
1 
 

Primitive Chain Network Simulations for H-Polymers under Fast Shear 1 
 2 
1*Yuichi Masubuchi, 2Giovanni Ianniruberto, and 2Giuseppe Marrucci 3 
 4 
1 Department of Materials Physics, Nagoya University, Nagoya 4648603, Japan 5 
2Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli 6 
Studi di Napoli “Federico II”, Piazzale Tecchio 80-80125 Napoli, Italy 7 
 8 
*To whom correspondence should be addressed 9 
mas@mp.pse.nagoya-u.ac.jp 10 
 11 
ABSTRACT 12 
Branchpoint Withdrawal (BPW) has been recognized as one of the important molecular mechanisms 13 
for the description of the dynamics of entangled branched polymers under fast flows. However, the 14 
relation to the other known molecular mechanisms has not been fully elucidated yet. In this study we 15 
performed primitive chain network (i.e., multi-chain slip-link) Brownian simulations for a melt of a 16 
well-characterized monodisperse H-polymer, for which the linear viscoelasticity and shear viscosity 17 
growth curves at several shear rates are available in the literature. After confirming the consistency of 18 
the simulations with the rheological data, we used the simulations to analyze the molecular motion in 19 
detail. The results reveal that molecular tumbling occurs in branched polymers just as in linear ones, 20 
and that it is accelerated by BPW. Furthermore, BPW not only mitigates backbone stretch, as expected, 21 
but also arm stretch. However, because the transient startup viscosity is anyhow dominated by chain 22 
stretch dynamics rather than by molecular tumbling, our results rationalize the fact that pom-pom 23 
theories successfully ignore tumbling in shear flows.  24 
 25 
KEYWORDS 26 
Viscoelasticity, molecular simulations, start-up shear, shear thinning. 27 
 28 
Published in SOFT MATTER, 16, 2020, 1056-1065 29 
 30 
 31 
  32 



2 
 

INTRODUCTION 33 
Branchpoint withdrawal (BPW)1 is one of the established molecular mechanisms for the 34 

