主論文の要約

論文題目 光学応答からみた x型 BEDT-TTF 化合物の

異方性と電荷不均化状態

(Anisotropy and Charge

Disproportionated State in k-type

BEDT-TTF Compounds Clarified by

Optical Responses)

氏 名 水越 和志

論文内容の要約

本学位論文では、 κ 型 bis(ethylenedithio)tetrathiafulvalene(BEDT-TTF(ET))化合物における電子的な異方性を、光学応答から見積もる方法を見出した。その方法で擬一次元三角格子物質 κ -(ET) $_2$ B(CN) $_4$ [1]の 100K以下における電子的な異方性を見積もった。この電子的な異方性を見積もる方法は、これまで存在しなかった実験的に三角格子物質の光学的異方性を見積もる方法として利用されることが期待される。また、光学応答に基づいて電子状態を議論して、擬一次元三角格子物質 κ -(ET) $_2$ CF $_3$ SO $_3$ [2]では、電荷秩序状態のドメインが生じることを明らかにした。したがって、 κ -(ET) $_2$ CF $_3$ SO $_3$ は、まだその全容が明らかにされていない κ 型 ET 化合物の系における電荷秩序の物理の理解に寄与することが期待される。

本論文は7章で構成されている。各々の章の内容を以下に示す。

第1章では、序論として、研究の背景を述べる。 κ 型 ET 化合物は、ET 分子で構成される ET 層とアニオン Xで構成されるアニオン層が交互に積層している物質である。ET 層においては、ET 分子 2 つが向かい合い、それらが三角格子上に配列している。そのような構造をもつ κ 型 ET 化合物には、実験的に、極低温において、量子スピン液体状態が現れることが発見された[3]。その量子スピン液体状態の発現には、電子的な異方性の大きさが影響していると考えられ、極低温における電子的な異方性を実験的に評価することが重要である。しかしこれまで、電子的な異方性を評価する実験的な方法は存在しなかった。

一方で、 κ 型 ET 化合物の電子状態について、近年には、実験的に電荷秩序状態が現れることが見出され、理論と実験の両方から κ 型 ET 化合物における電荷秩序状態が精力的に調査された[4]。この電荷秩序の理解のために、現在も電荷秩序の現れる κ 型 ET 化合物の探索が行われている。最近、 κ -(ET)CF $_3$ SO $_3$ において、電気抵抗の温度依存性の測定結果から、190 K 以下において、電気抵抗率の温度依存性が冷却速度に依存することが示され、急冷下では電気抵抗率が温度減少に従って下がるふるまいが観測された[5]。これまで報告された κ 型 ET 化合物において、そのような抵抗率のふるまいはなく、 κ -(ET) $_2$ CF $_3$ SO $_3$ の電子状態がどのようであるかについて電荷秩序の探索の観点からも、大変興味深い。

電子的な異方性の評価や、電荷秩序の探索を行うことにおいて、光学応答の利用は有力な手段である。光学応答がダイマー間のトランスファーエネルギーt'及びtで特徴づけられ、また電荷秩序の発見において分子振動の光学応答がよく用いられているからである。

そこで本研究では、光学応答によって、電子的な異方性(t'/t)の評価のため、 κ 型 ET 化合物における電子励起に対応する光学伝導度スペクトルとトランスファー積分の関係を調べた。 さらに、同じく光学応答によって、 κ -(ET) $_2$ CF $_3$ SO $_3$ の電子状態を調べた。

第 2 章では、本研究に関連する先行研究について述べる。本章では、分子性結晶や κ 型 ET 化合物、ハバードモデル、t'/tの計算方法などについて概説している。

第3章では、本研究で用いた実験 手法や解析手法について述べる。本章では、本研究において実験手法と して用いられた赤外分光光度計、近 赤外可視近紫外分光光度計の原理に ついて概説している。

