u

a0

[
1− exp

(
− MS0 −1

2MS0 tanα
xR

r0

)]
, (2.33)

which yields M′
S as a function of xR. Since the model assumes xl/r0 ≈ 1, M′

Sl ≡

M′
S(xl) is written as

M′
Sl ≈−2u

a0

[
1− exp

(
− MS0 −1

2MS0 tanα

)]
. (2.34)

Here, M′
Sl is M′

S caused when the shock wave propagates along the distance xl . For

MS0 → 1, exp
(
− MS0−1

2MS0 tanα

)
≈ 1− MS0−1

2MS0 tanα , and Eq. (2.34) can be simplified as

M′
Sl ≈− u

a0

MS0 −1
MS0 tanα

. (2.35)

According to the Rankine-Hugoniot relations, ∆p at xR = xl is

∆p =
2γ p0

γ +1
[
(MS0 +M′

Sl)
2 −1

]
, (2.36)
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where p0 is the mean pressure in front of the shock wave. The ensemble average of

Eq. (2.36) is

⟨∆p⟩= 2γ p0

γ +1
(M2

S0 + ⟨M′2
Sl⟩−1), (2.37)

where MS0 = ⟨MS⟩. For M′
Sl ≪ MS0, Eq. (2.37) gives

⟨∆p⟩ ≈ 2γ p0

γ +1
(M2

S0 −1). (2.38)

On the other hand, the overpressure fluctuation ∆p′ = ∆p−⟨∆p⟩ is

∆p′ =
2γ p0

γ +1
(2MS0M′

Sl +M′2
Sl −⟨M′2

Sl⟩). (2.39)

The terms of the second order of M′
Sl can be ignored in Eq. (2.39). Therefore, the

following expression can be obtained:

∆p′ ≈ 4γ
γ +1

p0MS0M′
Sl. (2.40)

Equations (2.35), (2.38), and (2.40) yield the following relation between ∆p′ and the

velocity fluctuation:

∆p′

⟨∆p⟩
≈ 2MS0

M2
S0 −1

M′
Sl ≈− u/a0

tanα
, (2.41)

where MS0 + 1 ≈ 2 for MS0 → 1 is used. Here, tanα given by Eq. (2.17) is simply

represented as a function of the initial shock Mach number MS0.

When the pdf of u follows the Gaussian profile as in many canonical turbulent

flows (Pope, 2001), the linear relation between ∆p′ and u in Eq. (2.41) shows that the

pdf of ∆p′ also follows the Gaussian profile. This implication from the model agrees
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with the Gaussian pdf of the peak-overpressure fluctuations observed in Fig. 2.8 be-

cause grid turbulence has Gaussian velocity fluctuations. The standard deviations of

both sides of Eq. (2.41) yield the relation among the rms peak-overpressure fluctua-

tion, mean peak overpressure, shock Mach number, and turbulent Mach number:

σ∆p

⟨∆p⟩
≈ 1√

3

(
M2

T
M2

S0 −1

)1/2

, (2.42)

where tanα ≈
√

M2
S0 −1 is used because the weak shock wave has MS0 → 1. Hence,

σ∆p/⟨∆p⟩ can be represented as a simple function of M2
T/(M

2
S0 − 1). This relation

is well supported by the experimental results of the weak shock waves shown in

Fig. 2.10(b), where the fitting to the power law σ∆p/⟨∆p⟩ = b0[M2
T/(M

2
S0 − 1)]b1

yields b0 = 0.669 and b1 = 0.489, both of which agree well with Eq. (2.42). The

present model obtains Eq. (2.42) from the deformation of the shock wave and the

relation between the ray tube area and shock Mach number. Previous studies (Lee,

Lele, and Moin, 1993; Larsson and Lele, 2009) also reported that M2
T/(M

2
S0−1) is an

important parameter in the fluctuations of the shock wave dilatation or broken shock

wave conditions. This parameter was considered as the ratio of the turbulent pressure

fluctuations ρ0u2
rms (ρ0 is the density in front of the shock wave) to ∆p. The present

model implies that the shock Mach number fluctuation caused by the shock wave

deformation is also important in the broken shock wave and the dilatation fluctuation.

2.4.3 Inclination angle of a shock wave

In classical studies, Ribner constructed a model for the shock inclination caused by

a periodic velocity perturbation (Ribner, 1954; Ribner, 1955). In this section, we
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compare the shock inclination angle obtained in our model with that obtained in

Ribner’s model. Since the shock wave surface is perpendicular to the shock ray, the

inclination angle of the shock wave surface is equivalent to that of the shock ray.

From Eqs. (2.22) and (2.35), the present model yields the inclination angle:

tanθR

u/a0
≈ 1

MS0 tanα

[
1− MS0 −1

2MS0 tanα

]
. (2.43)

On the other hand, Ribner assumed the shock inclination angle to be a sinusoidal

function (Ribner, 1954) whose amplitude and wave number were determined by the

sinusoidal velocity perturbation given in front of the shock wave, relation of the

velocity across the shock wave, and linear perturbation theory. Hereafter, θR obtained

in his study is denoted by θRA. θRA can be written as θRA = θRA0 sinky, where θRA0

is the amplitude, k is the wave number, and y is the coordinate in the tangential

direction of the shock wave surface. tanθRA0 can be written as

tanθRA0

u/a0
≈ 1

MS0

4

√
1−

(
US0−U2

a2

)2 US0
US0−U2

(γ +1)
(

US0
US0−U2

−1
) = 2MS0

√
γ +1

(2γM2
S0 − γ +1)(M2

S0 −1)
,

(2.44)

where US0 −U2 is the velocity behind the shock wave in the shock fixed coordinate

system, and θRA0 ≈ tanθRA0 is used because of θRA0 ≪ 1. Figure 2.12 compares

Eq. (2.43) with Eq. (2.44). While both are decrease functions of MS0, Eq. (2.44) is

almost twice as large as Eq. (2.43) in MS0 ≤ 1.5. This is because tanθR/(u/a0)→

1/
√

M2
S0 −1 when MS0 → 1 while tanθRA0/(u/a0)→ 2/

√
M2

S0 −1 when MS0 → 1.

It is interesting that in both approaches, the inclination angle can be proportional to

u/a0 and 1/
√

M2
S0 −1 for MS0 → 1. With Eq. (2.44), however, A′ becomes twice as
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large as that obtained with Eq. (2.24), resulting in a twice value of σ∆p/⟨∆p⟩ than

that obtained with Eq. (2.42) because of the linear relation among θR, A′ and ∆p′

described by Eqs. (2.25), (2.31), and (2.40).

ta
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FIGURE 2.12: tanθR/(u/a0) plotted against MS0. Red and black lines
are tanθR/(u/a0) obtained with Eq. (2.43) and tanθRA0/(u/a0) ob-

tained with Eq. (2.44), respectively.

2.4.4 Condition for broken shock wave

The broken region of the shock wave surface is considered in the shock deforma-

tion model for the weak shock wave. The broken shock wave does not have a distinct

jump in physical quantities at some parts of the shock wave surface, and the overpres-

sure ∆p in the broken region is much smaller than the average value ⟨∆p⟩. Here, the

present thesis uses the term “broken region” to represent a local region without the

jump on the shock wave surface while “broken shock wave” denotes the shock wave

where the broken regions occupy an important fraction of the area on the shock wave

surface. The broken region is detected as ∆ρ ≤ αρB⟨∆ρ⟩. αρB is chosen based on

the results of numerical simulations of interactions between a planar shock wave and

turbulence by Larsson, Bermejo-Moreno, and Lele, 2013, where the statistics of the

density jump, ∆ρ , across the shock wave were studied in detail. Because of Eq. (A.5),
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∆ρ ≤ αρB⟨∆ρ⟩ is equivalent to ∆p ≤ αpB⟨∆p⟩, where αpB ≡ m(αρB −1)+1. Their

simulations with MT = 0.37 and MS0 = 1.5, which is considered as the broken shock

wave case, show that the broken region is well detected by αρB between 0.1 and

0.6 (αpB between 0.017 and 0.56). For αρB = 0.1 and 0.6 (αpB = 0.017 and 0.56),

the detected broken regions occupy 0.05 % and 10 % on the shock wave surface,

respectively.