description of branched polymer dynamics under fast flows. In the tube-theory framework, entangled 35 
polymer dynamics is focused on the motion of a test molecule subjected to a tube-shaped constraint, 36 
representing the mean field exerted by the surrounding molecules.2 For the case of branched polymers, 37 
the arms are confined in their own tubes that emanate from the main tube of the backbone, and the 38 
reptation motion of the backbone is triggered by arm retraction.3 On top of this thermal, hierarchical 39 
relaxation, under fast flows an additional relaxation mechanism takes place: the branchpoint is 40 
withdrawn into the backbone tube when the tension in the backbone exceeds the entropic barrier of 41 
such improbable conformation.1 As a consequence, the backbone tension is upper limited, and it is 42 
presumably lower than the maximum tension determined by the finite chain extensibility. Such a 43 
suppressed extension of the backbone has been observed experimentally.4 The molecular constitutive 44 
equation based on this BPW idea, the so-called pom-pom constitutive equation,1 has attained great 45 
success for the description of branched polymer rheology under elongational flows. Several modified 46 
models have been proposed for better predictions, and/or numerical convenience, in macroscopic flow 47 
calculations.5–9  48 
 Even though BPW is such a significant mechanism, there are a few open questions 49 
concerning the relation to the other known, important molecular mechanisms. For example, several 50 
years ago, we discussed about competition between BPW and convective constraint release (CCR).10 51 
CCR is a flow-induced increase of the relaxation rate for the reptation motion, due to renewal of 52 
topological obstacles associated to the relative convective motion among neighboring molecules.11 53 
Although CCR has been unanimously considered an important molecular mechanism in the dynamics 54 
of entangled linear polymers under fast flows, to our knowledge CCR has never been implemented 55 
into the pom-pom models, differently from the thermal constraint release, which is accounted for 56 
through the so-called tube dilation.12 Because CCR certainly contributes to the relaxation of the 57 
backbone, the occurrence of BPW could be suppressed by CCR via the reduction of the backbone 58 
tension. Hence, in order to observe the rate of occurrence of these events, we performed multi-chain 59 
slip-link Brownian simulations for a pom-pom polymer melt under fast uniaxial elongation, and 60 
showed that for such flows BPW overwhelms CCR.10 This observation rationalizes absence of CCR 61 
in the pom-pom models in elongational flows.  62 
 In this study, we examine the contribution of BPW under fast shear flows, also in relation to 63 
the shear-induced molecular tumbling motion. In the original pom-pom paper, Larson and McLeish1 64 
demonstrated that BPW does not play any significant role in shear flows, given that the magnitude of 65 
the backbone stretch does not exceed the critical value to overcome the entropic barrier. However, 66 
BPW would be activated by the local force balance around the branchpoint even if the entire backbone 67 
stretch is not significant. Besides, in shear flows BPW could be affected by the tumbling motion of 68 
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the molecules. Recent molecular simulations have shown that polymers undergo a quasi-periodic 69 
tumbling motion under shear.13–15 Although, conceptually, such a flow-induced molecular motion 70 
should be included in CCR, Costanzo et al.16 considered the tumbling motion separately from CCR to 71 
explain the stress undershoot at high shear rates. Intuitively, the tumbling motion is expected to occur 72 
for branched polymers as well. However, for tumbling to be possible, the network formed among the 73 
backbones must be periodically renewed, and BPW is expected to contribute to such a network 74 
renewal.  75 
 We here report on multi-chain slip-link simulations (so-called primitive chain network 76 
simulations17) for a well-characterized monodisperse H-polymer melt, for which the linear 77 
viscoelasticity18 and the stress growth at high shear rates19 are available in the literature. As previously 78 
examined for the other branched polymers,10,20–24 the present simulation semi-quantitatively 79 
reproduces the linear viscoelasticity. In view of such agreement, we determined the units of time and 80 
stress, and we run the simulations under shear with and without BPW. The simulations with BPW 81 
reasonably reproduce the experimental data, whereas those without BPW somewhat overestimate the 82 
stress. We next analyzed the molecular motion in detail to conclude that BPW helps the tumbling 83 
motion of the backbone, in addition to the expected reduction of stretch. Details are reported below.  84 
 85 
MODEL AND SIMULATIONS 86 
 Multi-chain slip-link simulations were performed with the extension of the model that 87 
includes the topology change around the branchpoint for the hierarchical relaxation21,22 and BPW.10 88 
As the simulation scheme used here has already been described in those papers, only a summary is 89 
given below.  90 

