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ABSTRACT 18 

The multi-chain slip-spring (MCSS) model is a coarse-grained molecular model 19 

developed for efficient simulations of the dynamics of entangled polymers. In this study, 20 

the simulations were examined for viscoelasticity of polyisoprene (PI) melts, for which 21 

the experimental data for well-characterized samples are available in the literature. The 22 

conversion factor for the molecular weight was determined from the fitting of the 23 

molecular weight dependence of zero-shear viscosity. According to the obtained value, 24 

linear viscoelasticity of several linear PI melts was calculated, and the units of time and 25 

modulus were determined. Based on the shift-factors reported experimentally for the 26 

time-temperature superposition, the conversion factors for time and modulus were 27 

obtained for different temperatures and used for the prediction of linear viscoelasticity 28 

of 6-arm star PI melts, and viscosity growth under high shear for linear PI melts. The 29 

predictions were in good agreement with the data, demonstrating the validity of the 30 

method. The conversion factors determined were consistent with those reported for 31 

polystyrene melt earlier, whereas the relations between the conversion factors are still 32 

unknown.  33 

 34 

INTRODUCTION 35 



The multi-chain slip-spring (MCSS) model is one of the coarse-grained multi-36 

chain models for simulations of entangled polymers in molecular level (Masubuchi 2014; 37 

Masubuchi 2016a). Due to the slow relaxation nature, molecular dynamics simulations 38 

with atomistic details are practically difficult for entangled polymers, yet attempted (Baig 39 

et al. 2010b; Stephanou et al. 2010; Baig et al. 2010a). The widely used and established 40 

approach is the bead-spring type simulations (Kremer and Grest 1990). Recent studies 41 

with highly optimized computation codes have reported some simulation results for 42 

moderately entangled polymer melts, in which the bead number per chain was increased 43 

up to several hundred (Xu et al. 2015). For this approach, the computation costs are still 44 

high due to the inter-bead interaction, which is short-range and repulsive like the Lennard-45 

Jones interaction. Such a short-range and strong repulsion limits the size of time step for 46 

the numerical integration rather small. In this respect, the simulations with softer 47 

interactions that allow interpenetration of the particles are favorable for the computation. 48 

However, the simulations with such softer interactions cannot reproduce the entangled 49 

polymer dynamics unless ad-hoc uncrossability between the chains is implemented (Pan 50 

and Manke 2003). Attempts have been made for realization of uncrossability via the inter-51 

bond interaction (rather than the inter-bead interaction)(Kumar and Larson 2001) and via 52 

the geometrical consideration (Padding and Briels 2001). However, such rigorous 53 



treatments for uncrossability demands computation comparable to calculations with the 54 

conventional bead-spring simulations. An alternative approach is a slip-spring model, in 55 

which the entanglement is replaced by a virtual spring that connects bead-spring chains 56 

without short-range repulsive interactions. To mimic the entanglement, the anchoring 57 

points of the virtual spring slide along the connected chains. The virtual spring is 58 

annihilated by a certain probability when one of the anchoring points reaches the chain 59 

end, and at each chain end, a new virtual spring is created to maintain the average number 60 

of springs in the system. Although the computational efficiency is less than the multi-61 

chain slip-link model (Masubuchi et al. 2001; Masubuchi et al. 2004; Masubuchi 2016b) 62 

owing to the soft interactions the simulations for moderately entangled systems are quite 63 

efficient.  64 

Inspired by the single-chain version (Likhtman 2005; Uneyama 2011), the multi-65 

chain slip-spring models have been developed by a few groups in parallel (Chappa et al. 66 

2012; Uneyama and Masubuchi 2012; Langeloth et al. 2013; Ramírez-Hernández et al. 67 