A cumulative distribution function of ∆p/⟨∆p⟩, F(α), that represents a probabil-

ity of events with ∆p/⟨∆p⟩ ≤ α , can be obtained by integrating the pdf of ∆p/⟨∆p⟩

from 0 to α . Since the broken region is defined as ∆p/⟨∆p⟩ ≤ αpB, F(α = αpB)

yields the fraction of the broken regions on the shock wave surface. F can be com-

puted from the pdf of ∆p′/⟨∆p⟩. The pdf of u is assumed to follow the Gaussian

profile as in grid turbulence:

PDF(u) =
1√
2π

exp
(
− u2

2u2
rms

)
. (2.45)

In this case, the pdf of ∆p′/⟨∆p⟩ in the shock deformation model is also expressed by

the Gaussian profile because of the linear relation between u and ∆p′ in Eq. (2.41).

The pdf of ∆p′/⟨∆p⟩ is obtained as a function of M2
T/(M

2
S0 − 1) because the vari-

ance of ∆p′/⟨∆p⟩ is written as Eq. (2.42). Therefore, F(α) in the shock deforma-

tion model depends on the parameter M2
T/(M

2
S0 − 1). The fraction of the broken

regions F(αpB;M2
T/(M

2
S0 − 1)) is numerically computed for αpB = 0.017 and 0.56

in 10−2 ≤ M2
T/(M

2
S0−1)≤ 100. Figure 2.13 shows F as a function of M2

T/(M
2
S0−1).

When M2
T/(M

2
S0 − 1) is of order of 10−1, the fraction of the broken regions for

0.017 ≤ αpB ≤ 0.56 rapidly increases, and F for αpB = 0.017 and αpB = 0.56
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exceed 0.05 % and 10 %, respectively. Therefore, the broken shock wave is ex-

pected to appear for M2
T/(M

2
S0 −1)≥ O(10−1). This condition is consistent with the

numerical results, (Lee, Lele, and Moin, 1993; Larsson and Lele, 2009; Larsson,

Bermejo-Moreno, and Lele, 2013) where the broken shock wave was also found for

M2
T/(M

2
S0 − 1) ≥ O(10−1). It is important to note that these numerical simulations

consider compressible turbulence at much higher turbulent Mach number than in the

present experiments. The model does not consider temperature and density fluctua-

tions, which can exist in front of the shock wave propagating through compressible

turbulence. Therefore, the model might not be accurate for the shock/turbulence

interaction with high turbulent Mach number.

 α
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 α
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 = 0.56
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FIGURE 2.13: Cumulative distribution function F(αpB), which rep-
resents the probability of ∆p/⟨∆p⟩ ≤ αpB for αpB = 0.017 (red) and
0.56 (blue), plotted against M2

T/(M
2
S0 − 1). Horizontal dashed-dotted

line and broken line show F = 0.05 [%] and 10 [%], respectively.

Compressible turbulence at high turbulent Mach number causes fluctuations in

density and temperature as well as fluid properties such as a viscosity coefficient,

and the influences of compressible turbulence on the shock wave are much more

complicated than those of incompressible turbulence. It should be noted that in

Fig. 2.10(b), σ∆ρ/⟨∆ρ⟩ at MT = 0.37 by Larsson, Bermejo-Moreno, and Lele, 2013
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shows a greater deviation from the fitting line than at MT = 0.15, indicating that

the compressibility of turbulence can affect the fluctuations in the density or pres-

sure jump across a shock wave. Therefore, in the case with compressible turbu-

lence, the broken shock wave can be caused even at smaller M2
T/(M

2
S0 − 1) than in

the case with incompressible turbulence, though the broken shock criterion can be

M2
T/(M

2
S0 −1)≥ O(10−1) in both cases.

2.5 Summary of this chapter

The wind tunnel experiments on a weak spherical shock wave propagating in grid

turbulence at a low turbulent Mach number have been conducted, and the statistics

of peak-overpressure fluctuations for various values of M2
T/(M

2
S0 −1) have been in-

vestigated. The rms peak-overpressure fluctuation normalized by the averaged peak

overpressure, σ∆p/⟨∆p⟩, is shown to follow a power law of M2
T/(M

2
S0 − 1). Fit-

ting of experimental results in present and previous studies indicates σ∆p/⟨∆p⟩ =

0.669[M2
T/(M

2
S0 − 1)]0.489. The pdfs of the peak-overpressure fluctuations are very

close to the Gaussian profile for a wide range of M2
T/(M

2
S0 − 1) from O(10−6) to

O(10−2).

The shock deformation model has been proposed for the influences of turbulence

on the shock wave. The model relates the shock Mach number fluctuation induced

by turbulence to the shock wave deformation due to the non-uniform velocity fluctu-

ation, where the change in the cross-sectional area of the ray tube caused by the de-

formation produces the shock Mach number fluctuation. The model for a weak shock

wave yields the relation σ∆p/⟨∆p⟩ ≈ (1/
√

3)[M2
T/(M

2
S0 −1)]1/2, which is consistent
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with the experimental results. The Gaussianity of the peak-overpressure fluctuations

is also obtained from the model when the velocity fluctuations are Gaussian, which is

also consistent with the present experiments. The model also predicts that the broken

shock wave appears in the case of M2
T/(M

2
S0 −1)≥ O(10−1).
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Chapter 3

Finite response time of shock wave

modulation by turbulence

3.1 Introduction of this chapter

As addressed in the previous chapters, one of the interesting problems in shock-

turbulence interactions is the modulation of a shock wave, which has been observed

as a post-shock wave overpressure fluctuation induced by turbulence (Lipkens and

Blackstock, 1998a; Dokukina et al., 2013; Sasoh et al., 2014; Kim, Sasoh, and Mat-

suda, 2010). It has been found that the level of the post-shock overpressure fluctua-

tion depends on the turbulence intensity. However, in most previous experiments on

shock-turbulence interaction, since the characteristics of turbulence and shock wave

were not obtained simultaneously, the relation remains unclear between the turbu-

lence and the shock wave modulation. Detailed investigations require simultaneous

and quantitative measurements of shock wave and turbulence, which is character-

ized by spatiotemporal fluctuations with a wide range of scales of motions. In this
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study, the experiments on shock-turbulence interaction are conducted in a wind tun-

nel, where the velocity of turbulence and the overpressure behind a shock wave which

interacts with turbulence are simultaneously measured.

3.2 Experimental methods

The effects of grid turbulence on the overpressure behind a spherical shock wave are

investigated with wind tunnel experiments. Figure 3.1 describes the experimental

setup. Here, the experiments are conducted with the same facility as in Chapter

Hot wire 
probe Pressure 

transducer
h

d

230

75

1315 80

dHP = 10 [mm] 
15 525

Grid

Shock
Measurement 
plate

U0

Shock tube
M

230

Driver gas reservoir

FIGURE 3.1: Side view of experimental setup. Lengths are shown in
mm.

2, and brief explanations are given below. Between the grid and the open end of

the shock tube, a measurement plate with the thickness of 5 mm is installed, on

which a piezoelectric pressure transducer (PCB Piezotronics Inc. 113B27) and an

I-type hot-wire probe (DANTEC DYNAMICS 55P11) are mounted (see Fig. 3.1)

for the measurements of overpressure P on the plate and streamwise velocity U .