In the simulation, entangled branched polymers are replaced by a network whose nodes are 91 
either crosslinks (the branchpoints) or slip-links (the entanglements). By assuming that the 92 
entanglements are binary, each slip-link connects two chains. Hence, four network strands depart from 93 
each slip-link, one (or two at most) of such strands possibly consisting of dangling ends. Of course, 94 
each molecule is a well-defined branched path connecting several chain ends. The state variables of 95 
the system are the position of dangling ends and of network nodes {𝐑!}, the number of monomers in 96 
each network strand or dangling end {𝑛!}, the number of strands in each subchain %𝑍"' (subchains 97 
connect either consecutive branchpoints of the backbone or a branchpoint to the chain end of the 98 
corresponding arm), and the connectivity matrix of the subchains for each molecule {𝐶#}. For {𝐑!}, 99 
the dynamics is described by a Langevin-type equation of motion, in which the force balance relates 100 
the drag force, the tension force acting in each strand emanating from the node, the osmotic force due 101 
to density inhomogeneities, and the random force of thermal motion. The kinetics of {𝑛!}  is 102 
calculated according to the rate equation that takes account of a force balance like that of the {𝐑!}-103 
dynamics, here applied to consecutive strands of the molecule across a slip-link. %𝑍"' changes with 104 
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time due to the creation or destruction of slip-links at the chain ends. Indeed, when the number of 105 
monomers on a dangling end becomes smaller than a threshold value because of the kinetics 106 
mentioned above, the associated slip-link is removed, and consequently the two strands of each of the 107 
two chains merge into one. Conversely, a new slip-link is created when the number of monomers in 108 
the chain end exceeds a maximum value, and the companion of the chain end is a strand chosen 109 
randomly from the surroundings. Because no chemical reaction is considered, {𝐶#}  is kept 110 
unchanged throughout the simulations.  111 
 The dynamics so far described is enough for linear polymers. For branched ones, additional 112 
rules governing topological changes around the branchpoints are necessary. One of such rules is the 113 
hierarchical relaxation, according to which reptation of the backbone is allowed when the branching 114 
arms relax.3 In our implementation, we allow the branchpoint to hop across the next slip-link when no 115 
slip-link happen to exist on the branching arms emanating from the branchpoint.21 Following the 116 
previous study,10 we refer to this topological change as branchpoint reptation (BPR). A different 117 
possibility is the previously mentioned BPW, when we “suck” the branchpoint and the arms into the 118 
slip-link next to the branchpoint when the local tension force in the backbone strand emanating from 119 
the branchpoint exceeds the sum of the tension forces of the arm strands.10 120 
 Although finite chain extensibility and stretch/orientation-induced reduction of friction play 121 
some role in elongational flows as reported earlier,25,26 they are not considered in this study because 122 
we focus on the behavior under shear, where they are expected to be only marginally relevant.  123 
 In this study, the simulations were performed for a melt of monodisperse H-shaped 124 
polystyrene molecules, known by the code H3A1A.18 The molar mass of the arm and of the backbone 125 
are 𝑀$ =132k and 𝑀% =123k, respectively. According to the conversion factor for the molar mass 126 
for polystyrene melts earlier determined as 𝑀& = 11k,27,28 the average number of the network strands 127 
under equilibrium for the arm and the backbone are 𝑍$& = 12, and 𝑍%& = 11, respectively.  128 
 The units of length, energy, and time used in the simulations are, respectively, the 129 
equilibrium strand root-mean-square length 𝑎, the thermal energy 𝑘'𝑇, and the diffusion time of the 130 
strand 𝜏& ≡ 𝜁𝑎(/6𝑘'𝑇, where 𝜁 is the friction coefficient of a chain segment with molar mass 𝑀&. 131 
The simulations were performed with a periodic boundary condition, for which the box volume was 132 
fixed at 103. Twelve independent quiescent simulations starting from different initial configurations 133 
were run for a sufficiently long period of time, which is more than ten times longer than the longest 134 
relaxation time of the system. For the recorded stress fluctuating with time, we disregarded the former 135 
half to eliminate possible artifacts arising from the initial state. The linear relaxation modulus was then 136 
obtained via the Green-Kubo formula for the remaining latter half. The relaxation modulus was then 137 
converted to the complex moduli through fitting to a multi-mode Maxwell function with the help of 138 
the REPTATE code.29 To the equilibrium configurations, as attained in the quiescent simulations, shear 139 
flows were applied via a SLLOD-like method, in which a small affine deformation was introduced at 140 
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each integration time step. The Lees-Edwards boundary conditions were also employed. 141 
 142 
RESULTS 143 
 Figure 1 shows linear viscoelasticity simulation results, compared to the experimental 144 
data.18 With the conversion factors for time and modulus that are determined as 𝜏& = 0.01s and 𝐺& =145 
0.3MPa, the simulation (red curves) reasonably reproduces the experimental results (symbols). To be 146 
fair, we note that around the crossover of the 𝐺′ and 𝐺" curves the simulation slightly overestimates 147 
the modulus. Because this tendency was also observed for the other H-polystyrenes earlier examined,24 148 
the discrepancy reasonably implies some (minor) flaw in the model. Not knowing better, we accepted 149 
the predicted linear viscoelastic response given in Fig. 1 (with the corresponding equilibrium 150 
configurations), and we proceeded with the simulations of shear startup from such initial states.  151 
 152 