第 4 章では、 κ -(ET) $_2$ B(CN) $_4$ と κ -(ET) $_2$ CF $_3$ SO $_3$ の実験結果と解析結果を示し、それについて述べる。具体的には、 κ -(ET) $_2$ B(CN) $_4$ 及び κ -(ET) $_2$ CF $_3$ SO $_3$ の ET 層に平行な方向における反射・光学伝導度スペクトル、 κ -(ET) $_2$ CF $_3$ SO $_3$ の ET 層に垂直な方向における反射・光学伝導度スペクトルを示している。

第5章では、 κ 型 ET 化合物における電子励起に対応する光学伝導度スペクトルについて詳細に議論し、光学的な方法による電子的な異方性(t'/t)

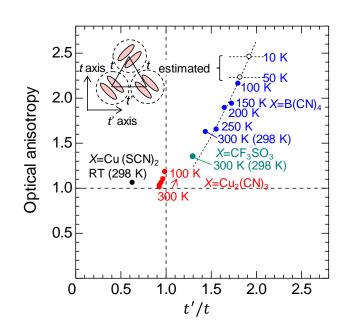


図1 t'/t に対してプロットされた κ 型 ET 化合物の光学的異方性[5],[6]。括弧の外と中に書かれている温度はそれぞれ、光学的異方性とt'/tが求められた温度を表す。 点線は $\theta=24.8$ のときの $A=\{(t'/t)^2+2\sin^2\theta\}/2\cos^2\theta$ のグラフである。

の評価方法を示す。本研究では、t'軸方向とt軸方向(図1)における有効電子数の比(t'軸方向

における有効電子数/ t軸方向における有効電子数)を計算し(以降、その比を光学的異方性と 呼ぶ)、t'/tに対してプロットした(図 1)[5],[6]。 κ -(ET)₂B(CN)₄ の光学的異方性は、温度が 低いほど大きくなり、t'/tと比較すると、光学的異方性とt'/tの間に正の相関の関係が見ら れる。4 つの κ 型 ET 化合物から得られた光学的異方性をt'/tと比較すると、 $t'/t > \sim 1$ にお いて光学的異方性とt'/tの間に正の相関の関係が見られる。ダイマー間電荷移動遷移を考慮 して、光学的異方性 A とt'/tの間の理論式 $A = \{(t'/t)^2 + 2\sin^2\theta\}/2\cos^2\theta$ が導かれた。 θ は ET ダイマーがつくる二等辺三角形の頂角の半分である。また、その理論式は、 θ をパラメ ータと見なして、 θ = 24.8のとき、 κ -(ET)₂B(CN)₄における光学的異方性とt'/tの関係にフ ィットする。その関係式に基づき、光学的異方性から、 κ -(ET)₂B(CN)₄のt'/tが 50K でt'/t =

1.82、10K でt'/t =1.92 と見積もら れた。まとめると、光学的にt'/tを 見積もる方法が見出され、その方法 によって、 κ -(ET)₂B(CN)₄のt'/tが、 100K 以下でさらに増加すること が予測された。

第6章では、光学伝導度スペク トル、X線測定の結果、電気抵抗率 から、κ-(ET)₂CF₃SO₃ の電子状態 を議論する。始めに ET 分子のv27 モードの振動の観点で理解される ET 層に垂直な 1350~1540cm⁻¹の 光学伝導度スペクトルの実験結果 から、電子状態を詳細に議論する。 その光学伝導度スペクトルからは、 κ-(ET)CF₃SO₃において、冷却速度 によらず、10-300Kにおいて、0.5 価のサイトと、価数が平均価数の 0.5 よりも大きな charge rich のサ イトと、価数が平均価数の0.5 価よ りも小さな charge poor のサイト があると考えられる。さらに、180K 以下の温度において、冷却速度によ らず、charge rich と charge poor のサイトが多いと考えられる。