This plate is also used in Chapter 2. However, in the experiments in this Chapter,

the plate is equipped with both a pressure transducer and a hot-wire probe for the
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simultaneous measurements. The shock Mach number is set to MS0 = 1.004 on the

measurement plate by adjusting the distance between the open end of the shock tube

and the pressure transducer location. The experimental conditions are summarized in

Tab. 3.1, which also includes turbulence characteristics at the velocity measurement

location. The Kolmogorov microscale η is calculated as η = (ν3/ε)1/4, where the

energy dissipation rate ε is obtained by using the relation for isotropic turbulence,

ε = 15νu2
rms/λ 2 (Nieuwstadt, Westerweel, and Boersma, 2016). With the shock

wave generator and the measurement system controlled by a computer, the sampling

of the signals of P and U with the oscilloscope (YOKOGAWA DL 750) at a sampling

rate 1 MHz is started 50 ms before the shock wave is ejected from the open end. The

velocity measurement height h defined in Fig. 3.1 is ranged from 15 mm to 125 mm.

As explained below, the velocity signal recorded before the shock wave ejection

is used for estimating streamwise profiles of velocity at the instance of the shock

ejection. In each measurement condition, 500 runs of the shock wave were used for

the statistical analysis. Note that the statistics with 300 runs yield qualitatively the

same results discussed below.

3.3 Analysis on relation between velocity and over-

pressure fluctuations

The relation between the peak-overpressure fluctuation and the velocity fluctuation is

analyzed for the evaluation of the effects of the instantaneous turbulent velocity pro-

file on the overpressure fluctuation. Here, the post-process of the velocity signal for
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TABLE 3.1: Experimental conditions of grid turbulence and the rms
peak-overpressure fluctuation ∆p′rms induced by grid turbulence. The
table also includes the mesh Reynolds numbered ReM , the rms stream-
wise velocity fluctuation urms, Kolmogorov microscale η , Taylor mi-
croscale λ , and longitudinal integral length scale Lu, at the measure-

ment location.

Case M50-U10 M50-U20 M100-U10 M100-U20
Symbol △ ⃝ ▽▽▽ □
M [mm] 50 50 100 100
U0 [m/s] 10 20 10 20

ReM 3.35×104 6.7×104 6.7×104 13.4×104

η [mm] 0.198 0.134 0.163 0.112
λ [mm] 3.92 3.75 3.91 3.78
Lu [mm] 27.5 48.1 54.3 64.3

urms [m/s] 0.387 0.798 0.568 1.17
∆p′rms/⟨∆p⟩ 0.0269 0.0620 0.0338 0.0703

the calculation of the velocity fluctuation and the analysis of the correlation between

the overpressure and velocity fluctuations are described.

Figure 3.2(a) shows an example of simultaneous measurements of P and U plot-

ted against time tc, where tc = 0 is the time when the peak-overpressure ∆p is mea-

sured at the pressure transducer. The change in P with the shock wave is discussed in

Chapter 2. As well as the change in P, the rapid decrease in U and gradual increase

after the decrease can also be caused by the shock wave arrival and by the expansion

wave that follows the shock wave, respectively. Hereafter, the streamwise distance

measured from the pressure transducer is denoted by d. The positive direction of

d is shown in Fig. 3.1, which is the same as that of U . Since the eddy-turnover

time of the turbulence Lu/urms ∼ 102 [ms] is much larger than the shock propagation

time from the shock-tube end to the pressure transducer L/US0 ∼ 100 [ms], the tur-

bulence velocity signal U can be assumed to be frozen in the streamwise direction

during the shock propagation. Hence, the Taylor’s hypothesis can be used to convert
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time series data U(tc) to the streamwise profile of U(d) at the probe height. Since

there is a streamwise distance dHP (= 10 [mm]) between the pressure transducer and

the hot wire, the convection distance of the velocity signal U(tc) from the pressure

transducer location, d is calculated as

d =−U0tc −dHP. (3.1)

d in Eq. (3.1) represents the streamwise location of the turbulence velocity signal U

at the shock arrival time which is measured at the hot wire at time tc. In Fig. 3.2(b),

U is plotted against tc and d. With Eq. (3.1), the turbulence velocity at d, U(d) is cal-

culated at the moment when the shock wave is ejected. The decay of grid-turbulence

is not important in the range of d considered here (Kitamura et al., 2014). Since the

time-averaged turbulence velocity Uave is much smaller than the shock wave prop-

agation velocity US0, the turbulence convection in the streamwise direction can be

ignored while the shock wave is propagating. Thus, the shock wave propagates up-

stream through the turbulence whose velocity profile at h is represented by U(d), and

reaches the pressure transducer location.

Furthermore, as shown in Fig. 3.3, the low pass filtered velocity with a cutoff

length ∆d is calculated as

U(d,∆d) =
1

∆d

∫ ∆d/2

−∆d/2
U(d +δ )dδ , (3.2)

which is the velocity of motions in scales larger than ∆d at the location d. Thus,

we are able to investigate the relation between the overpressure and the turbulent

motions at the location d with the scales larger than ∆d. Note that when U(d) is
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FIGURE 3.3: Schematic of the velocity analysis of U(d,∆d).
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given for 0≤ d ≤ L, the maximum value of ∆d is restricted by d and L as

0 ≤ ∆d ≤


2d (0 ≤ d ≤ L/2)

2(L−d) (L/2 < d ≤ L).

(3.3)

In the present experiments, L = 540 [mm]. The fluctuation of U from the time-

averaged velocity Uave is

û(d,∆d) =U(d,∆d)−Uave. (3.4)

The relation between the peak overpressure fluctuation ∆p′ and û(d,∆d) is inves-

tigated by calculating the correlation coefficient R between ∆p′ and û(d,∆d) at the

velocity measurement height h as

R(d,∆d) =
⟨û∆p′⟩√
⟨û2⟩⟨∆p′2⟩

. (3.5)

3.4 Results

Figures 3.4 (a)-(d) show examples of the scatter plots of (∆p′/⟨∆p⟩, û/U0) obtained

at certain (d,∆d,h) in each experimental condition. From each figure, the correla-

tion coefficients can be calculated as R = 0.294, 0.280, 0.330, and 0.302. For the

following discussions, R is calculated for all (d,∆d) and h considered in the present

experiments.

Figures 3.5-3.8 show R(d,∆d) obtained at different h in all cases, where the ve-

locity and peak-overpressure fluctuations are found to be positively correlated. This
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means that the overpressure behind the shock wave increases when the fluctuating

velocity vector is opposed to the direction of the shock propagation and vise versa.

This is consistent with the experimental work on shock-jet interaction by Ribner,

Morris, and Chu, 1973, where the shock wave strength was amplified when it inter-

acted with the jet flowing in the opposite direction of the shock wave propagation.

Similar profiles of R(d,∆d) were also obtained for all cases. A high correlation can

be observed for the velocity fluctuation at a specific location d and a scale ∆d. A

maximum value of R is denoted as Rmax. (dmax,∆dmax) is the point of (d,∆d) where

Rmax is obtained, which is shown with the crosses in Figs. 3.5-3.8. One can find a

strong dependence of dmax on h while an h-dependence of ∆dmax is not very clear.

∆dmax is of the order of the integral scale, suggesting that turbulent motions which

affect the peak overpressure are related to the large scales (see Tab. 3.1). Figure 3.9

plots dmax against h compared with the shock ray toward the pressure transducer lo-

cation. The plots are mostly on the ray, which indicates that the peak overpressure is

affected by the turbulence around the ray.

Figure 3.10 shows the relation between dmax and Rmax, both of which can be

obtained as a function of h in each experimental condition. Rmax decreases with

dmax after it has reached the maximum, confirming that the turbulence very far away

from the pressure transducer location has a small influence on the peak overpressure.

Since the shock wave is continuously affected by turbulence during the propagation,

the influences of turbulence on the shock wave modulation at earlier time of the prop-

agation are somehow negated by turbulence near the pressure transducer location.