 153 
Figure 1 Linear viscoelasticity of H polystyrene melt. Red curves are simulation results, and filled 154 
and unfilled circles indicate experimental data18 at 169.5℃. Solid curve and filled symbols are 𝐺′, and 155 
dotted curve and unfilled symbols are 𝐺".  156 
 157 
 Figure 2 shows the viscosity growth under fast shear calculated with the time and modulus 158 
conversion factors mentioned above. The simulation results are in good agreement with the 159 
experimental data19 if the shear rate is relatively low. As the shear rate increases, the simulation 160 
deviates from the data. Specifically, for the viscosity overshoot, the peak appears somewhat later, and 161 
the viscosity grows higher. The discrepancy in the viscosity overshoot might be related to the 162 
inconsistency in the linear viscoelasticity. Nevertheless, the steady-state viscosity is semi-163 
quantitatively reproduced. Although these features are present both with and without BPW, the 164 
simulation with BPW (red curves) better captures the experiment than that without BPW (blue curves). 165 
In particular, the simulation without BPW shows a delayed mitigation of the viscosity after the 166 
overshoot, i.e., moving towards the steady state. McLeish et al.30 mentioned that, in the pom-pom 167 
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constitutive equation, BPW affects the magnitude of the overshoot, but we do not observe such an 168 
effect.  169 
 170 

 171 

Figure 2 Viscosity growth of H polystyrene melt under fast shear. Shear rate are 0.01, 0.032, 0.1, 0.32, 172 
1, 3.2, and 10 s-1, from top to bottom. Red and blue curves are simulation results with and without 173 
BPW, respectively, and both filled or unfilled circles indicate experimental data19 at 169.5℃.  174 
 175 
 To see the role of BPW in detail, we analyzed stress, strand stretch, and strand orientation 176 
for the arm and backbone subchains separately. Results are shown in Fig. 3 for the case of a shear rate 177 
of 10 s-1. As seen in the top panel (as well as in Fig. 2), BPW accelerates relaxation of the stress after 178 
the maximum. The decomposed stress shown in the second panel of Fig. 3 reveals that such 179 
acceleration comes from the backbone contribution (solid curves). Indeed, in the simulation without 180 
BPW (blue curves), relaxation of the backbone stress is delayed. For the arms (broken curves), the 181 
transient stress is virtually insensitive to BPW. Moreover, BPW also lowers the steady-state value. 182 
These effects of BPW appear to be due to reduction of the strand stretch (third panel). BPW contributes 183 
to relief of the stretch for both backbone and arms, and it also lowers the steady state values. Reduction 184 
of the backbone stretch is in harmony with the original idea of BPW, whereas reduction of the arm 185 
stretch goes beyond the classical tube modeling. The difference in the arm stretch with and without 186 
BPW reflects the renewal rate of the entanglement network. As discussed later, BPW accelerates 187 
molecular tumbling, which goes together with a renewal of the entanglement network surrounding the 188 
tumbling chain. Because the entanglements between backbones and arms are included in such a 189 
renewed network, BPW mitigates arm stretch as well as the backbone stretch. The segment orientation 190 
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(bottom panel) is not strongly affected by BPW, apart from a weak over-orientation seen in the 191 
backbone subchain (blue solid curve). The backbone strand orientation shows a clear undershoot that 192 
reflects a rotating motion of the backbone, as shown later.  193 

 194 
Figure 3 Stress during shear startup for the entire system (top panel), contribution to stress from arms 195 
and backbones (2nd panel), squared strand stretch (3rd panel), and strand orientation (bottom panel) at 196 
𝛾̇ =10 s-1. Red and blue curves are from the simulations with and without BPW, respectively. Solid 197 
and dotted curves indicate results for backbones and arms, respectively.  198 