2013; Vogiatzis et al. 2017). The critical issue for multi-chain modeling is the inter-bead 68 

interaction. For the single chain version, because one of the ends for the virtual spring is 69 

anchored at a certain point in space and is not spatially coupled with other chains, the 70 

conformational distribution of the chain reduces to that of an ideal chain when we 71 



integrate-out the degrees of freedom for the anchoring points. This construction ensures 72 

that the ideal chain statistics is straightforwardly retained. In contrast, for the multi-chain 73 

models, because both ends of the virtual spring are connected to the mobile chains, the 74 

conformational distribution functions for the chains are affected by the inclusion of virtual 75 

springs. Indeed, they play a role as an attractive interaction between the segments to 76 

compress the chains. Because it has been established that the entanglement is purely 77 

kinetic and does not affect the chain statistics, this artificial effect of the virtual spring 78 

must be compensated. The rigorous treatment by the inter-bead repulsive, yet soft 79 

interaction has been proposed (Chappa et al. 2012; Uneyama and Masubuchi 2012), 80 

whereas the intermolecular interaction with a finite compressibility (Ramírez-Hernández 81 

et al. 2013) and the weak repulsive interaction employed in dissipative particle dynamics 82 

simulations (Langeloth et al. 2013; Masubuchi et al. 2016) are effective as well.  83 

Nevertheless, the models with adequate treatments for the artifacts of the 84 

inclusion of virtual springs are capable to simulate a variety of polymeric systems 85 

including block-copolymers (Ramírez-Hernández et al. 2013; Ramírez-Hernández et al. 86 

2018), mixtures of long and short chains (Langeloth et al. 2014), polymer solutions 87 

(Masubuchi et al. 2016), branch polymers (Masubuchi 2018), network polymers 88 

(Megariotis et al. 2018; Masubuchi and Uneyama 2019), etc. The simulations under fast 89 



shear flows have also been attempted (Ramírez-Hernández et al. 2013; Masubuchi 2015; 90 

Ramírez-Hernández et al. 2015; Masubuchi and Uneyama 2018a). The other important 91 

direction is the linkage to the atomistic models (Sgouros et al. 2017; Vogiatzis et al. 2017) 92 

and the other coarse-grained models (Masubuchi and Uneyama 2018b).  93 

In this specific study, we shall report the consistency of the MCSS simulations 94 

with the literature data for polyisoprene (PI) melts (Auhl et al. 2008; Matsumiya et al. 95 

2014). In the earlier studies, we have evaluated the model by the comparison of 96 

rheological data for polystyrene (PS) (Masubuchi 2018), and by the comparison to the 97 

generic bead-spring model(Masubuchi and Uneyama 2018a; Masubuchi and Uneyama 98 

2018c). Because the polymer dynamics is virtually universal and not strongly dependent 99 

on the chemistry (Ferry 1980), the evaluation already performed would be sufficient. 100 

However, parameter determination for specific chemistries is also necessary for practical 101 

use. Besides, the parameters must be evaluated for the consistency to the other materials 102 

and the theories. We have performed the MCSS simulations for several linear polymers 103 

and a few star-branched polymers. For the linear polymers, the simulations under fast 104 

shear flows were also conducted. We have confirmed that the simulation results are in 105 

semi-quantitative agreement with the experimental data. The parameters used are 106 

consistent with those for PS. Details are shown below. 107 



 108 

MODEL AND SIMULATIONS 109 

 The MCSS model proposed earlier (Uneyama and Masubuchi 2012) is used with 110 

the modifications for shear flows (Masubuchi 2015) and the branch point dynamics 111 

(Masubuchi 2018). In this model, a number of Rouse chains are dispersed in a simulation 112 

box with a periodic boundary condition. The Rouse chains are connected by virtual 113 

springs, for which both ends hop between the Rouse beads along the chain. The virtual 114 

spring is annihilated with a certain probability when one of the ends comes to the chain 115 

end, and vice versa, new virtual springs are introduced at the chain ends.  116 

The free energy is given by  117 
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The first and second terms in the right-hand side are the contributions from the Rouse 120 

springs and the virtual springs, respectively. 𝑏 is the average bond length between the 121 

Rouse segments, 𝐑#,% is the position of the Rouse beads 𝑘 on the chain 𝑖, and 𝑁( is 122 

the parameter that determines the intensity of the virtual spring. 𝑆*,. is the connectivity 123 

matrix for the virtual spring 𝛼 . The third term is the soft-core repulsive interaction 124 

between the Rouse beads to eliminate the artificial effect on the chain statistics from the 125 



virtual springs. 𝑒+/%- is the activity of the virtual springs to control the density of virtual 126 

springs in the system by a grand canonical manner according to the chemical potential 𝜈.  127 