Interestingly, the strongest correlation is not related to the smallest dmax (the

smallest h), but is observed at some distance away from the pressure transducer
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FIGURE 3.4: Scatter plots of (∆p′/⟨∆p⟩, û/U0) obtained for (a) M50-
U10 at (d,∆d,h) = (141,120,40) [mm], (b) M50-U20 at (d,∆d,h) =
(119,119,25) [mm], (c) M100-U10 at (d,∆d,h) = (173,162,50)

[mm], and (d) M100-U20 at (d,∆d,h) = (222,139,50) [mm].
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Rmax in each figure.
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TABLE 3.2: dP/η , dP/λ , dP/Lu for each experimental case.

Case M50-U10 M50-U20 M100-U10 M100-U20
dP/η 682 1080 1190 1180
dP/λ 34.5 38.7 49.6 35.0
dP/Lu 4.91 3.01 3.57 2.05

location. A plausible interpretation of this result is that it takes a finite time for

the post-shock wave overpressure to change after the shock wave is interfered with

turbulence. The concept of the response time is consistent with numerical simula-

tions of shock/vortex interactions by Grasso and Pirozzoli, 2000, where the shock

wave deformation by the vortex is more significant slightly after the shock wave has

passed the vortex than while the shock wave is propagating within the vortex (the

deformation can cause the post-shock wave overpressure modulation; see Whitham,

1957). In order to investigate the response time, it is useful to introduce dP defined as

dmax corresponding to a maximum value of Rmax in Fig. 3.10, where dP is estimated

with the quadratic fitting. dP can be related to the time required for the turbulent

effects on the overpressure to be the most significant. To compare the response dis-

tance dP with the turbulence length scales, Tab. 3.2 shows dP/η , dP/λ , and dP/Lu.

Apparently, the response distance dP in all cases is much larger than η and λ , and

the integral length/time scale is an appropriate quantity of turbulence characterizing

the response distance/time.
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bance u(r) with the shock wave surface location xS (red) and shock

ray trajectory (xR,rR) (blue).

3.5 A theoretical model for response time of shock mod-

ulation

The shock deformation model developed in Chapter 2 is used to study the response

distance/time of the post-shock wave overpressure modulation by turbulence with a

simple model of axisymmetric deformation of a shock wave by a local flow distur-

bance. Here, the discussion with the model is simplified from Chapter 2 as in this

chapter, the model is used only for predicting a qualitative behavior of the shock wave

propagating in a non-uniform velocity profile. The model assumes that a plane shock

wave with the shock Mach number MS0 and the propagation velocity US0 = MS0a0

at the initial state (t = 0) encounters the velocity fluctuation centered at r = 0 as in

Fig. 3.11. A circle control area A embedded on the shock wave at t = 0 changes

with the shock wave deformation. The perimeter of A is tracked along the shock ray

with the shock propagation, whose direction is locally normal to the shock wave. A

temporal variation of A is estimated by the velocity fluctuation u(r) characterized
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by urms and lateral integral length scale Lur, which is related to the large-scale tur-

bulent motions. Positive u denotes the velocity against the shock wave propagation

direction. As considered in Chapter 2, the velocity gradient in r direction is im-

portant, and following discussion assumes ∂u/∂x = 0. Generally, u(r) is given as

urms f (r̃) (r̃ = r/Lur) with a dimensionless function f , where for positive u, f (0) = 1

and f (r) monotonically decreases to 0 with r. Similarly, negative u is represented

with f (r) which monotonically increases from f (0) = −1 to 0 with r. The non-

uniform shock wave motion by u(r) causes the shock wave surface to be inclined,

where an angle between the x axis and the shock ray is θ(r, t). The x-coordinate

of the shock wave surface location, xS(r, t), changes with the velocity of the shock

wave motion US cosθ −u(r), where the propagation velocity of the deformed shock

wave is US(r, t) = MS(r, t)a. Note that MS(r, t) is the shock Mach number of the de-

formed shock wave, and US is the velocity perpendicular to the deformed shock wave

surface.

US can be represented by US =US0 +δUS with the perturbation δUS induced by

the shock wave deformation. δUS is related to the modulated overpressure. When

the change in the overpressure due to velocity disturbance is given by ∆p′rms listed

in Tab. 3.1, δUS estimated from the Rankine-Hugoniot relations is about urms/101

(≈ US0/104). Therefore, for simplicity, the shock wave movement velocity in the

x direction is given by US cosθ − u(r) ≈ US0 − u(r), where the weak deformation

is considered (θ(r, t)≪ 1), and the contribution for δUS is ignored when compared

with US0. We can derive the shock wave surface location xS(r, t) = (US0 −u(r)) t,
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where the initial location of the shock wave is xS(r,0) = 0. Then, θ(r, t) is given by

tanθ(r, t) =
∂xS

∂ r
=−u′(r)t, (3.6)

where u′(r) = du/dr. The trajectory of the shock ray (xR(t),rR(t)) is orthogonal

to the shock wave surface: drR/dxR = −tanθ(rR, t). Since the shock wave surface

satisfies Eq. (3.6), the trajectory is

drR

dxR
= u′(rR)t =

xRu′(rR)

US0 −u(rR)
. (3.7)

With the initial location (xR,rR) = (0,r0), US0 ≫ urms, and u(r) = urms f (r̃), Eq. (3.7)

yields

xR

Lur
≈

√
2

US0

urms

∫ r̃R

r̃0

dr̃∗

f ′(r̃∗)
, (3.8)

where r̃0 = r0/Lur and r̃R = rR/Lur.

Since dMS/dA < 0 (dMS/drR < 0) (Whitham, 1957) and ∆p across the shock

wave increases with MS, we have d(∆p)/drR < 0, which is consistent with previ-

ous studies of the relation between the shock wave overpressure modulation and its

deformation (e.g., Kim, Sasoh, and Matsuda, 2010). When US0 ≫|u| as in our exper-

iments, the sign of drR/dxR, Eq. (3.7), is determined by u′. When u > 0, u′ < 0 as in

the case of Fig. 3.11, resulting in drR/dxR < 0. Thus, as the shock wave propagates

(xR increases) in the turbulence with u > 0, rR decreases, resulting in the increase in

the overpressure and shock Mach number because of dMS/drR < 0. In a similar way,

u < 0 results in the decrease in MS and ∆p. Thus, the present model of the shock
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wave modulation also predicts the positive correlation observed in Figs. 3.5-3.8.

Since |drR/dt| monotonically increases from |drR/dt|= 0 at t = 0, the change in

rR and ∆p at the earlier time is much slower than the later time. The change in ∆p in

the model becomes large after a certain period of time, which is called the response

time in this thesis. During this time period, the shock wave propagates over a certain

distance called the response distance. Thus, the model is also consistent with the

experimental finding of the finite response time, which is confirmed with the high

correlation away from the wall in Fig. 3.10.

In the following discussion, the response time and distance are denoted by tp and

xp, respectively. Because xp is given by xp = xR(tp), where xR follows Eq. (3.8) with

rR(tp), the following scaling law can be derived for the response distance xp:

xp

Lur
∝

(
urms

US0

)−0.5

=

(
MT

MS0

)−0.5

, (3.9)

where MT = urms/a0 is the turbulent Mach number. It should be noticed that the

shock wave deformation in the model is caused by the shear du(r)/dr. The shear

time scale for u(r) is given by te = Lur/urms, which is also known as the large-eddy

turnover time. Then, we have a scaling for the response time tp, which is equivalent

to Eq. (3.9):

tp

te
∝

(
MT

MS0

)0.5

. (3.10)

In Fig. 3.12, the response distance estimated as dP in the experiments is compared

with Eq. (3.9), where dP/Lu is plotted against MT/MS0 (Lu is used here since Lur is

proportional to Lu in the grid turbulence (Kitamura et al., 2014). dP/Lu decreases
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FIGURE 3.12: Relation between dp/Lu and MT/MS0. Broken line
shows Eq. (3.9). See Tab. 3.1 for symbols.

with MT/MS0 with the power law dP/Lu ∝ (MT/MS0)
−0.76, which is fairly close to

the prediction in Eq. (3.9) obtained by a very simple model of the shock deformation

due to a local flow disturbance.