 199 
Figure 4 (top panel) shows the rate of BPW and BPR events per molecule, 𝑘')* and 𝑘')+,  200 

at the shear rate of 10 s-1. 𝑘')* (green curve) steeply grows in a short time, during which the local 201 
tension becomes sufficiently strong due to the deformation. As a result of BPW, the number of 202 
entanglements in the backbone decreases with time (as shown by the red curve in the bottom panel), 203 
which in its turn makes 𝑘')*  to go through an overshoot. Because the peak position of 𝑘')* 204 
coincides with that for the strand stretch (see 3rd panel in Fig. 3), we may conclude that relief of the 205 
stretch is indeed induced by BPW. 𝑘')+ is shown in Fig. 4 by red and black curves for the simulations 206 
with and without BPW. 𝑘')+  is affected by the convection because the entanglements formed 207 
between arms and between arm and backbone are removed by the translational motion of the 208 
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molecules, i.e., by CCR. However, even with such a flow-induced enhancement, 𝑘')+  is not 209 
comparable to 𝑘')*   at this specific shear rate. This result means that BPW is the dominating 210 
mechanism for the disentanglement of the network of backbones, and it confirms the fact that in pom-211 
pom theories CCR can be ignored. The rate 𝑘')+ comes out smaller in the simulation with BPW (red 212 
curve) than that without BPW (black curve) because BPW dominates in removing entanglements.  213 
 214 

 215 
Figure 4 (Top) Time development of the rate of BPW and BPR events per molecule at 𝛾̇ =10 s-1. For 216 
the simulation with BPW, the rate of BPW and BPR is shown by green and red curves. For the 217 
simulation without BPW, the BPR rate is shown by the black curve. (Bottom) Number of backbone 218 
entanglements (normalized to its equilibrium value) as a function of time. Red and black curves show 219 
the results of simulations with and without BPW, respectively.  220 
 221 

The bottom panel in Fig. 4 shows the time development of the number 𝑍, of backbone 222 
entanglements at 𝛾̇ =10 s-1, normalized to its equilibrium value 𝑍,&. In the simulation with BPW (red 223 
curve) the backbone entanglements are efficiently removed, and their number virtually goes down to 224 
zero. Decrease of the backbone entanglements reflects the growth of the BPW rate shown in the top 225 
panel. In the simulation without BPW there remain some of the backbone entanglements, which are 226 
enough to form a network. This network induces a larger strand stretch, as shown in Fig. 3.  227 
 To evaluate the effect of BPW on the rotation of the molecules, we define the rotation angle 228 
𝜃 of the backbone in the following way. The pseudo-vector connecting the branchpoints of the H-229 
polymer is projected onto the plane formed by the shear and gradient directions. We then call 𝜃 the 230 
angle formed by such projection with the shear direction (see top panel in Fig. 5). Although 𝜃 is 231 
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defined in the whole range ]−𝜋, 𝜋], at the flow startup (𝑡 = 0) this angle may be restricted to the 232 
range −𝜋 2⁄ < 𝜃 ≤ 𝜋 2⁄  so that cos 𝜃 ≥ 0. The second panel in Fig. 5 shows an example of the 233 
time development of cos 𝜃 at 𝛾̇ =10 s-1. As reported for linear polymers,31 cos 𝜃 exhibits a sort of 234 
flip-flop behavior that reflects the molecule rotation under shear. Figure 5 (third panel) is the ensemble 235 
average of cos 𝜃 (𝑡) obtained from 100 chains. Because of the random orientations at the initial 236 
condition (i.e. all 𝜃 values are equally probable), 〈cos 𝜃 (𝑡 = 0)〉 = 2/𝜋. Next, because of flow, 237 
〈cos 𝜃(𝑡)〉 decays to zero. However, around 𝑡/𝜏&~1000, a negative undershoot is found, which 238 
clearly indicates a coherent rotation of the different backbones. This feature is also seen in the 239 
backbone orientation (going back to the bottom panel of Fig. 3). We further note that the undershoot 240 
occurs slightly earlier in the simulation with BPW than in that without BPW. Finally, the bottom panel 241 
of Fig. 5 shows the auto-correlation function of cos 𝜃 (𝑡) in the steady state. Here, oscillations around 242 
zero start at a time roughly corresponding to that of the undershoot in 〈cos 𝜃(𝑡)〉, although they do 243 
not imply coherence among the molecules. We can also infer that BPW augments rotation of the 244 
molecule (red vs. blue curve), and the faster rotation causes a more rapid relaxation of the stress after 245 
the overshoot via relief of the stretch.  246 
 247 
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 248 