The governing equations and algorithms for the dynamics were derived from the 128 

total free energy of the system to fulfill the detailed balance. The time development of 129 

𝐑#,% obeys the Langevin equation of motion, and the SLLOD method was implemented 130 

for the application of shear flows (Masubuchi 2015). The Glauber dynamics manage the 131 

hopping of the virtual springs. For the branch polymers, the hopping across the branch 132 

point (the so-called SHAB) is also considered, yet such a mechanism is not essential for 133 

symmetric star polymers (Masubuchi 2018). The annihilation and creation of the virtual 134 

springs are in balance under equilibrium by the master equation. For these dynamical 135 

equations, in addition to the parameters that appear in the free-energy (𝑒+/%- and 𝑁0), 136 

the friction coefficient for the bead motion 𝜁 and that for the kinetics of virtual spring 137 

𝜁0 are introduced. For simplicity, we assume 𝜁 = 𝜁0. See the previous publication for 138 

further details,  the numerical implementation (Uneyama and Masubuchi 2012).  139 

Simulations were performed for linear, and star-branched polymer melts with 140 

dimensionless units, for which the units of length, energy, and time are the bond length 141 

𝑏, the thermal energy 𝑘!𝑇, and the diffusion time of a single bead 𝜏1 ≡ 𝜁𝑏"/𝑘!𝑇. For 142 

convenience, to compare the simulated results with experimental data, we employ the unit 143 



of molecular weight (i.e., corresponding molecular weight for the single bead) 𝑀1 and 144 

the unit of modulus 𝐺1~𝑏2/𝑘!𝑇, instead of the units of length and energy. For each case, 145 

200 molecules are placed in the simulation box. Owing to the previous studies, 𝑒+/%- 146 

and 𝑁( were fixed at 0.036 and 0.5, respectively. The bead number density 𝜌3 was 4. 147 

These values attain a particular density of slip-springs, which are distributed along the 148 

chain with the average number of Rouse beads between consecutive anchoring points of 149 

slip-springs, 𝑁455 = 3.5.  150 

Periodic boundary conditions were employed with the Lees-Edwards boundary 151 

under shear. The systems were sufficiently equilibrated before data acquisition. The linear 152 

relaxation modulus 𝐺(𝑡) was calculated from the stress auto-correlation obtained from 153 

equilibrium simulations for an extended period that is at least ten times larger than the 154 

longest relaxation time. From 𝐺(𝑡), storage and loss moduli, 𝐺′(𝜔) and 𝐺"(𝜔), were 155 

obtained by the fitting of 𝐺(𝑡)  to a multi-mode Maxwell function. The zero-shear 156 

viscosity 𝜂1 was obtained from 𝐺(𝑡). For statistics, eight independent simulation runs 157 

starting from different initial configurations were performed for each condition, and the 158 

results reported below are the averaged values.  159 

 160 

RESULTS 161 



Figure 1 shows the molecular weight 𝑀 dependence of 𝜂1 for linear polymers 162 

in comparison to the data for PI melts reported experimentally (Gotro and Graessley 163 

1984; Abdel-Goad et al. 2004; Auhl et al. 2008). The simulation result indicated by the 164 

solid red curve reasonably captures the data, including the onset of entanglement. Namely, 165 

the viscosity increases with an increase of 𝑀 with a power-law manner, for which the 166 

exponent is unity in the low-𝑀 regime, whereas it is around 3.5 in the high-𝑀 regime. 167 

The transition between unentangled to entangled regimes is shown in a further clarity in 168 

the bottom panel, in which the viscosity is reduced by 𝑀2, which is the scaling prediction 169 

given by the classical tube model (Doi and Edwards 1986). Indeed, the critical molecular 170 

weight for the onset of entanglement is indicated by the minimum of 𝜂1/𝑀2. From this 171 

comparison, the conversion factor for the molecular weight of PI melt is determined as 172 