3.6 Summary of this chapter

The experiments on interaction between a shock wave and grid turbulence in a wind

tunnel have been conducted, and the overpressure behind the shock wave and the

velocity of the grid turbulence have been measured simultaneously. The analysis

on the correlation between the velocity and peak overpressure has confirmed finite

response time of the post-shock wave overpressure modulation due to turbulence.

The modulation is induced by the large-scale turbulent motions around the shock

ray while the turbulence influences become significant in the overpressure behind

the shock wave after it propagates over a certain distance (response distance). A

simple model has been proposed for the modulation based on the small deformation

of shock wave by a local flow disturbance, in which the response time is related to
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the small-deformation timescale of the shock wave. The model well explains the

correlation between the turbulence velocity fluctuation and the peak-overpressure

fluctuation behind the shock wave. This model predicts that the response time is

proportional to the product of the large-eddy turnover time and (MT/MS0)
0.5 while

the response distance is given as the product of the shock wave propagation velocity

and the response time. It has been shown that the scaling for the response distance

expected from the model is recovered fairly well in the experiments considering the

simplicity of the model.
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Chapter 4

Statistical properties of spherical

shock waves propagating through

grid turbulence, turbulent cylinder

wake, and laminar flow

4.1 Introduction of this chapter

In most numerical studies, homogeneous isotropic turbulence has been considered

for shock-turbulence interaction (Lee, Lele, and Moin, 1993; Larsson and Lele,

2009; Larsson, Bermejo-Moreno, and Lele, 2013; Ryu and Livescu, 2014; Chen

and Donzis, 2019) since it does not have directivity, which is advantaged to simplify

the shock-turbulence interaction phenomena. This is necessary for understanding the

fundamental aspects of the phenomena. In experimental studies of shock-turbulence

interaction, grid turbulence has been used as a model of quasi-isotropic turbulence
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for shock-turbulence interaction studies (Keller and Merzkirch, 1994; Agui, Brias-

sulis, and Andreopoulos, 2005; Tamba et al., 2016; Salze et al., 2014; Tamba et al.,

2019). Chapters 2 and 3 in this thesis also considered grid turbulence for the evalua-

tion of the effects of the velocity fluctuation of turbulence on the overpressure behind

a shock wave. On the other hand, in the practical problems, turbulence is usually in-

homogeneous. For example, in sonic boom problem caused by supersonic flight, the

shock wave propagates in the atmospheric turbulence, whose statistical properties of

atmospheric turbulence vary in space (Fujino et al., 2017). Inhomogeneous turbu-

lence such as jet has also been used for shock-turbulence interaction study such as in

Lipkens and Blackstock, 1998c and Kim, Sasoh, and Matsuda, 2010, however, these

studies did not focus on the effects of inhomogeneity of turbulent characteristics on a

shock wave, which remain unclear. In this study, the interaction between a spherical

shock wave and turbulence is studied with grid turbulence, single-cylinder wake, and

double-cylinder wake for investigating the influence of inhomogeneous turbulence

on the shock wave characteristics.

4.2 Experimental methods

4.2.1 Experimental setup

The schematic of the experimental setup is shown in Fig. 4.1. The wind tunnel and

the shock generator are the same as those used in the studies in Chapters 2 and 3.

The streamwise, vertical, and spanwise directions are denoted by x, y, and z, respec-

tively. The measurement system with a pressure transducer, an I-type hot wire, and
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measurement plate is also same in the study in Chapter 3. The shock Mach number

at the pressure transducer location is 1.004.

Turbulence is generated in the wind tunnel by a conventional grid or cylinder(s).

The grid turbulence experiment uses the grid with M = 100 [mm], which is also

used in Chapters 2 and 3. The pressure transducer location is 1405 mm downstream

from the grid. The grid turbulence experiment at the same condition was studied

in Chapter 3. In the cylinder wake experiments, on the other hand, the cylinders

with a diameter of D = 10 [mm] are horizontally placed in the test section. The

experiments of a single-cylinder wake and a double-cylinder wake interacting with

the shock wave are conducted. In the former case, one cylinder is placed at h = 75

[mm] above the measurement plate. The streamwise distance between the hot-wire

probe and the cylinder is 500 mm. In the latter case, in addition to the cylinder at

h = 75 [mm], another cylinder is also placed at h = 25 [mm]. The cylinders at h = 75

[mm] and 25 [mm] are called ‘reference cylinder’ (RC) and ‘disturbance cylinder’

(DC), respectively. Figure 4.1 shows the experimental setup for the double-cylinder

experiment. The distance between the DC and the hot wire probe is denoted by xDC.

In this configuration, the shock wave toward the measurement plate passes through

the DC wake region after it interacts with the RC wake. The characteristics of the

DC wake, which affects the shock wave, can be varied by changing xDC since the

turbulent wake develops in the streamwise direction. Thus, in the double-cylinder

experiments, we can investigate the effects of the width of the turbulent region and

nonuniformity of the turbulent intensity, varied by the installation of DC, on the

change in the shock wave statistics. In addition to these experiments with turbulence,

the experiments are also performed for a laminar flow without the grid nor cylinders.
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Thus, four types of experiments: with grid turbulence, a single-cylinder wake, a

double-cylinder wake, and a laminar flow, are conducted in the present study. The

purpose of the present experiments is to investigate the following issues: (i) how

the influence of turbulence (RC wake) on the shock wave is modified by another

turbulence at a different location (DC wake); (ii) the influence of inhomogeneous

and intermittent turbulence on the shock wave. (i) is mainly investigated with the

single- and double-cylinder experiments while the experimental results with the grid

turbulence and single- and double-cylinder wake(s) are compared for elucidating (ii).

The wind tunnel is operated at the streamwise mean velocity of U0 = 10 [m/s].

The Reynolds number based on the cylinder diameter is ReD =U0D/ν = 6.9×103.

The mesh Reynolds number is ReM =U0M/ν = 6.7×104 for the grid turbulence.

4.2.2 Velocity characteristics of cylinder wake

Prior to the experiments with the shock wave, statistics of streamwise velocity of the

single-cylinder wake are examined with the I-type hot wire probe on the wake center-

line, where the cylinder is installed at 230 mm above the floor of the test section. Fig-

ures 4.2 (a) and (b) show the mean velocity defect ∆U =U0 −Uave and rms velocity

fluctuation urms for the single-cylinder wake as a function of the streamwise distance

ξ1 from the cylinder center, respectively. Here, Uave is obtained by time-averaging

the instantaneous streamwise velocity U . From ξ1/D = 15 to 125, ∆U divided by

U0 decays from 0.3 to 0.1. Turbulent intensity of a cylinder wake is known to decay

following a power law (Osaka et al., 1983). The present results show that urms/U0

decays with urms/U0 = 0.861(ξ1/D+ 6.51)−0.611. Figures 4.2 (c) and (d) show λ



70
Chapter 4. Statistical properties of spherical shock waves propagating through grid

turbulence, turbulent cylinder wake, and laminar flow

d

155

540

Shock

U0

Shock tube 230

Driver gas reservoir

(a)

75 25

Hot wire
Pressure 
transducer

(b)

U0

xRC = 500

xDC

990

RC DC

Hot wire

855

RC
DC Plate

h

x

y

z

z

y

x

75

FIGURE 4.1: Schematic of test section seen from (a) spanwise direc-
tion and (b) streamwise direction．Lengths are shown in mm.

and Lu of ξ1, respectively. The increase in these length scales in the streamwise di-

rection with the power law of (ξ1/D+ ξ0/D) can be confirmed as in the previous

study (Osaka et al., 1983). Here, ξ0 is the virtual origin considered for the calcula-

tion of the fitting line. Least square method applied to the experimental results yields

λ 2/D2 = 0.00297(ξ1/D + 4.95) and Lu/D = 1.10(ξ1/D + 3.40)0.369. Figure 4.3

shows the energy spectra of frequency f of velocity fluctuations u =U −Uave of the

single-cylinder wake at 500 mm downstream of the cylinder, the grid turbulence at

1405 mm downstream of the grid, and the laminar flow. The energy spectra for the

grid turbulence and cylinder wake show that the velocity fluctuations are distributed
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in a wide frequency range, consistent with a typical energy spectrum in turbulence.