Figure 5 Schematic representation of the rotation angle 𝜃 of the backbone (top). Typical example of 249 
the time development of cos 𝜃 after the flow startup at 𝛾̇ = 10	s-1 (second top). Ensemble average 250 
of cos 𝜃 (second bottom). Autocorrelation function of cos 𝜃 in the steady state (bottom). Red and 251 
blue curves are the results from the simulations with and without BPW, respectively.  252 
 253 
Figure 6 shows the effect of the shear rate on the autocorrelation function of cos 𝜃 (𝑡) . The 254 
characteristic time for the decay decreases with increasing the shear rate, and the dumped-oscillatory 255 
behavior is observed only at high shear rates. These basic features, which are consistent with the earlier 256 
report for MD simulations of linear polymers,14 can be seen for both simulations, with and without 257 
BPW. 258 

The Weissenberg number to induce tumbling comes out much higher for the branched 259 
polymer here examined than for the linear polyethylene of Nafar-Sefiddashti et al.14 Indeed, the critical 260 
Weissenberg number (beyond which tumbling occurs) reported by them is around 100, whereas it is 261 
more than 1000 in this study. This suggests that the branched structure tends to suppress tumbling. 262 
Concerning the effect of BPW, it accelerates the decay of correlation, and it induces the dumped-263 
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oscillatory behavior at a shear rate smaller than that for the case without BPW. These observations 264 
clearly demonstrate that BPW significantly affects molecular tumbling. 265 
 266 

 267 
Figure 6 Autocorrelation of cos 𝜃 (𝑡) at several shear rates, with and without BPW (bottom and top 268 
panels, respectively).  269 
  270 
 271 
DISCUSSION AND CONCLUSIONS 272 
Costanzo et al16 proposed a constitutive equation that accounts for the effect of tumbling under shear 273 
to reproduce the stress undershoot following the overshoot. Specifically, they introduced dumped 274 
oscillations to the chain strand orientation assuming that tumbling coherence initiated by shear 275 
vanishes with time. This idea is consistent with our results shown in Figs 3 and 5, in which we observe 276 
some coherence in the rotation of the backbone. Rotation of the backbone also appears as a dumped 277 
oscillation in the autocorrelation function of the backbone orientation. However, no stress undershoot 278 
is observed because of the contribution of stretch. Indeed, the two bottom panels in Fig. 3 show that 279 
the stretch overshoot occurs later than that of the orientation. Consequently, the undershoot of 280 
orientation overlaps with the overshoot of stretch, thus cancelling a possible stress undershoot. Besides, 281 
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for the H-polymer here examined the total stress is dominated by the contribution of the arms, for 282 
which the undershoot of the segment orientation is faint. According to these results, we may conclude 283 
that the theory proposed by Costanzo et al16 does not apply to the H-polymer here examined, and 284 
would perhaps be applicable to branched polymers with a different structure. 285 

In conclusion, we investigated the effect of BPW on the motion of branched polymers 286 
undergoing fast shear flows using primitive-chain-network simulations for a polystyrene melt of H 287 
molecules. The simulation reasonably reproduces the linear viscoelasticity and the shear viscosity 288 
growth curve reported in the literature. Based on this agreement with the rheological data, we analyzed 289 
the molecular motion in detail. The results demonstrate that BPW reduces the backbone stretch as 290 
expected, while it also contributes (unexpectedly) to mitigate the arm stretch. Due to reduction in the 291 
stretch, BPW yields better prediction for the viscosity growth under fast shear. Furthermore, BPW 292 
accelerates molecular tumbling at high shear rates, although tumbling effects do not explicitly appear 293 
in the viscosity growth curve (no undershoot). The rate of BPW is significantly larger than the rate of 294 
convection-induced disentanglement. Consequently, it so appears that the reduced chain stretch 295 
induced by BPW overwhelms the other stress-determining molecular mechanisms in shear startup. 296 
The dominance of BPW is in harmony with our earlier study on a pom-pom polystyrene melt under 297 
uniaxial extension, and it also supports pom-pom theories, in which CCR and molecular tumbling are 298 
not considered.  299 
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