𝑀1 = 400 (g/mol).  173 



 174 
Figure 1 Molecular weight dependence of zero-shear viscosity for linear polymers (top) 175 
and the viscosity normalized by the classical reptation prediction (bottom). The data for 176 
PI melts at 25℃ (Gotro and Graessley 1984; Abdel-Goad et al. 2004; Auhl et al. 2008) 177 
are shown for comparison by symbols, and the simulation result is indicated by the solid 178 
curve.  179 

 180 

 Figure 2 shows the linear viscoelastic response for linear and star polymers. The 181 



literature data of PI melts (Auhl et al. 2008; Matsumiya et al. 2014) are shown for 182 

comparison for the samples that have the molecular weights comparable to the simulated 183 

chains according to the conversion factor 𝑀1 obtained above. For linear PI (seen in the 184 

top panel), the conversion factors for time and modulus are chosen as 𝜏1 = 5 × 1067sec 185 

and 𝐺1 = 2 × 108Pa at 25℃. These values give the unit viscosity 𝜏1𝐺1 = 1 Pa s, which 186 

is consistent with the result shown in Figure 1. With the same set of the conversion factors, 187 

the data for several different molecular weights are reasonably reproduced, except the 188 

high-𝜔 behavior for the shortest chain, due to an unavoidable cut-off of the model.  189 

For branch polymers, the conversion factors must be shared with those for linear 190 

polymers. Because the experimental data for star PI employed here (Matsumiya et al. 191 

2014) were taken at 40℃, which is different from that for the linear polymers, we utilized 192 

the shift factors for PI melts reported experimentally (Auhl et al. 2008) to obtain the 193 

conversion factors. The determined values are 𝜏1 = 1.5 × 1068 sec and 𝐺1 = 2.1 ×194 

108	Pa (at 40℃), and the comparison based on the conversion is shown in the bottom 195 

panel. The prediction is not excellent, although it works to some extent. We wish to note 196 

that better reproducibility has been reported for linear and branch polystyrenes 197 

(Masubuchi 2018), for which the reference temperature is identical and the data are 198 

reported from the same group.  199 



 200 

 201 
Figure 2 Linear viscoelasticity of linear (top) and 6-arm star-branched (bottom) polymer 202 
melts compared to the experimental data for PI with corresponding molecular weights 203 
indicated in the figures (Auhl et al. 2008; Matsumiya et al. 2014). For the star polymers, 204 
the molecular weight and the bead number of each arm are indicated. The experimental 205 
data were taken at 25℃ for linear PI and 40℃ for star PI, respectively.  206 

 207 

Figure 3 shows the viscosity growth for a few linear polymers, for which the 208 



linear viscoelasticity is shown in Figure 2. For the prediction of nonlinear viscoelasticity, 209 

the conversion factors must be shared with those for linear viscoelasticity. We 210 

accommodated the temperature difference employing the shift factors reported (Auhl et 211 

al. 2008) and obtained the conversion factors at -35℃ as 𝜏1 = 2.8 × 1062sec and 𝐺1 =212 

1.7 × 108Pa. The simulation results according to these conversion factors are in excellent 213 

agreement for the short PI (𝑀𝑤 =13.5k shown in the top panel), whereas the simulations 214 

are not entirely consistent with the data for the long PI (𝑀𝑤 =33.6k shown in the bottom 215 

panel). In particular, the predictions for high shear rates are underestimated. This 216 

inconsistency might be due to the model construction, in which we assume that the system 217 

is not far from equilibrium. Meanwhile, we wish to note that the MCSS prediction under 218 

high shear is in good agreement with the results obtained from the bead-spring 219 

simulations (Masubuchi and Uneyama 2018c). Note also that better agreement can be 220 

attained if the conversion factors could be tuned.  221 

 222 



 223 

 224 
Figure 3 Viscosity growth under high shear for linear polymers compared with the 225 
experimental data for PI melts taken at -35℃ (Auhl et al. 2008). The bead number per 226 
chain and the corresponding molecular weight of PI are 𝑁 = 34 and 𝑀𝑤 =13.5k (top), 227 
and 𝑁 = 84 and	𝑀𝑤 =33.6k (bottom). The simulation results and the experimental data 228 
are shown by the red curve and triangle, respectively. The linear viscoelastic envelope is 229 
shown by the blue dotted curve. The shear rate is indicated in terms of the Weissenberg 230 
number for the longest relaxation time.  231 