る ET 層に平行な 1500~6000cm⁻¹ ET 分子を表す。

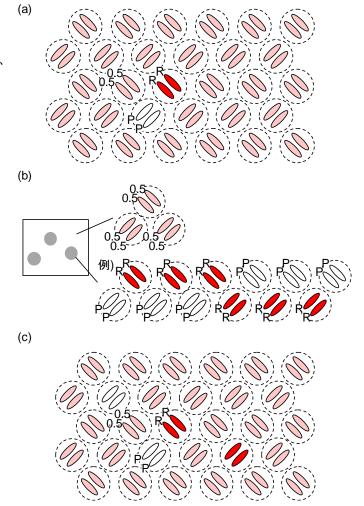


図 2 κ-(ET)CF₃SO₃ における(a)190 から 300K の電子 状態、(b)徐冷の 190K 以下の電子状態、(c)急冷の 190K 以下の電子状態[5]。0.5、R、Pのラベルが付いた 次に、電子励起の観点で理解され 楕円はそれぞれ、0.5 価、charge rich、charge poorの

の光学伝導度スペクトルを議論する。その $E \parallel c$ における光学伝導度スペクトルからは、 徐冷の $190 \mathrm{K}$ 以下においてはモット絶縁体とダイマー間電荷秩序状態が共存していると考 えられる。

最後に、 κ -(ET) $_2$ CF $_3$ SO $_3$ の電子状態を提示する[5]。その電子状態は、190K から 300K においては、ほとんどモット絶縁体状態であると考えられる(図 $_2$ (a))。徐冷の 190K 以下においては、主に $_0$ 5 価の ET 分子で構成されるモット絶縁体の領域の中に、charge rich 及び poor な ET ダイマー等で構成されている 6 倍周期の電荷秩序の領域が生じていると考えられる(図 $_2$ (b))。急冷の 190K以下においては、電荷キャリアとしてふるまう孤立した charge rich 及び poor な ET ダイマーが生じていると考えられる(図 $_2$ (c))。

第7章では、本研究のまとめを述べる。光学的異方性からt'/tを見積もる方法が見出された。その方法によって、 κ -(ET) $_2$ B(CN) $_4$ のt'/tが、100K以下でさらに増加することが予測された。このt'/tを見積もる方法は、これまで存在しなかった実験的に三角格子物質の電子的な異方性を見積もる方法として利用されることが期待される。また、主に光学伝導度スペクトルに基づき、 κ -(ET) $_2$ CF $_3$ SO $_3$ において、徐冷の 190K以下において、電荷秩序のドメインが生じると考えられた。 κ -(ET) $_2$ CF $_3$ SO $_3$ は、 κ 型 ET 化合物の系における電荷秩序の物理の理解に寄与することが期待される。

References

- [1] Y. Yoshida, H. Ito, M. Maesato, Y. Shimizu, H. Hayama, T. Hiramatsu, Y. Nakamura, H. Kishida, T. Koretsune, C. Hotta, and G. Saito, Nat. Phys. 11, 679 (2015).
- [2] H. Ito, T. Asai, Y. Shimizu, H. Hayama, Y. Yoshida, and G. Saito, Phys. Rev. B **94**, 020503 (2016).
- [3] Y. Shimizu, K. Miyagawa, K. Kanoda, M. Maesato, and G. Saito, Phys. Rev. Lett. 91, 107001 (2003).
- [4] M. Abdel-Jawad, I. Terasaki, T. Sasaki, N. Yoneyama, N. Kobayashi, Y. Uesu, and C. Hotta, Phys. Rev. B 82, 125119 (2010).
- [5] K. Mizukoshi, H. Ito, Y. Nakamura, H. Hayama, Y. Yoshida, G. Saito, and H. Kishida, J. Phys. Soc. Jpn. 89, 024710 (2020).
- [6] K. Mizukoshi, Y. Nakamura, Y. Yoshida, G. Saito, and H. Kishida, J. Phys. Soc. Jpn. 87, 104708 (2018).