We can also confirm that the energy spectrum for the grid turbulence follows Kol-

mogorov’s k−5/3 law.
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FIGURE 4.2: (a) ∆U/U0, (b) urms/U0, (c) λ 2/D2, and (d) Lu/D as
a function of the streamwise distance ξ1 from the cylinder center.
Solid lines in each figure show urms/U0 = 0.861(ξ1/D+ 6.51)−0.611,
λ 2/D2 = 0.00297(ξ1/D+4.95), and Lu/D = 1.10(ξ1/D+3.40)0.369,

respectively.

4.2.3 Experimental conditions

The double-cylinder experiments are performed for three different streamwise loca-

tions of the DC: xDC = 150, 200, and 300 [mm], which correspond to xDC/D = 15,

20, and 30, respectively.

For shock-turbulence interaction experiments, U at h = 75 [mm] and the over-

pressure on the plate are simultaneously measured with the I-type hot wire probe and
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FIGURE 4.3: Energy spectra of velocity fluctuation u for the cylinder
wake, grid turbulence, and laminar flow

the pressure transducer installed as shown in Fig. 4.1. This height, h = 75 [mm], is

on the wake centerline of the RC in the experiments with cylinders. The hot wire

probe is supported on the plate at a different spanwise location from the pressure

transducer so that the probe does not disturb the turbulence on the x-y plane at the

spanwise location of the measurements. The shock ejection and the signal sampling

at 1 MHz with an oscilloscope (YOKOGAWA DL750) are controlled by a computer.

Sampling is started before the shock wave ejection. The correlation between the

peak overpressure and velocity is investigated with the same method as in Chapter

3. Here, the velocity is measured at h = 75 [mm] in all the experiments. Therefore,

a peak in the overpressure upon the shock wave arrival is studied in relation to the

velocity at h = 75 [mm]. The measurements are repeated for 500 runs of the shock

wave ejections (50 runs for the laminar flow case) for the statistical analysis.

Table 4.1 shows the streamwise distance from the hot-wire probe to the grid,

RC, and DC, denoted by xG, xRC, and xDC, which are considered for varying the

flow conditions. ∆Umax is the maximum values of ∆U in the vertical direction (the

flow near the wall is excluded) at the streamwise location of the hot wire. The table
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also shows urms, longitudinal velocity integral length scale Lu, Taylor microscale

λ , turbulent Reynolds number Reλ = urmsλ/ν , and turbulent Mach number MT =

urms/a0 at the location where ∆Umax are obtained. Because of low MT, the effects of

the velocity fluctuations on shock can be evaluated apart from those of the density

and temperature fluctuations. For the grid turbulence and laminar flow, ∆Umax is

equal to 0, and urms and Lu are taken at h = 75 [mm]. ∆Umax are obtained in the RC

wake for the single-cylinder experiment and in the DC wake for the double-cylinder

experiments. In the double-cylinder experiment, the rms velocity fluctuation at the

streamwise location of the probe is larger behind the DC wake than the RC wake.

TABLE 4.1: Experimental conditions of interaction between a spher-
ical shock wave and a single-cylinder wake, a double-cylinder wake,
grid turbulence, and a laminar flow. urms is the value at the point where

∆Umax is obtained.

Flow Symbol xRC [mm] xDC [mm] xG [mm] ∆Umax [m/s] urms [m/s]
Single-cylinder wake △ 500 - - 1.2 0.61
Double-cylinder wake ◦ 500 150 - 2.8 1.0
Double-cylinder wake • 500 200 - 2.7 0.86
Double-cylinder wake ⊙ 500 300 - 2.1 0.74

Grid turbulence 2 - - 1405 0 0.56
Laminar flow ××× - - - 0 0.059

Flow Symbol Lu [mm] λ [mm] Reλ MT
Single-cylinder wake △ 45 3.0 120 1.8×10−3

Double-cylinder wake ◦ 27 1.4 100 3.0×10−3

Double-cylinder wake • 31 2.1 120 2.5×10−3

Double-cylinder wake ⊙ 37 2.7 140 2.2×10−3

Grid turbulence 2 54 3.9 150 1.7×10−3
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4.3 Results and Discussion

4.3.1 Overpressure characteristics

The statistics of the peak-overpressure ∆p caused by the shock wave are investigated.

The definition of ∆p is same as in Chapters 2 and 3. Ensemble averages of ∆p, ⟨∆p⟩,

are shown in Figs. 4.5(a) and (b), against the maximum values of the velocity differ-

ence, ∆Umax and urms, respectively. Note that ∆Umax and urms are taken at the same

location. Comparison between the single-cylinder and grid turbulence experiments

indicates that the non-uniform mean velocity profile in the wake results in decrease in

⟨∆p⟩. Furthermore, introducing the DC below the RC also decreases ⟨∆p⟩ as found

from single- and double-cylinder experiments. It is remarkable that there is almost

no difference in ⟨∆p⟩ between the grid turbulence and laminar flow cases although

the grid turbulence has much stronger velocity fluctuations than the laminar flow

(Tab. 4.1). This result indicates that mean shear arising from the non-uniform mean

velocity in the cylinder wake has more significant effects on ⟨∆p⟩ than the velocity

fluctuation. The decrease in ⟨∆p⟩ by the mean velocity defect can be explained with

the effect of surface deformation of shock front propagating in a nonuniform medium

(Whitham, 1958). As shown in Fig. 4.4(a), the overpressure behind the shock wave

with the convex surface is known to decrease as it propagates since the ray tube area

of the shock wave becomes larger as it propagates (Whitham, 1957). The fluid veloc-

ity in the streamwise direction is opposed to the propagation direction of the shock

wave propagating toward the pressure measurement location as shown in Fig. 4.1(a).

Since the mean streamwise velocity in the wake is smaller than outside the wake be-

cause of the velocity defect, the shock moves faster in the cylinder wake, resulting
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in the convex shock surface in the shock propagating direction. As expected from

the relation between the shock surface shape and overpressure discussed above, the

velocity defect of the wake results in decrease in ⟨∆p⟩.

Shock wave

Convex
∆�

���

Cylinder wake

�� � 0

Shock wave

�� � 0

Shock wave

Convex

(a)

(b) (c)
Velocity 
fluctuation

Velocity 
fluctuation

Velocity 
defect

∆�′ � 0∆�� � 0
Concave

∆� decreases

FIGURE 4.4: Schematics of shock deformation caused by (a) mean
velocity defect, (b) positive velocity fluctuation, and (c) negative ve-

locity fluctuation.

The rms peak-overpressure fluctuation ∆p′rms =
√
⟨∆p′2⟩ (∆p′ = ∆p−⟨∆p⟩) di-

vided by ⟨∆p⟩ is plotted against ∆Umax in Fig. 4.6(a) similarly to Fig. 4.5. The flow

in our wind tunnel has urms of 0.059 m/s in the laminar flow at U0 of 10 m/s. The rel-

ative intensity 0.59 % is as small as that in other wind tunnel (Seoud and Vassilicos,

2007). However, since the shock wave generator cannot produce exactly the same

shock wave because of the limitation of the reproducibility, and there exists electrical

noise that is inherent in the measurement system, ∆p′rms/⟨∆p⟩ of 0.016 is caused even
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in the laminar flow case. In the single-cylinder experiment, ∆p′rms/⟨∆p⟩ is increased

by a factor of 2.07 from the laminar case. Similar values of ∆p′rms/⟨∆p⟩ are obtained

for the single-cylinder and grid turbulence, suggesting that the mean velocity profile

is not directly related to the increase in ∆p′rms/⟨∆p⟩. In Fig. 4.6(b), ∆p′rms/⟨∆p⟩ is

plotted against urms at the location of ∆Umax. ∆p′rms/⟨∆p⟩ tends to increase with urms,

consistent with previous studies (Lipkens and Blackstock, 1998b; Sasoh et al., 2014).