 232 



 233 

DISCUSSION 234 

 Let us discuss the unit of molecular weight 𝑀1, which has been determined as 235 

400 for PI in this study. This value is consistent with the previous study for PS, for which 236 

𝑀1 = 1250  (Masubuchi 2018) if we consider the entanglement molecular weight. 237 

Because 𝑀1 is the molecular weight being carried by the single bead, and 𝑁455 = 3.5, 238 

the molecular weight between two anchoring points of slip-springs 𝑀4
55 is 1400 for PI 239 

and 4375 for PS. Both of these values are around four times smaller than the tabulated 240 

values for the entanglement molecular weight 𝑀4. For instance, 𝑀4 values for PI and 241 

PS have been reported as 4820 (Auhl et al. 2008) and 14470 (Likhtman and McLeish 242 

2002) based on the tube model. One of the reasons for the difference between 𝑀4
55 and 243 

𝑀4 is the model dependence of the relation between the plateau modulus and the density 244 

of entanglement. As we have discussed in the previous publications (Masubuchi et al. 245 

2003; Masubuchi and Uneyama 2018b), the relation between the plateau modulus and the 246 

number density of entanglements is model dependent as written by 𝐺9 = 𝐴𝑛𝑘!𝑇. Here, 247 

𝐴 is the model-dependent factor that depends on the fluctuations considered, and 𝑛 is 248 

the number density of entanglement segments. For most of the cases, the value of 𝑀4 249 

experimentally reported is obtained for 𝐴 = 1, which is for the affine network theory 250 



without any fluctuation at entanglement. Meanwhile, 𝐴 = 0.8 for the tube model due to 251 

the chain sliding at the entanglement, and 𝐴 = 0.5 for the cross-link network models 252 

with Brownian motion of the entanglement. We have reported that our MCSS simulation 253 

gives 𝐴 = 0.17, which seems reasonable because of the various fluctuations including 254 

the chain sliding (i.e., the hopping of the slip-spring, which causes the fluctuation of 255 

numbers of beads between entanglements), and the Brownian motion of the beads and 256 

the conformational fluctuations of the slip-spring (which causes the fluctuation of 257 

transient link positions) (Masubuchi and Uneyama 2018b). Based on 𝐴 = 0.17, 𝑀4
55 258 

can be calculated from 𝑀4  mentioned above as 1024 and 3074 for PI and PS, 259 

respectively. These values are even smaller than the 𝑀4
55 determined from the fitting, 260 

possibly due to the difference of the segment density.  261 

The unit of modulus 𝐺1 obtained for PI is also consistent with that obtained for 262 

PS earlier (Masubuchi 2018). For PI, 𝐺1 = 2 × 108Pa (at 25℃), whereas for PS, 𝐺1 =263 

9.1 × 10:Pa (at 169.5℃). Both of these values are around three times larger than the 264 

plateau modulus reported, implying the consistency between the simulations for PI and 265 

PS. However, the relation between 𝐺1  and 𝑀1  seems non-trivial. From dimensional 266 

analysis, we obtain a relationship 𝐺1 = 𝐵𝜌𝑅𝑇/𝑀1 . Here, 𝐵  is a constant, 𝜌  is the 267 

density, and 𝑅 is the gas constant. Note that this relation is similar to, yet different from 268 



that discussed above for 𝐺9 and 𝑀4. For the tube model proposed by Likhtman and 269 

McLeish (Likhtman and McLeish 2002), it has been reported that 𝑀1
;< = 4820 and 270 

𝐺1;< = 6 × 10:Pa for the PI melt examined in this study. With the density of 𝜌 =271 

0.913 g/cm3, these values give 𝐵;< = 1.3 . For our case, 𝐵 = 0.35 . We have no 272 

explanation for this value of 𝐵.  273 

 Let us turn our attention to the unit of time that was determined as 𝜏1 =274 

5 × 1067sec. According to the study by Auhl et al.(Auhl et al. 2008), the values for the 275 

tube model are 𝜏1;< = 1.3 × 106:. The difference for the unit of time can be explained 276 

by the unit of molecular weight. For the tube model, 𝑀1
;< = 4820 has been reported, 277 

whereas our simulation gives 𝑀1 = 400. Because the unit of time corresponds to the 278 