The shock wave in the double-cylinder experiments interacts with the DC wake af-

ter it passes the RC wake, where ∆p′rms/⟨∆p⟩ is larger than in the single cylinder

experiment, and the DC wake contributes to the increase in ∆p′rms/⟨∆p⟩. The turbu-

lent wake in the single cylinder experiment exists only behind the cylinder while the

grid turbulence is formed in the entire wind tunnel. The grid turbulence and single-

cylinder wake have a similar level of rms velocity fluctuation, and ∆p′rms/⟨∆p⟩ is also

similar for both flows even though the spatial distribution of the turbulent region and

mean velocity profile are different. Figures 4.5(a) and 4.6(b) also show the results

obtained by 200 runs (25 runs for the laminar flow case) with gray symbols, where

we can confirm that the differences from the results by 500 runs are small and that

the above discussions on the statistics by 500 runs are reliable.

4.3.2 Correlation coefficients

The correlation coefficients between streamwise velocity fluctuations and peak-overpressure

fluctuations are calculated as in Chapter 3. The Taylor hypothesis and low pass filter

are used for calculating U(d,∆d) with the same method presented in Chapter 3. In

the case of the cylinder wake, the convective velocity in the Taylor hypothesis is cal-

culated as the time averaged velocity Uave at the hot wire location. Here, d is defined
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as the streamwise distance from the pressure transducer location in Fig. 4.1, and ∆d

is the cutoff length of the low pass filter defined by Eq. (3.2). The correlation coef-

ficients between streamwise velocity fluctuations and peak-overpressure fluctuations

are calculated with Eq. (3.5).
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Figure 4.7(a) shows R(d,∆d) in the single-cylinder experiment. Large posi-

tive values of R(d,∆d) are obtained around the peak denoted by Rmax(d,∆d) =

R(dmax,∆dmax), which is marked with a cross symbol in the figure. Rmax, dmax,

∆dmax in each flow case are summarized in Tab. 4.2. The positive correlation is con-

sistent with the results in Chapter 3. This positive correlation between the velocity

and the peak-overpressure was explained by the deformation of shock wave surface

by turbulence described in Chapter 2. In the present experimental setup, a positive

velocity fluctuation is opposed to the direction of the shock propagation. Then, as

discussed in relation to the mean flow defect and mean peak-overpressure, the posi-

tive velocity fluctuation tends to create a concave shape on the shock wave surface,

which causes the peak overpressure to increase (see Fig. 4.4(b)). Negative fluctua-

tions are related to a convex shape with a lower peak overpressure than average (see

Fig. 4.4(c)). Thus, the correlation between û and ∆p′ is positive.

Figures 4.7(b), (c), and (d) show R(d,∆d) of the double-cylinder experiments.

Note that the correlation is computed for the velocity fluctuation in the RC wake,

which exists above the DC wake as shown in Fig. 4.1. Comparison between Fig. 4.7(a)

and Figs. 4.7(b,c,d) shows that the DC wake results in weaker correlation between

the velocity fluctuation of the RC wake and the peak-overpressure fluctuation. dmax

is compared with the shock ray in Fig. 4.8. The result from the grid turbulence ex-

periment is also plotted in the figure. dmax appears around the shock ray toward the

pressure measurement location (d,h) = (0,0), and the turbulent velocity fluctuation

near the ray is found to have a significant influence on the overpressure fluctuation.

In Fig. 4.9, ∆dmax/Lu is plotted against urms at h = 25 [mm], which is below the

RC wake (the height of the DC). Lu is taken at h = 75 [mm] (behind the RC for



4.3. Results and Discussion 79

the cylinder wakes) since the correlation that provides ∆dmax/Lu is also computed at

h = 75 [mm]. Here, urms is taken from h of the DC wake in order to investigate the

effect of the DC wake on the peak-overpressure fluctuation. ∆dmax are of the order of

an integral length scale, confirming that the peak-overpressure fluctuation is related

to large-scale motions of turbulence although the vertical distribution of turbulence is

different among the experiments. In Fig. 4.10, Rmax is plotted against urms at h = 25

[mm]. Note that Rmax is calculated between the velocity fluctuations of RC wake (at

h = 75 [mm]) and overpressure fluctuations, which represents the influence of RC

wake on the overpressure. Therefore, the influence of DC wake on the overpressure

can be evaluated by the comparison of Rmax obtained with different urms of DC wake.

Rmax decreases from 0.299 to 0.165 as urms at h = 25 [mm] increases. This confirms

that the influence of turbulence at h = 75 [mm] on the peak overpressure is weakened

by the turbulence at h = 25 [mm]. However, Rmax does not reach 0 even for higher

urms at h = 25 [mm], and the effect of turbulence at h = 75 [mm] still remains on the

peak overpressure. In the grid turbulence, urms is independent of h. Thus, the ratio

of urms between h = 25 [mm] and 75 ]mm] is equal to 1. However, Rmax = 0.275 for

the grid turbulence is similar to the value in the single-cylinder experiment, where a

quasi-laminar flow exists at h = 25 [mm]. Thus, a turbulent region hardly weakens

the influence of another turbulent region on the shock wave when these two turbulent

regions have a similar level of turbulent intensity.
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FIGURE 4.7: Correlation coefficients R(d,∆d) between the peak-
overpressure fluctuation and velocity fluctuation in (a) single-cylinder
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(d,∆d) = (dmax,∆dmax), where R has a maximum value Rmax in each

figure.

4.4 Summary of this chapter

The experiments on the interaction between the spherical shock wave and turbulence

in a wind tunnel have been conducted, and the overpressure behind the shock wave

and the fluid velocity have been measured simultaneously. The experiments have

been performed with a single-cylinder wake, a double-cylinder wake, grid turbu-

lence, and a laminar flow. The influences of these flows on the shock wave have been

compared to investigate the effects of the inhomogeneity of turbulence on the shock
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TABLE 4.2: Rmax, dmax, and ∆dmax in each flow case.

Flow Symbol Rmax dmax [mm] ∆dmax [mm]
Single-cylinder wake △ 0.299 274 296
Double-cylinder wake ◦ 0.165 287 158
Double-cylinder wake • 0.193 284 246
Double-cylinder wake ⊙ 0.210 332 126

Grid turbulence 2 0.275 260 160
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FIGURE 4.8: Comparison of (dmax,h) and the shock ray along which
the shock wave propagates to the pressure transducer location (d,h) =

(0,0).
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FIGURE 4.9: ∆dmax/Lu plotted against urms at h = 25 [mm].

wave characteristics.

The mean peak-overpressure ⟨∆p⟩ is found to change after the shock wave passes
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FIGURE 4.10: Rmax plotted against urms at h = 25 [mm].

the flow with a non-uniform mean velocity profile such as cylinder wakes. Compar-

isons between experiments with the wakes, grid turbulence, and laminar flow shows

that ⟨∆p⟩ is almost independent from the turbulent intensity since ⟨∆p⟩ is similar for

the grid turbulence and laminar flow. The rms peak-overpressure fluctuation inten-

sity ∆p′rms/⟨∆p⟩, on the other hand, tends to increase with rms velocity fluctuation

of turbulence that interacts with the shock wave, without a significant dependence

on a mean velocity profile. Correlation coefficients are calculated between the peak-

overpressure fluctuation behind the shock wave and the low-pass filtered velocity

fluctuation of the turbulence. It is shown that a large-scale turbulent velocity fluc-

tuation near the shock ray has a strong influence on the shock wave characteris-

tics. In the double-cylinder experiments, the shock wave passes two turbulent wakes.

The effects of the first wake, evaluated with the correlation coefficients between the

peak-overpressure fluctuation and the low-pass filtered velocity fluctuation of the

first wake, are weakened after the shock wave passes the second wake, which has a
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higher rms velocity fluctuation than the first wake. This influence of the second wake

is shown to be more important as its rms velocity fluctuation increases.
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Conclusions

In this thesis, the fundamental aspects of the shock-turbulence interaction phenomena

were studied experimentally with the focus on effects of turbulent velocity fluctua-

tions on a shock wave. Experiments of a spherical shock wave propagating through

turbulence in the wind tunnel were repeatedly conducted in order to investigate the

statistics of the overpressure behind a shock wave after the interaction. The physical

meanings of the experimental results were also considered by constructing the theo-

retical model. Here, the main findings in Chapters 2 to 4 are summarized based on

the objective mentioned in Chapter 1.

In Chapter 2, the overpressure fluctuations behind a shock wave caused by the

interaction with turbulence were investigated, where various conditions for shock

Mach number MS0 and turbulent Mach number MT were considered to elucidate the

relation between the overpressure and the these Mach numbers. The Gaussianity of

the peak-overpressure fluctuations was found in all the experimental conditions. The

rms peak-overpressure fluctuation divided by the averaged peak-overpressure was

found to be increased as a function of M2
T/(M

2
S0 − 1). The statistical properties ob-

tained in the experiments were well explained by a shock deformation model, where
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a shock wave interacting with local velocity fluctuations was considered. This im-

plies that shock wave deformation is an important cause of the overpressure change

in the shock-turbulence interaction.

In Chapter 3, the relation between the instantaneous velocity of turbulence and

the overpressure fluctuation behind a shock wave was discussed. The correlation co-

efficients were calculated between the velocity and peak-overpressure fluctuations.

The positive correlation was obtained, which showed that the increase in the tur-

bulent velocity fluctuation opposing to the shock propagation direction yields the

increase in the overpressure fluctuation. It is remarkable that the peak overpressure

was strongly correlated with the velocity of turbulence interacting at some distance

away from the pressure measurement point. This means that overpressure fluctu-

ation significantly appears some time after the shock wave interacts with turbulent

velocity fluctuation, suggesting the existence of the response time of the shock wave

modulation by turbulence.

The effect of inhomogeneity of velocity characteristics of turbulence on shock

wave modulation was discussed in Chapter 4. The inhomogeneous turbulence was

produced in the wind tunnel by introducing double cylinder wake consisting of up-

per and lower cylinder wakes. The interaction between the double cylinder wake

and a shock wave was compared with the results of the interaction between quasi-

homogeneous flow (laminar flow and grid turbulence) to the evaluation of the effects

of the inhomogeneity on the shock wave. It was found that the larger the veloc-

ity defect behind the cylinder wake is, the smaller the averaged peak overpressure

becomes. This is qualitatively consistent with the result of the shock deformation
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model constructed in Chapter 2; the velocity defect caused in the present experi-

ments makes the shock wave convexly deformed in the shock propagation direction,

resulting in the attenuation of the shock Mach number and overpressure. Thus, the

inhomogeneity in the mean-velocity profile of cylinder wake strongly affects the av-

eraged peak overpressure. On the other hand, the rms peak overpressure was not

dependent on the velocity defect, but was increased with the rms velocity fluctua-

tion of the cylinder wake. It was also found that the correlation between the upper

cylinder wake velocity and the peak-overpressure fluctuations was weakened after

the shock wave interacted with the lower cylinder wake. The correlation coefficients

between them decreased as the rms velocity fluctuation of the lower cylinder wake

increased. Hence, by strengthening the inhomogeneity of turbulence velocity fluc-

tuation profile, the effect of the velocity fluctuation interacting with the shock wave

at a certain point on the shock ray can be changed significantly during the shock

propagation.
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Relation between ∆p and ∆ρ

The sound speed equation behind the shock wave is

a2
2 =

γ(⟨∆p⟩+ p0)

⟨∆ρ⟩+ρ0
. (A.1)

According to Lee, Lele, and Moin, 1993, from the isentropic relation, the fluctuations

in pressure and density jumps are related by

∆p′ = a2
2∆ρ ′. (A.2)

From Eqs. (A.1) and (A.2) and the sound speed equation in front of the shock wave

a2
0 = γ p0/ρ0, the relation between ∆p′/⟨∆p⟩ and ∆ρ ′/⟨∆ρ⟩ is obtained as follows:

∆p′

⟨∆p⟩
=

γ∆ρ ′

⟨∆ρ⟩+ρ0 − γ p0
a2

2

=
γ∆ρ ′

⟨∆ρ⟩+ρ0

(
1− a2

0
a2

2

) . (A.3)

According to the Rankine-Hugoniot relations,

⟨∆ρ⟩
ρ0

=
2(M2

S0 −1)
(γ −1)M2

S0 +2
. (A.4)
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Equations (2.16), (A.3), and (A.4) yield

∆p′

⟨∆p⟩
=

2γM2
S0 − γ +1

(γ +1)M2
S0

∆ρ ′

⟨∆ρ⟩
= m

∆ρ ′

⟨∆ρ⟩
, (A.5)

where m ≡ (2γM2
S0 − γ + 1)/{(γ + 1)M2

S0}. The standard deviation of Eq. (A.5)

yields

σ∆p

⟨∆p⟩
= m

σ∆ρ

⟨∆ρ⟩
. (A.6)
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Shock Mach number fluctuation for a

strong shock wave

For a strong shock wave (MS0 → ∞), Eq. (2.26) can be simplified (Whitham, 1959)

as

A
A0

≈
(

MS0

MS

)n

, (B.1)

where n = limMS→∞{(M2
S − 1)g/MS} ≈ 5.0743. For MS0 ≳ 2.6, the error of the A–

MS relation calculated with Eq. (B.1) from that calculated with Eq. (2.26) is within

10%. From Eqs. (2.25) and (B.1), M′
S is written as

M′
S ≈ 1− (2ξ +1)1/n

(2ξ +1)1/n
MS0 ≈−2

n
ξ MS0, (B.2)

where (2ξ +1)1/n ≈ 2ξ/n+1 (ξ ≪ 1) is used for small deformation. Differentiation

of both sides of Eq. (B.2) with respect to xR yields

dM′
S

dxR
≈−2MS0

n
u+a0M′

S/2
US0 tanα

1
r0
. (B.3)
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The solution of Eq. (B.3) is

M′
S ≈−2u

a0

[
1− exp

(
− 1

n tanα
xR

r0

)]
. (B.4)

Therefore, M′
Sl ≡ M′

S(xl) is

M′
Sl ≈−2u

a0

[
1− exp

(
− 1

n tanα

)]
=−c

u
a0

, (B.5)

where xl/r0 ≈ 1 is used and c is defined as c≡ 2
[
1− exp

(
− 1

n tanα
)]

. From Eqs. (2.38),

(2.40), and (B.5), ∆p′/⟨∆p⟩ for MS0 → ∞ is written as

∆p′

⟨∆p⟩
≈ − 2MS0

M2
S0 −1

c
u
a0

≈−2c
u/a0

MS0
. (B.6)

Since c ≈ 0.7658 for MS0 → ∞, we have

∆p′

⟨∆p⟩
≈ −1.532

u/a0

MS0
. (B.7)

The standard deviations of Eq. (B.7) yield the following relation among σ∆p/⟨∆p⟩,

MS0, and MT:

σ∆p

⟨∆p⟩
∼ MT

MS0
. (B.8)
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