Rouse relaxation time of the segment, the ratio for the unit of time would be the square 279 

of the ratio for the unit of molecular weight. This estimation is consistent with the values 280 

mentioned above. Similar consistency with the tube model can be confirmed for PS.  281 

It is fair to note that Ramírez-Hernández et al.(Ramírez-Hernández et al. 2015) 282 

have reported a similar simulation study for the rheology of linear PI melts examined 283 

above. Their model, so-called TIEPOS (theoretically informed entangled polymer 284 

simulations), is the same with our MCSS model in the fundamental construction, in which 285 

bead-spring chains with weakly repulsive interactions are connected by virtual springs. 286 



The main difference is that they consider the inter-bead interaction based on the 287 

compressibility, whereas we introduce the interaction to retain the ideal chain statistics. 288 

The other difference is that they allow only one slip-spring connected to a single bead to 289 

avoid passing between slip-springs along the chain. Probably due to these differences, the 290 

effect of slip-spring on the chain dynamics seems not the same with each other. To 291 

reproduce the viscoelasticity of PI melt with 𝑀𝑤 =33.6k, we need the bead number per 292 

chain of 𝑁 = 84, whereas they only have 𝑁 = 32. The average number of slip-springs 293 

on one chain 𝑍 is 25 for our case, whereas 8.6 for them. This comparison demonstrates 294 

that their model has an advantage in the level of coarse-graining and for a reduction of 295 

computation costs. However, the efficiency of their entanglement is inexplicable from the 296 

discussion for 𝑀4
55  mentioned above. According to the difference of 𝑍 , a naïve 297 

estimation of 𝐴 value for TIEPOS would be ca. 0.5, which is close to the cross-link 298 

networks. This estimation implies that the incompressibility for the chains, and the 299 

uncrossability between slip-springs significantly suppress the fluctuations around their 300 

entanglement. Besides, they compared the statistical distributions of their model with 301 

predictions by a mean-field single-chain model, and reported that the simulation data 302 

agree well with the theoretical predictions. Their result implies that the fluctuations in 303 

TIEPOS model is close to those in the mean-field single-chain model. However, in multi-304 



chain models, in general, the environment around a chain fluctuates (because the 305 

environment itself consists of fluctuating chains) and the statistical distributions deviate 306 

from the mean-field statistics without fluctuations. The friction for the slip-spring kinetics 307 

is the other important parameter, but the setting in TIEPOS seems the same with our 308 

simulations. Nevertheless, further assessment is necessary for the nature of the multi-309 

chain slip-spring models.  310 

 311 

CONCLUSIONS 312 

We performed MCSS simulations with the model parameters fixed at 𝑒+/%- =313 

0.036, 𝑁( = 0.5, 𝜁 = 𝜁0, and 𝜌3 = 4 to compare the results with the experimental data 314 

for PI melts. The conversion factor for the molecular weight (i.e., the molecular weight 315 

carried by the single Rouse bead) was obtained as 𝑀1 = 400 (g/mol) from the molecular 316 

weight dependence of the zero-shear viscosity for linear polymers. According to the 𝑀1 317 

value, we calculated the linear viscoelasticity for several linear and 6-arm star-branch 318 

polymers, for which the experimental data are available for PI with the corresponding 319 

molecular weight. For the linear polymers, the simulation results agree with the data for 320 

the conversion factors obtained by the fitting as 𝜏1 = 5 × 1067sec and 𝐺1 = 2 × 108Pa 321 

at 25℃. Based on these values, the conversion factors for different temperatures were 322 



obtained according to the shift factors reported experimentally. With these conversion 323 

factors, the simulation results for linear viscoelasticity of star PI taken at 40℃, and for 324 

viscosity growth under high shear of linear PI obtained at -35℃  are in reasonable 325 

agreement with the experimental data. The conversion factors thus determined are 326 

consistent with those for PS. However, the relations between the conversion factors are 327 

still unknown, and further evaluation and systematic studies are necessary. For example, 328 

the dependence of conversion factors on the model parameters is worth investigating. 329 

Studies in such directions are ongoing, and the results will be published elsewhere. 330 
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